1
|
Schneider-Mizell CM, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Elabbady L, Gamlin C, Kapner D, Kinn S, Mahalingam G, Seshamani S, Suckow S, Takeno M, Torres R, Yin W, Dorkenwald S, Bae JA, Castro MA, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Reimer J, Tolias AS, Seung HS, Reid RC, Collman F, da Costa NM. Inhibitory specificity from a connectomic census of mouse visual cortex. Nature 2025; 640:448-458. [PMID: 40205209 PMCID: PMC11981935 DOI: 10.1038/s41586-024-07780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2024] [Indexed: 04/11/2025]
Abstract
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties1. Synaptic connectivity shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here we used millimetre-scale volumetric electron microscopy2 to investigate the connectivity of all inhibitory neurons across a densely segmented neuronal population of 1,352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibition with more than 70,000 synapses. Inspired by classical neuroanatomy, we classified inhibitory neurons based on targeting of dendritic compartments and developed an excitatory neuron classification based on dendritic reconstructions with whole-cell maps of synaptic input. Single-cell connectivity showed a class of disinhibitory specialist that targets basket cells. Analysis of inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of spatially intermingled subpopulations. Inhibitory targeting was organized into 'motif groups', diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking contemporary multimodal neuronal atlases with the cortical wiring diagram.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clare Gamlin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | |
Collapse
|
2
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
3
|
Fekete Z, Weisz F, Karlócai MR, Veres JM, Andrási T, Hájos N. Synaptic communication within the microcircuits of pyramidal neurons and basket cells in the mouse prefrontal cortex. J Physiol 2024. [PMID: 39418315 DOI: 10.1113/jp286284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Basket cells are inhibitory interneurons in cortical structures with the potential to efficiently control the activity of their postsynaptic partners. Although their contribution to higher order cognitive functions associated with the medial prefrontal cortex (mPFC) relies on the characteristics of their synaptic connections, the way that they are embedded into local circuits is still not fully uncovered. Here, we determined the synaptic properties of excitatory and inhibitory connections between pyramidal neurons (PNs), cholecystokinin-containing basket cells (CCKBCs) and parvalbumin-containing basket cells (PVBCs) in the mouse mPFC. By performing paired recordings, we revealed that PVBCs receive larger unitary excitatory postsynaptic currents from PNs with shorter latency and faster kinetic properties compared to events evoked in CCKBCs. Also, unitary inhibitory postsynaptic currents in PNs were more reliably evoked by PVBCs than by CCKBCs, yet the former connections showed profound short-term depression. Moreover, we demonstrated that CCKBCs and PVBCs in the mPFC are connected with each other. Because alterations in PVBC function have been linked to neurological and psychiatric conditions such as Alzheimer's disease and schizophrenia and CCKBC vulnerability might play a role in mood disorders, a deeper understanding of the general features of basket cell synapses could serve as a reference point for future investigations with therapeutic objectives. KEY POINTS: Cholecystokinin- (CCKBCs) and parvalbumin-expressing basket cells (PVBCs) have distinct passive and active membrane properties. Pyramidal neurons give rise to larger unitary excitatory postsynaptic currents in PVBCs compared to events in CCKBCs. Unitary inhibitory postsynaptic currents in pyramidal neurons are more reliably evoked by PVBCs than by CCKBCs. Basket cells form chemical synapses and gap junctions with their own cell type. The two basket cell types are connected with each other.
Collapse
Affiliation(s)
- Zsuzsanna Fekete
- Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Filippo Weisz
- Institute of Experimental Medicine, Budapest, Hungary
| | | | - Judit M Veres
- Institute of Experimental Medicine, Budapest, Hungary
| | - Tibor Andrási
- Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Indiana, USA
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Indiana, USA
| |
Collapse
|
4
|
Schneider-Mizell CM, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Elabbady L, Gamlin C, Kapner D, Kinn S, Mahalingam G, Seshamani S, Suckow S, Takeno M, Torres R, Yin W, Dorkenwald S, Bae JA, Castro MA, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Reimer J, Tolias AS, Seung HS, Reid RC, Collman F, Maçarico da Costa N. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.23.525290. [PMID: 36747710 PMCID: PMC9900837 DOI: 10.1101/2023.01.23.525290] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, NJ
- Electrical and Computer Engineering Department, Princeton University
| | | | | | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Kisuk Lee
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology
| | - Kai Li
- Computer Science Department, Princeton University
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, NJ
- Electrical and Computer Engineering Department, Princeton University
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine
- Department of Electrical and Computer Engineering, Rice University
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA
| | | | | |
Collapse
|
5
|
Kasai H, Ucar H, Morimoto Y, Eto F, Okazaki H. Mechanical transmission at spine synapses: Short-term potentiation and working memory. Curr Opin Neurobiol 2023; 80:102706. [PMID: 36931116 DOI: 10.1016/j.conb.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Do dendritic spines, which comprise the postsynaptic component of most excitatory synapses, exist only for their structural dynamics, receptor trafficking, and chemical and electrical compartmentation? The answer is no. Simultaneous investigation of both spine and presynaptic terminals has recently revealed a novel feature of spine synapses. Spine enlargement pushes the presynaptic terminals with muscle-like force and augments the evoked glutamate release for up to 20 min. We now summarize the evidence that such mechanical transmission shares critical features in common with short-term potentiation (STP) and may represent the cellular basis of short-term and working memory. Thus, spine synapses produce the force of learning to leave structural traces for both short and long-term memories.
Collapse
Affiliation(s)
- Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Hasan Ucar
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Morimoto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumihiro Eto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Lukacs IP, Francavilla R, Field M, Hunter E, Howarth M, Horie S, Plaha P, Stacey R, Livermore L, Ansorge O, Tamas G, Somogyi P. Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cereb Cortex 2023; 33:2101-2142. [PMID: 35667019 PMCID: PMC9977385 DOI: 10.1093/cercor/bhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.
