1
|
Guerrieri-Gonzaga A, Serrano D, Gnagnarella P, Johansson H, Zovato S, Nardi M, Pensabene M, Buccolo S, DeCensi A, Briata IM, Pistelli L, Sansone C, Mannucci S, Aristarco V, Macis D, Lazzeroni M, Aurilio G, Accornero CA, Gandini S, Bonanni B. Low dose TamOxifen and LifestylE changes for bReast cANcer prevention (TOLERANT study): Study protocol of a randomized phase II biomarker trial in women at increased risk for breast cancer. PLoS One 2024; 19:e0309511. [PMID: 39226292 PMCID: PMC11371200 DOI: 10.1371/journal.pone.0309511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Breast Cancer (BC) prevention strategies range from lifestyle changes such as increasing physical activity and reducing body weight to preventive drugs like tamoxifen, known to reduce BC incidence in high-risk women. Sex Hormone Binding Globulin (SHBG) is related to BC risk due to its ability to bind circulating estradiol at high affinity and to regulate estradiol action. A study protocol is presented based on the assessment of the effect of different interventions such as tamoxifen at 10 mg every other day (LDT), intermittent caloric restriction (ICR) two days per week, lifestyle intervention (LI, step counter use) and their combination on the modulation of SHBG and several other biomarkers associated to BC. METHODS A randomized phase II biomarker study will be conducted in 4 Italian centers. Unaffected women aged between 18 and 70 years, carriers of a germline pathogenetic variant (BRCA1, BRCA2, PALB2, or other moderate penetrance genes), or with a >5% BC risk at 10 years (according to the Tyrer-Cuzick or the Breast Cancer Surveillance Consortium Risk models) or with a previous diagnosis of intraepithelial neoplasia will be eligible. A total of 200 participants will be randomized to one of the four arms: LDT; LDT + ICR; LI; LI + ICR. Interventions will span six months, with baseline and follow-up clinic visits and interim phone calls. DISCUSSION The aim of the study is to verify whether LDT increases circulating SHBG more than LI with or without ICR after 6 months. Secondary objectives include assessing HOMA-index, inflammatory markers, adiponectin/leptin ratio, quality of life (QoL), safety, toxicity, mammographic density, and changes in microbiome composition across groups. The study's innovation lies in its inclusion of diverse BC risk categories and combination of pharmaceutical and behavioral interventions, potentially enhancing intervention efficacy while balancing tamoxifen's side effects on QoL, especially menopausal symptoms. TRIAL REGISTRATION EuCT number:2023-503994-39-00; Clinical trials.gov NCT06033092.
Collapse
Affiliation(s)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology IRCCS, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Zovato
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, Padova, Italy
| | - Mariateresa Nardi
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, Padova, Italy
| | - Matilde Pensabene
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Simona Buccolo
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, Genoa, Italy
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | | | - Luigi Pistelli
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, University of Naples "Federico II", Naples, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Gaetano Aurilio
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
2
|
Huang J, Xu B, Chen X, Yang L, Liu D, Lin J, Liu Y, Lei X, Huang C, Dou W, Guo D, Wei X, Zhang P, Huang Y, Gu X, Zhang H. Sex Hormone-Binding Globulin and Risk of Incident Dementia in Middle-Aged to Older Women: Results from the UK Biobank Cohort Study. Neuroendocrinology 2023; 114:170-178. [PMID: 37725912 DOI: 10.1159/000533929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION The association of serum sex hormone-binding globulin (SHBG) concentrations with dementia risk remains uncertain in middle-aged to older women. We examined associations of serum SHBG levels with incidence of all-cause dementia and its subtypes in middle-aged to older women from the large population-based UK Biobank cohort study. METHODS Serum total SHBG levels were measured by immunoassay. The incidence of all-cause dementia and its subtypes was recorded. Cox proportional hazards models were used to calculate hazard ratios (HR) for main outcomes. RESULTS Among 171,482 community-dwelling women (mean [SD] age was 59.9 [5.4] years, median follow-up of 11.8 years), 2,368 developed dementia, including 1,088 from Alzheimer's disease (AD), 451 from vascular dementia (VAD), and 1,609 from other dementia. After multivariable adjustments, higher serum SHBG levels were significantly associated with higher risks of all-cause dementia, AD, and other dementia (all p < 0.05). Compared to those in the lowest quartile of SHBG levels, participants in the highest quartile of SHBG levels had a higher risk of all-cause dementia (HR: 1.34; 95% confidence interval [CI]: 1.16-1.53), AD (HR: 1.32; 95% CI: 1.07-1.62), and other dementia (HR: 1.44; 95% CI: 1.21-1.70). However, this relationship was not significant for VAD (HR: 1.16; 95% CI: 0.86-1.56). CONCLUSION These findings indicated that higher serum SHBG concentrations were independently associated with higher risks of incident all-cause dementia, as well as AD and other dementia among middle-aged to older women. No association was found for VAD.
Collapse
Affiliation(s)
- Junlin Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Linjie Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuzhen Lei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijuan Dou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejiang Gu
- Dpartment of Endocrine and Metabolic Diseases, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
3
|
Dimitrijevic D, Fabian E, Funk-Weyer D, Landsiedel R. Rapid equilibrium dialysis, ultrafiltration or ultracentrifugation? Evaluation of methods to quantify the unbound fraction of substances in plasma. Biochem Biophys Res Commun 2023; 651:114-120. [PMID: 36812744 DOI: 10.1016/j.bbrc.2023.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
In pharmacokinetics plasma protein binding (PPB) is a well-established parameter impacting drug disposition. The unbound fraction (fu) is arguably regarded the effective concentration at the target site. Pharmacology and toxicology, increasingly use in vitro models. The translation of in vitro concentrations to in vivo doses can be supported by toxicokinetic modelling, e.g. physiologically based toxicokinetic models (PBTK). PPB of a test substance is an input parameter for PBTK. We compared three methods to quantify fu: rapid equilibrium dialysis (RED), ultrafiltration (UF) and ultracentrifugation (UC) using twelve substances covering a wide range of Log Pow (-0.1 to 6.8) and molecular weights (151 and 531 g/mol): Acetaminophen, Bisphenol A, Caffeine, Colchicine, Fenarimol, Flutamide, Genistein, Ketoconazole, α-Methyltestosterone, Tamoxifen, Trenbolone and Warfarin. After RED and UF separation, three polar substances (Log Pow < 2) were largely unbound (fu > 70%), while more lipophilic substances were largely bound (fu < 33%). Compared to RED or UF, UC resulted in a generally higher fu of lipophilic substances. fu obtained after RED and UF were more consistent with published data. For half of the substances, UC resulted in fu higher than the reference data. UF, RED and both UF and UC, resulted in lower fu of Flutamide, Ketoconazole and Colchicine, respectively. For fu quantifications, the separation method should be selected according to the test substance's properties. Based on our data, RED is suitable for a broader range of substances while UC and UF are suitable for polar substances.
