1
|
Xu L, Ma J, Yu Q, Zhu K, Wu X, Zhou C, Lin X. Evidence supported by Mendelian randomization: impact on inflammatory factors in knee osteoarthritis. Front Med (Lausanne) 2024; 11:1382836. [PMID: 38863887 PMCID: PMC11165061 DOI: 10.3389/fmed.2024.1382836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Background Prior investigations have indicated associations between Knee Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin series and tumor necrosis factor-alpha (TNFα). To further elaborate on these findings, our investigation utilizes Mendelian randomization to explore the causal relationships between KOA and 91 inflammatory cytokines. Methods This two-sample Mendelian randomization utilized genetic variations associated with KOA from a large, publicly accessible Genome-Wide Association Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. The genetic data for inflammatory cytokines were obtained from a GWAS summary involving 14,824 individuals of European ancestry. Causal relationships between exposures and outcomes were primarily investigated using the inverse variance weighted method. To enhance the robustness of the research results, other methods were combined to assist, such as weighted median, weighted model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO and leave one out, was also carried out. These different analytical methods are used to enhance the validity and reliability of the final results. Results The results of Mendelian randomization indicated that Adenosine Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth factor (HFG) proteins are protective factors for KOA (IVWADA: OR = 0.862, 95% CI: 0.771-0.963, p = 0.008; IVWFGF5: OR = 0.850, 95% CI: 0.764-0.946, p = 0.003; IVWHFG: OR = 0.798, 95% CI: 0.642-0.991, p = 0.042), while Tumor necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. (IVWTNFα: OR = 1.319, 95% CI: 1.067-1.631, p = 0.011; IVWCSF1: OR = 1.389, 95% CI: 1.125-1.714, p = 0.002; IVWTWEAK: OR = 1.206, 95% CI: 1.016-1.431, p = 0.032). Conclusion The six proteins identified in this study demonstrate a close association with the onset of KOA, offering valuable insights for future therapeutic interventions. These findings contribute to the growing understanding of KOA at the microscopic protein level, paving the way for potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Lilei Xu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Ma
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Yu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kean Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuewen Wu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanlong Zhou
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Royal jelly extracellular vesicles promote wound healing by modulating underlying cellular responses. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:541-552. [PMID: 36895953 PMCID: PMC9989319 DOI: 10.1016/j.omtn.2023.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.
Collapse
|
3
|
Arab WT, Susapto HH, Alhattab D, Hauser CAE. Peptide nanogels as a scaffold for fabricating dermal grafts and 3D vascularized skin models. J Tissue Eng 2022; 13:20417314221111868. [PMID: 35923174 PMCID: PMC9340315 DOI: 10.1177/20417314221111868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Millions of people worldwide suffer from skin injuries, which create significant problems in their lives and are costly to cure. Tissue engineering is a promising approach that aims to fabricate functional organs using biocompatible scaffolds. We designed ultrashort tetrameric peptides with promising properties required for skin tissue engineering. Our work aimed to test the efficacy of these scaffolds for the fabrication of dermal grafts and 3D vascularized skin tissue models. We found that the direct contact of keratinocytes and fibroblasts enhanced the proliferation of the keratinocytes. Moreover, the expression levels of TGF-β1, b-FGF, IL-6, and IL-1α is correlated with the growth of the fibroblasts and keratinocytes in the co-culture. Furthermore, we successfully produced a 3D vascularized skin co-culture model using these peptide scaffolds. We believe that the described results represent an advancement in the fabrication of skin tissue equivalent, thereby providing the opportunity to rebuild missing, failing, or damaged parts. Graphical abstract
Collapse
Affiliation(s)
- Wafaa T Arab
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Dana Alhattab
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
HGF/c-MET Signaling in Melanocytes and Melanoma. Int J Mol Sci 2018; 19:ijms19123844. [PMID: 30513872 PMCID: PMC6321285 DOI: 10.3390/ijms19123844] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-MET) signaling is involved in complex cellular programs that are important for embryonic development and tissue regeneration, but its activity is also utilized by cancer cells during tumor progression. HGF and c-MET usually mediate heterotypic cell–cell interactions, such as epithelial–mesenchymal, including tumor–stroma interactions. In the skin, dermal fibroblasts are the main source of HGF. The presence of c-MET on keratinocytes is crucial for wound healing in the skin. HGF is not released by normal melanocytes, but as melanocytes express c-MET, they are receptive to HGF, which protects them from apoptosis and stimulates their proliferation and motility. Dissimilar to melanocytes, melanoma cells not only express c-MET, but also release HGF, thus activating c-MET in an autocrine manner. Stimulation of the HGF/c-MET pathways contributes to several processes that are crucial for melanoma development, such as proliferation, survival, motility, and invasiveness, including distant metastatic niche formation. HGF might be a factor in the innate and acquired resistance of melanoma to oncoprotein-targeted drugs. It is not entirely clear whether elevated serum HGF level is associated with low progression-free survival and overall survival after treatment with targeted therapies. This review focuses on the role of HGF/c-MET signaling in melanoma with some introductory information on its function in skin and melanocytes.
Collapse
|
5
|
Paré B, Gros-Louis F. Potential skin involvement in ALS: revisiting Charcot's observation - a review of skin abnormalities in ALS. Rev Neurosci 2018; 28:551-572. [PMID: 28343168 DOI: 10.1515/revneuro-2017-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients' skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.
Collapse
|
6
|
Hamoen KE, Morgan JR. Transient Hyperproliferation of a Transgenic Human Epidermis Expressing Hepatocyte Growth Factor. Cell Transplant 2017. [DOI: 10.3727/000000002783985819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a fibroblast-derived protein that affects the growth, motility, and differentiation of epithelial cells including epidermal keratinocytes. To investigate the role of HGF in cutaneous biology and to explore the possibility of using it in a tissue engineering approach, we used retroviral-mediated gene transfer to introduce the gene encoding human HGF into diploid human keratinocytes. Modified cells synthesized and secreted significant levels of HGF in vitro and the proliferation of keratinocytes expressing HGF was enhanced compared with control unmodified cells. To investigate the effects of HGF in vivo, we grafted modified keratinocytes expressing HGF onto athymic mice using acellular dermis as a substrate. When compared with controls, HGF-expressing keratinocytes formed a hyperproliferative epidermis. The epidermis was thicker, had more cells per length of basement membrane, and had increased numbers of Ki-67-positive proliferating cells, many of which were suprabasal in location. Hyperproliferation subsided and the epidermis was equivalent to controls by 2 weeks, a time frame that coincides with healing of the graft. Transient hyperproliferation may be linked to the loss of factors present in the wound that activate HGF. These data suggest that genetically modified skin substitutes secreting HGF may have applications in wound closure and the promotion of wound healing.
Collapse
Affiliation(s)
- Karen E. Hamoen
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Shriners Hospital for Children, Boston, MA
| | - Jeffrey R. Morgan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Shriners Hospital for Children, Boston, MA
| |
Collapse
|
7
|
McQuilling JP, Vines JB, Mowry KC. In vitro assessment of a novel, hypothermically stored amniotic membrane for use in a chronic wound environment. Int Wound J 2017; 14:993-1005. [PMID: 28370981 PMCID: PMC7949938 DOI: 10.1111/iwj.12748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds require extensive healing time and place patients at risk of infection and amputation. Recently, a fresh hypothermically stored amniotic membrane (HSAM) was developed and has subsequently shown promise in its ability to effectively heal chronic wounds. The purpose of this study is to investigate the mechanisms of action that contribute to wound-healing responses observed with HSAM. A proteomic analysis was conducted on HSAM, measuring 25 growth factors specific to wound healing within the grafts. The rate of release of these cytokines from HSAMs was also measured. To model the effect of these cytokines and their role in wound healing, proliferation and migration assays with human fibroblasts and keratinocytes were conducted, along with tube formation assays measuring angiogenesis using media conditioned from HSAM. Additionally, the cell-matrix interactions between fibroblasts and HSAM were investigated. Conditioned media from HSAM significantly increased both fibroblast and keratinocyte proliferation and migration and induced more robust tube formation in angiogenesis assays. Fibroblasts cultured on HSAMs were found to migrate into and deposit matrix molecules within the HSAM graft. These collective results suggest that HSAM positively affects various critical pathways in chronic wound healing, lending further support to promising qualitative results seen clinically and providing further validation for ongoing clinical trials.
Collapse
Affiliation(s)
| | - Jeremy B Vines
- Research and Development, NuTech Medical, Birmingham, AL, USA
| | - Katie C Mowry
- Research and Development, NuTech Medical, Birmingham, AL, USA
| |
Collapse
|
8
|
Birlea SA, Costin GE, Roop DR, Norris DA. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization. Med Res Rev 2016; 37:907-935. [PMID: 28029168 DOI: 10.1002/med.21426] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Abstract
Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation.