Collapse
Affiliation(s)
- Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael Howarth
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sawa Horie
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Gabor Tamas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
7
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Dubey M, Pascual-Garcia M, Helmes K, Wever DD, Hamada MS, Kushner SA, Kole MHP. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition. eLife 2022; 11:73827. [PMID: 35001871 PMCID: PMC8887893 DOI: 10.7554/elife.73827] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Parvalbumin-positive (PV+) γ-aminobutyric acid (GABA) interneurons are critically involved in producing rapid network oscillations and cortical microcircuit computations, but the significance of PV+ axon myelination to the temporal features of inhibition remains elusive. Here, using toxic and genetic mouse models of demyelination and dysmyelination, respectively, we find that loss of compact myelin reduces PV+ interneuron presynaptic terminals and increases failures, and the weak phasic inhibition of pyramidal neurons abolishes optogenetically driven gamma oscillations in vivo. Strikingly, during behaviors of quiet wakefulness selectively theta rhythms are amplified and accompanied by highly synchronized interictal epileptic discharges. In support of a causal role of impaired PV-mediated inhibition, optogenetic activation of myelin-deficient PV+ interneurons attenuated the power of slow theta rhythms and limited interictal spike occurrence. Thus, myelination of PV axons is required to consolidate fast inhibition of pyramidal neurons and enable behavioral state-dependent modulation of local circuit synchronization.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | | | - Koke Helmes
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Dennis D Wever
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Mustafa S Hamada
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. J Neurosci 2021; 41:9326-9339. [PMID: 34583957 PMCID: PMC8580153 DOI: 10.1523/jneurosci.0871-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Parvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. To understand how the PV+ interneuron connectivity underlying these functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third and, to a lesser extent, fourth postnatal weeks. The number of synaptic contacts made by the PV+ interneuron on its postsynaptic partner meanwhile is significantly reduced to about one-third by the end of the first postnatal month. The number of autapses, the synapses that PV+ interneurons form on themselves, however, remains constant throughout the examined period. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of adult PV+ basket cells.SIGNIFICANCE STATEMENT The axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study, we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| |
Collapse
|
10
|
Wildenberg GA, Rosen MR, Lundell J, Paukner D, Freedman DJ, Kasthuri N. Primate neuronal connections are sparse in cortex as compared to mouse. Cell Rep 2021; 36:109709. [PMID: 34525373 DOI: 10.1016/j.celrep.2021.109709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Detailing how primate and mouse neurons differ is critical for creating generalized models of how neurons process information. We reconstruct 15,748 synapses in adult Rhesus macaques and mice and ask how connectivity differs on identified cell types in layer 2/3 of primary visual cortex. Primate excitatory and inhibitory neurons receive 2-5 times fewer excitatory and inhibitory synapses than similar mouse neurons. Primate excitatory neurons have lower excitatory-to-inhibitory (E/I) ratios than mouse but similar E/I ratios in inhibitory neurons. In both species, properties of inhibitory axons such as synapse size and frequency are unchanged, and inhibitory innervation of excitatory neurons is local and specific. Using artificial recurrent neural networks (RNNs) optimized for different cognitive tasks, we find that penalizing networks for creating and maintaining synapses, as opposed to neuronal firing, reduces the number of connections per node as the number of nodes increases, similar to primate neurons compared with mice.
Collapse
Affiliation(s)
- Gregg A Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Matt R Rosen
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Jack Lundell
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Dawn Paukner
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
11
|
Pietra G, Bonifacino T, Talamonti D, Bonanno G, Sale A, Galli L, Baroncelli L. Visual Cortex Engagement in Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22179412. [PMID: 34502320 PMCID: PMC8431500 DOI: 10.3390/ijms22179412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a family of inherited disorders caused by the progressive degeneration of retinal photoreceptors. There is no cure for RP, but recent research advances have provided promising results from many clinical trials. All these therapeutic strategies are focused on preserving existing photoreceptors or substituting light-responsive elements. Vision recovery, however, strongly relies on the anatomical and functional integrity of the visual system beyond photoreceptors. Although the retinal structure and optic pathway are substantially preserved at least in early stages of RP, studies describing the visual cortex status are missing. Using a well-established mouse model of RP, we analyzed the response of visual cortical circuits to the progressive degeneration of photoreceptors. We demonstrated that the visual cortex goes through a transient and previously undescribed alteration in the local excitation/inhibition balance, with a net shift towards increased intracortical inhibition leading to improved filtering and decoding of corrupted visual inputs. These results suggest a compensatory action of the visual cortex that increases the range of residual visual sensitivity in RP.
Collapse
Affiliation(s)
- Gianluca Pietra
- Neuroscience Institute, National Research Council (CNR), I-56124 Pisa, Italy; (G.P.); (D.T.); (A.S.); (L.G.)
| | - Tiziana Bonifacino
- Section of Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, I-16148 Genova, Italy; (T.B.); (G.B.)
| | - Davide Talamonti
- Neuroscience Institute, National Research Council (CNR), I-56124 Pisa, Italy; (G.P.); (D.T.); (A.S.); (L.G.)
- Department of Life Science, University of Trieste, I-34128 Trieste, Italy
| | - Giambattista Bonanno
- Section of Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, I-16148 Genova, Italy; (T.B.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, I-16132 Genova, Italy
| | - Alessandro Sale
- Neuroscience Institute, National Research Council (CNR), I-56124 Pisa, Italy; (G.P.); (D.T.); (A.S.); (L.G.)
| | - Lucia Galli
- Neuroscience Institute, National Research Council (CNR), I-56124 Pisa, Italy; (G.P.); (D.T.); (A.S.); (L.G.)
| | - Laura Baroncelli
- Neuroscience Institute, National Research Council (CNR), I-56124 Pisa, Italy; (G.P.); (D.T.); (A.S.); (L.G.)
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
- Correspondence: ; Tel.: +39-503-153199; Fax: +39-503-153220
| |
Collapse
|
12
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Conduction Velocity Along the Local Axons of Parvalbumin Interneurons Correlates With the Degree of Axonal Myelination. Cereb Cortex 2021; 31:3374-3392. [PMID: 33704414 DOI: 10.1093/cercor/bhab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Parvalbumin-containing (PV+) basket cells in mammalian neocortex are fast-spiking interneurons that regulate the activity of local neuronal circuits in multiple ways. Even though PV+ basket cells are locally projecting interneurons, their axons are myelinated. Can this myelination contribute in any significant way to the speed of action potential propagation along such short axons? We used dual whole cell recordings of synaptically connected PV+ interneurons and their postsynaptic target in acutely prepared neocortical slices from adult mice to measure the amplitude and latency of single presynaptic action potential-evoked inhibitory postsynaptic currents. These same neurons were then imaged with immunofluorescent array tomography, the synapses between them identified and a precise map of the connections was generated, with the exact axonal length and extent of myelin coverage. Our results support that myelination of PV+ basket cells significantly increases conduction velocity, and does so to a degree that can be physiologically relevant.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Mazuir E, Fricker D, Sol-Foulon N. Neuron-Oligodendrocyte Communication in Myelination of Cortical GABAergic Cells. Life (Basel) 2021; 11:216. [PMID: 33803153 PMCID: PMC7999565 DOI: 10.3390/life11030216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Axonal myelination by oligodendrocytes increases the speed and reliability of action potential propagation, and so plays a pivotal role in cortical information processing. The extent and profile of myelination vary between different cortical layers and groups of neurons. Two subtypes of cortical GABAergic neurons are myelinated: fast-spiking parvalbumin-expressing cells and somatostatin-containing cells. The expression of pre-nodes on the axon of these inhibitory cells before myelination illuminates communication between oligodendrocytes and neurons. We explore the consequences of myelination for action potential propagation, for patterns of neuronal connectivity and for the expression of behavioral plasticity.
