1
|
Chen F, Wu W, Li M, Su Y, Huang M, Luo X, You W, Ke C. Cloning, Characterization, and Expression Analysis of the DEAD-Box Family Genes, Vasa and PL10, in Pacific Abalone ( Haliotis discus hannai). Genes (Basel) 2025; 16:329. [PMID: 40149480 PMCID: PMC11942353 DOI: 10.3390/genes16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vasa and PL10 belong to the DEAD-box protein family, which plays crucial roles in various cellular functions, such as DNA replication, DNA repair, and RNA processing. Additionally, DEAD-box family genes have also been identified as being related to gonadal development in many species. However, the function of vasa and PL10 in abalone is poorly understood on a molecular level. METHODS In the present study, we individually isolated and characterized the vasa and PL10 orthologs in Haliotis discus hannai (Hdh-vasa and Hdh-PL10). We also characterized the mRNA distributions of vasa and PL10 in various tissues from adult organisms and different embryonic developmental stages using real-time PCR (RT-qPCR) techniques. Furthermore, spatial and temporal expression of Hdh-vasa and Hdh-PL10 throughout embryonic and larval development was examined by whole-mount in situ hybridization (WMISH). RESULTS The two predicted amino acid sequences contained all of the conserved motifs characterized by the DEAD-box family. Homology and phylogenetic analyses indicate that they belong to the vasa and PL10 subfamilies. We found that vasa and PL10 mRNA were not solely restricted to gonads but were widely expressed in various tissues. WMISH showed that Hdh-vasa and Hdh-PL10 largely overlapped, with both being maternally expressed and specifically localized to the micromere lineage cells during early cleavage stages. By the gastrulation stage, Hdh-vasa were expressed strongly in two bilaterally symmetrical paraxial clusters, but Hdh-PL10 was dispersed in entire endodermal region. Our results suggest that Hdh-vasa-expressing cells are located as a subpopulation of undifferentiated multipotent cells that express Hdh-PL10. As such, we infer that primordial germ cells are specified from these vasa-expressing cells at some point during development, and inductive signals (epigenesis) play an important role in specifying primordial germ cells (PGCs) in H. discus hannai. CONCLUSIONS This study provides valuable insights into the molecular characteristics and expression patterns of Hdh-vasa and Hdh-PL10, contributing to a better understanding of their roles in germ cell specification and early embryonic development in H. discus hannai.
Collapse
Affiliation(s)
- Fei Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenwei Wu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Min Li
- Department of Otorhinolaryngology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530000, China;
| | - Ying Su
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Miaoqing Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.W.); (Y.S.); (M.H.); (X.L.); (W.Y.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Choi H, Zhou L, Zhao Y, Dean J. RNA helicase D1PAS1 resolves R-loops and forms a complex for mouse pachytene piRNA biogenesis required for male fertility. Nucleic Acids Res 2024; 52:11973-11994. [PMID: 39162228 PMCID: PMC11514495 DOI: 10.1093/nar/gkae712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
During meiosis, RNA polymerase II transcribes pachytene piRNA precursors with unusually long and unspliced transcripts from discrete autosomal loci in the mouse genome. Despite the importance of piRNA for male fertility and a well-defined maturation process, the transcriptional machinery remains poorly understood. Here, we document that D1PAS1, an ATP-dependent RNA helicase, is critical for pachytene piRNA expression from multiple genomic loci and subsequent translocation into the cytoplasm to ensure mature piRNA biogenesis. Depletion of D1PAS1 in gene-edited mice results in the accumulation of R-loops in pachytene spermatocytes, leading to DNA-damage-induced apoptosis, disruption of piRNA biogenesis, spermatogenic arrest, and male infertility. Transcriptome, genome-wide R-loop profiling, and proteomic analyses document that D1PAS1 regulates pachytene piRNA transcript elongation and termination. D1PAS1 subsequently forms a complex with nuclear export components to ensure pachytene piRNA precursor translocation from the nucleus to the cytoplasm for processing into small non-coding RNAs. Thus, our study defines D1PAS1 as a specific transcription activator that promotes R-loop unwinding and is a critical factor in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangu Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Zhu J, Zhang D, Liu X, Yu G, Cai X, Xu C, Rong F, Ouyang G, Wang J, Xiao W. Zebrafish prmt5 arginine methyltransferase is essential for germ cell development. Development 2019; 146:dev.179572. [PMID: 31533925 DOI: 10.1242/dev.179572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Protein arginine methyltransferase 5 (Prmt5), a type II arginine methyltransferase, symmetrically dimethylates arginine in nuclear and cytoplasmic proteins. Prmt5 is involved in a variety of cellular processes, including ribosome biogenesis, cellular differentiation, germ cell development and tumorigenesis. However, the mechanisms by which prmt5 influences cellular processes have remained unclear. Here, prmt5 loss in zebrafish led to the expression of an infertile male phenotype due to a reduction in germ cell number, an increase in germ cell apoptosis and the failure of gonads to differentiate into normal testes or ovaries. Moreover, arginine methylation of the germ cell-specific proteins Zili and Vasa, as well as histones H3 (H3R8me2s) and H4 (H4R3me2s), was reduced in the gonads of prmt5-null zebrafish. This resulted in the downregulation of several Piwi pathway proteins, including Zili, and Vasa. In addition, various genes related to meiosis, gonad development and sexual differentiation were dysregulated in the gonads of prmt5-null zebrafish. Our results revealed a novel mechanism associated with prmt5, i.e. prmt5 apparently controls germ cell development in vertebrates by catalyzing arginine methylation of the germline-specific proteins Zili and Vasa.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China.,The Key of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China.,The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Tao S, Jiao Z, Wen G, Zhang L, Wang G. Cloning and expression analysis of the DEAD-box/RNA helicase Oslaf-1 in Ovomermis sinensis. PLoS One 2018; 13:e0192101. [PMID: 29408876 PMCID: PMC5800602 DOI: 10.1371/journal.pone.0192101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
Ovomermis sinensis is a potentially-valuable nematode for controlling insect pests. The parasitic stage of the nematode absorbs nutrients in its host’s hemolymph to maintain its growth development and then kills the host when it emerges. At present, little known about its reproductive development, particularly the responsible molecular mechanism. More detailed research on the genes of reproductive development will not only help us understand the mechanisms underlying sex differentiation in the nematode, but would also be valuable for successfully cultivating them in vitro and using them for biocontrol. In this study, we used the homology cloning method to clone the full-length cDNA of a DEAD-box family gene (Oslaf-1) from O. sinensis. Then, using qRT-PCR technology to detect the expression pattern of the Oslaf-1 gene at different development stages and tissues, the gene was found to be highly expressed in the post-parasitic stage (P < 0.01) and ovarian (P < 0.05) of O. sinensis. Western blot analysis showed the same result that the gene is associated with gonadal development and function, but is not gonad-specific. In situ hybridization further demonstrated that the gene is widely expressed in early embryos and is mainly distributed in the gonadal area. However, the signal was mainly concentrated in the reproductive primordia in pre-parasitic juveniles. RNA interference (RNAi) studies revealed that the sex ratio of O. sinensis soaked in dsRNA of Oslaf-1 was not statistically different than the gfp dsRNA treated groups. Our results suggest that Oslaf-1 may play a vital role in the reproductive systems of the nematode. In addition, we speculate that the Oslaf-1 gene plays an important role during embryonic development and that it occurs and develops in the gonads of pre-parasitic juveniles of O. sinensis.