Collapse
Affiliation(s)
- Stanca A Birlea
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Dennis R Roop
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Gates Center for Regenerative Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David A Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Gates Center for Regenerative Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Denver Department of Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
9
|
The HGF-cMET signaling pathway in conferring stromal-induced BRAF-inhibitor resistance in melanoma. Melanoma Res 2015; 25:470-8. [DOI: 10.1097/cmr.0000000000000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Orazizadeh M, Hashemitabar M, Bahramzadeh S, Dehbashi FN, Saremy S. Comparison of the enzymatic and explant methods for the culture of keratinocytes isolated from human foreskin. Biomed Rep 2015; 3:304-308. [PMID: 26137227 DOI: 10.3892/br.2015.442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
Currently, culture and growth keratinocytes are important stages in achieving a reliable and reproducible skin tissue. In the present study, two different methods, enzymatic and explant methods, for keratinocytes isolation from human foreskin were compared. Foreskins were cut into 2-3 mm pieces and placed in trypsin at 4°C overnight for separation of the epidermis from the dermis. Subsequently, these samples were divided into two groups: i) Keratinocytes separated from the epidermis by trypsin and ii) by the explant method. These keratinocytes were divided into two groups: i) With no feeder layer and ii) onto a type I collagen scaffold. The cells were evaluated using immunocytochemistry and 4',6-diamidine-2'-phenylindole dihydrochloride (DAPI) staining. In the enzymatic treatment, after 7-10 days no attached cells were found in the cell culture dishes. In the explant method, keratinocytes were separated after ~24 h, attached rapidly and formed big colonies into a collagen scaffold. In the absence of a feeder layer, small colonies were developed with rapid loss of proliferation within 2-3 days. Keratinocytes showed positive immunoreactivity for the pan-cytokeratin marker and keratinocytes' nuclei were clearly observed. This method could be applied and developed as a component of skin substitutes to treat burns and wounds and also in laboratory testing.
Collapse
Affiliation(s)
- Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran ; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Mahmoud Hashemitabar
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran ; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Somayeh Bahramzadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Freshteh Nejad Dehbashi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| | - Sadegh Saremy
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan 61357-15794, Iran
| |
Collapse
|
11
|
Alkafafy M, Montaser M, El-Shazly SA, Bazid S, Ahmed MM. Ethanolic extract of sharah, Plectranthus aegyptiacus, enhances healing of skin wound in rats. Acta Histochem 2014; 116:627-38. [PMID: 24382517 DOI: 10.1016/j.acthis.2013.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
Abstract
Sharah, Plectranthus aegyptiacus (Forssk.) C. Chr. is a common native plant in the Taif region of Saudi Arabia. An ethanolic extract of freeze dried sharah leaves was added as 10% (w/w) to an ointment base of beeswax and sesame oil. The resultant ointment was examined as a potential enhancer of wound healing. Excision wounds in the nape region of the skin were induced in sixty albino Wistar rats. Animals were allocated in 4 groups (n=15) and kept individually in clean cages. The first group served as negative untreated controls without medication; the second group was treated with ointment base (vehicle); the third group represented the positive control and was treated with a reference ointment and the fourth one served as the experimental group and received the test plant extract (as ointment). Animal groups received the respective medications for 14 successive days. Wounds were measured and photographed every 3 days till the end of the experiment (day 21) in order to determine the wound closure rate (WCR). Specimens from wounds and surrounding skin were collected from sacrificed animals for histological and molecular studies. Both morphometric (based on WCR) and histological findings showed that the healing in animals treated with the sharah plant extract was better than those in control group or vehicle-treated group and was similar to that in the group that received the reference ointment. Moreover, the molecular findings concerning the expression levels of hepatocyte growth factor (HGF) and its receptor (c-Met) displayed a reasonable healing enhancing effect of the plant extract with the expression levels of both being higher in the extract-treated group than in the control group.
Collapse
Affiliation(s)
- Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia; Department of Cytology and Histology, College of Veterinary Medicine, University of Sadat City, Egypt
| | - Metwally Montaser
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia; Department of Zoology, College of Science, Al-Azhar University, Cairo, Egypt
| | - Samir A El-Shazly
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia; Department of Biochemistry, College of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Saleh Bazid
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed M Ahmed
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia; Department of Biochemistry, College of Veterinary Medicine, University of Sadat City, Egypt.
| |
Collapse
|
12
|
Jiang X, McClellan SA, Barrett R, Foldenauer M, Hazlett LD. HGF signaling impacts severity of Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2014; 55:2180-90. [PMID: 24618323 PMCID: PMC3985408 DOI: 10.1167/iovs.13-13743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/01/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To determine whether rapamycin altered corneal growth factor levels to impact severity of Pseudomonas aeruginosa keratitis. METHODS BALB/c mice were injected intraperitoneally with rapamycin or PBS and infected with P. aeruginosa. Corneas were harvested and mRNA levels of growth factors (EGF, HGF, FGF-7/KGF), receptors (EGFR, c-met, FGFR-2), and signaling molecules (PI3K, Akt, S6K1, and IGF-1R) tested. ELISA determined HGF/c-met, IGF-1, and Substance P (SP) protein levels. Corneal application of recombinant (r)HGF was assessed by clinical score, photography with a slit lamp, real-time RT-PCR (mRNA for mT0R, IL-10, IL-12, IL-18, PI3KCα, Akt), and ELISA (total and phosphorylated [p]c-met); rIGF-1 effects also were tested by ELISA. In vitro, RAW cells and peritoneal macrophages were stimulated with LPS ± rHGF ± c-met inhibitor (CI) and mTOR mRNA levels tested. RESULTS Rapamycin disparately regulated infected corneal mRNA levels of EGF/EGFR and FGF-7/FGFR-2, but HGF/c-met mRNA levels both increased. ELISA confirmed elevated HGF protein. Rapamycin did not change PI3KCα or Akt signaling molecule expression, downregulated S6K1, but upregulated IGF-1R mRNA levels; IGF-1 and SP proteins also were upregulated. After infection, topical rHGF versus PBS increased mRNA levels of IL-12p40, IL-18, PI3KCα, and Akt; mTOR and IL-10 mRNA were downregulated; rIGF-1 increased HGF protein. In vitro, rHGF and LPS lowered RAW cell and macrophage mTOR levels; CI addition restored them. CONCLUSIONS Collectively, these data provide evidence that enhanced corneal HGF levels increase signaling through the c-met receptor, decrease mTOR levels, and enhance proinflammatory cytokines, while decreasing anti-inflammatory cytokines, and that HGF signaling is central to disease outcome.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | | | | | | | | |
Collapse
|
13
|
Wound healing potential of a dimeric InlB variant analyzed by in vitro experiments on re-epithelialization of human skin models. Eur J Pharm Biopharm 2013; 86:277-83. [PMID: 24140590 DOI: 10.1016/j.ejpb.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
A constitutively dimeric truncated variant of internalin B (InlB321-CD), acting as stimulator of the receptor tyrosine kinase MET, was tested for dermal wound-healing potential. Due to a lack of the endogenous MET agonist HGF/SF in chronic wounds, HGF/SF substitution by an InlB321-CD-loaded hydrogel might be beneficial in chronic wound therapy. In this study, InlB321-CD in solution and incorporated in a hydrogel was tested for mitogenic effects on immortalized human dermal keratinocytes (HaCaT) with an MTT assay. Cell migration was investigated with a scratch assay on primary keratinocytes (PHK) and on HaCaT. For the latter, scratching needed to be mitomycin C-controlled. InlB321-CD effects on a model of human skin were analyzed histologically with respect to viability. InlB321-CD led to dose-dependent proliferative effects on HaCaT cells whereas the equimolar dose of monomeric InlB321 did not. Upon hydrogel incorporation of InlB321-CD its mitogenic activity for HaCaT cells was maintained thus confirming the hydrogel as a promising drug delivery system. Motogenic effects were shown on both HaCaT and PHK cells. InlB321-CD neither possesses cytotoxic effects on the viability of a human skin model nor alters its organotypic cell morphology.