Collapse
Affiliation(s)
- Elisa Mazuir
- Inserm, CNRS, Paris Brain Institute, ICM, Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Desdemona Fricker
- CNRS UMR 8002, Integrative Neuroscience and Cognition Center, Université de Paris, F-75006 Paris, France
| | - Nathalie Sol-Foulon
- Inserm, CNRS, Paris Brain Institute, ICM, Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| |
Collapse
|
14
|
Parvalbumin Interneurons Are Differentially Connected to Principal Cells in Inhibitory Feedback Microcircuits along the Dorsoventral Axis of the Medial Entorhinal Cortex. eNeuro 2021; 8:ENEURO.0354-20.2020. [PMID: 33531369 PMCID: PMC8114875 DOI: 10.1523/eneuro.0354-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The medial entorhinal cortex (mEC) shows a high degree of spatial tuning, predominantly grid cell activity, which is reliant on robust, dynamic inhibition provided by local interneurons (INs). In fact, feedback inhibitory microcircuits involving fast-spiking parvalbumin (PV) basket cells (BCs) are believed to contribute dominantly to the emergence of grid cell firing in principal cells (PrCs). However, the strength of PV BC-mediated inhibition onto PrCs is not uniform in this region, but high in the dorsal and weak in the ventral mEC. This is in good correlation with divergent grid field sizes, but the underlying morphologic and physiological mechanisms remain unknown. In this study, we examined PV BCs in layer (L)2/3 of the mEC characterizing their intrinsic physiology, morphology and synaptic connectivity in the juvenile rat. We show that while intrinsic physiology and morphology are broadly similar over the dorsoventral axis, PV BCs form more connections onto local PrCs in the dorsal mEC, independent of target cell type. In turn, the major PrC subtypes, pyramidal cell (PC) and stellate cell (SC), form connections onto PV BCs with lower, but equal probability. These data thus identify inhibitory connectivity as source of the gradient of inhibition, plausibly explaining divergent grid field formation along this dorsoventral axis of the mEC.
Collapse
|
15
|
Sampathkumar V, Miller-Hansen A, Murray Sherman S, Kasthuri N. An ultrastructural connectomic analysis of a higher-order thalamocortical circuit in the mouse. Eur J Neurosci 2021; 53:750-762. [PMID: 33368722 DOI: 10.1111/ejn.15092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/27/2022]
Abstract
Many studies exist of thalamocortical synapses in primary sensory cortex, but much less in known about higher-order thalamocortical projections to higher-order cortical areas. We begin to address this gap using genetic labeling combined with large volume serial electron microscopy (i.e., "connectomics") to study the projection from the thalamic posterior medial nucleus to the secondary somatosensory cortex in a mouse. We injected into this thalamic nucleus a cocktail combining a cre-expressing virus and one expressing cre-dependent ascorbate peroxidase that provides an electron dense cytoplasmic label. This "intersectional" viral approach specifically labeled thalamocortical axons and synapses, free of retrograde labeling, in all layers of cortex. Labeled thalamocortical synapses represented 14% of all synapses in the cortical volume, consistent with previous estimates of first-order thalamocortical inputs. We found that labeled thalamocortical terminals, relative to unlabeled ones: were larger, were more likely to contain a mitochondrion, more frequently targeted spiny dendrites and avoided aspiny dendrites, and often innervated larger spines with spine apparatuses, among other differences. Furthermore, labeled terminals were more prevalent in layers 2/3 and synaptic differences between labeled and unlabeled terminals were greatest in layers 2/3. The laminar differences reported here contrast with reports of first-order thalamocortical connections in primary sensory cortices where, for example, labeled terminals were larger in layer 4 than layers 2/3 (Viaene et al., 2011a). These data offer the first glimpse of higher-order thalamocortical synaptic ultrastructure and point to the need for more analyses, as such connectivity likely represents a majority of thalamocortical circuitry.
Collapse
Affiliation(s)
| | | | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
16
|
Gour A, Boergens KM, Heike N, Hua Y, Laserstein P, Song K, Helmstaedter M. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 2020; 371:science.abb4534. [PMID: 33273061 DOI: 10.1126/science.abb4534] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.