Collapse
Affiliation(s)
- Siying Tao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenlong Jiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guigui Wen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lihong Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Gassei K, Sheng Y, Fayomi A, Mital P, Sukhwani M, Lin CC, Peters KA, Althouse A, Valli H, Orwig KE. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis. Biol Reprod 2017; 96:707-719. [PMID: 28339678 PMCID: PMC5803776 DOI: 10.1095/biolreprod.116.142828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Payal Mital
- Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chih-Cheng Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Karen A Peters
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Althouse
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
7
|
Milani L, Pecci A, Cifaldi C, Maurizii MG. PL10 DEAD-Box Protein is Expressed during Germ Cell Differentiation in the Reptile Podarcis sicula (Family Lacertidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:433-448. [PMID: 28656658 DOI: 10.1002/jez.b.22744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 11/09/2022]
Abstract
Among genes involved in the regulation of germ cell differentiation, those of DDX4/Vasa and the Ded1/DDX3 subfamilies encode for DEAD-box ATP-dependent RNA helicases, proteins involved in many mechanisms related to RNA processing. For the first time in reptiles, using specific antibodies at confocal microscopy, we analysed the localization pattern of a Ded1/DDX3 subfamily member in testis and ovary of Podarcis sicula (Ps-PL10) during the reproductive cycle. In testis, Ps-PL10 is expressed in the cytoplasm of spermatocytes and it is not detected in spermatogonia. Differently from Ps-VASA, in round spermatids, Ps-PL10 is not segregated in the chromatoid body but it accumulates in the cytoplasm of residual bodies, and mature spermatozoa are unstained. These observations suggest that in males, Ps-PL10 (1) is involved in spermatogenesis and (2) is then eliminated with residual bodies. In the ovary, Ps-PL10 is present with granules in the cytoplasm of early meiotic cells of the germinal bed (GB), while it is not present in oogonia and somatic cells of the GB stroma. In follicular cells of ovarian follicles, Ps-PL10 expression starts after their fusion with the oocyte. Numerous Ps-PL10 spots are visible in pyriform (nurse-like) cells concomitantly with the protein accumulation in the cytoplasm of differentiating oocyte. In pyriform cells, Ps-PL10 spots are present in the cytoplasm and nuclei, as observed for Ps-VASA, and in the nucleoli, suggesting for Ps-PL10 a role in rRNA processing and in the transport of molecules from the nucleus to cytoplasm and from nurse cells to the oocyte.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Andrea Pecci
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Carmine Cifaldi
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
8
|
Kotov AA, Olenkina OM, Godneeva BK, Adashev VE, Olenina LV. Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci Trends 2017; 11:46-53. [PMID: 28190795 DOI: 10.5582/bst.2016.01216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human DDX3 paralogs are housed on the X chromosome (DDX3X) as well as in the non- recombining region Yq11 of the Y-chromosome (DDX3Y or DBY). A gene encoding RNA helicase DDX3Y is located in the AZoospermia Factor a (AZFa) region of the Y-chromosome and expressed only in male germ cells. Deletions encompassing the DDX3Y gene lead to azoospermia and cause Sertoli Cell-Only Syndrome (SCOS) in humans. SCOS is characterized by a complete germ cell lack with preservation of somatic Sertoli cells. This review summarizes current advances in the study of DDX3Y functions in maintenance and development of early male germ cells. Data obtained from a mouse xenotransplantation model reveals that DDX3Y expression is enough to drive germ cell differentiation of AZFa-deleted human induced pluripotent stem cells (iPSCs) and for activation of the specific set of germline developmental genes. Results achieved using the testes of Drosophila demonstrate that DDX3Y homolog Belle is required cell-autonomously for mitotic progression and survival of germline stem cells and spermatogonia as the upstream regulator of mitotic cyclin expression.
Collapse
Affiliation(s)
- Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences
| | | | | | | | | |
Collapse
|
9
|
Inoue H, Ogonuki N, Hirose M, Hatanaka Y, Matoba S, Chuma S, Kobayashi K, Wakana S, Noguchi J, Inoue K, Tanemura K, Ogura A. Mouse D1Pas1, a DEAD-box RNA helicase, is required for the completion of first meiotic prophase in male germ cells. Biochem Biophys Res Commun 2016; 478:592-8. [PMID: 27473657 DOI: 10.1016/j.bbrc.2016.07.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 01/07/2023]
Abstract
D1Pas1 is a mouse autosomal DEAD-box RNA helicase expressed predominantly in the testis. To assess its possible function, we generated D1Pas1-deficient mice using embryonic stem cells with a targeted D1Pas1 allele. Deletion of D1Pas1 did not cause noticeable embryonic defects or death, indicating that D1Pas1 is not essential for embryogenesis. Whereas homozygous knockout female mice showed normal reproductive performance, homozygous knockout male mice were completely sterile. The seminiferous epithelium of D1Pas1-deficient males contained no spermatids or spermatozoa because of spermatogenic arrest at the late pachytene stage. Upregulation of retrotransposons such as LINE-1 was not found in D1Pas1-deficient males, unlike males lacking Mvh, another testicular DEAD-box RNA helicase. Meiotic chromosome behavior in developing spermatocytes of D1Pas1-deficient males was indistinguishable from that in wild-type males, at least until synaptonemal complex formation. Thus, mouse D1Pas1 is the first-identified DEAD-box RNA helicase that plays critical roles in the final step of the first meiotic prophase in male germ cells.
Collapse
Affiliation(s)
- Hiroki Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan; Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Michiko Hirose
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuki Hatanaka
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shogo Matoba
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | | | | | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan; Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi, 981-8555, Japan.
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan; Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Comparative Evolution of Duplicated Ddx3 Genes in Teleosts: Insights from Japanese Flounder, Paralichthys olivaceus. G3-GENES GENOMES GENETICS 2015; 5:1765-73. [PMID: 26109358 PMCID: PMC4528332 DOI: 10.1534/g3.115.018911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication event occurred in the stem lineage of ray-finned fishes. This teleost-specific genome duplication is thought to be responsible for the biological diversification of ray-finned fishes. DEAD-box polypeptide 3 (DDX3) belongs to the DEAD-box RNA helicase family. Although their functions in humans have been well studied, limited information is available regarding their function in teleosts. In this study, two teleost Ddx3 genes were first identified in the transcriptome of Japanese flounder (Paralichthys olivaceus). We confirmed that the two genes originated from teleost-specific genome duplication through synteny and phylogenetic analysis. Additionally, comparative analysis of genome structure, molecular evolution rate, and expression pattern of the two genes in Japanese flounder revealed evidence of subfunctionalization of the duplicated Ddx3 genes in teleosts. Thus, the results of this study reveal novel insights into the evolution of the teleost Ddx3 genes and constitute important groundwork for further research on this gene family.