Collapse
|
14
|
Nakamura Y, Ishikawa H, Kawai K, Tabata Y, Suzuki S. Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 2013; 34:9393-400. [PMID: 24054847 DOI: 10.1016/j.biomaterials.2013.08.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/15/2022]
Abstract
The objective of this study was to investigate the ability of mesenchymal stem cells (MSC) genetically engineered with stromal cell-derived factor-1 (SDF-1) to heal skin wounds. When transfected with SDF-1 plasmid DNA, MSC which were isolated from the bone marrow of rats, secreted SDF-1 for 7 days. In vitro cell migration assay revealed that the SDF-1-engineered MSC (SDF-MSC) enhanced the migration of MSC and dermal fibroblasts to a significantly greater extent than MSC. The SDF-MSC secreted vascular endothelial growth factor, hepatocyte growth factor, and interleukin 6 at a significantly high level. A skin defect model of rats was prepared and MSC and SDF-MSC were applied to the wound to evaluate wound healing in terms of wound size and histological examinations. The wound size decreased significantly faster with SDF-MSC treatment than with MSC and PBS treatments. The length of the neoepithelium and the number of blood vessels newly formed were significantly larger. A cell-tracing experiment with fluorescently labeled cells demonstrated that the percent survival of SDF-MSC in the tissue treated was significantly high compared with that of MSC. It was concluded that SDF-1 genetic engineering is a promising way to promote the wound healing activity of MSC for a skin defect.
Collapse
Affiliation(s)
- Yoko Nakamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan; Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Japan.
| | | | | | | | | |
Collapse
|
15
|
Receptor-type Protein tyrosine phosphatase β regulates met phosphorylation and function in head and neck squamous cell carcinoma. Neoplasia 2013; 14:1015-22. [PMID: 23226095 DOI: 10.1593/neo.12870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met) pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β). We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP) kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.
Collapse
|
16
|
Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 2013; 8:e63607. [PMID: 23675494 PMCID: PMC3651095 DOI: 10.1371/journal.pone.0063607] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.
Collapse
|
17
|
|
18
|
Foldenauer MEB, McClellan SA, Barrett RP, Zhang Y, Hazlett LD. Substance P affects growth factors in Pseudomonas aeruginosa-infected mouse cornea. Cornea 2012; 31:1176-88. [PMID: 22722806 PMCID: PMC3437011 DOI: 10.1097/ico.0b013e31824d6ffd] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study analyzed the influence of substance P (SP) on growth factors related to wound healing in mice in the presence of infectious keratitis. METHODS Naturally resistant mice were injected intraperitoneally with SP or phosphate-buffered saline and infected with Pseudomonas aeruginosa, and corneal messenger RNA (mRNA) levels of growth factors and apoptosis genes were tested. Enzyme-linked immunosorbent assay determined the protein levels, whereas immunohistochemistry tested the distribution, macrophage phenotype, and cell quantitation. In vitro, macrophages were stimulated with lipopolysaccharide (LPS; with or without SP) and mRNA levels of proinflammatory and antiinflammatory cytokines and apoptosis genes were tested. RESULTS After SP, epidermal growth factor mRNA and protein levels were disparately regulated early, with no differences later in the disease. Hepatocyte growth factor and fibroblast growth factor-7 mRNA and protein levels were increased after SP treatment. Enumerating dual-labeled stromal cells revealed no difference between SP-treated versus phosphate-buffered saline-treated groups in the percentage of epidermal growth factor-labeled fibroblasts or macrophages, but there were significant increases in both hepatocyte growth factor- and fibroblast growth factor-7-labeled cells. Type 2 (M2) macrophages and caspase-3 mRNA levels were decreased, whereas B-cell lymphoma-2 mRNA expression was increased after SP treatment. In vitro, mRNA levels of several proinflammatory cytokines and B-cell lymphoma-2 were elevated, whereas transforming growth factor β was decreased after macrophage stimulation with SP (with LPS) over LPS alone. (Mice: n = 105 control; 105 experimental.) CONCLUSIONS These data show that treatment with SP in infectious keratitis elevates growth factors but also adversely affects the disease by enhancing the inflammatory response and its sequelae.
Collapse
Affiliation(s)
- Megan E B Foldenauer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
19
|
Serrano I, Díez-Marqués ML, Rodríguez-Puyol M, Herrero-Fresneda I, Raimundo García DM, Dedhar S, Ruiz-Torres MP, Rodríguez-Puyol D. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF). Exp Cell Res 2012; 318:2470-81. [PMID: 22971619 DOI: 10.1016/j.yexcr.2012.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing.
Collapse
Affiliation(s)
- Isabel Serrano
- Department of Physiology, University of Alcala, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shibata S, Tada Y, Asano Y, Hau CS, Kato T, Saeki H, Yamauchi T, Kubota N, Kadowaki T, Sato S. Adiponectin Regulates Cutaneous Wound Healing by Promoting Keratinocyte Proliferation and Migration via the ERK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:3231-41. [DOI: 10.4049/jimmunol.1101739] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Sugiura Y, Hiramatsu K, Hamauzu R, Motoki T, Miyazaki M, Uto H, Tsubouchi H, Tanaka S, Gohda E. Mitogen-activated protein kinases-dependent induction of hepatocyte growth factor production in human dermal fibroblasts by the antibiotic polymyxin B. Cytokine 2012; 60:205-11. [PMID: 22749438 DOI: 10.1016/j.cyto.2012.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) stimulates migration and proliferation of keratinocytes and has been suggested to be involved in wound healing. The cationic antibiotic polymyxin B (PMB) is commonly used as a topical antibiotic for wound care. If PMB possesses an HGF-inducing activity, the antibiotic is potentially beneficial for wound healing in addition to minimizing chances of infection. In this study, we found that PMB markedly induced HGF production from various types of cells including human dermal fibroblasts. Its effect was stronger than the effects of epidermal growth factor and cholera toxin and was comparable to the effect of 8-bromo-cAMP. Among the polymyxin family and polymyxin derivatives, colistin was also effective, whereas colistin methanesulfonate had only a marginal effect and PMB nonapeptide was ineffective. The stimulatory effect of PMB was accompanied by upregulation of HGF gene expression. Increase in phosphorylation of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) was observed from 0.25 h to 6h after the addition of PMB, while increase in phosphorylation of p38 mitogen-activated protein kinase (MAPK) was detected from 24h to 60 h after PMB addition. The MAPK/ERK kinase inhibitor PD98059, the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 all potently inhibited PMB-induced HGF production. Lastly, proliferation of human dermal fibroblasts was significantly stimulated by PMB. These results indicate that PMB-induced HGF production and proliferation of human dermal fibroblasts and suggest that activation of MAPKs is involved in the induction of HGF production.
Collapse
Affiliation(s)
- Yoshihiro Sugiura
- Department of Immunochemistry, Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nomura M, Oketa Y, Yasui K, Ishikawa H, Ono S. Expression of hepatocyte growth factor in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand 2012; 125:389-97. [PMID: 21824113 DOI: 10.1111/j.1600-0404.2011.01579.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. Overexpression of neuronal HGF has been shown to result in the attenuation of neuronal cell death and progression of disease in a familial amyotrophic lateral sclerosis (ALS) transgenic mouse model. HGF might be beneficial for motor neuron survival and is a good candidate agent for the treatment of ALS. So far, studies of the skin of ALS have shown unique pathological and biochemical abnormalities. However, there has been no study of HGF in ALS skin. MATERIALS AND METHODS We made a quantitative immunohistochemical study of the expression of HGF in the skin from 19 patients with sporadic ALS and 16 controls. RESULTS Hepatocyte growth factor immunoreactivity was positive in the epidermis, some dermal blood vessels, and glands in patients with ALS. These findings became more conspicuous as ALS progressed. The optical density for HGF immunoreactivity of the nucleus and the cytoplasm in the epidermis in ALS was significantly higher (P < 0.001 and P < 0.001) than in controls. There was a significant positive relation (r = 0.53, P < 0.02 and r = 0.73, P < 0.001) between HGF immunoreactivity and duration of illness in the nucleus and the cytoplasm in the epidermis in patients with ALS. CONCLUSIONS These findings suggest that changes in HGF in ALS skin are related to the disease process and that metabolic alterations of HGF may take place in the skin of patients with ALS.
Collapse
Affiliation(s)
- M Nomura
- Department of Neurology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | | | | | | | | |
Collapse
|
23
|
Wise LM, Inder MK, Real NC, Stuart GS, Fleming SB, Mercer AA. The vascular endothelial growth factor (VEGF)-E encoded by orf virus regulates keratinocyte proliferation and migration and promotes epidermal regeneration. Cell Microbiol 2012; 14:1376-90. [PMID: 22507661 DOI: 10.1111/j.1462-5822.2012.01802.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/27/2012] [Accepted: 04/05/2012] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF)-A, a key regulator of cutaneous blood vessel formation, appears to have an additional role during wound healing, enhancing re-epithelialization. Orf virus, a zoonotic parapoxvirus, induces proliferative skin lesions that initiate in wounds and are characterized by extensive blood vessel formation, epidermal hyperplasia and rete ridge formation. The vascular changes beneath the lesion are largely due to viral-expressed VEGF-E. This study investigated using mouse skin models whether VEGF-E can induce epidermal changes such as that seen in the viral lesion. Injection of VEGF-E into normal skin increased the number of endothelial cells and blood vessels within the dermis and increased epidermal thickening and keratinocyte number. Injection of VEGF-E into wounded skin, which more closely mimics orf virus lesions, increased neo-epidermal thickness and area, promoted rete ridge formation, and enhanced wound re-epithelialization. Quantitative RT-PCR analysis showed that VEGF-E did not induce expression of epidermal-specific growth factors within the wound, but did increase matrix metalloproteinase (MMP)-2 and MMP-9 expression. In cell-based assays, VEGF-E induced keratinocyte migration and proliferation, responses that were inhibited by a neutralizing antibody against VEGF receptor (VEGFR)-2. These findings demonstrate that VEGF-E, both directly and indirectly, regulates keratinocyte function, thereby promoting epidermal regeneration.