Collapse
Affiliation(s)
- Anjali Gour
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Yunfeng Hua
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Philip Laserstein
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kun Song
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
17
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
18
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
19
|
Shigematsu N, Nishi A, Fukuda T. Gap Junctions Interconnect Different Subtypes of Parvalbumin-Positive Interneurons in Barrels and Septa with Connectivity Unique to Each Subtype. Cereb Cortex 2020; 29:1414-1429. [PMID: 29490016 DOI: 10.1093/cercor/bhy038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/14/2022] Open
Abstract
Parvalbumin (PV)-positive interneurons form dendritic gap junctions with one another, but the connectivity among gap junction-coupled dendrites remains uninvestigated in most neocortical areas. We visualized gap junctions in layer 4 of the mouse barrel cortex and examined their structural details. PV neurons were divided into 4 types based on the location of soma and dendrites within or outside barrels. Type 1 neurons that had soma and all dendrites inside a barrel, considered most specific to single vibrissa-derived signals, unexpectedly formed gap junctions only with other types but never with each other. Type 2 neurons inside a barrel elongated dendrites outward, forming gap junctions within a column that contained the home barrel. Type 3 neurons located outside barrels established connections with all types including Type 4 neurons that were confined inside the inter-barrel septa. The majority (33/38, 86.8%) of dendritic gap junctions were within 75 μm from at least 1 of 2 paired somata. All types received vesicular glutamate transporter 2-positive axon terminals preferentially on somata and proximal dendrites, indicating the involvement of all types in thalamocortical feedforward regulation in which proximal gap junctions may also participate. These structural organizations provide a new morphological basis for regulatory mechanisms in barrel cortex.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hämäläinen M, Jones SR. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 2020; 9:e51214. [PMID: 31967544 PMCID: PMC7018509 DOI: 10.7554/elife.51214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Biomedical Imaging and NeuromodulationNathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Dylan S Daniels
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Blake Caldwell
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Robert A McDougal
- Department NeuroscienceYale UniversityNew HavenUnited States
- Department of BiostatisticsYale UniversityNew HavenUnited States
| | | | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Christopher I Moore
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Michael L Hines
- Department NeuroscienceYale UniversityNew HavenUnited States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Stephanie R Jones
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Neurorestoration and NeurotechnologyProvidence VAMCProvidenceUnited States
| |
Collapse
|
21
|
Benamer N, Vidal M, Angulo MC. The cerebral cortex is a substrate of multiple interactions between GABAergic interneurons and oligodendrocyte lineage cells. Neurosci Lett 2019; 715:134615. [PMID: 31711979 DOI: 10.1016/j.neulet.2019.134615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023]
Abstract
In the cerebral cortex, GABAergic interneurons and oligodendrocyte lineage cells share different characteristics and interact despite being neurons and glial cells, respectively. These two distinct cell types share common embryonic origins and are born from precursors expressing similar transcription factors. Moreover, they highly interact with each other through different communication mechanisms during development. Notably, cortical oligodendrocyte precursor cells (OPCs) receive a major and transient GABAergic synaptic input, preferentially from parvalbumin-expressing interneurons, a specific interneuron subtype recently recognized as highly myelinated. In this review, we highlight the similarities and interactions between GABAergic interneurons and oligodendrocyte lineage cells in the cerebral cortex and suggest potential roles of this intimate interneuron-oligodendroglia relationship in cortical construction. We also propose new lines of research to understand the role of the close link between interneurons and oligodendroglia during cortical development and in pathological conditions such as schizophrenia.
Collapse
Affiliation(s)
- Najate Benamer
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France
| | - Marie Vidal
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
22
|
Santuy A, Turégano-López M, Rodríguez JR, Alonso-Nanclares L, DeFelipe J, Merchán-Pérez A. A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex. Cereb Cortex 2019; 28:3673-3684. [PMID: 30060007 PMCID: PMC6132283 DOI: 10.1093/cercor/bhy159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in energy production and calcium buffering, among many other functions. They provide most of the energy required by neurons, and they are transported along axons and dendrites to the regions of higher energy demands. We have used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the somatosensory cortex of the juvenile rat. We have estimated the volume fraction occupied by mitochondria and their distribution between dendritic, axonal, and nonsynaptic processes. The volume fraction of mitochondria increased from layer I (4.59%) to reach its maximum in layer IV (7.74%) and decreased to its minimum in layer VI (4.03%). On average, 44% of mitochondrial volume was located in dendrites, 15% in axons and 41% in nonsynaptic elements. Given that dendrites, axons, and nonsynaptic elements occupied 38%, 23%, and 39% of the neuropil, respectively, it can be concluded that dendrites are proportionally richer in mitochondria with respect to axons, supporting the notion that most energy consumption takes place at the postsynaptic side. We also found a positive correlation between the volume fraction of mitochondria located in neuronal processes and the density of synapses.
Collapse
Affiliation(s)
- A Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - M Turégano-López
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - J R Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - L Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - A Merchán-Pérez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
23
|
Cid E, de la Prida LM. Methods for single-cell recording and labeling in vivo. J Neurosci Methods 2019; 325:108354. [PMID: 31302156 DOI: 10.1016/j.jneumeth.2019.108354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/29/2023]
Abstract
Targeting individual neurons in vivo is a key method to study the role of single cell types within local and brain-wide microcircuits. While novel technological developments now permit assessing activity from large number of cells simultaneously, there is currently no better solution than glass micropipettes to relate the physiology and morphology of single-cells. Sharp intracellular, juxtacellular, loose-patch and whole-cell approaches are some of the configurations used to record and label individual neurons. Here, we review procedures to establish successful electrophysiological recordings in vivo followed by appropriate labeling for post hoc morphological analysis. We provide operational recommendations for optimizing each configuration and a generic framework for functional, neurochemical and morphological identification of the different cell-types in a given region. Finally, we highlight emerging approaches that are challenging our current paradigms for single-cell recording and labeling in the living brain.
Collapse
Affiliation(s)
- Elena Cid
- Instituto Cajal, CSIC, Ave Doctor Arce 37, Madrid, 28002, Spain
| | | |
Collapse
|
24
|
Beenhakker M. A Brief Boost of Positive Energy When Young Makes for a Healthy Adult Interneuron. Epilepsy Curr 2019; 19:321-324. [PMID: 31456436 PMCID: PMC6864565 DOI: 10.1177/1535759719871315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tonic Activation of GluN2C/GluN2D-Containing NMDA Receptors by Ambient Glutamate Facilitates Cortical Interneuron Maturation Hanson E, Armbruster M, Lau LA, Sommer ME, Klaft ZJ, Swanger SA, Traynelis SF, Moss SJ, Noubary F, Chadchankar J, Dulla CG. J Neurosci. 2019;39(19):3611-3626. doi:10.1523/JNEUROSCI.1392-18.2019. PMID: 30846615. Epub Mar 7, 2019. Developing cortical GABAergic interneurons rely on genetic programs, neuronal activity, and environmental cues to construct inhibitory circuits during early postnatal development. Disruption of these events can cause long-term changes in cortical inhibition and may be involved in neurological disorders associated with inhibitory circuit dysfunction. We hypothesized that tonic glutamate signaling in the neonatal cortex contributes to, and is necessary for, the maturation of cortical interneurons. To test this hypothesis, we used mice of both sexes to quantify extracellular glutamate concentrations in the cortex during development, measure ambient glutamate-mediated activation of developing cortical interneurons, and manipulate tonic glutamate signaling using subtype-specific N-methyl-d-aspartic acid (NMDA) receptor antagonists in vitro and in vivo. We report that ambient glutamate levels are high (≈100 nm) in the neonatal cortex and decrease (to ≈50 nm) during the first weeks of life, coincident with increases in astrocytic glutamate uptake. Consistent with elevated ambient glutamate, putative parvalbumin-positive interneurons in the cortex (identified using G42: GAD1-eGFP reporter mice) exhibit a transient, tonic NMDA current at the end of the first postnatal week. GluN2C/GluN2D-containing NMDA receptors mediate the majority of this current and contribute to the resting membrane potential and intrinsic properties of developing putative parvalbumin interneurons. Pharmacological blockade of GluN2C/GluN2D-containing NMDA receptors in vivo during the period of tonic interneuron activation, but not later, leads to lasting decreases in interneuron morphological complexity and causes deficits in cortical inhibition later in life. These results demonstrate that dynamic ambient glutamate signaling contributes to cortical interneuron maturation via tonic activation of GluN2C/GluN2D-containing NMDA receptors. Significance statement: Inhibitory GABAergic interneurons make up 20% of cortical neurons and are critical to controlling cortical network activity. Dysfunction of cortical inhibition is associated with multiple neurological disorders, including epilepsy. Establishing inhibitory cortical networks requires in utero proliferation, differentiation, and migration of immature GABAergic interneurons and subsequent postnatal morphological maturation and circuit integration. Here, we demonstrate that ambient glutamate provides tonic activation of immature, putative parvalbumin-positive GABAergic interneurons in the neonatal cortex via high-affinity NMDA receptors. When this activation is blocked, GABAergic interneuron maturation is disrupted, and cortical networks exhibit lasting abnormal hyperexcitability. We conclude that temporally precise activation of developing cortical interneurons by ambient glutamate is critically important for establishing normal cortical inhibition.