Collapse
|
11
|
Abstract
RNA helicases of the DEAD-box family are found in all eukaryotes, most bacteria and many archaea. They play important roles in rearranging RNA-RNA and RNA-protein interactions. DEAD-box proteins are ATP-dependent RNA binding proteins and RNA-dependent ATPases. The first helicases of this large family of proteins were described in the 1980s. Since then our perception of these proteins has dramatically changed. From bona fide helicases, they became RNA binding proteins that separate duplex RNAs, in a local manner, by binding and bending the target RNA. In the present review we describe some of the experiments that were important milestones in the life of DEAD-box proteins since their birth 25 years ago.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Genève 4, 1211, Switzerland,
| | | |
Collapse
|
12
|
Ariumi Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 2014; 5:423. [PMID: 25538732 PMCID: PMC4257086 DOI: 10.3389/fgene.2014.00423] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022] Open
Abstract
The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research - International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
13
|
Linder P, Fuller-Pace FV. Looking back on the birth of DEAD-box RNA helicases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:750-5. [PMID: 23542735 DOI: 10.1016/j.bbagrm.2013.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
Abstract
DEAD-box proteins represent the largest family of RNA helicases, present in all three kingdoms of life. They are involved in a variety of processes involving RNA metabolism and in some instances also in processes that use guide RNAs. Since their first descriptions in the late 1980s, the perception of their molecular activities has dramatically changed. At the time when only eight proteins with 9 conserved motifs constituted the DEAD-box protein family, it was the biochemical characterization of mammalian eIF4A that first suggested a local unwinding activity. This was confirmed in vitro using partially double stranded RNA substrates with the unexpected result of a bidirectional unwinding activity. A real change of paradigm from the classical helicase activity to localized RNA unwinding occurred with the publication of the vasa•RNA structure with a bend in the RNA substrate and the insightful work from several laboratories demonstrating local unwinding without translocation. Finally, elegant work on the exon-junction complex revealed how DEAD-box proteins can bind to RNA to serve as clamps to function as nucleation centers to form RNP complexes. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
14
|
Marintchev A. Roles of helicases in translation initiation: a mechanistic view. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:799-809. [PMID: 23337854 DOI: 10.1016/j.bbagrm.2013.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
The goal of this review is to summarize our current knowledge about the helicases involved in translation initiation and their roles in both general and mRNA-specific translation. The main topics covered are the mechanisms of helicase action, with emphasis on the roles of accessory domains and proteins; the functions performed by helicases in translation initiation; and the interplay between direct and indirect effects of helicases that also function in steps preceding translation initiation. Special attention is given to the dynamics of eIF4A binding and dissociation from eIF4F during mRNA unwinding. It is proposed that DHX29, as well as other helicases and translation initiation factors could also cycle on and off the translation initiation complexes, similar to eIF4A. The evidence in favor of this hypothesis and its possible implications for the mechanisms of translation initiation is discussed. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Assen Marintchev
- Dept. of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Qiu GF, Chen Y, Cui Z, Zhu XL. Localization of germline marker vasa homolog RNA to a single blastomere at early cleavage stages in the oriental river prawn Macrobrachium nipponense: evidence for germ cell specification by preformation. Gene 2012; 513:53-62. [PMID: 23154059 DOI: 10.1016/j.gene.2012.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 02/02/2023]
Abstract
Germ cells are specified by the inheritance of maternal germline determinants (preformation mode) or inductive signals from somatic cells (epigenesis mode) during embryogenesis. However, the germline specification in decapod crustaceans is unclear so far. Using vasa homolog (MnVasa) as a germ cell marker, here we probed the early events of germline specification in the oriental river prawn Macrobrachium nipponense. Quantitative RT-PCR analysis of unfertilized eggs and embryos demonstrated that the prawn MnVasa mRNA is a maternal factor. Whole-mount in situ hybridization further indicated that MnVasa transcripts are maternally supplied to only one blastomere at the very early cleavage stages. As cleavage proceeds, the MnVasa-positive blastomere undergoes proliferation and increases in number. During gastrulation, the MnVasa-positive cells are found to be around a blastopore and could migrate into an embryo through the blastopore. At the zoea stage, clusters of the MnVasa-positive cells distribute not only in the gonad rudiment in the cephalothorax but also at an extragonadic site, dorsal to the posterior hindgut in the abdomen, suggesting that MnVasa-positive cells could migrate anteriorly to the genital rudiment through the hindgut. Based on the dynamic localization and number of MnVasa-positive cells during embryogenesis, we concluded that the MnVasa-positive cells are primordial germ cells (PGC) or founder cells of PGC that are separated from soma at the early cleavage stage. MnVasa mRNA might have a key function in the specification of the prawn germline cells as a maternal determinant. These results provide the first evidence that the germline specification in decapod crustaceans follows a preformation mode.
Collapse
Affiliation(s)
- Gao-Feng Qiu
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New area, Shanghai 201306, PR China.
| | | | | | | |
Collapse
|
16
|
Mathioudakis N, Palencia A, Kadlec J, Round A, Tripsianes K, Sattler M, Pillai RS, Cusack S. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors. RNA (NEW YORK, N.Y.) 2012; 18:2056-2072. [PMID: 22996915 PMCID: PMC3479395 DOI: 10.1261/rna.034181.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/31/2012] [Indexed: 06/01/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway.
Collapse
Affiliation(s)
- Nikolas Mathioudakis
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Andres Palencia
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ramesh S. Pillai
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| |
Collapse
|
17
|
Hibbard KL, O’Tousa JE. A role for the cytoplasmic DEAD box helicase Dbp21E2 in rhodopsin maturation and photoreceptor viability. J Neurogenet 2012; 26:177-88. [PMID: 22794106 PMCID: PMC3680124 DOI: 10.3109/01677063.2012.692412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Dbp21E2 (DEAD box protein 21E2) is a member of a family of DEAD box helicases active in RNA processing and stability. The authors used genetic mosaics to identify mutants in Dbp21E2 that affect rhodopsin biogenesis and the maintenance of photoreceptor structure. Analysis of a green fluorescent protein (GFP)-tagged Rh1 rhodopsin construct placed under control of a heat shock promoter showed that Dbp21E21 fails to efficiently transport Rh1 from the photoreceptor cell body to the rhabdomere. Retinal degeneration is not dependent on the Rh1 transport defects. The authors also showed that GFP- and red fluorescent protein (RFP)-tagged Dbp21E2 proteins are localized to discrete cytoplasmic structures that are not associated with organelles known to be active in rhodopsin transport. The molecular genetic analysis described here reveals an unexpected role for the Dbp21E2 helicase and provides an experimental system to further characterize its function.
Collapse
Affiliation(s)
- Karen L. Hibbard
- Dept. of Biological Sciences, Univ. of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
18
|
Blackwell E, Ceman S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 2012; 79:163-75. [PMID: 22345066 DOI: 10.1002/mrd.22024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
Arginine methylation is a post-translational modification that regulates protein function. RNA-binding proteins are an important class of cell-function mediators, some of which are methylated on arginine. Early studies of RNA-binding proteins and arginine methylation are briefly introduced, and the enzymes that mediate this post-translational modification are described. We review the most common RNA-binding domains and briefly discuss how they associate with RNAs. We address the following groups of RNA-binding proteins: hnRNP, Sm, Piwi, Vasa, FMRP, and HuD. hnRNPs were the first RNA-binding proteins found to be methylated on arginine. The Sm proteins function in RNA processing and germ cell specification. The Piwi proteins are largely germ cell specific and are also required for germ cell production, as is Vasa. FMRP participates in germ cell formation in Drosophila, but is more widely known for its neuronal function. Similarly, HuD plays a role in nervous system development and function. We review the effects of arginine methylation on the function of each protein, then conclude by addressing remaining questions and future directions of arginine methylation as an important and emerging area of regulation.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, Neuroscience Program and College of Medicine, University of Illinois, Urbana-Champaign, Illlinois, USA
| | | |
Collapse
|
19
|
Wang Y, Chen Y, Han K, Zou Z, Zhang Z. A vasa gene from green mud crab Scylla paramamosain and its expression during gonadal development and gametogenesis. Mol Biol Rep 2011; 39:4327-35. [PMID: 21842219 DOI: 10.1007/s11033-011-1220-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
VASA is one of the important regulatory factors that determine the development of the reproductive system. However, no information on vasa gene from Pleocyemata Brachyura is available. By using Race, we obtained a full-length cDNA of Sp-vasa of the green mud crab Scylla paramamosain. The full-length (2,851 bp) cDNA of vasa encodes a peptide of 631 amino acids. Real-time PCR results indicated that the expression level of Sp-vasa in the growth stage of ovary was higher than in the maturation stage, and in stage I and II of testis, the expression level of Sp-vasa were higher than in stage III. By using in situ hybridization, Sp-vasa RNAs were detected in the large part of oocyte plasm in stage I, nucleus zone in stage III and perinuclear zone in stage V. As the size of oocytes increases during oogenesis, the signals change from strong to weak. In addition, in stage I and II of testis, the expression levels of Sp-vasa were higher than in stage III, and the hybridization intensity of Sp-vasa gene gradually increased during spermatogenesis from spermatogonia to spermatids. However, no hybridization signal was detected in spermatozoon. Real-time PCR and in situ hybridization were consistent. These findings suggest that Sp-vasa is likely to serve as a useful and specific marker for germ cell development of S. paramamosain.