Collapse
Affiliation(s)
- Lyn M Wise
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
24
|
Lu W, Yu J, Zhang Y, Ji K, Zhou Y, Li Y, Deng Z, Jin Y. Mixture of fibroblasts and adipose tissue-derived stem cells can improve epidermal morphogenesis of tissue-engineered skin. Cells Tissues Organs 2011; 195:197-206. [PMID: 21494022 DOI: 10.1159/000324921] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 12/16/2022] Open
Abstract
Many studies demonstrate that the type of adjacent mesenchymal cells can affect epidermal morphogenesis of bilayered tissue-engineered skin. However, whether a mixture of different mesenchymal cell types can improve epidermal morphogenesis of bioengineered skin remains unknown. In this study, keratinocytes, dermal fibroblasts and adipose tissue-derived stem cells (ADSCs) were isolated and purified from human skin and subcutaneous fat. Conditioned medium generated from a mixture of dermal fibroblasts and ADSCs at the ratio of 1:1 was superior to that from fibroblasts or ADSCs alone in promoting keratinocyte proliferation, as indicated by MTT assay. Furthermore, ELISA results showed that the cytokine levels of human hepatocyte growth factor and keratinocyte growth factor (also known as FGF7) in the mixed fibroblasts/ADSC group were higher than those in the ADSC or dermal fibroblasts group. To examine the potential roles of mixed fibroblasts and ADSCs on epidermal morphogenesis, a three-dimensional tissue engineered skin system was applied. Histological analyses demonstrated that keratinocytes proliferated extensively over the mixture of fibroblasts and ADSCs, and formed a thick epidermal layer with well-differentiated structures. Keratin 10 (epidermal differentiation marker) was expressed in the suprabasal layer of bilayered tissue-engineered skin in the mixed fibroblasts and ADSCs group. Desmosomes and hemidesmosomes were detected in the newly formed epidermis by transmission electron microscopy analysis. Together, these findings revealed for the first time that a mixture of fibroblasts and ADSCs in bilayered tissue-engineered skin can improve epidermal morphogenesis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu Y, Xia W, Baker D, Zhou J, Cha HC, Voorhees JJ, Fisher GJ. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem 2011; 286:15980-8. [PMID: 21454675 DOI: 10.1074/jbc.m110.212597] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein tyrosine phosphorylation is a ubiquitous, fundamental biochemical mechanism that regulates essential eukaryotic cellular functions. The level of tyrosine phosphorylation of specific proteins is finely tuned by the dynamic balance between protein tyrosine kinase and protein tyrosine phosphatase activities. Hepatocyte growth factor receptor (also known as Met), a receptor protein tyrosine kinase, is a major regulator of proliferation, migration, and survival for many epithelial cell types. We report here that receptor-type protein tyrosine phosphatase β (RPTP-β) specifically dephosphorylates Met and thereby regulates its function. Expression of RPTP-β, but not other RPTP family members or catalytically inactive forms of RPTP-β, reduces hepatocyte growth factor (HGF)-stimulated Met tyrosine phosphorylation in HEK293 cells. Expression of RPTP-β in primary human keratinocytes reduces both basal and HGF-induced Met phosphorylation at tyrosine 1356 and inhibits downstream MEK1/2 and Erk activation. Furthermore, shRNA-mediated knockdown of endogenous RPTP-β increases basal and HGF-stimulated Met phosphorylation at tyrosine 1356 in primary human keratinocytes. Purified RPTP-β intracellular domain preferentially dephosphorylates purified Met at tyrosine 1356 in vitro. In addition, the substrate-trapping mutant of RPTP-β specifically interacts with Met in intact cells. Expression of RPTP-β in human primary keratinocytes reduces HGF induction of VEGF expression, proliferation, and motility. Taken together, the above data indicate that RPTP-β is a key regulator of Met function.
Collapse
Affiliation(s)
- Yiru Xu
- Department of Dermatology, University of Michigan Medica School, Ann Arbor, MI 48109-5609, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Shirakata Y. Regulation of epidermal keratinocytes by growth factors. J Dermatol Sci 2010; 59:73-80. [PMID: 20570492 DOI: 10.1016/j.jdermsci.2010.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/07/2010] [Indexed: 01/16/2023]
Abstract
Epidermal keratinocytes are the main component cells of the epidermis and their function is regulated by various kinds of growth factors, cytokines, and chemokines. Of these, members of the epidermal growth factor and fibroblast growth factor families, as wells as hepatocyte growth factor and insulin-like growth factor, play central roles in keratinocyte proliferation, while transforming growth factor-beta, vitamin D3, and interferon-gamma are important inhibitors of keratinocyte growth. Keratinocytes are known to produce many of the currently identified growth factors, cytokines and chemokines. Keratinocyte-derived growth factors and cytokines regulate immune and inflammatory responses, and play important roles in pathological skin conditions. This review focuses on the regulation of keratinocytes by growth factors, cytokines, and chemokines.
Collapse
Affiliation(s)
- Yuji Shirakata
- Department of Dermatology, Center for Regenerative Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon City, Ehime 791-0295, Japan.
| |
Collapse
|
27
|
Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem 2010; 285:16042-50. [PMID: 20348091 DOI: 10.1074/jbc.m110.111054] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori protein CagA may undergo tyrosine phosphorylation following its entry into human gastric epithelial cells with downstream effects on signal transduction. Disruption of the gp130 receptor that modulates the balance of the SHP2/ERK and JAK/STAT pathways enhanced peptic ulceration and gastric cancer in gp130 knock-out mice. In this study, we evaluated the effect of translocated CagA in relation to its tyrosine phosphorylation status on the gp130-mediated signal switch between the SHP2/ERK and JAK/STAT3 pathways. We showed that in the presence of CagA, SHP2 was recruited to gp130. Phosphorylated CagA showed enhanced SHP2 binding activity and ERK1/2 phosphorylation, whereas unphosphorylated CagA showed preferential STAT3 activation. These findings indicate that the phosphorylation status of CagA affects the signal switch between the SHP2/ERK and JAK/STAT3 pathways through gp130, providing a novel mechanism to explain H. pylori signaling.
Collapse
Affiliation(s)
- In Ohk Lee
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemunku Shinchondong 134, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Chahud F, Ramalho LNZ, Ramalho FS, Haddad A, Roque-Barreira MC. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol 2009; 90:166-73. [PMID: 19335555 DOI: 10.1111/j.1365-2613.2008.00626.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neutrophil influx is essential for corneal regeneration (Gan et al. 1999). KM+, a lectin from Artocarpus integrifolia, induces neutrophil migration (Santos-de-Oliveira et al. 1994). This study aims at investigating a possible effect of KM+ on corneal regeneration in rabbits. A 6.0-mm diameter area of debridement was created on the cornea of both eyes by mechanical scraping. The experimental eyes received drops of KM+ (2.5 microg/ml) every 2 h. The control eyes received buffer. The epithelial wounded areas of the lectin-treated and untreated eyes were stained with fluorescein, photographed and measured. The animals were killed 12 h (group 1, n = 5), 24 h (group 2, n = 10) and 48 h (group 3, n = 5) after the scraping. The corneas were analysed histologically (haematoxylin and eosin and immunostaining for proliferation cell nuclear antigen, p63, vascular endothelial growth factor, c-Met and laminin). No significant differences were found at the epithelial gap between treated and control eyes in the group 1. However, the number of neutrophils in the wounded area was significantly higher in treated eyes in this group. Three control and seven treated eyes were healed completely and only rare neutrophils persisted in the corneal stroma in group 2. No morphological distinction was observed between treated and control eyes in group 3. In treated corneas of group 2, there was an increase in immunostaining of factors involved in corneal healing compared to controls. Thus, topical application of KM+ may facilitate corneal epithelial wound healing in rabbits by means of a mechanism that involves increased influx of neutrophils into the wounded area induced by the lectin.