Collapse
|
25
|
Distributed network interactions and their emergence in developing neocortex. Nat Neurosci 2018; 21:1600-1608. [PMID: 30349107 PMCID: PMC6371984 DOI: 10.1038/s41593-018-0247-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/22/2018] [Indexed: 11/25/2022]
Abstract
The principles governing the functional organization and development of
long-range network interactions in the neocortex remain poorly understood. Using
in vivo wide-field and 2-photon calcium imaging of spontaneous activity patterns
in mature ferret visual cortex, we find widespread modular correlation patterns
that accurately predict the local structure of visually-evoked orientation
columns several millimeters away. Longitudinal imaging demonstrates that
long-range spontaneous correlations are present early in cortical development
prior to the elaboration of horizontal connections, and predict mature network
structure. Silencing feed-forward drive through retinal or thalamic blockade
does not eliminate early long-range correlated activity, suggesting a cortical
origin. Circuit models containing only local, but heterogeneous, connections are
sufficient to generate long-range correlated activity by confining activity
patterns to a low-dimensional subspace via multi-synaptic short-range
interactions. These results suggest that local connections in early cortical
circuits can generate structured long-range network correlations that guide the
formation of visually-evoked distributed functional networks.
Collapse
|
26
|
Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018; 23:1614-1625. [PMID: 28761082 PMCID: PMC5794672 DOI: 10.1038/mp.2017.159] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Stress, a prevalent experience in modern society, is a major risk factor for many psychiatric disorders. Although sensorimotor abnormalities are often present in these disorders, little is known about how stress affects the sensory cortex. Combining behavioral analyses with in vivo synaptic imaging, we show that stressful experiences lead to progressive, clustered loss of dendritic spines along the apical dendrites of layer (L) 5 pyramidal neurons (PNs) in the mouse barrel cortex, and such spine loss closely associates with deteriorated performance in a whisker-dependent texture discrimination task. Furthermore, the activity of parvalbumin-expressing inhibitory interneurons (PV+ INs) decreases in the stressed mouse due to reduced excitability of these neurons. Importantly, both behavioral defects and structural changes of L5 PNs are prevented by selective pharmacogenetic activation of PV+INs in the barrel cortex during stress. Finally, stressed mice raised under environmental enrichment (EE) maintain normal activation of PV+ INs, normal texture discrimination, and L5 PN spine dynamics similar to unstressed EE mice. Our findings suggest that the PV+ inhibitory circuit is crucial for normal synaptic dynamics in the mouse barrel cortex and sensory function. Pharmacological, pharmacogenetic and environmental approaches to prevent stress-induced maladaptive behaviors and synaptic malfunctions converge on the regulation of PV+ IN activity, pointing to a potential therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA,Correspondence: Dr. Yi Zuo, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA, , Phone: +1-831-459-3812, Fax: +1-831-459-3139
| |
Collapse
|
27
|
Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. eNeuro 2017; 4:eN-CFN-0402-17. [PMID: 29379869 PMCID: PMC5779119 DOI: 10.1523/eneuro.0402-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cortical circuits are profoundly shaped by experience during postnatal development. The consequences of altered vision during the critical period for ocular dominance plasticity have been extensively studied in rodent primary visual cortex (V1). However, little is known about how eye opening, a naturally occurring event, influences the maturation of cortical microcircuits. Here we used a combination of slice electrophysiology and immunohistochemistry in rat V1 to ask whether manipulating the time of eye opening for 3 or 7 d affects cortical excitatory and inhibitory synaptic transmission onto excitatory neurons uniformly across layers or induces laminar-specific effects. We report that binocular delayed eye opening for 3 d showed similar reductions of excitatory and inhibitory synaptic transmission in layers 2/3, 4, and 5. Synaptic transmission recovered to age-matched control levels if the delay was prolonged to 7 d, suggesting that these changes were dependent on binocular delay duration. Conversely, laminar-specific and long-lasting effects were observed if eye opening was delayed unilaterally. Our data indicate that pyramidal neurons located in different cortical laminae have distinct sensitivity to altered sensory drive; our data also strongly suggest that experience plays a fundamental role in not only the maturation of synaptic transmission, but also its coordination across cortical layers.
Collapse
|
28
|
Koestinger G, Martin KAC, Rusch ES. Translaminar circuits formed by the pyramidal cells in the superficial layers of cat visual cortex. Brain Struct Funct 2017; 223:1811-1828. [PMID: 29234889 PMCID: PMC5884920 DOI: 10.1007/s00429-017-1588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022]
Abstract
Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in higher mammals. Here, we made sparse ultrastructural reconstructions of the projection to layer 5 of three pyramidal neurons from layer 3 in cat V1 whose morphology, physiology, and synaptic connections with layers 2 and 3 were known. The dominant targets of the 74 identified synapses in layer 5 were the dendritic spines of pyramidal cells. The fractions of target spiny dendrites were 59, 61, and 84% for the three cells, with the remaining targets being dendrites of smooth neurons. These fractions were similar to the distribution of targets of unlabeled asymmetric synapses in the surrounding neuropil. Serial section reconstructions revealed that the target dendrites were heterogenous in morphology, indicating that different cell types are innervated. This new evidence indicates that the descending projection from the superficial layer pyramidal cells does not simply drive the output pyramidal cells that project to cortical and subcortical targets, but participates in the complex circuitry of the deep cortical layers.