Collapse
Affiliation(s)
- Dunja Dimitrijevic
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße 2-4, 14195, Berlin, Germany.
| | - Eric Fabian
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| | - Robert Landsiedel
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße 2-4, 14195, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67063, Ludwigshafen am Rhein, Germany.
| |
Collapse
|
4
|
Zhang X, Xiao J, Liu Q, Ye Y, Guo W, Cui J, He Q, Feng W, Liu M. Low Serum Total Testosterone Is Associated with Non-Alcoholic Fatty Liver Disease in Men but Not in Women with Type 2 Diabetes Mellitus. Int J Endocrinol 2022; 2022:8509204. [PMID: 36065220 PMCID: PMC9440833 DOI: 10.1155/2022/8509204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Materials and Methods There were 1155 patients with T2DM included in the analysis. Serum levels of total testosterone and the precursors of androgens, including androstenedione, DHEA, and DHEAS, were quantified using liquid chromatography-tandem mass spectrometry assays. Results The risk of NAFLD decreased as total testosterone concentration increased in men with T2DM. After adjusting for age, current smoking, current drinking, body mass index, duration of T2DM, diastolic blood pressure, total cholesterol, triglycerides, low-density lipoprotein/high-density lipoprotein cholesterol ratio, uric acid, C-reactive protein, and sex hormones in model 4, the adjusted odds ratio (OR) and 95% confidence interval (CI) of NAFLD for tertile3 vs tertile1 was 0.37 (0.17-0.77; P = 0.024 for trend). When taken as a continuous variable, this association was still robust in model 4 (OR, 0.58; 95% CI, 0.42-0.80; P < 0.05). No significant associations were found between increasing levels of the precursors of androgens and the odds of NAFLD in men with T2DM (all P > 0.05). Moreover, women showed no significant associations of total testosterone, androstenedione, DHEA, and DHEAS, with the odds of NAFLD (all P > 0.05). Conclusions Serum total testosterone was independently associated with the risk of NAFLD among men with T2DM. This study highlights the potential role of testosterone as a risk factor for NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Ye
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Weihong Guo
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Abou-Fadel J, Jiang X, Padarti A, Goswami DG, Smith M, Grajeda B, Bhalli M, Le A, Walker WE, Zhang J. mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB). Int J Mol Sci 2022; 23:ijms23179684. [PMID: 36077089 PMCID: PMC9456378 DOI: 10.3390/ijms23179684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Dinesh G. Goswami
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Wendy E. Walker
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-915-215-4197
| |
Collapse
|
6
|
Abuaish S, Lavergne SG, Hing B, St-Cyr S, Spinieli RL, Boonstra R, McGowan PO. Sex-specific maternal programming of corticosteroid-binding globulin by predator odour. Proc Biol Sci 2021; 288:20211908. [PMID: 34847769 PMCID: PMC8634628 DOI: 10.1098/rspb.2021.1908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Predation is a key organizing force in ecosystems. The threat of predation may act to programme the endocrine hypothalamic-pituitary-adrenal axis during development to prepare offspring for the environment they are likely to encounter. Such effects are typically investigated through the measurement of corticosteroids (Cort). Corticosteroid-binding globulin (CBG) plays a key role in regulating the bioavailability of Cort, with only free unbound Cort being biologically active. We investigated the effects of prenatal predator odour exposure (POE) in mice on offspring CBG and its impact on Cort dynamics before, during and after restraint stress in adulthood. POE males, but not females, had significantly higher serum CBG at baseline and during restraint and lower circulating levels of Free Cort. Restraint stress was associated with reduced liver transcript abundance of SerpinA6 (CBG-encoding gene) only in control males. POE did not affect SerpinA6 promoter DNA methylation. Our results indicate that prenatal exposure to a natural stressor led to increased CBG levels, decreased per cent of Free Cort relative to total and inhibited restraint stress-induced downregulation of CBG transcription. These changes suggest an adaptive response to a high predator risk environment in males but not females that could buffer male offspring from chronic Cort exposure.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia
- Department of Biological Sciences and Centre for Environmental Epigenetics and Development, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
- Departments of Cell and Systems Biology, Psychology, and Physiology, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| | - Sophia G. Lavergne
- Department of Biological Sciences and Centre for Environmental Epigenetics and Development, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
| | - Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Bowen Science Building 6-509, Iowa City, IA 52242, USA
| | - Sophie St-Cyr
- Department of Biological Sciences and Centre for Environmental Epigenetics and Development, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
- Departments of Cell and Systems Biology, Psychology, and Physiology, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard L. Spinieli
- Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rudy Boonstra
- Department of Biological Sciences and Centre for Environmental Epigenetics and Development, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Biological Sciences and Centre for Environmental Epigenetics and Development, University of Toronto Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
- Departments of Cell and Systems Biology, Psychology, and Physiology, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13:1611-1628. [PMID: 34904032 PMCID: PMC8637678 DOI: 10.4254/wjh.v13.i11.1611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine functions, such as direct hormone and hepatokine production, hormone metabolism, synthesis of binding proteins, and processing and redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of the liver have been discovered. Advances in the classical endocrine functions include delineation of mechanisms of liver production of endocrine hormones [including 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], hepatic metabolism of hormones (including thyroid hormones, glucagon-like peptide-1, and steroid hormones), and actions of specific binding proteins to glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered insight into cirrhosis-associated endocrinopathies, such as hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and lipid homeostasis, and controversially relative adrenal insufficiency. Several novel endocrine functions of the liver have also been unraveled, elucidating the liver’s key negative feedback regulatory role in the pancreatic α cell-liver axis, which regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth factor 21, have also been discovered to play important endocrine roles in modulating insulin sensitivity, lipid metabolism, and body weight. It is expected that more endocrine functions of the liver will be revealed in the near future.