Collapse
Affiliation(s)
- Fernando Chahud
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
29
|
Aiba-Kojima E, Tsuno NH, Inoue K, Matsumoto D, Shigeura T, Sato T, Suga H, Kato H, Nagase T, Gonda K, Koshima I, Takahashi K, Yoshimura K. Characterization of wound drainage fluids as a source of soluble factors associated with wound healing: comparison with platelet-rich plasma and potential use in cell culture. Wound Repair Regen 2007; 15:511-20. [PMID: 17650095 DOI: 10.1111/j.1524-475x.2007.00259.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wound fluids, human serum from platelet-poor and platelet-rich plasma (SPPP and SPRP), contain various soluble factors involved in cell growth and proliferation. Levels of cytokines, chemokines, and matrix metalloproteinases (MMPs) in drainage fluids (DFs) harvested from subcutaneous wounds, punctured fluids (PF) from seroma, and SPPP were measured. SPPP and SPRP from four healthy volunteers were also subjected to the analysis. Biochemical profiles of DF reflected the sequential stages of wound healing. Early-phase DF contained high concentrations of basic fibroblast growth factor and platelet-derived growth factor and EGF. The levels of keratinocyte growth factor, interleukin-6, and MMP-8 in DF peaked on days 2-3, while vascular endothelial growth factor, hepatocyte growth factor, interleukin-8, and MMP-1 increased over time during days 0-6. Punctured fluids contained high levels of TGF-beta1, keratinocyte growth factor, vascular endothelial growth factor, hepatocyte growth factor, and MMP-1. Experiments using human adipose-derived stem cells and dermal fibroblasts cultured in media containing various concentrations of DF and fetal bovine serum suggested that for some cell types, DF-contained growth factors that are not obtained from SPRP could be used to supplement or substitute for serum in culture media. SPRP and DF are economical ready-made mixtures of serum and autologous soluble factors, and may be differentially useful for regenerative therapies.
Collapse
Affiliation(s)
- Emiko Aiba-Kojima
- Department of Plastic Surgery, University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
31
|
Ceccarelli S, Cardinali G, Aspite N, Picardo M, Marchese C, Torrisi MR, Mancini P. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes. Exp Cell Res 2007; 313:1758-77. [PMID: 17449030 DOI: 10.1016/j.yexcr.2007.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Fan J, Chen M, Li W, Woodley DT. Transforming Growth Factor-Alpha: A Major Human Serum Factor that Promotes Human Keratinocyte Migration. J Invest Dermatol 2006; 126:2096-105. [PMID: 16691197 DOI: 10.1038/sj.jid.5700350] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In unwounded skin, human keratinocytes (HKs) are in contact with a plasma filtrate. In an acute wound, HKs come in contact with serum for the first time. Because human serum (HS), but not plasma, promotes HK migration, we speculated that a major HK pro-motility factor in vivo comes from serum. In this study, we compared all of the published growth factors (GFs), reported to promote HK migration, with HS. No single GF could duplicate the HK pro-motility activity in HS. Among these GFs, transforming growth factor-alpha [corrected] showed the highest HK pro-motility activity, reaching approximately 80% of the activity in HS. The order of potency was: TGFalpha > insulin > EGF > heparin binding (HB)-EGF > IGF-1 > basic fibroblast growth factor >IL-8 > HGF > IL-1 > KGF>TGFbeta. Interestingly, the combination of TGFalpha and insulin could duplicate the HK pro-motility activity in HS, although only the TGFalpha, but not insulin, levels increase in serum over plasma. Addition of neutralizing antibodies against TGFalpha to serum or depletion of TGFalpha from serum by immunoprecipitation significantly abolished its HK pro-motility activity. Plasma with added TGFalpha stimulated HK migration that reached more than 80% of the serum stimulation. Since insulin levels are identical between plasma and serum, we propose that TGFalpha is the physiologic HK pro-motility factor in HS.
Collapse
Affiliation(s)
- Yong Li
- Department of Dermatology and the USC/Norris Comprehensive Cancer Center, USC Laboratory for Investigative Dermatology, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | | | |
Collapse
|
33
|
Conway K, Price P, Harding KG, Jiang WG. The molecular and clinical impact of hepatocyte growth factor, its receptor, activators, and inhibitors in wound healing. Wound Repair Regen 2006. [PMID: 16476066 DOI: 10.1111/j.1524-475x.2005.00081.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wound healing involves a number of cellular and molecular events, many of which are controlled by soluble growth factors. In the process of healing, hepatocyte growth factor, a cytokine known to act as mitogen, motogen, and morphogen, has been postulated to play multiple roles during several stages of this complex biological process. Produced primarily by stromal fibroblasts, hepatocyte growth factor regulates angiogenesis, vascular permeability, cell migration, matrix deposition and degradation, and other biological processes. The current article discusses recent progress in understanding the multiple roles played by this growth factor in tissue repair.
Collapse
Affiliation(s)
- Kevin Conway
- Metastasis and Angiogenesis Research Group, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Kunugiza Y, Tomita N, Taniyama Y, Tomita T, Osako MK, Tamai K, Tanabe T, Kaneda Y, Yoshikawa H, Morishita R. Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet. Gene Ther 2006; 13:1143-52. [PMID: 16572191 DOI: 10.1038/sj.gt.3302767] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although skin diseases are one of the target diseases for gene therapy, there has been no practical gene transfer method. First, we examined gene transfer efficiency of the spring-powered jet injector, Shima Jet, which was originally developed as a non-needle jet injector of insulin. Local gene expression was about 100 times higher when the luciferase plasmid was transferred by the Shima Jet than by a needle. Gene transfer of beta-galactosidase revealed gene expression in the epidermis. Based on these results, we then examined the potential of gene therapy using the Shima Jet for wound healing. An increase of cellular proliferation of the epidermis and the number of microvessels in the granulation tissue was observed after hepatocyte growth factor (HGF) gene transfer. An increase in blood flow around the wound was observed after prostacyclin synthase (PGIS) gene transfer. Moreover, promotion on wound healing was observed in HGF gene transferred group, and further promotion was observed in combined gene transferred group as assessed by measuring wound area. These results indicate that co-transfer of HGF and PGIS genes by the Shima Jet could be an effective strategy to wound healing.
Collapse
Affiliation(s)
- Y Kunugiza
- [1] 1Division of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan [2] 2Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iwasaki M, Adachi Y, Nishiue T, Minamino K, Suzuki Y, Zhang Y, Nakano K, Koike Y, Wang J, Mukaide H, Taketani S, Yuasa F, Tsubouchi H, Gohda E, Iwasaka T, Ikehara S. Hepatocyte growth factor delivered by ultrasound-mediated destruction of microbubbles induces proliferation of cardiomyocytes and amelioration of left ventricular contractile function in Doxorubicin-induced cardiomyopathy. Stem Cells 2005; 23:1589-1597. [PMID: 16109756 DOI: 10.1634/stemcells.2005-0049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, there is no curative strategy for advanced cardiomyopathy except for cardiac transplantation, which is not easily performed, mainly due to a shortage of donors. It has been reported that myocardial progenitor cells exist even in the postnatal heart, suggesting that myocardial progenitor cells could proliferate under some situations and might improve cardiac function in cardiomyopathy-induced hearts. In this study, recombinant human hepatocyte growth factor (rhHGF) was delivered using ultrasound-mediated destruction of microbubbles (UMDM) into the cardiomyopathy-induced heart by doxorubicin (20 mg/kg). Intravenous injection of rhHGF (IV-rhHGF) alone or UMDM alone failed to improve the morphology or the function of the cardiomyopathy-induced heart, but (IV-rhHGF + UMDM) treatment significantly improved the heart morphologically and functionally, and repetitive treatments of (IV-rhHGF + UMDM) enhanced the effects. The number of bromodeoxy-uridine-positive cardiomyocytes significantly increased in the (IV-rhHGF + UMDM)-treated hearts compared with the untreated hearts. Moreover, Sca-1+ myocardial progenitor cells express c-Met, a receptor for HGF. These results suggest that (IV-rhHGF + UMDM) treatment could morphologically and functionally improve the heart in the case of doxorubicin-induced cardiomyopathy through the proliferation of the myocardial progenitor cells.
Collapse
Affiliation(s)
- Masayoshi Iwasaki
- First Department of Pathology, Kansai Medical University, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The amyloid precursor protein (APP) was initially detected in cells of the central nervous system where it is considered to be involved in the pathogenesis of Alzheimer's disease. However, APP is also found in peripheral organs with exceptionally strong expression in the mammalian epidermis where it fulfils a variety of distinct biological roles. Full length APP appears to facilitate keratinocyte adhesion due to its ability to interact with the extracellular matrix. The C-terminus of APP also serves as adapter protein for binding the motor protein kinesin thereby mediating the centripetal transport of melanosomes in epidermal melanocytes. By the action of alpha-secretase sAPPalpha, the soluble N-terminal portion of APP, is released. sAPPalpha has been shown to be a potent epidermal growth factor thus stimulating proliferation and migration of keratinocytes as well as the exocytic release of melanin by melanocytes. The release of sAPPalpha can be almost completely blocked by inhibiting alpha-secretase with hydroxamic acid-based zinc metalloproteinase inhibitors. In hyperproliferative keratinocytes from psoriatic skin this inhibition results in normalized growth.