Collapse
Affiliation(s)
- German Koestinger
- Institute of Neuroinformatics, UZH/ETH, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kevan A C Martin
- Institute of Neuroinformatics, UZH/ETH, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Elisha S Rusch
- Institute of Neuroinformatics, UZH/ETH, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
29
|
Ye H, Kaszuba S. Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. J Biomed Sci 2017; 24:93. [PMID: 29202749 PMCID: PMC5715558 DOI: 10.1186/s12929-017-0399-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/28/2017] [Indexed: 01/22/2023] Open
Abstract
Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis. Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory” roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons, causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level. New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd, Chicago, IL, 60660, USA.
| | - Stephanie Kaszuba
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd, Chicago, IL, 60660, USA
| |
Collapse
|
30
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
31
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
32
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
33
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
34
|
Balia M, Benamer N, Angulo MC. A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 2017; 65:1821-1832. [PMID: 28795438 DOI: 10.1002/glia.23197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023]
Abstract
In the brain, neurons establish bona fide synapses onto oligodendrocyte precursor cells (OPCs), but the function of these neuron-glia synapses remains unresolved. A leading hypothesis suggests that these synapses regulate OPC proliferation and differentiation. However, a causal link between synaptic activity and OPC cellular dynamics is still missing. In the developing somatosensory cortex, OPCs receive a major type of synapse from GABAergic interneurons that is mediated by postsynaptic γ2-containing GABAA receptors. Here we genetically silenced these receptors in OPCs during the critical period of cortical oligodendrogenesis. We found that the inactivation of γ2-mediated synapses does not impact OPC proliferation and differentiation or the propensity of OPCs to myelinate their presynaptic interneurons. However, this inactivation causes a progressive and specific depletion of the OPC pool that lacks γ2-mediated synaptic activity without affecting the oligodendrocyte production. Our results show that, during cortical development, the γ2-mediated interneuron-to-OPC synapses do not play a role in oligodendrogenesis and suggest that these synapses finely tune OPC self-maintenance capacity. They also open the interesting possibility that a particular synaptic signaling onto OPCs plays a specific role in OPC function according to the neurotransmitter released, the identity of presynaptic neurons or the postsynaptic receptors involved.
Collapse
Affiliation(s)
- Maddalena Balia
- Laboratory of Neurophysiology and New Microscopies, INSERM U1128, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Najate Benamer
- Laboratory of Neurophysiology and New Microscopies, INSERM U1128, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - María Cecilia Angulo
- Laboratory of Neurophysiology and New Microscopies, INSERM U1128, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
35
|
Santuy A, Rodriguez JR, DeFelipe J, Merchan-Perez A. Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex. Brain Struct Funct 2017; 223:77-90. [PMID: 28721455 PMCID: PMC5772167 DOI: 10.1007/s00429-017-1470-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/04/2017] [Indexed: 11/29/2022]
Abstract
Knowing the proportions of asymmetric (excitatory) and symmetric (inhibitory) synapses in the neuropil is critical for understanding the design of cortical circuits. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the six layers of the juvenile rat (postnatal day 14) somatosensory cortex (hindlimb representation). We segmented in three-dimensions 6184 synaptic junctions and determined whether they were established on dendritic spines or dendritic shafts. Of all these synapses, 87–94% were asymmetric and 6–13% were symmetric. Asymmetric synapses were preferentially located on dendritic spines in all layers (80–91%) while symmetric synapses were mainly located on dendritic shafts (62–86%). Furthermore, we found that less than 6% of the dendritic spines establish more than one synapse. The vast majority of axospinous synapses were established on the spine head. Synapses on the spine neck were scarce, although they were more common when the dendritic spine established multiple synapses. This study provides a new large quantitative dataset that may contribute not only to the knowledge of the ultrastructure of the cortex, but also towards defining the connectivity patterns through all cortical layers.
Collapse
Affiliation(s)
- A Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - J R Rodriguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - A Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain. .,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain. .,Departamento de Arquitectura y Tecnología de sistemas Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Madrid, Spain.
| |
Collapse
|
36
|
An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J Neurosci 2017; 37:2435-2448. [PMID: 28137974 DOI: 10.1523/jneurosci.2557-16.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2+ boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2+ synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm2 vs 0.042 μm2). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1.SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas. Amplification of thalamic input by recurrent local circuits is thus likely to be a significant mechanism in both areas. Unlike M1, where thalamocortical boutons typically form a single synapse, thalamocortical boutons in S1 usually formed multiple synapses, which means they can be identified with high probability in the electron microscope without specific labeling.
Collapse
|
37
|
Veres JM, Nagy GA, Hájos N. Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks. eLife 2017; 6. [PMID: 28060701 PMCID: PMC5218536 DOI: 10.7554/elife.20721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
Efficient control of principal neuron firing by basket cells is critical for information processing in cortical microcircuits, however, the relative contribution of their perisomatic and dendritic synapses to spike inhibition is still unknown. Using in vitro electrophysiological paired recordings we reveal that in the mouse basal amygdala cholecystokinin- and parvalbumin-containing basket cells provide equally potent control of principal neuron spiking. We performed pharmacological manipulations, light and electron microscopic investigations to show that, although basket cells innervate the entire somato-denditic membrane surface of principal neurons, the spike controlling effect is achieved primarily via the minority of synapses targeting the perisomatic region. As the innervation patterns of individual basket cells on their different postsynaptic partners show high variability, the impact of inhibitory control accomplished by single basket cells is also variable. Our results show that both basket cell types can powerfully regulate the activity in amygdala networks predominantly via their perisomatic synapses. DOI:http://dx.doi.org/10.7554/eLife.20721.001
Collapse
Affiliation(s)
- Judit M Veres
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Gergő A Nagy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
38
|
Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry 2017; 22:4-12. [PMID: 27646261 PMCID: PMC5414080 DOI: 10.1038/mp.2016.147] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30-120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- J Stedehouder
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, Hioki H. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Front Neuroanat 2016; 10:124. [PMID: 28066195 PMCID: PMC5167764 DOI: 10.3389/fnana.2016.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