Collapse
Affiliation(s)
- Yilei Wang
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, 361021, China.
| | | | | | | | | |
Collapse
|
20
|
Rauschendorf MA, Zimmer J, Hanstein R, Dickemann C, Vogt PH. Complex transcriptional control of the AZFa gene DDX3Y in human testis. ACTA ACUST UNITED AC 2011; 34:84-96. [PMID: 20374305 PMCID: PMC3039753 DOI: 10.1111/j.1365-2605.2010.01053.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human DEAD-box Y (DBY) RNA helicase (aka DDX3Y) gene is thought to be the major azoospermia factor a (AZFa) gene in proximal Yq11. Men with its deletion display no somatic pathologies, but suffer from complete absence of germ cells. Accordingly, DDX3Y protein is expressed only in the germline in spermatogonia, although the transcripts were found in many tissues. Here, we show the complex transcriptional control of a testis-specific DDX3Y transcript class with initiation at different sites upstream of the gene’s open reading frame (5′Untranslated Region; UTR) and with polyadenylation in their proximal 3′UTR. The most distal transcriptional start site (TSS; ∼1 kb upstream) was mapped in MSY2, a Y-specific minisatellite. As this testis-specific 5′UTR was subsequently processed by three alternative splicing events, it has been tentatively designated ‘exon-T’(estis). The MSY2 sequence unit was also found upstream of the mouse Ddx3y gene. However, only after its tandem amplification on the Y chromosome of Platyrrhini (new world monkeys) and Catarrhini (old world monkeys) did MSY2 become part of a novel distal promoter for DDX3Y expression in testis tissue and provides a second transcriptional start site (T-TSS-II) in Catarrhini. We therefore suggest that the development of a novel distal DDX3Y promoter in primates, which is activated only in testis tissue, is probably part of the gene’s germline translation control.
Collapse
Affiliation(s)
- M-A Rauschendorf
- Unit of Molecular Genetics & Infertility, Department of Gynecological Endocrinology & Reproductive Medicine, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.
Collapse
|
22
|
Botlagunta M, Krishnamachary B, Vesuna F, Winnard PT, Bol GM, Patel AH, Raman V. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells. PLoS One 2011; 6:e17563. [PMID: 21448281 PMCID: PMC3063174 DOI: 10.1371/journal.pone.0017563] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.
Collapse
Affiliation(s)
- Mahendran Botlagunta
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Balaji Krishnamachary
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Farhad Vesuna
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul T. Winnard
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Guus M. Bol
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arvind H. Patel
- Medical Research Council Virology Unit, University of Glasgow, Glasgow, United Kingdom
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Saotome K, Hayashi K, Adachi N, Nakamura Y, Nakamura M. Isolation and characterization of Vasa in the frog Rana rugosa. ACTA ACUST UNITED AC 2010; 313:452-9. [DOI: 10.1002/jez.617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Kirino Y, Vourekas A, Kim N, de Lima Alves F, Rappsilber J, Klein PS, Jongens TA, Mourelatos Z. Arginine methylation of vasa protein is conserved across phyla. J Biol Chem 2010; 285:8148-54. [PMID: 20080973 DOI: 10.1074/jbc.m109.089821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have uncovered an unexpected relationship between factors that are essential for germline development in Drosophila melanogaster: the arginine protein methyltransferase 5 (dPRMT5/Csul/Dart5) and its cofactor Valois, methylate the Piwi family protein Aub, enabling it to bind Tudor. The RNA helicase Vasa is another essential protein in germline development. Here, we report that mouse (mouse Vasa homolog), Xenopus laevis, and D. melanogaster Vasa proteins contain both symmetrical and asymmetrical dimethylarginines. We find that dPRMT5 is required for the production of sDMAs of Vasa in vivo. Furthermore, we find that the mouse Vasa homolog associates with Tudor domain-containing proteins, Tdrd1 and Tdrd6, as well as the Piwi proteins, Mili and Miwi. Arginine methylation is thus emerging as a conserved and pivotal post-translational modification of proteins that is essential for germline development.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tsai-Morris CH, Sheng Y, Gutti RK, Tang PZ, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25): a multifunctional protein essential for spermatogenesis. ACTA ACUST UNITED AC 2009; 31:45-52. [PMID: 19875492 DOI: 10.2164/jandrol.109.008219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Male germ cell maturation is governed by the expression of specific protein(s) in a precise temporal sequence during development. Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a member of the Glu-Asp-Ala-Glu (DEAD)-box protein family, is a testis-specific gonadotropin/androgen-regulated RNA helicase that is present in germ cells (meiotic spermatocytes and round spermatids) and Leydig cells. GRTH is essential for completion of spermatogenesis as a posttranscriptional regulator of relevant genes during germ cell development. Male mice lacking GRTH are sterile with spermatogenic arrest due to failure of round spermatids to elongate, where striking structural changes and reduction in size of chromatoid bodies are observed. GRTH also plays a central role in preventing germ cell apoptosis. In addition to its inherent helicase unwinding/adenosine triphosphatase activities, GRTH binds to specific mRNAs as an integral component of ribonuclear protein particles. As a shuttle protein, GRTH transports target mRNAs from nucleus to the cytoplasm for storage in chromatoid bodies of spermatids, where they await translation during spermatogenesis. GRTH is also associated with polyribosomes to regulate target gene translation. The finding of a missense mutation associated with male infertility, where its expression associates with loss of GRTH phosphorylation, supports the relevance of GRTH to human germ cell development. We conclude that the mammalian GRTH/DDX25 is a multifunctional RNA helicase that is an essential regulator of spermatogenesis and is highly relevant for studies of male infertility and contraception.
Collapse
Affiliation(s)
- Chon-Hwa Tsai-Morris
- Section onMolecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice KennedyShriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
26
|
Angus AGN, Dalrymple D, Boulant S, McGivern DR, Clayton RF, Scott MJ, Adair R, Graham S, Owsianka AM, Targett-Adams P, Li K, Wakita T, McLauchlan J, Lemon SM, Patel AH. Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. J Gen Virol 2009; 91:122-32. [PMID: 19793905 PMCID: PMC2885062 DOI: 10.1099/vir.0.015909-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.
Collapse
Affiliation(s)
- Allan G N Angus
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
28
|
Hubert A, Anderson P. The C. elegans sex determination gene laf-1 encodes a putative DEAD-box RNA helicase. Dev Biol 2009; 330:358-67. [PMID: 19361491 DOI: 10.1016/j.ydbio.2009.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 02/04/2023]
Abstract
The Caenorhabditis elegans gene laf-1 is critical for both embryonic development and sex determination. Laf-1 is thought to promote male cell fates by negatively regulating expression of tra-2 in both hermaphrodites and males. We cloned laf-1 and established that it encodes a putative DEAD-box RNA helicase related to Saccharomycescerevisiae Ded1p and Drosophila Vasa. Three sequenced laf-1 mutations are missense alleles affecting a small region of the protein in or near helicase motif III. We demonstrate that the phenotypes resulting from laf-1 mutations are due to loss or reduction of laf-1 function, and that both laf-1 and a related helicase vbh-1 function in germline sex determination. Laf-1 mRNA is expressed in both males and hermaphrodites and in both the germline and soma of hermaphrodites. It is expressed at all developmental stages and is most abundant in embryos. LAF-1 is predominantly, if not exclusively, cytoplasmic and colocalizes with PGL-1 in P granules of germline precursor cells. Previous results suggest that laf-1 functions to negatively regulate expression of the sex determination protein TRA-2, and we find that the abundance of TRA-2 is modestly elevated in laf-1/+ females. We discuss potential functions of LAF-1 as a helicase and its roles in sex determination.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Marchat LA, Orozco E, Guillen N, Weber C, López-Camarillo C. Putative DEAD and DExH-box RNA helicases families in Entamoeba histolytica. Gene 2008; 424:1-10. [PMID: 18760338 DOI: 10.1016/j.gene.2008.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 10/23/2007] [Accepted: 07/24/2008] [Indexed: 11/20/2022]
Abstract
RNA helicases catalyze the unwinding of double-stranded RNA structures to perform numerous genetic processes. These enzymes are characterized by the presence of a conserved helicase domain with specific helicases motifs whose amino acid sequence allows the differentiation between DEAD and DExH-box RNA helicase families. Taking advantage of the availability of the complete genome sequence of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we have performed a genomic survey for DEAD and DExH-box RNA helicases encoding genes in this organism. By extensive in silico analysis, we identified 20 EhDEAD and 13 EhDExH-box RNA helicases, which contain almost all the conserved helicase motifs. Additionally, several EhDEAD and EhDExH proteins present specific N- and C-terminal domains that could be related to subcellular localization or function. Phylogenetic studies and sequences analysis suggested that this large EhDEAD/DExH-box RNA helicases family has been generated by gene or internal regions duplication, mutation events, introns formation and motif deletions. Interestingly, EhDexh1 and EhDeaxh10 genes seem to be formed by gene fusion of two ancestral bacterial genes, a mechanism that appears to be evolutionary conserved in the eukaryotic lineage of orthologous proteins. Finally, RT-PCR assays, microarrays and proteomics data analysis showed that several EhDead are differentially expressed in relation to distinct culture conditions. These computational and experimental data provide new information on the evolution of EhDEAD/EhDExH-box RNA helicases and their potential relevance for RNA metabolism in E. histolytica.