Collapse
Affiliation(s)
- Jane Rhyu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
8
|
Zhu Z, Chen Y, Ren J, Dawsey SM, Yin J, Freedman ND, Fan JH, Taylor PR, Liu Y, Qiao YL, Abnet CC. Serum Levels of Androgens, Estrogens, and Sex Hormone Binding Globulin and Risk of Primary Gastric Cancer in Chinese Men: A Nested Case-Control Study. Cancer Prev Res (Phila) 2021; 14:659-666. [PMID: 33766833 PMCID: PMC8225565 DOI: 10.1158/1940-6207.capr-20-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer shows a strong male predominance, and sex steroid hormones have been hypothesized to explain this sex disparity. Previous studies examining the associations between sex hormones and sex hormone binding globulin (SHBG) and risk of gastric cancer come primarily from western populations and additional studies in diverse populations will help us better understand the association. We performed a nested case-control study in Linxian Nutrition Intervention Trials cohorts to evaluate the associations among Chinese men, where we had sufficient cases to perform a well-powered study. Using radioimmunoassays and immunoassays, we quantitated androgens, estrogens, and SHBG in baseline serum from 328 men that developed noncardia gastric cancer and matched controls. We used multivariable unconditional logistic regression to calculate ORs and 95% confidence intervals (CI) and explored interactions with body mass index (BMI), age, alcohol drinking, smoking, and follow-up time. Subjects with SHBG in the highest quartile, as compared with those in the lowest quartile, had a significantly increased risk of gastric cancer (OR = 1.87; 95% CI, 1.01-3.44). We found some evidence for associations of sex steroid hormones in men with lower BMI. Our study found a novel association suggesting that higher serum concentrations of SHBG may be associated with risk of gastric cancer in men. We found no overall associations with sex hormones themselves, but future studies should expand the scope of these studies to include women and further explore whether BMI modifies a potential association. PREVENTION RELEVANCE: It was the first study to investigate the association of gastric cancer with prediagnostic sex steroid hormones and SHBG in an Asian male population. Although there were no overall associations for sex steroid hormone concentrations, higher concentrations of SHBG was associated with increased risk of noncardia gastric cancer.
Collapse
Affiliation(s)
- Zhikai Zhu
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingxi Chen
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jiansong Ren
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sanford M Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jian Yin
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jin-Hu Fan
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Philip R Taylor
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Yuanli Liu
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
9
|
Lin HY, Song G, Lei F, Li D, Qu Y. Avian corticosteroid-binding globulin: biological function and regulatory mechanisms in physiological stress responses. Front Zool 2021; 18:22. [PMID: 33926473 PMCID: PMC8086359 DOI: 10.1186/s12983-021-00409-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/04/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates their biological activities. The structural and functional properties of CBG are crucial to understanding the biological actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with mammals.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Feng W, Nie L, Wang X, Yang F, Pan P, Deng X. Effect of Oral versus Vaginal Administration of Estradiol and Dydrogesterone on the Proliferative and Secretory Transformation of Endometrium in Patients with Premature Ovarian Failure and Preparing for Assisted Reproductive Technology. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1521-1529. [PMID: 33883876 PMCID: PMC8053706 DOI: 10.2147/dddt.s297236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Purpose This study aimed to assess the efficacy of vaginally versus orally administered estradiol (E2) and dydrogesterone (DG) on the proliferative and secretory transformation of endometrium in patients with premature ovarian failure (POF) and preparing for assisted reproductive technology. Methods Twenty patients with POF who were awaiting oocyte donation were included in the study; they were randomly assigned to two groups to receive E2 and DG either orally or vaginally. Treatment efficacy was compared between the two groups regarding blood E2 concentrations, endometrial thickness, histology using hematoxylin and eosin staining, immunohistochemical analysis of ER expression, and PR and pinopodes morphology using scanning electron microscopy. Results E2 concentrations differed significantly between oral and vaginal E2 and DG administration for 14 days (82.3 vs 1015.6 pg/mL; P < 0.001) and 21 days (85.0 vs 809.8 pg/mL; P < 0.001). Endometrial thickening was more pronounced in the vaginal treatment group, and also ER staining was stronger on days 14 and 21 in the vaginal treatment group. PR staining in the endometrium appeared more intense in the oral treatment group, which was, however, not significant. The abundance of developing pinopodes was higher in the vaginal treatment group (P = 0.04). Conclusion Vaginal administration of E2 and DG is more effective than oral administration regarding proliferative and secretory transformation of the endometrium in POF patients and preparing for assisted reproductive technology.
Collapse
Affiliation(s)
- Wenjuan Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.,Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Longyun Nie
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Fang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Pan Pan
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Xiaohui Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| |
Collapse
|
11
|
Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol 2021; 33:e12922. [PMID: 33314446 DOI: 10.1111/jne.12922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Steroids are secreted by the gonads and adrenal glands into the blood to modulate neurophysiology and behaviour. In addition, the brain can metabolise circulating steroids and synthesise steroids de novo. Songbirds show high levels of neurosteroid synthesis. In the present study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of 10 steroids in whole blood, plasma and microdissected brain tissue (1-2 mg) of song sparrows. Our assay is highly accurate, precise, specific and sensitive. Moreover, the liquid-liquid extraction is fast, simple and effective. We quantified steroids in the blood and brain of wild male song sparrows in both breeding and non-breeding seasons. As expected, systemic androgen levels were higher in the breeding season than in the non-breeding season. Brain androgens were detectable only in the breeding season; androstenedione and 5α-dihydrotestosterone levels were up to 20-fold higher in specific brain regions than in blood. Oestrogens were not detectable in blood in both seasons. Oestrone and 17β-oestradiol were detectable in brain in the breeding season only (up to 1.4 ng g-1 combined). Progesterone levels in several regions were higher in the non-breeding season than the breeding season, despite the lack of seasonal changes in systemic progesterone. Corticosterone levels in the blood were higher in the breeding season than in the non-breeding season but showed few seasonal differences in the brain. In general, the steroid levels presented here are lower than those in previous reports using immunoassays, because of the higher specificity of mass spectrometry. We conclude that (i) brain steroid levels can differ greatly from circulating steroid levels and (ii) brain steroid levels show region-specific seasonal patterns that are not a simple reflection of circulating steroid levels. This approach using ultrasensitive LC-MS/MS is broadly applicable to other species and allows steroid profiling in microdissected brain regions.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Sreeja SR, Seo SS, Kim MK. Associations of Dietary Glycemic Index, Glycemic Load and Carbohydrate with the Risk of Cervical Intraepithelial Neoplasia and Cervical Cancer: A Case-Control Study. Nutrients 2020; 12:E3742. [PMID: 33291721 PMCID: PMC7761966 DOI: 10.3390/nu12123742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The association of dietary glycemic index (GI) and glycemic load (GL) with the risk of cervical cancer has never been investigated. Thus, we aimed to find evidence of any association of GI and GL with the risk of cervical intraepithelial neoplasia (CIN) and cervical cancer. METHODS In this hospital-based case-control study, we included 1340 women (670 controls and 262, 187 and 221 patients with CIN1, CIN2/3, and cervical cancer, respectively) from the Korean human papillomavirus cohort study. Completed demographic questionnaires and semi-quantitative food-frequency questionnaires were collected. The association of dietary GI and GL with CIN and cervical cancer was estimated using a logistic regression model. RESULTS The multivariate odds ratios (OR) of the highest compared with the lowest quintile of GL for CIN1 were 2.8 (95% confidence interval (CI) = 1.33-5.88). Dietary GI and GL were not associated with CIN2/3 and cervical cancer. Stratified analyses by body mass index (BMI) indicated a positive association between GI and GL and CIN 1 risk among women with a BMI (in kg/m2) <23 (OR = 2.94; 95% CI = 1.32-6.53; p for trend = 0.031 for GI and OR = 3.15; 95% CI = 1.53-6.52; p for trend = 0.013 for GL), but not among those with a BMI of ≥23. A stratification analysis by menopausal status showed that the highest quintile of GI and GL was significantly associated with the risk of CIN1 (OR = 2.91; 95% CI = 1.43-5.96; p for trend = 0.005) (OR = 2.96; 95% CI = 1.53-5.69; p for trend = 0.023) among premenopausal women. Also, in HPV positive women, dietary GL showed significant CIN1 risk (OR = 2.61; 95% CI = 1.09-6.24; p for trend = 0.087). CONCLUSION Our case-control study supports the hypothesized associations of dietary GI and GL with increased risk of CIN1. Thus, the consumption of low GI and GL foods plays a significant role in the prevention of cervical carcinogenesis.