The recurrent network composed of excitatory and inhibitory neurons is fundamental to neocortical function. Inhibitory neurons in the mammalian neocortex are molecularly diverse, and individual cell types play unique functional roles in the neocortical microcircuit. Recently, vasoactive intestinal polypeptide-positive (VIP+) neurons, comprising a subclass of inhibitory neurons, have attracted particular attention because they can disinhibit pyramidal cells through inhibition of other types of inhibitory neurons, such as parvalbumin- (PV+) and somatostatin-positive (SOM+) inhibitory neurons, promoting sensory information processing. Although VIP+ neurons have been reported to receive synaptic inputs from PV+ and SOM+ inhibitory neurons as well as from cortical and thalamic excitatory neurons, the somatodendritic localization of these synaptic inputs has yet to be elucidated at subcellular spatial resolution. In the present study, we visualized the somatodendritic membranes of layer (L) 2/3 VIP+ neurons by injecting a newly developed adeno-associated virus (AAV) vector into the barrel cortex of VIP-Cre knock-in mice, and we determined the extensive ramification of VIP+ neuron dendrites in the vertical orientation. After immunohistochemical labeling of presynaptic boutons and postsynaptic structures, confocal laser scanning microscopy revealed that the synaptic contacts were unevenly distributed throughout the perisomatic (<100 μm from the somata) and distal-dendritic compartments (≥100 μm) of VIP+ neurons. Both corticocortical and thalamocortical excitatory neurons preferentially targeted the distal-dendritic compartment of VIP+ neurons. On the other hand, SOM+ and PV+ inhibitory neurons preferentially targeted the distal-dendritic and perisomatic compartments of VIP+ neurons, respectively. Notably, VIP+ neurons had few reciprocal connections. These observations suggest different inhibitory effects of SOM+ and PV+ neuronal inputs on VIP+ neuron activity; inhibitory inputs from SOM+ neurons likely modulate excitatory inputs locally in dendrites, while PV+ neurons could efficiently interfere with action potential generation through innervation of the perisomatic domain of VIP+ neurons. The present study, which shows a precise configuration of site-specific inputs, provides a structural basis for the integration mechanism of synaptic inputs to VIP+ neurons.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto UniversityKyoto, Japan; Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Naoya Kataoka
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of MedicineNagoya, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)Kawaguchi, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
40
|
Gulyás AI, Freund TF, Káli S. The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons. Front Neural Circuits 2016; 10:88. [PMID: 27877113 PMCID: PMC5099150 DOI: 10.3389/fncir.2016.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In the electrotonically compact parvalbumin- and cholecystokinincontaining interneurons, synaptic events are visible in the whole dendritic arbor, and thus the entire dendritic tree may form a single integrative element. Calretinin-containing interneurons were found to be electrotonically extended, which suggests the possibility of complex dendritic processing in this cell type. Our results also highlight the need for the integration of methods that allow the measurement of dendritic processes into studies of synaptic interactions and dynamics in neural networks.
Collapse
Affiliation(s)
- Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Szabolcs Káli
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
41
|
Micheva KD, Wolman D, Mensh BD, Pax E, Buchanan J, Smith SJ, Bock DD. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife 2016; 5. [PMID: 27383052 PMCID: PMC4972537 DOI: 10.7554/elife.15784] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022] Open
Abstract
Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that a surprisingly large fraction of cortical myelin (half the myelin in layer 2/3 and a quarter in layer 4) ensheathes axons of inhibitory neurons, specifically of parvalbumin-positive basket cells. This myelin differs significantly from that of excitatory axons in distribution and protein composition. Myelin on inhibitory axons is unlikely to meaningfully hasten the arrival of spikes at their pre-synaptic terminals, due to the patchy distribution and short path-lengths observed. Our results thus highlight the need for exploring alternative roles for myelin in neocortical circuits.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Dylan Wolman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Elizabeth Pax
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - JoAnn Buchanan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
42
|
van Versendaal D, Levelt CN. Inhibitory interneurons in visual cortical plasticity. Cell Mol Life Sci 2016; 73:3677-91. [PMID: 27193323 PMCID: PMC5002041 DOI: 10.1007/s00018-016-2264-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 01/01/2023]
Abstract
For proper maturation of the neocortex and acquisition of specific functions and skills, exposure to sensory stimuli is vital during critical periods of development when synaptic connectivity is highly malleable. To preserve reliable cortical processing, it is essential that these critical periods end after which learning becomes more conditional and active interaction with the environment becomes more important. How these age-dependent forms of plasticity are regulated has been studied extensively in the primary visual cortex. This has revealed that inhibitory innervation plays a crucial role and that a temporary decrease in inhibition is essential for plasticity to take place. Here, we discuss how different interneuron subsets regulate plasticity during different stages of cortical maturation. We propose a theory in which different interneuron subsets select the sources of neuronal input that undergo plasticity.
Collapse
Affiliation(s)
- Daniëlle van Versendaal
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands. .,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, de Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Johnson CB, Schall M, Tennison ME, Garcia ME, Shea-Shumsky NB, Raghanti MA, Lewandowski AH, Bertelsen MF, Waller LC, Walsh T, Roberts JF, Hof PR, Sherwood CC, Manger PR, Jacobs B. Neocortical neuronal morphology in the Siberian Tiger (Panthera tigris altaica) and the clouded leopard (Neofelis nebulosa). J Comp Neurol 2016; 524:3641-3665. [DOI: 10.1002/cne.24022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Cameron B. Johnson
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Mackenzie E. Tennison
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Madeleine E. Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Noah B. Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences; Kent State University; Kent Ohio 44242
| | | | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health; Copenhagen Zoo; 2000 Fredericksberg Denmark
| | - Leona C. Waller
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Timothy Walsh
- Smithsonian National Zoological Park; Washington DC 20008
| | - John F. Roberts
- Thompson Bishop Sparks State Diagnostic Laboratory, Alabama Department of Agriculture and Industries; Auburn Alabama 36849
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | - Chet C. Sherwood
- Department of Anthropology; The George Washington University; Washington DC 20052
| | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences; University of the Witwatersrand; Johannesburg 2000 South Africa
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| |
Collapse
|
44
|
Kubota Y, Karube F, Nomura M, Kawaguchi Y. The Diversity of Cortical Inhibitory Synapses. Front Neural Circuits 2016; 10:27. [PMID: 27199670 PMCID: PMC4842771 DOI: 10.3389/fncir.2016.00027] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/29/2016] [Indexed: 12/03/2022] Open
Abstract
The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| | - Masaki Nomura
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan; Department of Mathematics, Kyoto UniversityKyoto, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| |
Collapse
|
45
|
Vereczki VK, Veres JM, Müller K, Nagy GA, Rácz B, Barsy B, Hájos N. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat 2016; 10:20. [PMID: 27013983 PMCID: PMC4779893 DOI: 10.3389/fnana.2016.00020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15–17) of the two BC types converge onto single PCs, whereas fewer (6–7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800–900 and 700–800 PCs, respectively, while an AAC can innervate 600–650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.