Collapse
Affiliation(s)
- Laurence A Marchat
- ENMH-IPN, Programa Institucional de Biomedicina Molecular, México DF, Mexico
| | | | | | | | | |
Collapse
|
30
|
Rosner A, Paz G, Rinkevich B. Divergent roles of the DEAD-box protein BS-PL10, the urochordate homologue of human DDX3 and DDX3Y proteins, in colony astogeny and ontogeny. Dev Dyn 2007; 235:1508-21. [PMID: 16518819 DOI: 10.1002/dvdy.20728] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the highly conserved PL-10 (Ded1P) subfamily of DEAD-box family, participate in a wide variety of biological functions. However, the entire spectrum of their functions in both vertebrates and invertebrates is still unknown. Here, we isolated the Botryllus schlosseri (Urochordata) homologue, BS-PL10, revealing its distributions and functions in ontogeny and colony astogeny. In botryllid ascidians, the colony grows by increasing the number of modular units (each called a zooid) through a whole colony synchronized and weekly cyclical astogenic budding process (blastogenesis). At the level of the colony, both BS-PL10 mRNA and its protein (78 kDa) fluctuate in a weekly pattern that corresponds with the animal's blastogenic cycle, increasing from blastogenic stage A to blastogenic stage D. At the organ/module level, a sharp decline is revealed. Primary and secondary developing buds express high levels of BS-PL10 mRNA and protein at all blastogeneic stages. These levels are reduced four to nine times in the new set of functional zooids. This portrait of colony astogeny differed from its ontogeny. Oocytes and sperm cells express high levels of BS-PL10 protein only at early stages of development. Young embryos reveal background levels with increased expressions in some organs at more developed stages. Results reveal that higher levels of BS-PL10 mRNA and protein are characteristic to multipotent soma and germ cells, but patterns deviate between two populations of differentiating stem cells, the stem cells involved in weekly blastogenesis and stem cells involved in embryogenesis. Two types of experimental manipulations, zooidectomy and siRNA assays, have confirmed the importance of BS-PL10 for cell differentiation and organogenesis. BS-PL10 (phylogenetically matching the animal's position in the evolutionary tree), is the only member of this subfamily in B. schlosseri, featuring a wide range of biological activities, some of which represent pivotal roles. The surprising weekly cyclical expression and the participation in cell differentiation posit this molecule as a model system for studying PL10 protein subfamily.
Collapse
Affiliation(s)
- Amalia Rosner
- National Institute of Oceanography, Israel Oceanographic & Limnological Research, Tel Shikmona, Haifa, Israel.
| | | | | |
Collapse
|
31
|
Franca R, Belfiore A, Spadari S, Maga G. Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins 2007; 67:1128-37. [PMID: 17357160 DOI: 10.1002/prot.21433] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human DDX3 (hDDX3) is a DEAD-box protein shown to possess RNA-unwinding and adenosine triphosphatase (ATPase) activities. The hDDX3 protein has been implicated in nuclear mRNA export, cell growth control, and cancer progression. In addition, a role of this protein in the replication of human immunodeficiency virus Type 1 and in the pathogenesis of hepatitis C virus has been recently proposed. Its enzymological properties, however, are largely unknown. In this work, we characterized its ATPase activity. We show that hDDX3 ATPase activity is stimulated by various ribo- and deoxynucleic acids. Comparative analysis with different nucleoside triphosphate analogs showed that the hDDX3 ATPase couples high catalytic efficiency to a rather relaxed substrate specificity, both in terms of base selection and sugar selection. In addition, its ability to recognize the L-stereoisomers of both 3' deoxy- and 2',3' dideoxy-ribose, points to a relaxed stereoselectivity. On the basis of these results, we hypothesize the presence of structural determinants on both the base and the sugar moieties, critical for nucleoside binding to the enzyme. Our results expand the knowledge about the DEAD-box RNA helicases in general and can be used for rational design of selective inhibitors of hDDX3, to be tested as potential antitumor and antiviral agents.
Collapse
Affiliation(s)
- Raffaella Franca
- DNA Enzymology and Molecular Virology Unit, Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
32
|
Sellars MJ, Lyons RE, Grewe PM, Vuocolo T, Leeton L, Coman GJ, Degnan BM, Preston NP. A PL10 vasa-like gene in the kuruma shrimp, Marsupenaeus japonicus, expressed during development and in adult gonad. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:377-87. [PMID: 17375354 DOI: 10.1007/s10126-007-6118-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 01/15/2007] [Indexed: 05/14/2023]
Abstract
A PL10 vasa-like gene was isolated from the Kuruma shrimp Marsupenaeus japonicus and therefore called Mjpl10. It is differentially expressed during embryonic, larval, and postlarval development, and in female and male gonads. Using absolute real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrate that Mjpl10 transcripts are present in the two-cell embryo, suggesting it is maternally expressed, and continually at low levels throughout embryogenesis. Mjpl10 expression increases significantly in the first 25 h after hatching (nauplii IV) and then decreases in a linear fashion by 316-fold over the next 52-day period. Its continued expression throughout embryonic and larval development is compatible with a conserved role in early germ cell specification. Transcript levels of Mjpl10 are also detected in the ovary and testes of mature adults.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Food Futures National Research Flagship, 5 Julius Avenue, North Ryde, NSW 2113, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Marracci S, Casola C, Bucci S, Ragghianti M, Ogielska M, Mancino G. Differential expression of two vasa/PL10-related genes during gametogenesis in the special model system Rana. Dev Genes Evol 2007; 217:395-402. [PMID: 17333258 DOI: 10.1007/s00427-007-0143-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 02/16/2007] [Indexed: 11/28/2022]
Abstract
Germline cell fate decisions are primarily controlled at the post-transcriptional level with DEAD-box RNA helicases playing a crucial role in germline development. In this study, we report the identification of two DEAD-box vasa/PL10 orthologues (RlVlg and RlPL10) in a species complex of the genus Rana, characterized by hybridogenetic reproduction, an enigmatic process that involves the exclusion of an individual genome, and endoreduplication events. Both genes were expressed during the early stages of gametogenesis of R. ridibunda, R. lessonae, and their natural hybrid R. esculenta. RlVlg expression was germline specific. On the other hand, RlPL10 was also expressed in somatic tissues, although only at low levels. The two genes were expressed in different phases of mitotic and meiotic spermatogenetic divisions as demonstrated by immunostaining with an anti-H3 phosphohistone antibody. The data indicate that RlVlg and RlPL10 may represent useful markers for dissecting the molecular aspects of genome exclusion and endoreduplication of the hybridogenetic gametogenesis.