Collapse
Affiliation(s)
- Volker Herzog
- Institute of Cell Biology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
37
|
Takami Y, Yamamoto I, Tsubouchi H, Gohda E. Modulation of hepatocyte growth factor induction in human skin fibroblasts by retinoic acid. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:49-56. [PMID: 15777839 DOI: 10.1016/j.bbamcr.2004.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 06/28/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Topical treatment of skin with all-trans-retinoic acid (ATRA), the major biologically active form of vitamin A, results in hyperproliferation of basal keratinocytes, leading to an accelerated turnover of epidermis cells and thickening of the epidermis, probably via induction of production of paracrine growth factors for keratinocytes in epidermal suprabasal keratinocytes and/or dermal fibroblasts. Since hepatocyte growth factor (HGF) is a factor mitogenic to epidermal keratinocytes secreted from dermal fibroblasts, the effect of ATRA on basal and induced HGF production in human dermal fibroblasts in culture was examined. ATRA alone did not induce HGF production, but it significantly enhanced HGF production induced by the cAMP-elevating agent cholera toxin or the membrane-permeable cAMP analog 8-bromo-cAMP. Cholera toxin-induced activation of cAMP responsive element (CRE)-binding protein (CREB) was enhanced by pretreating cells with ATRA for 24 h. In contrast, HGF production induced by epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) was potently inhibited by ATRA. These modulatory effects of ATRA were different from the effects of transforming growth factor-beta1 (TGF-beta) and dexamethasone, both of which inhibited HGF production induced by all of the four inducers. Up-regulation of HGF gene expression by cholera toxin and EGF was also enhanced and inhibited, respectively, by ATRA. Both 9-cis-retinoic acid (9-cis-RA) and 13-cis-retinoic acid (13-cis-RA), which are stereo-isomers of ATRA, showed a modulatory effect on HGF induction similar to that of ATRA. These results suggest that ATRA augments the induction of HGF production caused by increased intracellular cAMP.
Collapse
Affiliation(s)
- Yoichiro Takami
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
38
|
Tokumaru S, Sayama K, Yamasaki K, Shirakata Y, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Yang L, Yoshimura A, Hashimoto K. SOCS3/CIS3 negative regulation of STAT3 in HGF-induced keratinocyte migration. Biochem Biophys Res Commun 2005; 327:100-5. [PMID: 15629435 DOI: 10.1016/j.bbrc.2004.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Indexed: 01/12/2023]
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for mature hepatocytes. Because HGF has strong effects on the motility of keratinocytes and is produced by fibroblasts, HGF is thought to regulate keratinocyte migration during wound healing. However, the intracellular signaling mechanism of HGF-induced keratinocyte migration is poorly understood. In this report, we clarify the roles of STAT3 and SOCS/CIS family in HGF-induced keratinocyte migration. HGF activated STAT3 and strongly induced keratinocyte migration. Transfection with the dominant-negative mutant of STAT3 almost completely abolished HGF-induced keratinocyte migration and STAT3 phosphorylation. Next, we studied the mechanisms that regulate STAT3 phosphorylation. HGF enhanced the expression of SOCS3/CIS3 by sixfold within 1h, but had minimum effect on SOCS1/JAB expression. Transfection with SOCS3/CIS3 almost completely abolished HGF-induced STAT3 phosphorylation and keratinocyte migration, indicating that SOCS3/CIS3 acts as a negative regulator of HGF-induced keratinocyte migration. In conclusion, SOCS3/CIS3 regulates HGF-induced keratinocyte migration by inhibiting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Sho Tokumaru
- Department of Dermatology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takami Y, Motoki T, Yamamoto I, Gohda E. Synergistic induction of hepatocyte growth factor in human skin fibroblasts by the inflammatory cytokines interleukin-1 and interferon-γ. Biochem Biophys Res Commun 2005; 327:212-7. [PMID: 15629451 DOI: 10.1016/j.bbrc.2004.11.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 11/29/2022]
Abstract
Hepatocyte growth factor (HGF) is one of the vital factors for wound healing. HGF expression markedly increases in wounded skin and is mainly localized in dermal fibroblasts. HGF expression level in human dermal fibroblasts in vitro, however, is low and thus may be stimulated by some factors in the process of wound healing. Candidates of the factors are inflammatory cytokines released by polymorphonuclear and mononuclear cells infiltrating the wounded area, but HGF production in human dermal fibroblasts is only slightly induced by interleukin (IL)-1, tumor necrosis factor (TNF)-alpha or interferon (IFN)-gamma. We here report that a combination of IL-1beta and IFN-gamma or a combination of TNF-alpha and IFN-gamma very markedly induced HGF production. The synergistic effect of the former was more marked than that of the latter. Synergistic effects of IL-1beta and IFN-gamma were observed at more than 10 pg/ml and 10 IU/ml, respectively, and were detectable as early as 12 h after addition. Neither IFN-alpha nor IFN-beta was able to replace IFN-gamma. HGF mRNA expression was also synergistically upregulated by IL-1beta and IFN-gamma. IL-1beta plus IFN-gamma-induced synergistic production of HGF was potently inhibited by treatment of cells with the extracellular signal-regulated kinase (ERK) kinase inhibitor PD98059 and the p38 inhibitor SB203580 but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Taken together, our results indicate that a combination of IL-1beta and IFN-gamma synergistically induced HGF production in human dermal fibroblasts and suggest that activation of ERK and p38 but not of JNK is involved in the synergistic effect.
Collapse
Affiliation(s)
- Yoichiro Takami
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
40
|
Nayeri F, Olsson H, Peterson C, Sundqvist T. Hepatocyte growth factor; expression, concentration and biological activity in chronic leg ulcers. J Dermatol Sci 2005; 37:75-85. [PMID: 15659325 DOI: 10.1016/j.jdermsci.2004.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/07/2004] [Accepted: 11/16/2004] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a multifunctional cytokine that is involved in recovery process after organ injuries. OBJECTIVE We studied HGF and the membrane bound receptor, c-met locally in patients who suffered from chronic leg ulcers (> or =1 year) caused by venous insufficiency. METHODS Skin biopsies from the edge of the ulcers were taken from patients (n=13) and studied by immunohistochemical staining for detection of HGF and c-met. Skin biopsies from healthy volunteers (n=10) were used as the control material. Ulcer secretion from chronic ulcers (n=11) was examined for the presence of HGF by ELISA and the concentration of HGF was compared with acute ulcers in healthy controls (n=10) and in patients operated for a non-invasive breast cancer (n=12). RESULTS We observed that c-met expression in the ulcer area increased significantly in chronic ulcers compared to controls (p=0.005). Concentration of ulcer-HGF in the patients with chronic ulcer was significantly higher than acute ulcers (p<0.01). The biological activity of HGF in ulcer secret was assessed in-vitro in transferred, mouse skin epithelial cell monolayer. Enhanced migration and morphologic changes were seen after adding ulcer secret from acute ulcers (> 1 ng/mL) that was inhibited by anti-HGF antibodies. No biological activity was observed by adding ulcer secret from chronic ulcers irrespective HGF concentration. CONCLUSION We conclude that in chronic skin ulcers decreased biological activity of endogenous HGF and overexpression of c-met is seen which might explain fibrosis and delayed recovery. Administration of exogenous active HGF might contribute to accelerated healing in these patients.
Collapse
Affiliation(s)
- Fariba Nayeri
- Division of Infectious Diseases, Faculty of Health Science, University Hospital, S-58185 Linköping, Sweden.
| | | | | | | |
Collapse
|
41
|
Amico C, Yakimov M, Catania MV, Giuffrida R, Pistone M, Enea V. Differential expression of cyclooxygenase-1 and cyclooxygenase-2 in the cornea during wound healing. Tissue Cell 2004; 36:1-12. [PMID: 14729448 DOI: 10.1016/j.tice.2003.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclooxygenases (COXs) are the key enzymes in the production of prostaglandins (PGs) and exist in two isoforms. Isoform 1 (COX-1) is constitutively expressed in most tissues, whereas cyclooxygenase-2 (COX-2) is rapidly induced by a variety of different stimuli. In this study, we have quantitatively analyzed mRNA expression of COX-1 and COX-2 and protein distribution during corneal reparative processes after wound. Total RNA was isolated from cornea samples of New Zealand rabbits that had been subjected to corneal wound by mechanical brush scraping. Quantification of RT-PCR results was made by using a DNA mimic approach. The localization and expression of the enzymes was studied by immunocytochemistry and Western blotting. In normal corneas COX-1 is expressed throughout the cornea in the whole tissue, while COX-2 is strongly expressed in stromal keratocytes. Following injury, COX-2 levels drastically increase and, at least in the epithelium, COX-2 becomes the predominant isoform of cyclooxygenases at an early stage of healing. Moreover, in the epithelium COX-2 is expressed predominantly by those cells close to the wound. These cells become migratory and move toward the injured area. In contrast, COX-1 levels remain unaffected in all corneal tissues. The system returns to the pre-injury state in about 24h. Thus, the expression of COX-2 in the corneal epithelium during wound repair is tightly regulated both temporally and spatially.