Collapse
Affiliation(s)
- Sundara Raj Sreeja
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Sang Soo Seo
- Center for Uterine Cancer, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Ilsandong-gu, Goyang-si 10408, Korea;
| |
Collapse
|
13
|
Wang X, Li Q, Pang J, Lin J, Liu Y, Xu Z, Zhang H, Shen T, Chen X, Ma J, Xu X, Ling W, Chen Y. Associations between serum total, free and bioavailable testosterone and non-alcoholic fatty liver disease in community-dwelling middle-aged and elderly women. DIABETES & METABOLISM 2020; 47:101199. [PMID: 33058967 DOI: 10.1016/j.diabet.2020.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is considered both a cause and consequence of the metabolic syndrome (MetS). While emerging evidence has indicated that testosterone is associated with MetS, the relationship between testosterone and NAFLD in women remains unclear. Therefore, this study investigated the associations between serum testosterone levels and NAFLD prevalence risk in a community-based cross-sectional study. METHODS A total of 2117 adult women were included in the analysis. Serum total testosterone (TT) was measured by chemiluminescence immunoassay, and other testosterone-related indices, such as concentrations and percentages of calculated free testosterone (cFT) and bioavailable testosterone (BioT), and free androgen index (FAI), were also calculated. NAFLD was diagnosed by clinical criteria. Logistic regression was used to explore these associations. RESULTS There were significant differences in TT, FAI, cFT and BioT between women with and without NAFLD (all P<0.001). Multivariate logistic-regression analyses demonstrated that both absolute concentrations and percentages of cFT and BioT were positively associated with NAFLD risk prevalence in all models. Adjusted ORs (95% CI) for quartile 4 vs quartile 1 of % cFT and % BioT were 5.94 (4.29-8.22) and 5.21 (3.79-7.17) in model 2, and 4.35 (3.07-6.18) and 3.58 (2.55-5.03) in model 3 (all P<0.001 for trend). In addition, quartiles of TT, FAI, cFT and BioT were significantly correlated with degree of hepatic steatosis. ROC analysis also showed that % cFT and % BioT were more accurate for predicting NAFLD prevalence than was TT. CONCLUSION Serum cFT and BioT were positively associated with NAFLD risk, and elevated levels of cFT and BioT could be independent risk factors of NAFLD prevalence in middle-aged and elderly women.
Collapse
Affiliation(s)
- Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Jiesheng Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yao Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Zhongliang Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Hanyue Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Tianran Shen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Jing Ma
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China
| | - Xiping Xu
- Guangdong Engineering Technology Centre of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China.
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
14
|
Balthazart J. Sexual partner preference in animals and humans. Neurosci Biobehav Rev 2020; 115:34-47. [PMID: 32450091 PMCID: PMC7484171 DOI: 10.1016/j.neubiorev.2020.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
Sex differences in brain and behavior of animals including humans result from an interaction between biological and environmental influences. This is also true for the differences between men and women concerning sexual orientation. Sexual differentiation is mediated by three groups of biological mechanisms: early actions of sex steroids, more direct actions of sex-specific genes not mediated by gonadal sex steroids and epigenetic mechanisms. Differential interactions with parents and conspecifics have additionally long-term influences on behavior. This presentation reviews available evidence indicating that these different mechanisms play a significant role in the control of sexual partner preference in animals and humans, in other words the homosexual versus heterosexual orientation. Clinical and epidemiological studies of phenotypically selected populations indicate that early actions of hormones and genetic factors clearly contribute to the determination of sexual orientation. The maternal embryonic environment also modifies the incidence of male homosexuality via immunological mechanisms. The relative contribution of each of these mechanisms remains however to be determined.
Collapse
|
15
|
Albrechet-Souza L, Schratz CL, Gilpin NW. Sex differences in traumatic stress reactivity in rats with and without a history of alcohol drinking. Biol Sex Differ 2020; 11:27. [PMID: 32393336 PMCID: PMC7216391 DOI: 10.1186/s13293-020-00303-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alcohol misuse and post-traumatic stress disorder (PTSD) are highly comorbid, and treatment outcomes are worse in individuals with both conditions. Although more men report experiencing traumatic events than women, the lifetime prevalence of PTSD is twice as high in females. Despite these data trends in humans, preclinical studies of traumatic stress reactivity have been performed almost exclusively in male animals. METHODS This study was designed to examine sex differences in traumatic stress reactivity in alcohol-naive rats (experiment 1) and rats given intermittent access to 20% ethanol in a 2-bottle choice paradigm for 5 weeks (experiment 2). Animals were exposed to predator odor (bobcat urine) and tested for contextual avoidance 24 h later; unstressed controls were never exposed to predator odor. We evaluated changes in physiological arousal using the acoustic startle response (ASR) test at day 2 post-stress and anxiety-like behavior measured in the elevated plus-maze (EPM) at day 17 post-stress. In experiment 3, time course of corticosterone response was examined in male and female rats following exposure to predator odor stress. RESULTS Alcohol-naive males and females exposed to predator odor displayed blunted weight gain 24 h post-stress, but only a subset of stressed animals exhibited avoidance behavior. In alcohol-drinking animals, the proportion of avoiders was higher in males than females, and predator odor exposure increased ASR in males only. Stressed females exhibited blunted ASR relative to unstressed females and stressed males, regardless of alcohol drinking history. Alcohol-experienced females presented lower anxiety-like behavior and higher general activity in the EPM in comparison with alcohol-experienced males. Plasma corticosterone levels were higher in females immediately after predator odor exposure until 60 min post-stress relative to males. CONCLUSIONS We report robust sex differences in behavioral and endocrine responses to bobcat urine exposure in adult Wistar rats. Also, males with a history of chronic moderate alcohol drinking exhibited increased traumatic stress reactivity relative to alcohol-drinking females. Our findings emphasize the importance of considering sex as a biological variable in the investigation of traumatic stress effects on physiology and behavior.