Collapse
Affiliation(s)
- Silvia Marracci
- Laboratorio di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Via Carducci 13, 56010 Ghezzano, Pisa, Italy,
| | | | | | | | | | | |
Collapse
|
34
|
Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem 2006; 281:35048-56. [PMID: 16968703 DOI: 10.1074/jbc.m605086200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25), a member of the DEAD-box protein family, is essential for completion of spermatogenesis. GRTH is present in the cytoplasm and nucleus of meiotic spermatocytes and round spermatids and functions as a component of mRNP particles, implicating its post-transcriptional regulatory roles in germ cells. In this study, GRTH antibodies specific to N- or C-terminal sequences showed differential subcellular expression of GRTH 56- and 61-kDa species in nucleus and cytoplasm, respectively, of rodent testis and transfected COS1 cells. The 56-kDa nuclear species interacted with CRM1 and participated in mRNA transport. The phosphorylated cytoplasmic 61-kDa species was associated with polyribosomes. Confocal studies on COS-1 cells showed that GRTH-GFP was retained in the nucleus by treatment with a RNA polymerase inhibitor or the nuclear protein export inhibitor. This indicated that GRTH is a shuttling protein associated with RNA export. The N-terminal leucine-rich region (61-74 amino acids) was identified as the nuclear export signal that participated in CRM1-dependent nuclear export pathway. Deletion analysis identified a 14-amino acid GRTH sequence (100-114 amino acids) as a nuclear localization signal. GRTH selectively regulated the translation of specific genes including histone 4 and HMG2 in germ cells. In addition, GRTH participated in the nuclear export of RNA messages (PGK2, tACE, and TP2) in a gene-specific manner. These studies strongly indicate that the mammalian GRTH/Ddx25 gene is a multifunctional RNA helicase that is an essential regulator of sperm maturation.
Collapse
Affiliation(s)
- Yi Sheng
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
35
|
Nashchekin D, Zhao J, Visa N, Daneholt B. A Novel Ded1-like RNA Helicase Interacts with the Y-box Protein ctYB-1 in Nuclear mRNP Particles and in Polysomes. J Biol Chem 2006; 281:14263-72. [PMID: 16556597 DOI: 10.1074/jbc.m600262200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized a novel mRNA-binding protein, designated hrp84, in the dipteran Chironomus tentans and identified it as a DEAD-box RNA helicase. The protein contains the typical helicase core domain, a glycine-rich C-terminal part and a putative nuclear export signal in the N terminus. The protein belongs to the Ded1 subgroup of DEAD-box helicases, which is highly conserved from yeast (Ded1p) to mammals (DDX3). In tissue culture cells, hrp84 is present both in the nucleus and cytoplasm and, as shown by in vivo UV cross-linking, is bound to mRNA in both compartments. Immunoprecipitation experiments revealed that hpr84 is associated with the C. tentans homologue (ctYB-1) of the vertebrate Y-box protein YB-1 both in the nucleus and cytoplasm, and the two proteins also appear together in polysomes. The interaction is likely to be direct as shown by in vitro binding of purified components. We conclude that the mRNA-bound hrp84.ctYB-1 complex is formed in the nucleus and is translocated with mRNA into the cytoplasm and further into polysomes. As both Ded1 and YB-1 are known to regulate the initiation of translation, we propose that the RNA helicase-Y-box protein complex affects the efficiency of mRNA translation, presumably by modulating the conformation of the mRNP template.
Collapse
Affiliation(s)
- Dmitri Nashchekin
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
36
|
Extavour CG, Pang K, Matus DQ, Martindale MQ. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 2005; 7:201-15. [PMID: 15876193 DOI: 10.1111/j.1525-142x.2005.05023.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.
Collapse
Affiliation(s)
- Cassandra G Extavour
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
37
|
Abdelhaleem M. RNA helicases: regulators of differentiation. Clin Biochem 2005; 38:499-503. [PMID: 15885226 DOI: 10.1016/j.clinbiochem.2005.01.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/04/2005] [Accepted: 01/17/2005] [Indexed: 11/17/2022]
Abstract
RNA helicases are highly conserved enzymes that utilize the energy derived from NTP hydrolysis to modulate the structure of RNA. RNA helicases participate in all biological processes that involve RNA, including transcription, splicing and translation. Based on the sequence of the helicase domain, they are classified into families, such as DDX and DHX families of human RNA helicases. The specificity of RNA helicases to their targets is likely due to several factors, such as the sequence, interacting molecules, subcellular localization and the expression pattern of the helicases. There are several examples of the involvement of RNA helicases in differentiation. Human DDX3 has two closely related genes designated DDX3Y and DDX3X, which are localized to the Y and X chromosomes, respectively. DDX3Y protein is specifically expressed in germ cells and is essential for spermatogenesis. DDX25 is another RNA helicase which has been shown to be required for spermatogenesis. DDX4 shows specific expression in germ cells. The Drosophila ortholog of DDX4, known as vasa, is required for the formation of germ cells and oogenesis by a mechanism that involves regulating the translation of mRNAs essential for differentiation. Abstrakt is the Drosphila ortholog of DDX41, which has been shown to be involved in visual and CNS system development. DDX5 (p68) and its related DDX17 (p72) have also been implicated in organ/tissue differentiation. The ability of RNA helicases to modulate the structure and thus availability of critical RNA molecules for processing leading to protein expression is the likely mechanism by which RNA helicases contribute to differentiation.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Division of Haematopathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Room 3691 Atrium, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
38
|
Kurimoto K, Muto Y, Obayashi N, Terada T, Shirouzu M, Yabuki T, Aoki M, Seki E, Matsuda T, Kigawa T, Okumura H, Tanaka A, Shibata N, Kashikawa M, Agata K, Yokoyama S. Crystal structure of the N-terminal RecA-like domain of a DEAD-box RNA helicase, the -like gene B protein. J Struct Biol 2005; 150:58-68. [PMID: 15797730 DOI: 10.1016/j.jsb.2005.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 01/06/2005] [Indexed: 10/25/2022]
Abstract
The Dugesia japonica vasa-like gene B (DjVLGB) protein is a DEAD-box RNA helicase of a planarian, which is well known for its strong regenerative capacity. DjVLGB shares sequence similarity to the Drosophila germ-line-specific DEAD-box RNA helicase Vasa, and even higher similarity to its paralogue, mouse PL10. In this study, we solved the crystal structure of the DjVLGB N-terminal RecA-like domain. The overall fold and the structures of the putative ATPase active site of the DjVLGB N-terminal RecA-like domain are similar to those of the previously reported DEAD-box RNA helicase structures. In contrast, the surface structure of the side opposite to the putative ATPase active site is different from those of the other DEAD-box RNA helicases; the characteristic hydrophobic pockets are formed with aromatic and proline residues. These pocket-forming residues are conserved in the PL10-subfamily proteins, but less conserved in the Vasa orthologues and not conserved in the DEAD-box RNA helicases. Therefore, the structural features that we found are characteristic of the PL10-subfamily proteins and might contribute to their biological roles in germ-line development.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P. Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol 2005; 277:92-101. [PMID: 15572142 DOI: 10.1016/j.ydbio.2004.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
DEAD-box proteins are ATP-dependent RNA helicases that function in various stages of RNA processing and in RNP remodeling. Here, we report identification and characterization of the Drosophila protein Belle (Bel), which belongs to a highly conserved subfamily of DEAD-box proteins including yeast Ded1p, Xenopus An3, mouse PL10, human DDX3/DBX, and human DBY. Mutations in DBY are a frequent cause of male infertility in humans. Bel can substitute in vivo for Ded1p, an essential yeast translation factor, suggesting a requirement for Bel in translation initiation. Consistent with an essential cellular function, strong loss of function mutations in bel are recessive lethal with a larval growth defect phenotype. Hypomorphic bel mutants are male-sterile. Bel is also closely related to the Drosophila DEAD-box protein Vasa (Vas), a germ line-specific translational regulator. We find that Bel and Vas colocalize in nuage and at the oocyte posterior during oogenesis, and that bel function is required for female fertility. However, unlike Vas, Bel is not specifically enriched in embryonic pole cells. We conclude that the DEAD-box protein Bel has evolutionarily conserved roles in fertility and development.
Collapse
Affiliation(s)
- Oona Johnstone
- Department of Biology, McGill University, Montréal, Québec, Canada H3A 1B1
| | | | | | | | | | | |
Collapse
|
40
|
Vogt PH. Azoospermia factor (AZF) in Yq11: towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod Biomed Online 2005; 10:81-93. [PMID: 15705299 DOI: 10.1016/s1472-6483(10)60807-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Y chromosomal azoospermia factor (AZF) is essential for human spermatogenesis. It has been mapped by molecular deletion analyses to three subintervals in Yq11, AZFa, AZFb, and AZFc, containing a number of genes of which at least some control, post-transcriptionally, the RNA metabolism of other spermatogenesis genes, functionally expressed at different phases of the spermatogenic cycle. Intrachromosomal recombination events between homologous large repetitive sequence block in Yq11 are now recognized as the major cause of the AZFa, AZFb and AZFc microdeletions, and an overlap of the AZFb and AZFc regions was revealed by sequence analysis of the complete Yq11 region. The increasing knowledge of the expression patterns of AZF genes in human germ cells suggests that the DBY gene is the major AZFa gene, the RBMY gene the major AZFb gene, although a functional expression of the other AZFa/b genes in the male germ line is also most likely. Genetic redundancy might exist in AZFc because a number of gene copies in the large P1 palindrome structure in distal AZFc were found to be deleted also in fertile men.