Collapse
Affiliation(s)
- Viktória K Vereczki
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis UniversityBudapest, Hungary
| | - Judit M Veres
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis UniversityBudapest, Hungary
| | - Kinga Müller
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Gergö A Nagy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Szent István UniversityBudapest, Hungary; Electronmicroscopy Research Group, Faculty of Veterinary Science, Szent István UniversityBudapest, Hungary
| | - Boglárka Barsy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Hájos
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
46
|
Orduz D, Maldonado PP, Balia M, Vélez-Fort M, de Sars V, Yanagawa Y, Emiliani V, Angulo MC. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. eLife 2015; 4. [PMID: 25902404 PMCID: PMC4432226 DOI: 10.7554/elife.06953] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI:http://dx.doi.org/10.7554/eLife.06953.001 Neurons are outnumbered in the brain by cells called glial cells. The brain contains various types of glial cells that perform a range of different jobs, including the supply of nutrients and the removal of dead neurons. The role of glial cells called oligodendrocytes is to produce a material called myelin: this is an electrical insulator that, when wrapped around a neuron, increases the speed at which electrical impulses can travel through the nervous system. Neurons communicate with one another through specialized junctions called synapses, and at one time it was thought that only neurons could form synapses in the brain. However, this view had to be revised when researchers discovered synapses between neurons and glial cells called NG2 cells, which go on to become oligodendrocytes. These neuron-NG2 cell synapses have a lot in common with neuron–neuron synapses, but much less is known about them. Orduz, Maldonado et al. have now examined these synapses in unprecedented detail by analyzing individual synapses between a type of neuron called an interneuron and an NG2 cell in mice aged only a few weeks. Interneurons can be divided into two major classes based on how quickly they fire, and Orduz, Maldonado et al. show that both types of interneuron form synapses with NG2 cells. However, these two types of interneuron establish synapses on different parts of the NG2 cell, and these synapses involve different receptor proteins. Together, the synapses give rise to a local interneuron-NG2 cell network that reaches a peak of activity roughly two weeks after birth, after which the network is disassembled. This period of peak activity is accompanied by a sudden increase in the maturation of NG2 cells into oligodendrocytes. Further experiments are needed to test the possibility that activity in the interneuron-NG2 cell network acts as the trigger for the NG2 cells to turn into oligodendrocytes, which then supply myelin for the developing brain. DOI:http://dx.doi.org/10.7554/eLife.06953.002
Collapse
Affiliation(s)
| | | | | | | | - Vincent de Sars
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
47
|
Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci 2015; 18:351-9. [PMID: 25710837 DOI: 10.1038/nn.3950] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Epileptic seizures represent dysfunctional neural networks dominated by excessive and/or hypersynchronous activity. Recent progress in the field has outlined two concepts regarding mechanisms of seizure generation, or ictogenesis. First, all seizures, even those associated with what have historically been thought of as 'primary generalized' epilepsies, appear to originate in local microcircuits and then propagate from that initial ictogenic zone. Second, seizures propagate through cerebral networks and engage microcircuits in distal nodes, a process that can be weakened or even interrupted by suppressing activity in such nodes. We describe various microcircuit motifs, with a special emphasis on one that has been broadly implicated in several epilepsies: feed-forward inhibition. Furthermore, we discuss how, in the dynamic network in which seizures propagate, focusing on circuit 'choke points' remote from the initiation site might be as important as that of the initial dysfunction, the seizure 'focus'.
Collapse
Affiliation(s)
- Jeanne T Paz
- Gladstone Institutes and University of California, San Francisco, California, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
48
|
Varga C, Tamas G, Barzo P, Olah S, Somogyi P. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex. Cereb Cortex 2015; 25:4430-49. [PMID: 25787832 PMCID: PMC4768361 DOI: 10.1093/cercor/bhv045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Collapse
Affiliation(s)
- Csaba Varga
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physiology, University of Pécs, Pécs, Hungary
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Szabolcs Olah
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Peter Somogyi
- MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
49
|
Koelbl C, Helmstaedter M, Lübke J, Feldmeyer D. A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cereb Cortex 2015; 25:713-25. [PMID: 24076498 PMCID: PMC4318534 DOI: 10.1093/cercor/bht263] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic connections between identified fast-spiking (FS), parvalbumin (PV)-positive interneurons, and excitatory spiny neurons in layer 4 (L4) of the barrel cortex were investigated using patch-clamp recordings and simultaneous biocytin fillings. Three distinct clusters of FS L4 interneurons were identified based on their axonal morphology relative to the barrel column suggesting that these neurons do not constitute a homogeneous interneuron population. One L4 FS interneuron type had an axonal domain strictly confined to a L4 barrel and was therefore named "barrel-confined inhibitory interneuron" (BIn). BIns established reliable inhibitory synaptic connections with L4 spiny neurons at a high connectivity rate of 67%, of which 69% were reciprocal. Unitary IPSPs at these connections had a mean amplitude of 0.9 ± 0.8 mV with little amplitude variation and weak short-term synaptic depression. We found on average 3.7 ± 1.3 putative inhibitory synaptic contacts that were not restricted to perisomatic areas. In conclusion, we characterized a novel type of barrel cortex interneuron in the major thalamo-recipient layer 4 forming dense synaptic networks with L4 spiny neurons. These networks constitute an efficient and powerful inhibitory feedback system, which may serve to rapidly reset the barrel microcircuitry following sensory activation.
Collapse
Affiliation(s)
- Christian Koelbl
- Department of Cell Physiology, Max Planck Institute of Medical Research, Jahnstr. 20, D-69120 Heidelberg, Germany
- Current address: Section of Cardiovascular Medicine, Boston University Medical Center, 88 East Newton Street, Boston, MA 02118, USA
| | - Moritz Helmstaedter
- Department of Cell Physiology, Max Planck Institute of Medical Research, Jahnstr. 20, D-69120 Heidelberg, Germany
- Current address: Structure of Neocortical Circuits Group, Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Joachim Lübke
- Institute for Neuroscience and Medicine, INM-2, Research Centre Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelstr. 30, D-52074 Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA-Brain), D-52074, Aachen, Germany
| | - Dirk Feldmeyer
- Institute for Neuroscience and Medicine, INM-2, Research Centre Jülich, Leo-Brandt-Str., D-52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelstr. 30, D-52074 Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA-Brain), D-52074, Aachen, Germany
| |
Collapse
|
50
|
Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala. J Neurosci 2015; 34:16194-206. [PMID: 25471561 DOI: 10.1523/jneurosci.2232-14.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.
Collapse
|