Collapse
Affiliation(s)
- Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Connor L Schratz
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Southeast Louisiana Veterans Health Care System (SLVHCS), New Orleans, LA, USA
| |
Collapse
|
16
|
Sakkiah S, Guo W, Pan B, Kusko R, Tong W, Hong H. Computational prediction models for assessing endocrine disrupting potential of chemicals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 36:192-218. [PMID: 30633647 DOI: 10.1080/10590501.2018.1537132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Wenjing Guo
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Bohu Pan
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Rebecca Kusko
- b Immuneering Corporation , Cambridge , Massachusetts , USA
| | - Weida Tong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Huixiao Hong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
17
|
Yuan W, Benicky J, Wei R, Goldman R, Sanda M. Quantitative Analysis of Sex-Hormone-Binding Globulin Glycosylation in Liver Diseases by Liquid Chromatography-Mass Spectrometry Parallel Reaction Monitoring. J Proteome Res 2018; 17:2755-2766. [PMID: 29972295 DOI: 10.1021/acs.jproteome.8b00201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sex-hormone-binding globulin (SHBG) is a liver-secreted glycoprotein and a major regulator of steroid distribution. It has been reported that the serum concentration of SHBG changes in liver disease. To explore the involvement of SHBG in liver disease of different etiologies in greater detail, we developed a sensitive and selective liquid chromatography-mass spectrometry parallel reaction monitoring workflow to achieve quantitative analysis of SHBG glycosylation microheterogeneity. The method uses energy-optimized "soft" fragmentation to extract informative Y ions for maximal coverage of glycoforms and their quantitative comparisons. A total of 15 N-glycoforms of two N-glycosites and 3 O-glycoforms of 1 O-glycosite of this low-abundance serum protein were simultaneously analyzed in the complex samples. At the same time, we were able to partially resolve linkage isoforms of the fucosylated glycoforms and to identify and quantify SHBG N-glycoforms that were not previously reported. The results show that both core and outer-arm fucosylation of the N-glycoforms increases with liver cirrhosis but that a further increase of fucosylation is not observed with hepatocellular carcinoma (HCC). In contrast, the α-2-6 sialylated glycoform of the O-glycopeptide of SHBG increases in liver cirrhosis, and a significant 2-fold further increase is observed in HCC. In general, we do not find a significant contribution of different liver disease etiologies to the observed changes in glycosylation; however, elevation of the newly reported HexNAc(4)Hex(6) N-glycoform is associated with alcoholic liver disease.
Collapse
|
18
|
Pollock T, Greville LJ, Weaver RE, Radenovic M, deCatanzaro D. Bisphenol S modulates concentrations of bisphenol A and oestradiol in female and male mice. Xenobiotica 2018; 49:540-548. [DOI: 10.1080/00498254.2018.1480818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tyler Pollock
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Lucas J. Greville
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Rachel E. Weaver
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Marija Radenovic
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Denys deCatanzaro
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| |
Collapse
|
19
|
Boero G, Pisu MG, Biggio F, Muredda L, Carta G, Banni S, Paci E, Follesa P, Concas A, Porcu P, Serra M. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats. Neuropharmacology 2018; 133:242-253. [PMID: 29407214 DOI: 10.1016/j.neuropharm.2018.01.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
Abstract
We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy.
| | | | - Francesca Biggio
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Laura Muredda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Paci
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
Aerts J. Quantification of a Glucocorticoid Profile in Non-pooled Samples Is Pivotal in Stress Research Across Vertebrates. Front Endocrinol (Lausanne) 2018; 9:635. [PMID: 30405537 PMCID: PMC6206410 DOI: 10.3389/fendo.2018.00635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Vertebrates are faced continuously with a variety of potential stressful stimuli and react by a highly conserved endocrine stress response. An immediate catecholamine mediated response increases plasma glucose levels in order to prepare the organism for the "fight or flight" reaction. In addition, in a matter of minutes after this (nor)adrenaline release, glucocorticoids, in particular cortisol or corticosterone depending on the species, are released through activation of the hypothalamic-pituitary-interrenal (HPI) axis in fish or hypothalamic-pituitary-adrenal (HPA) axis in other vertebrates. These plasma glucocorticoids are well documented and widely used as biomarker for stress across vertebrates. In order to study the role of glucocorticoids in acute and chronic stress and gain in-depth insight in the stress axis (re)activity across vertebrates, it is pivotal to pin-point the involved molecules, to understand the mechanisms of how the latter are synthesized, regulated and excreted, and to grasp their actions on a plethora of biological processes. Furthermore, in-depth knowledge on the characteristics of the tissues as well as on the analytical methodologies available for glucocorticoid quantification is needed. This manuscript is to be situated in the multi-disciplinary research topic of glucocorticoid action across vertebrates which is linked to a wide range of research domains including but not limited to biochemistry, ecology, endocrinology, ethology, histology, immunology, morphology, physiology, and toxicology, and provides a solid base for all interested in stress, in particular glucocorticoid, related research. In this framework, internationally validated confirmation methods for quantification of a glucocorticoid profile comprising: (i) the dominant hormone; (ii) its direct precursors; (iii) its endogenously present phase I metabolites; and (iv) the most abundant more polar excreted exogenous phase I metabolites in non-pooled samples are pivotal.