Collapse
Affiliation(s)
- Peter H Vogt
- Section of Molecular Genetics and Infertility, Department of Gynecological Endocrinology and Reproductive Medicine, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Matsumoto K, Kwon OY, Kim H, Akao Y. Expression of rck/p54, a DEAD-box RNA helicase, in gametogenesis and early embryogenesis of mice. Dev Dyn 2005; 233:1149-56. [PMID: 15906376 DOI: 10.1002/dvdy.20429] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
rck/p54 is a DEAD-box RNA helicase protein with ATP-dependent RNA-unwinding activity. Its ortholog is required for sexual reproduction in yeast and for oocyte survival and sperm fertility in Caenorhabditis elegans. In the current study, we investigated the expression of rck/p54 in mouse gametogenesis and early embryogenesis. Western blot analysis revealed that rck/p54 was highly expressed in both the ovary and testis. In the ovary, maturing oocytes strongly expressed rck/p54 in their cytoplasm. In contrast, in the testis, spermatogonia and primary spermatocytes highly expressed rck/p54 in their cytoplasm, but its expression decreased in the spermatids. Interestingly, rck/p54 was concentrated in the heads of spermatozoa; and then its expression gradually decreased as these cells matured along the epididymal duct. After fertilization, rck/p54 protein and its mRNA remained present in the pronucleus phase; and then their expression levels slightly but definitely decreased in morulae and blastocytes. The injection of a CMV-based rck/p54 expression vector into the pronuclei of fertilized eggs caused a delay in early embryogenesis. In generating RCK transgenic mice, the birth rate of the mice was significantly lower than those of other gene transgenic mice. These findings indicate that rck/p54 may play an important role in gametogenesis and early embryogenesis in mammals.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu, Japan
| | | | | | | |
Collapse
|
42
|
Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML. Genomic organization and transcriptional analysis of gonadotropin-regulated testicular RNA helicase—GRTH/DDX25 gene. Gene 2004; 331:83-94. [PMID: 15094194 DOI: 10.1016/j.gene.2004.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/07/2004] [Accepted: 02/04/2004] [Indexed: 10/26/2022]
Abstract
The gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a new member of the DEAD-box protein family. Phylogenetic analysis revealed that GRTH is distantly related to other members of the family. GRTH is transcriptionally up-regulated by gonadotropin, displays ATPase and RNA helicase activities, and participates in germ cell development. To understand the regulation of GRTH gene expression, we investigated its structural organization and aspects of basal transcriptional regulation at the promoter domain. The 20-kb mouse GRTH gene contains 12 coding exons and all but one of its conserved helicase motifs are contained within single exons. GRTH is a TATA-less gene with multiple transcriptional start sites (TSS), GC-rich sequences and a promoter located within -205/+63 bp of the gene. Sequences -852/-354 and -501/-354 bp caused 40-60% and >80% inhibition of transcription in expressing and non-expressing cells, respectively. Transcriptional activity was recovered only in expressing cells by the addition of upstream sequences (-1085/-852 bp). Sp1/Sp3 supported basal transcriptional activity in all cell types, while E-box was an activator-binding site only in non-expressing cells. These findings indicate that a differential pattern of transcriptional regulation may be involved in the control of GRTH gene expression in a cell-specific manner.
Collapse
Affiliation(s)
- Chon-Hwa Tsai-Morris
- Section on Molecular Endocrinology, ERRB, National Institute of Child Health and Human Development, National Institutes of Health, Building 49-6A36, 49 Convent Dr., Bethesda, MD 20892-4510, USA.
| | | | | | | | | |
Collapse
|
43
|
Pryor A, Tung L, Yang Z, Kapadia F, Chang TH, Johnson LF. Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56. Nucleic Acids Res 2004; 32:1857-65. [PMID: 15047853 PMCID: PMC390356 DOI: 10.1093/nar/gkh347] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and both are able to rescue the loss of Sub2p (the yeast homolog of UAP56), indicating that both proteins have similar functions. UAP56 mRNA is more abundant than URH49 mRNA in many tissues, although in testes URH49 mRNA is much more abundant. UAP56 and URH49 mRNAs are present at similar levels in proliferating cultured cells. However, when the cells enter quiescence, the URH49 mRNA level decreases 3-6-fold while the UAP56 mRNA level remains relatively constant. The amount of URH49 mRNA increases to the level found in proliferating cells within 5 h when quiescent cells are growth-stimulated or when protein synthesis is inhibited. URH49 mRNA is relatively unstable (T(1/2) = 4 h) in quiescent cells, but is stabilized immediately following growth stimulation or inhibition of protein synthesis. In contrast, there is much less change in the content or stability of UAP56 mRNA following growth stimulation. Our observations suggest that in mammalian cells, two UAP56-like RNA helicases are involved in splicing and nuclear export of mRNA. Differential expression of these helicases may lead to quantitative or qualitative changes in mRNA expression.
Collapse
Affiliation(s)
- Anne Pryor
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fabioux C, Pouvreau S, Le Roux F, Huvet A. The oyster vasa-like gene: a specific marker of the germline in Crassostrea gigas. Biochem Biophys Res Commun 2004; 315:897-904. [PMID: 14985097 DOI: 10.1016/j.bbrc.2004.01.145] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 10/26/2022]
Abstract
The vasa gene is a key determinant for germline formation in eukaryotes. This gene, highly conserved through evolution, encodes a RNA helicase protein member of the DEAD-box family. To understand the germline formation in oyster, we report here the isolation and the characterization of a vasa orthologue in Crassostrea gigas (Oyvlg). OyVLG contained the eight consensus domains of the DEAD-box including those providing RNA unwinding activity. The expression pattern of Oyvlg was examined in adult oyster tissues at different reproductive stages. Its expression was restricted to germline cells both in males and females, including germinal stem cells and auxiliary cells. The expression of Oyvlg, strongest in early germ cells, decreased as the maturation proceeded. These data and the evolutionary conservation observed suggested the role of Oyvlg in germline development. Oyvlg is the first germ cell specific marker in oyster and will be very useful in studies of oyster germline formation.
Collapse
Affiliation(s)
- Caroline Fabioux
- UMR Physiologie et Ecophysiologie des Mollusques Marins, Ifremer, Centre de Brest, B.P.70, 29280 Plouzané, France
| | | | | | | |
Collapse
|
45
|
Kiesler E, Visa N. Intranuclear pre-mRNA trafficking in an insect model system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 35:99-118. [PMID: 15113081 DOI: 10.1007/978-3-540-74266-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Eva Kiesler
- Department of Molecular Biology and Functional Genomics, Stockholm University, 10961 Stockholm, Sweden
| | | |
Collapse
|
46
|
Sheng Y, Tsai-Morris CH, Dufau ML. Cell-specific and hormone-regulated expression of gonadotropin-regulated testicular RNA helicase gene (GRTH/Ddx25) resulting from alternative utilization of translation initiation codons in the rat testis. J Biol Chem 2003; 278:27796-803. [PMID: 12734186 DOI: 10.1074/jbc.m302411200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) is a novel DEAD-box protein with ATPase and RNA helicase activities. GRTH gene transcription is stimulated by human chorionic gonadotropin (hCG) via cyclic AMP-induced androgen formation in testicular Leydig cells. In this study, immunocytochemical and Western analyses identified GRTH as a developmentally regulated protein in Leydig cells and in germ cells (pachytene spermatocytes and round spermatids) of the rat testis. Three ATGs with the potential for generation of multiple protein species were identified. Germ cells primarily utilized the 1st ATG codon (+1) and contained major proteins of 61/56 kDa, whereas Leydig cells utilized preferentially the 2nd ATG codon (+ 343) with expression of 48/43 kDa species. A 3rd ATG was weakly utilized and yielded a 33-kDa protein only in germ cells. The increase in GRTH 43-kDa protein in Leydig cells caused by hCG treatment was prevented by the androgen receptor antagonist, flutamide. In round spermatids, hCG caused a significant decrease of 61 kDa species and an induction 48/43 kDa species, whereas no changes were observed in pachytene spermatocytes. Reversal of this hormone-induced switch of expression by flutamide indicated a role of androgen in utilization of the 2nd ATG. These studies have demonstrated a cell-specific and hormone-dependent alternative usage of ATG codons in the testis. They have also revealed that the androgen-dependent transcription of GRTH expression in Leydig cells is accompanied by a marked increase of 43-kDa species. The findings indicate that expression of GRTH proteins is regulated by gonadotropin/androgen at the translational level.