Collapse
Affiliation(s)
- Carla Amico
- Department of R&D, SIFI SpA, Via Ercole Patti 36, 95020 Lavinaio, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Warzecha Z, Dembiński A, Ceranowicz P, Konturek S, Tomaszewska R, Stachura J, Nakamura T, Konturek PC. Inhibition of cyclooxygenase-2 reduces the protective effect of hepatocyte growth factor in experimental pancreatitis. Eur J Pharmacol 2004; 486:107-19. [PMID: 14751415 DOI: 10.1016/j.ejphar.2003.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocyte growth factor (HGF) overexpression is observed in experimental and clinical acute pancreatitis. Moreover, previous studies have shown that administration of HGF reduces pancreatic damage in experimental pancreatitis. The aim of our studies was to determine the role of cyclooxygenase-1 and cyclooxygenase-2 in the protective effect of HGF administration against caerulein-induced pancreatitis. Acute pancreatitis was induced in rats by infusion of caerulein. HGF was administered twice at the dose 10 microg/kg s.c. The activity of cyclooxygenase-1 and cyclooxygenase-2 was inhibited by resveratrol and rofecoxib, respectively (10 mg/kg). Immediately after cessation of caerulein or saline infusion, pancreatic blood flow, pancreatic cell proliferation, pancreatic prostaglandin E(2) generation, plasma lipase activity, plasma interleukin-1 beta and interleukin-10 concentration were measured and morphological signs of pancreatitis were examined. Expression of cyclooxygenase-1 and cyclooxygenase-2 mRNA transcripts was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Cyclooxygenase protein production was analyzed by Western blot. Administration of HGF or caerulein alone, or their combination, was without effect on cyclooxygenase-1 mRNA expression in pancreatic tissue. Expression of cyclooxygenase-2 mRNA was increased by HGF and caerulein. The maximal increase in cyclooxygenase-2 mRNA expression was observed when HGF administration was combined with caerulein infusion. A similar effect was observed when we studied the influence of HGF and caerulein on pancreatic cyclooxygenase-2 production, as determined by Western blot. Administration of HGF without induction of acute pancreatitis increased pancreatic prostaglandin E(2) generation and plasma interleukin-10, and this effect was abolished by the cyclooxygenase-2 inhibitor, rofecoxib. Treatment with HGF, during the development of pancreatitis, increased the plasma interleukin-10 concentration and attenuated pancreatic damage, as evidenced by: (a) histological improvement of pancreatic integrity; (b) the partial reversal of the decrease in DNA synthesis and pancreatic blood flow; (c) the reduction in pancreatitis-evoked increase in plasma lipase and interleukin-1 beta. Administration of resveratrol and rofecoxib alone was without effect on the development of pancreatitis. Combination of rofecoxib with HGF reduced the HGF-evoked increase in plasma interleukin-10 concentration and pancreatic prostaglandin E(2) generation, and abolished the protective effect of HGF against pancreatic damage in pancreatitis. Resveratrol did not affect the protective effect of HGF. We conclude that: (1) HGF induces cyclooxygenase-2 but not cyclooxygenase-1 expression; (2) inhibition of cyclooxygenase-2 in HGF-treated rats decreases the release of anti-inflammatory interleukin-10, increases the production of pro-inflammatory interleukin-1 beta and reduces pancreatic blood flow; (3) cyclooxygenase-2 activity is necessary for the protective effect of HGF in acute pancreatitis.
Collapse
Affiliation(s)
- Zygmunt Warzecha
- Department of Physiology, Jagiellonian University Medical School, 16 Grzegórzecka Street, 31-531 Cracow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hashigasako A, Machide M, Nakamura T, Matsumoto K, Nakamura T. Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 2004; 279:26445-52. [PMID: 15075332 DOI: 10.1074/jbc.m314254200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicated that treatment of cells with 12-O-tetradecanoylphorbol-13-acetate induced phosphorylation of Ser-985 at the juxtamembrane of c-Met, the receptor tyrosine kinase for hepatocyte growth factor (HGF), and this was associated with decreased tyrosine phosphorylation of c-Met. However, the regulatory mechanisms and the biological significance of the Ser-985 phosphorylation in c-Met remain unknown. When A549 human lung cancer cells were exposed to oxidative stress with H(2)O(2), H(2)O(2) treatment induced phosphorylation of Ser-985, but this was abrogated by an inhibitor for protein kinase C (PKC). Likewise, treatment of cells with NaF (an inhibitor of protein phosphatases) allowed for phosphorylation of Ser-985, and a protein phosphatase responsible for dephosphorylation of Ser-985 was identified to be protein phosphatase 2A (PP2A). The effects of PKC inhibitors revealed that PKCdelta and -epsilon were responsible for the Ser-985 phosphorylation of c-Met, and pull-down analysis indicated that associations of PKCdelta and -epsilon with c-Met may be involved in the regulation of Ser-985 phosphorylation of c-Met. Instead, PP2A was constitutively associated with c-Met, whereas its activity to dephosphorylate Ser-985 of c-Met was decreased when cells were exposed to H(2)O(2). Addition of HGF to A549 cells in culture induced c-Met tyrosine phosphorylation, the result being mitogenic response and cell scattering. In contrast, in the presence of H(2)O(2) stress, HGF-dependent tyrosine phosphorylation of c-Met was largely suppressed with a reciprocal relationship to Ser-985 phosphorylation, and this event was associated with abrogation of cellular responsiveness to HGF. These results indicate that Ser-985 phosphorylation of c-Met is bi-directionally regulated through PKC and PP2A, and the Ser-985 phosphorylation status may provide a unique mechanism that confers cellular responsiveness/unresponsivenss to HGF, depending on extracellular conditions.
Collapse
Affiliation(s)
- Atsuko Hashigasako
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
44
|
Gallucci RM, Sloan DK, Heck JM, Murray AR, O'Dell SJ. Interleukin 6 Indirectly Induces Keratinocyte Migration. J Invest Dermatol 2004; 122:764-72. [PMID: 15086564 DOI: 10.1111/j.0022-202x.2004.22323.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
IL-6-deficient transgenic mice (IL-6 KO) display significantly delayed cutaneous wound healing. To further elucidate the role of IL-6 in skin wound healing, epidermal keratinocyte and dermal fibroblast cells were isolated from neonatal IL-6 KO mice and treated with rmIL-6. It was found that rmIL-6 alone did not significantly modulate the proliferation or migration of cultured IL-6 KO keratinocytes. rmIL-6, however, significantly induced the migration of IL-6 KO keratinocytes (up to 5-fold) when co-cultured with dermal fibroblasts. Culture supernatants from IL-6-treated fibroblasts were also found to induce the migration of keratinocytes to a similar degree. Genomics analysis of treated fibroblasts indicated that rmIL-6 does not induce any known soluble keratinocyte migratory factors. rmIL-6 treatment of fibroblast, however, induced a rapid and sustained phosphorylation of STAT3 protein. These data indicate that IL-6 could influence wound healing by inducing keratinocyte migration through the production of a soluble fibroblast-derived factor, and its activity may be associated with STAT3 activation.