Collapse
Affiliation(s)
- Johan Aerts
- Stress Physiology Research Group, Faculty of Pharmaceutical Sciences, Ghent University, Ostend, Belgium
- Stress Physiology Research Group, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
- *Correspondence: Johan Aerts
| |
Collapse
|
21
|
Chuffa LGDA, Lupi-Júnior LA, Costa AB, Amorim JPDA, Seiva FRF. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 2017; 118:93-108. [PMID: 28041951 DOI: 10.1016/j.steroids.2016.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/10/2016] [Accepted: 12/24/2016] [Indexed: 02/08/2023]
Abstract
Sex steroids have been widely described to be associated with a number of human diseases, including hormone-dependent tumors. Several studies have been concerned about the factors regulating the availability of sex steroids and its importance in the pathophysiological aspects of the reproductive cancers in women. In premenopausal women, large fluctuations in the concentration of circulating estradiol (E2) and progesterone (P4) orchestrate many events across the menstrual cycle. After menopause, the levels of circulating E2 and P4 decline but remain at high concentration in the peripheral tissues. Notably, there is a strong relationship between circulating sex hormones and female reproductive cancers (e.g. ovarian, breast, and endometrial cancers). These hormones activate a number of specific signaling pathways after binding either to estrogen receptors (ERs), especially ERα, ERα36, and ERβ or progesterone receptors (PRs). Importantly, the course of the disease will depend on particular transactivation pathway. Identifying ER- or PR-positive tumors will benefit patients in terms of proper endocrine therapy. Based on hormonal responsiveness, effective prevention methods for ovarian, breast, and endometrial cancers represent a special opportunity for women at risk of malignancies. Hormone replacement therapy (HRT) might significantly increase the risk of these cancer types, and endocrine treatments targeting ER signaling may be helpful against E2-dependent tumors. This review will present the role of sex steroids and their receptors associated with the risk of developing female reproductive cancers, with emphasis on E2 levels in pre and postmenopausal women. In addition, new therapeutic strategies for improving the survival rate outcomes in women will be addressed.
Collapse
Affiliation(s)
| | - Luiz Antonio Lupi-Júnior
- Department of Anatomy, IBB/UNESP, Institute of Biosciences of Botucatu, Univ. Estadual Paulista, SP, Brazil
| | - Aline Balandis Costa
- Department of Nursing, UENP/CLM - Universidade Estadual do Norte do Paraná, PR, Brazil
| | | | | |
Collapse
|
22
|
Contribution of polymorphisms in ESR1, ESR2, FSHR, CYP19A1, SHBG, and NRIP1 genes to migraine susceptibility in Turkish population. J Genet 2016; 95:131-40. [PMID: 27019440 DOI: 10.1007/s12041-016-0625-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Migraine, a highly prevalent headache disorder, is regarded as a polygenic multifactorial disease. Single-nucleotide polymorphisms (SNPs) in the genes that involved in sex hormone metabolism may comprise risk for migraine, but the results of previous genetic association studies are conflicting. The aim of this study was to evaluate genetic variants in genes involved in oestrogen receptor and oestrogen hormone metabolism in a Turkish population. A total of 12 SNPs in the ESR1, ESR2, FSHR, CYP19A1, SHBG and NRIP1 genes were genotyped in 142 migraine cases and 141 nonmigraine controls, using a BioMark 96.96 dynamic array system. In addition, gene-gene interactions were analysed using generalized multifactor dimensionality reduction (GMDR) methods. According to GMDR analysis, our results indicated that there was a significant association between migraine and gene-gene interaction among the CYP19A1, FSHR, ESR1 and NRIP1. Single-gene variant analysis showed that a significant association was observed between the TT genotype of rs10046 and migraine susceptibility.When the analysis was performed only in women, the GG genotype of rs2229741 was different between migraineurs and controls.When the female migraine patients were divided into two groups, migraine related to menstruation (MRM) or migraine not related to menstruation (MNRM), GG genotype of rs726281 was significantly associated with MRM. These results suggested that rs10046 could play a potential role in migraine susceptibility in Turkish population. Also, the rare GG genotype of rs726281 appears to influence migraine susceptibility in a recessive manner in MRM subgroup of female patients. In addition, variant GG genotype of rs2229741 may reduce the risk of migraine in Turkish women.
Collapse
|
23
|
Bulut G, Kosem M, Bulut MD, Erten R, Bayram I. Is Immunohistochemical Sex Hormone Binding Globulin Expression Important in the Differential Diagnosis of Adenocarcinomas? Asian Pac J Cancer Prev 2016; 16:8203-10. [PMID: 26745061 DOI: 10.7314/apjcp.2015.16.18.8203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Adenocarcinomas (AC) are the most frequently encountered carcinomas. It may be quite challenging to detect the primary origin when those carcinomas metastasize and the first finding is a metastatic tumor. This study evaluated the role of sex hormone binding globulin (SHBG) positivity in tumor cells in the subclassification and detection of the original organ of adenocarcinomas. Between 1994 and 2008, 64 sections of normal tissue belonging to ten organs, and 116 cases diagnosed as adenoid cystic carcinoma and mucoepidermoid carcinoma of the salivary gland, lung adenocarcinoma, invasive ductal carcinoma of the breast, adenocarcinoma of stomach, colon, gallbladder, pancreas and prostate, endometrial adenocarcinoma and serous adenocarcinoma and mucinous adenocarcinoma of the ovary, were sent to the laboratory at the Department of Pathology at the Yuzuncu Yil University School of Medicine, where they were stained immunohistochemically, using antibodies against SHBG. The SHBG immunoreactivity in both the tumor cells and normal cells, together with the type, diffuseness and intensity of the staining were then evaluated. In the differential diagnosis of the adenocarcinomas of the organs, including the glandular structures, impressively valuable results are encountered in the tumor cells, whether the SHBG immunopositivity is evaluated alone or together with other IHC markers. Further extensive research with a larger number of cases, including instances of cholangiocarcinoma and cervix uteri AC [which we could not include in the study for technical reasons] should be performed, in order to appropriately evaluate the role of SHBG in the differential diagnosis of AC.