Collapse
Affiliation(s)
- Yi Sheng
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
47
|
Noueiry AO, Ahlquist P. Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:77-98. [PMID: 12651962 DOI: 10.1146/annurev.phyto.41.052002.095717] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The replication of positive-strand RNA viruses is a complex multi-step process involving interactions between the viral genome, virus-encoded replication factors, and host factors. The plant virus brome mosaic virus (BMV) has served as a model for positive-strand RNA virus replication, recombination, and virion assembly. This review addresses recent findings on the identification and characterization of host factors in BMV RNA replication. To date, all characterized host factors facilitate steps that lead to assembly of a functional BMV RNA replication complex. Some of these host factors are required for regulation of viral gene expression. Others are needed to co-regulate BMV RNA translation and recruitment of BMV RNAs from translation to viral RNA replication complexes on the endoplasmic reticulum. Other host factors provide essential lipid modifications in the endoplasmic reticulum membrane or function as molecular chaperones to activate the replication complex. Characterizing the functions of these host factors is revealing basic aspects of virus RNA replication and helping to define the normal functions of these factors in the host.
Collapse
Affiliation(s)
- Amine O Noueiry
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
48
|
Anway MD, Li Y, Ravindranath N, Dym M, Griswold MD. Expression of testicular germ cell genes identified by differential display analysis. JOURNAL OF ANDROLOGY 2003; 24:173-84. [PMID: 12634303 DOI: 10.1002/j.1939-4640.2003.tb02660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) we identified transcripts encoding for the RNA helicase mDEAH9, Ran binding protein 5 (RanBP5), and 3 novel complementary DNAs designated GC3, GC12, and GC14 in developing testicular germ cells. Sources of RNA for the initial DDRT-PCR screen were purified mouse type A spermatogonia, adult mouse wild-type testis, and W/W(v) mutant mouse testis. We identified cDNA fragments for mDEAH9, RanBP5, GC3, GC12, and GC14 in testis and type A spermatogonia samples from wild-type mice, but not in samples from the W/W(v) mouse testis. These same transcripts were absent in Northern blots of testis RNA from mice treated with busulfan 30 days prior, but were present in testis RNA from wild-type mice at 5, 15, 25, and 40 days of age. The mDEAH9 gene was expressed in many tissues, whereas RanBP5 and GC12 genes were expressed predominantly in the testis with much lower expression in other tissues. The expression of GC3 and GC14 were limited to the testis as evidenced by Northern blot and RT-PCR analyses. The mDEAH9 transcript was not detected in cultured interstitial cells but was found at low levels in cultured immature Sertoli cells, whereas the RanBP5, GC3, GC12, and GC14 transcripts were not detected in either cultured testicular interstitial cells or cultured Sertoli cells. RT-PCR analyses of isolated spermatogonia, pachytene spermatocytes, and round spermatids revealed that mDEAH9, RanBP5, GC3, GC12, and GC14 genes were expressed in all 3 cellular populations. In situ hybridization analyses of testis samples from 40-day-old mice localized expression of mDEAH9, RanBP5, GC3, GC12, and GC14 to the seminiferous tubules. RanBP5 expression appeared to be regulated during the cycle of the seminiferous epithelium, with the highest expression in stages III through VII. Expression of GC14 was greatest in the meiotic germ cell populations.
Collapse
Affiliation(s)
- Matthew D Anway
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
49
|
King MW, Nguyen T, Calley J, Harty MW, Muzinich MC, Mescher AL, Chalfant C, N'Cho M, McLeaster K, McEntire J, Stocum D, Smith RC, Neff AW. Identification of genes expressed during Xenopus laevis limb regeneration by using subtractive hybridization. Dev Dyn 2003; 226:398-409. [PMID: 12557218 DOI: 10.1002/dvdy.10250] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppression polymerase chain reaction-based subtractive hybridization was used to identify genes that are expressed during Xenopus laevis hindlimb regeneration. Subtractions were done by using RNAs extracted from the regeneration-competent stage (stage 53) and regeneration-incompetent stage (stage 59) of limb development. Forward and reverse subtractions were done between stage 53 7-day blastema and stage 53 contralateral limb (competent stage), stage 59 7-day pseudoblastema and stage 59 contralateral limb (incompetent stage), and stage 53 7-day blastema and stage 59 7-day pseudoblastema. Several thousand clones were analyzed from the various subtracted libraries, either by random selection and sequencing (1,920) or by screening subtracted cDNA clones (6,150), arrayed on nylon membranes, with tissue-specific probes. Several hundred clones were identified from the array screens whose expression levels were at least twofold higher in experimental tissue vs. control tissue (e.g., blastema vs. limb) and selected for sequencing. In addition, primers were designed to assay several of the randomly selected clones and used to assess the level of expression of these genes during regeneration and normal limb development. Approximately half of the selected clones were differentially expressed, as expected, including several that demonstrate blastema-specific enhancement of expression. Three distinct categories of expression were identified in our screens: (1) clones that are expressed in both regeneration-competent blastemas and -incompetent pseudoblastemas, (2) clones that are expressed at highest levels in regeneration-competent blastemas, and (3) clones that are expressed at highest levels in regeneration-incompetent pseudoblastemas. Characterizing the role of each of these three categories of genes will be important in furthering our understanding of the process of tissue regeneration.
Collapse
Affiliation(s)
- Michael W King
- Center for Medical Education, Indiana University School of Medicine, Terre Haute, Indiana 47809, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Session DR, Lee GS, Wolgemuth DJ. Characterization of D1Pas1, a mouse autosomal homologue of the human AZFa region DBY, as a nuclear protein in spermatogenic cells. Fertil Steril 2001; 76:804-11. [PMID: 11591417 DOI: 10.1016/s0015-0282(01)01996-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To gain insight into the function of D1Pas1 in spermatogenesis. DESIGN The cellular and subcellular distribution of D1Pas1 protein were examined. SETTING Academic research laboratory. ANIMALS Swiss Webster and C57B1/6J mice. INTERVENTION(S) Antibodies were generated against a D1Pas1 fusion protein. Immunoblot analysis was performed on lysates of testicular cells separated into enriched populations of spermatogenic cells and fractionated into nuclear and cytoplasmic compartments. Immunohistochemistry was performed on histological sections of testis from adult and postnatal day 17 mice. MAIN OUTCOME MEASURE(S) D1Pas1 protein distribution. RESULT(S) D1Pas1 was expressed in germ cells, and its expression was developmentally regulated because it was detected specifically in the meiotic and postmeiotic haploid stages of spermatogenesis. D1Pas1 protein was predominantly localized in the nucleus, with weak cytoplasmic staining. CONCLUSION(S) Nuclear localization of D1Pas1 in the testis and its sequence homology to putative RNA helicases suggests a role of D1Pas1 in pre-mRNA processing during spermatogenesis. Germ cell expression of D1Pas1 and homology to the Y chromosome gene DBY, which is located in an area deleted in azoospermia, suggests a potential role for an autosomal gene in the regulation of spermatogenesis.
Collapse
Affiliation(s)
- D R Session
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | |
Collapse
|