Collapse
Affiliation(s)
- Randle M Gallucci
- The University of Oklahoma Health Sciences Center, College of Pharmacy, Department of Pharmaceutical Sciences, Oklahoma City, Oklahoma 73117, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
Collapse
Affiliation(s)
- Sabine Werner
- Institute of Cell Biology, ETH Zurich, Hönggerberg, HPM D42, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
46
|
Guévremont M, Martel-Pelletier J, Massicotte F, Tardif G, Pelletier JP, Ranger P, Lajeunesse D, Reboul P. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. J Bone Miner Res 2003; 18:1073-81. [PMID: 12817761 DOI: 10.1359/jbmr.2003.18.6.1073] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HGF is increased in human OA cartilage, possibly from Ob's. RT-PCR shows HGF isoforms are differently regulated between chondrocytes and Ob. A paracrine cross-talk between subchondral bone and cartilage may occur during OA. Recently, hepatocyte growth factor (HGF) has been identified by immunohistochemistry in cartilage and more particularly in the deep zone of human osteoarthritic (OA) cartilage. By investigating HGF expression in cartilage, we found that chondrocytes did not express HGF; however, they expressed the two truncated isoforms, namely HGF/NK1 and HGF/NK2. Because the only other cells localized near the deep zone are osteoblasts from the subchondral bone plate, we hypothesized that they were expressing HGF. Indeed, we found that HGF was synthesized by osteoblasts from the subchondral bone plate. Moreover, OA osteoblasts produced five times more HGF than normal osteoblasts and almost no HGF/NK1, unlike normal osteoblasts. Because prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 are involved in OA progression, we investigated whether these factors impact HGF produced by normal osteoblasts. PGE2 was the only factor tested that was able to stimulate HGF synthesis. However, the addition of NS398, a selective inhibitor of cyclo-oxygenase-2 (COX-2) had no effect on HGF produced by OA osteoblasts. HGF/NK2 had a moderate stimulating effect on HGF production by normal osteoblasts, whereas osteocalcin was not modulated by either HGF or HGF/NK2. When investigating signaling routes that might be implicated in OA osteoblast-produced HGF, we found that protein kinase A was at least partially involved. In summary, this study raises the hypothesis that the HGF found in articular cartilage is produced by osteoblasts, diffuses into the cartilage, and may be implicated in the OA process.
Collapse
Affiliation(s)
- Melanie Guévremont
- Osteoarthritis Research Unit, Hôpital Notre-Dame, Centre Hospitalier de Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Coltella N, Manara MC, Cerisano V, Trusolino L, Di Renzo MF, Scotlandi K, Ferracini R. Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB J 2003; 17:1162-4. [PMID: 12709413 DOI: 10.1096/fj.02-0576fje] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal transduction downstream HGF receptor (MET) activation involves multiple pathways that account for mitogenesis, motility and morphogenesis in a cell type-dependent fashion. MET receptor is aberrantly expressed in almost 100% of human osteosarcomas. We analyzed the effect of the MET receptor activation in five human osteosarcoma cell lines evaluating the levels of HGF-dependent activation of MAPK and PKB/AKT as biochemical readouts of mitogenic and invasive responses, respectively. All the cell lines tested expressed high levels of the MET proto-oncogene. Four cell lines showed activation of the MAPK cascade upon HGF stimulation, suggesting that this growth factor serves a common proliferative function in osteosarcomas. Two lines showed activation of PKB/AKT that is known to be involved in migration mediated by HGF receptor. Accordingly, cell lines where MAPK cascade was activated responded to HGF with increased proliferation, while induction and inhibition of PKB/AKT activity corresponded to acquisition or block of the invasive-motile response to HGF, respectively. Both the HGF dependent responses were reverted by the specific MET inhibitor K252a. These data show that HGF activates both the mitogen and motogen machinery in osteosarcoma cells and suggest that HGF might promote their malignant behavior by concomitant activation of different pathways and biological functions.
Collapse
Affiliation(s)
- Nadia Coltella
- Laboratory of Cancer Genetics, Institute for Cancer Research and Treatment (IRCC), Strada Provinciale 142, Km 3.95, 10060 Candiolo (To), Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ohshima M, Tokunaga K, Sato S, Maeno M, Otsuka K. Laminin- and fibronectin-like molecules produced by periodontal ligament fibroblasts under serum-free culture are potent chemoattractants for gingival epithelial cells. J Periodontal Res 2003; 38:175-81. [PMID: 12608912 DOI: 10.1034/j.1600-0765.2003.01628.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously, we revealed that hepatocyte growth factor (HGF) or an HGF-like factor secreted by periodontal ligament fibroblasts (PLF) and gingival fibroblasts cultured in the presence of serum was a major chemoattractant for gingival epithelial cells, and suggested that it might play a role in epithelial invasion. However, our recent study showed that serum-free culture of PLF and gingival fibroblasts produced potent chemoattractants other than HGF for gingival epithelial cells. To identify these chemoattractants, PLF-conditioned medium (PLF-CM) from serum-free cultures was obtained, concentrated, and separated by gel filtration column chromatography, and the chemotactic activity for gingival epithelial cells of each eluted fraction was monitored by a modified Boyden chamber assay. The chemoattractant activity was eluted at a molecular mass of around 600 kDa, which would include laminin and fibronectin, but not HGF, determined by ELISA. The chemotactic activity was reduced by treatment with antilaminin and/or antifibronectin polyclonal antibodies. Western blots using both antibodies revealed that the PLF-CM contained laminin- and fibronectin-like molecules. Along with HGF, these large glycoprotein molecules produced by PLF may be involved in the pathogenesis and progression of periodontitis by inducing the apical migration of epithelial cells.
Collapse
Affiliation(s)
- Mitsuhiro Ohshima
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
49
|
Yoshida S, Yamaguchi Y, Itami S, Yoshikawa K, Tabata Y, Matsumoto K, Nakamura T. Neutralization of hepatocyte growth factor leads to retarded cutaneous wound healing associated with decreased neovascularization and granulation tissue formation. J Invest Dermatol 2003; 120:335-43. [PMID: 12542542 DOI: 10.1046/j.1523-1747.2003.12039.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To elucidate biologic functions of hepatocyte growth factor and the c-Met receptor in cutaneous wound healing, we analyzed expression and localization of hepatocyte growth factor and c-Met receptor and used a strategy to neutralize endogenous hepatocyte growth factor in a cutaneous wound healing model in mice. Following excision of full-thickness skin on the dorsum of mice, expression of both hepatocyte growth factor and the c-Met receptor increased transiently in cutaneous tissues. Expressions of hepatocyte growth factor increased as early as 2 d postwounding and reached a peak on day 2, whereas the c-Met receptor expression reached a peak 2-4 d postwounding. Immunolocalization of the c-Met receptor indicated that c-Met receptor expression was upregulated in keratinocytes, vascular endothelial cells, and myofibroblasts in granulation tissue, hence these are potential target cells of hepatocyte growth factor. When normal rabbit IgG or neutralizing anti-hepatocyte growth factor IgG was locally and continuously delivered to subcutaneous lesions, the number of capillary vessels decreased with the neutralization of hepatocyte growth factor and there was an associated decreased expansion of granulation tissue. Likewise, retardation in re-epithelialization and the rate of wound closure occurred with neutralization of endogenous hepatocyte growth factor on days 4 and 7 postwounding. Therefore, hepatocyte growth factor is definitely involved in enhancing cutaneous wound healing processes, including re-epithelialization, neovascularization, and granulation tissue formation.
Collapse
Affiliation(s)
- Saho Yoshida
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Gene transfer of human hepatocyte growth factor into rat skin wounds mediated by liposomes coated with the sendai virus (hemagglutinating virus of Japan). THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1761-72. [PMID: 12414523 PMCID: PMC1850767 DOI: 10.1016/s0002-9440(10)64453-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatocyte growth factor (HGF) regulates cell growth, cell motility, and morphogenesis in various types of cells, including epithelial and endothelial cells, indicating that it probably promotes epithelial repair and neovascularization during wound healing. To better understand the effects of HGF on wound healing, we performed human HGF-gene transfer into skin wounds in rats. The rat HGF mRNA levels, and human and rat HGF protein concentrations in the wounds in HGF gene-transfer rats were significantly elevated at 3 days, 3 to 14 days, and 3 and 14 days after gene transfer, respectively. An expression of human HGF mRNA and protein was revealed in squamous cells in the epidermis, in endothelial cells and smooth muscle cells in blood vessels, and in fibroblasts in granulation tissues at 3, 7, and 14 days after gene transfer in HGF gene-transfer rats. The wound lesion area in HGF gene-transfer rats was significantly less than that in control rats from 3 to 7 days after gene transfer. The re-epithelialization rate, microvessel counts in granulation tissues, proliferating cell nuclear antigen index of fibroblasts in granulation tissues, and the proliferating cell nuclear antigen index in the epidermis of HGF gene-transfer rats were significantly increased at 3 and 7 days after gene transfer. Semiquantitative reverse transcriptase-polymerase chain reaction revealed that the expression levels of transforming growth factor-beta1 and Colalpha2(I) mRNAs in the wounds of HGF gene-transfer rats were significantly decreased at 7 and 14 days, respectively. The hydroxyproline concentration in the wound was significantly less in HGF gene-transfer rats than in control rats at 3 days after gene transfer. These results suggest that HGF gene transfer into a skin wound may aid re-epithelialization and neovascularization in the early phase of wound healing, and that HGF may play a role in modulating cutaneous wound healing.
Collapse
|