Collapse
Affiliation(s)
- Gulay Bulut
- Department of Pathology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey E-mail :
| | | | | | | | | |
Collapse
|
24
|
Moisan MP, Castanon N. Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders. Front Endocrinol (Lausanne) 2016; 7:160. [PMID: 28066325 PMCID: PMC5165022 DOI: 10.3389/fendo.2016.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid hormones (GCs) are critical for survival since they ensure the energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism, and storage. However, to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g., Cushing's syndrome or Addison's disease, are associated with severe alterations of energy metabolism. Corticosteroid-binding globulin (CBG), through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels and their access to target cells. Genetic studies in various species including humans have revealed that CBG is the major factor influencing interindividual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all, of these genetic studies have also provided data linking CBG levels to body composition and insulin levels. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Finally, only male mice have been examined under high-fat diet, while obesity is affecting women even more than men. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- *Correspondence: Marie-Pierre Moisan,
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
| |
Collapse
|
25
|
Li M, Sun Y, Wu J, Zhang X, Li J, Yao Y, Liu X, Li D, Wu Y. Variation in corticosterone response and corticosteroid binding-globulin during different breeding sub-stages in Eurasian tree sparrow (Passer montanus). ACTA ACUST UNITED AC 2015; 325:75-83. [PMID: 26627679 DOI: 10.1002/jez.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/12/2022]
Abstract
In free-living animals, it has been well demonstrated that the intensity of the adrenocortical response to acute restraint stress can vary with reproductive investment during breeding. The parental care hypothesis posits that the stress response is negatively correlated with parental investment in avian species. To further test this hypothesis, we examined changes in both free and total corticosterone (CORT) at baseline and stress-induced levels (maximal CORT) and corticosteroid-binding globulin (CBG) capacities, in both sexes of a multi-brooded Eurasian tree sparrows (Passer montanus), during the nest building, the early nestling, the later egg-laying, and the later nestling stages. Our results showed Eurasian tree sparrows did not exhibit any differences between sexes in CORT and CBG levels during the egg-laying or nestling stages. Both sexes had lowered CBG capacities and females exhibited lower maximal CORT during the early compared to later nestling stages. In addition, both sexes had lower maximal free CORT levels during the nest building stage than those of the early nestling stages, and males expressed higher total maximal CORT levels than females during nest building stage. The variation in CORT response and CBG levels during different breeding sub-stages in Eurasian tree sparrow may correlate with their energetic situations and parental investments. J. Exp. Zool. 325A:75-83, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Junzhe Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaorui Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Juyong Li
- College of Huihua, Hebei Normal University, Shijiazhuang, China
| | - Yao Yao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuelu Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
26
|
Hong H, Branham WS, Ng HW, Moland CL, Dial SL, Fang H, Perkins R, Sheehan D, Tong W. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein. Toxicol Sci 2014; 143:333-48. [PMID: 25349334 DOI: 10.1093/toxsci/kfu231] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.
Collapse
Affiliation(s)
- Huixiao Hong
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - William S Branham
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hui Wen Ng
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Carrie L Moland
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Stacey L Dial
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hong Fang
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Roger Perkins
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Daniel Sheehan
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Weida Tong
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
27
|
Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 2014; 144 Pt A:132-7. [PMID: 24095930 PMCID: PMC3976473 DOI: 10.1016/j.jsbmb.2013.09.012] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022]
Abstract
The last five years have witnessed a remarkable renaissance in vitamin D research and a complete re-evaluation of its benefits to human health. Two key factors have catalyzed these changes. First, it now seems likely that localized, tissue-specific, conversion of 25-hydroxyvitamin D (25OHD) to 1,25-dihydroxyvitamin D (1,25(OH)2D) drives many of the newly recognized effects of vitamin D on human health. The second key factor concerns the ongoing discussion as to what constitutes adequate or optimal serum vitamin D (25OHD) status, with the possibility that vitamin D-deficiency is common to communities across the globe. These two concepts appear to be directly linked when low serum concentrations of 25OHD compromise intracrine generation of 1,25(OH)2D within target tissues. But, is this an over-simplification? Pro-hormone 25OHD is a lipophilic molecule that is transported in the circulation bound primarily to vitamin D binding protein (DBP). While the association between 25OHD and DBP is pivotal for renal handling of 25OHD and endocrine synthesis of 1,25(OH)2D, what is the role of DBP for extra-renal synthesis of 1,25(OH)2D? We hypothesize that binding to DBP impairs delivery of 25OHD to the vitamin D-activating enzyme 1α-hydroxylase in some target cells. Specifically, it is unbound, 'free' 25OHD that drives many of the non-classical actions of vitamin D. Levels of 'free' 25OHD are dependent on the concentration of DBP and alternative serum binding proteins such as albumin, but will also be influenced by variations in DBP binding affinity for specific vitamin D metabolites. The aim of this review will be to discuss the merits of 'free 25OHD' as an alternative marker of vitamin D status, particularly in the context of non-classical responses to vitamin D. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Rene F Chun
- Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bradford E Peercy
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Eric S Orwoll
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| | - Carrie M Nielson
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| | - John S Adams
- Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Martin Hewison
- Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Ahmed MM, Ibrahim ZS, Alkafafy M, El-Shazly SA. L-carnitine protects against testicular dysfunction caused by gamma irradiation in mice. Acta Histochem 2014; 116:1046-55. [PMID: 24925768 DOI: 10.1016/j.acthis.2014.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/15/2022]
Abstract
This study was conducted on mice to evaluate the radioprotective role of L-carnitine against γ-ray irradiation-induced testicular damage. Adult male mice were exposed to whole body irradiation at a total dose of 1 Gy. Radiation exposure was continued 24 h a day (0.1 Gy/day) throughout the 10 days exposure period either in the absence and/or presence of L-carnitine at an i.p. dose of 10 mg/kg body weight/day. Results revealed that γ-rays irradiation suppressed the expression of ABP and CYP450SCC mRNA, whereas treatment with L-carnitine prior and throughout γ-rays irradiation exposure inhibited this suppression. Treatment with γ-ray irradiation or L-carnitine down-regulated expression of aromatase mRNA. With combined treatment, L-carnitine significantly normalized aromatase expression. γ-Ray irradiation up-regulated expression of FasL and Cyclin D2 mRNA, while L-carnitine inhibited these up-regulations. Results also showed that γ-ray-irradiation up-regulated TNF-α, IL1-β and IFN-γ mRNA expressions compared to either controls or the L-carnitine treated group. Moreover, γ-irradiation greatly reduced serum testosterone levels, while L-carnitine, either alone or in combination with irradiation, significantly increased serum testosterone levels compared to controls. In addition, γ-irradiation induced high levels of sperm abnormalities (43%) which were decreased to 12% in the presence of L-carnitine. In parallel with these findings, histological examination showed that γ-irradiation induced severe tubular degenerative changes, which were reduced by L-carnitine pre-treatment. These results clarified the immunostimulatory effects of L-carnitine and its radioprotective role against testicular injury.
Collapse
Affiliation(s)
- Mohamed Mohamed Ahmed
- Department of Biochemistry, College of Veterinary Medicine, University of Sadat City, Egypt; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Zein Shaban Ibrahim
- Department of Physiology, College of Veterinary Medicine, Kaferelsheikh University, Egypt; Department of Physiology, College of Medicine, Taif University, Saudi Arabia
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia; Department of Histology, College of Veterinary Medicine, University of Sadat City, Egypt
| | - Samir Ahmed El-Shazly
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia; Department of Biochemistry, College of Veterinary Medicine, Kaferelsheikh University, Egypt.
| |
Collapse
|
29
|
Moisan MP, Minni AM, Dominguez G, Helbling JC, Foury A, Henkous N, Dorey R, Béracochéa D. Role of corticosteroid binding globulin in the fast actions of glucocorticoids on the brain. Steroids 2014; 81:109-15. [PMID: 24252379 DOI: 10.1016/j.steroids.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corticosteroid binding globulin (CBG) is a glycoprotein synthesized in liver and secreted in the blood where it binds with a high affinity but low capacity glucocorticoid hormones, cortisol in humans and corticosterone in laboratory rodents. In mammals, 95% of circulating glucocorticoids are bound to either CBG (80%) or albumin (15%) and only the 5% free fraction is able to enter the brain. During stress, the concentration of glucocorticoids rises significantly and the free fraction increases even more because CBG becomes saturated. However, glucocorticoids unbound to CBG are cleared from the blood more quickly. Our studies on mice totally devoid of CBG (Cbg k.o.) showed that during stress these mutant mice display a lower rise of glucocorticoids than the wild-type controls associated with altered emotional reactivity. These data suggested that CBG played a role in the fast actions of glucocorticoids on behavior. Further analyses demonstrated that stress-induced memory retrieval impairment, an example of the fast action of glucocorticoids on the brain is abolished in the Cbg k.o. mice. This effect of stress on memory retrieval could be restored in the Cbg k.o. mice by infusing corticosterone directly in the hippocampus. The mechanisms explaining these effects involved an increased clearance but no difference in corticosterone production. Thus, CBG seems to have an important role in maintaining in blood a glucocorticoid pool that will be able to access the brain for the fast effects of glucocorticoids.
Collapse
Affiliation(s)
- M P Moisan
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France.
| | - A M Minni
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - G Dominguez
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France; UFR Sciences et Technique, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - J C Helbling
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - A Foury
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - N Henkous
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| | - R Dorey
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| | - D Béracochéa
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| |
Collapse
|
30
|
Lynn SE, Kern MD. Environmentally relevant bouts of cooling stimulate corticosterone secretion in free-living eastern bluebird (Sialia sialis) nestlings: potential links between maternal behavior and corticosterone exposure in offspring. Gen Comp Endocrinol 2014; 196:1-7. [PMID: 24275608 DOI: 10.1016/j.ygcen.2013.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/07/2013] [Accepted: 11/14/2013] [Indexed: 01/11/2023]
Abstract
In vertebrates, exposure to stressful stimuli or to elevated glucocorticoids early in development can contribute to phenotypic variation that may have significant fitness consequences. In species with altricial young, offspring may be partially buffered from elevations in glucocorticoids by a period of low glucocorticoid responsiveness to stressors coupled with high levels of parental care. Because altricial young depend heavily on their parents for warmth, parental brooding behavior could buffer offspring from glucocorticoid exposure associated with cooling. We studied eastern bluebirds (Sialia sialis) with two goals: (1) to determine whether an experimental drop in body temperature such as that which might occur when a brooding female is off the nest was sufficient to stimulate glucocorticoid secretion in young chicks, and (2) to examine the extent to which chicks experienced such bouts of cooling in the field. We subjected chicks to treatments simulating nest temperatures while females were brooding or absent from the nest. We also recorded chick surface temperatures and ambient temperatures at nests during the first week of the brood period. Reductions of surface temperature of less than 10°C significantly elevated corticosterone secretion in chicks as young as 5days old, and thermal and hormonal responses of chicks to cooling increased in an age-dependent manner. One quarter of broods experienced repeated, natural bouts of cooling of this magnitude or greater in the nest. Our data suggest that natural variations in maternal brooding patterns can result in differential exposure of offspring to glucocorticoids, and this may have important phenotypic consequences later in life.
Collapse
Affiliation(s)
- Sharon E Lynn
- The College of Wooster, 931 College Mall, Wooster, OH 44691, USA.
| | - Michael D Kern
- The College of Wooster, 931 College Mall, Wooster, OH 44691, USA.
| |
Collapse
|
31
|
Charlier TD, Seredynski AL, Niessen NA, Balthazart J. Modulation of testosterone-dependent male sexual behavior and the associated neuroplasticity. Gen Comp Endocrinol 2013; 190:24-33. [PMID: 23523709 PMCID: PMC4761263 DOI: 10.1016/j.ygcen.2013.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
Steroids modulate the transcription of a multitude of genes and ultimately influence numerous aspects of reproductive behaviors. Our research investigates how one single steroid, testosterone, is able to trigger this vast number of physiological and behavioral responses. Testosterone potency can be changed locally via aromatization into 17β-estradiol which then activates estrogen receptors of the alpha and beta sub-types. We demonstrated that the independent activation of either receptor activates different aspects of male sexual behavior in Japanese quail. In addition, several studies suggest that the specificity of testosterone action on target genes transcription is related to the recruitment of specific steroid receptor coactivators. We demonstrated that the specific down-regulation of the coactivators SRC-1 or SRC-2 in the medial preoptic nucleus by antisense techniques significantly inhibits steroid-dependent male-typical copulatory behavior and the underlying neuroplasticity. In conclusion, our results demonstrate that the interaction between several steroid metabolizing enzymes, steroid receptors and their coactivators plays a key role in the control of steroid-dependent male sexual behavior and the associated neuroplasticity in quail.
Collapse
Affiliation(s)
- Thierry D Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Belgium.
| | | | | | | |
Collapse
|
32
|
Schoech SJ, Romero LM, Moore IT, Bonier F. Constraints, concerns and considerations about the necessity of estimating free glucocorticoid concentrations for field endocrine studies. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12142] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stephan J. Schoech
- Department of Biological Sciences; University of Memphis; 335 Life Sciences; Memphis; Tennessee; 38152; USA
| | - L. Michael Romero
- Department of Biology; Tufts University; 118A Barnum Hall; Medford; Massachusetts; 02155; USA
| | - Ignacio T. Moore
- Department of Biological Sciences; Virginia Tech; 2125 Derring Hall; Blacksburg; Virginia; 24061; USA
| | | |
Collapse
|
33
|
Chen CY, Tsai MM, Chi HC, Lin KH. Biological significance of a thyroid hormone-regulated secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2271-84. [PMID: 23429180 DOI: 10.1016/j.bbapap.2013.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/18/2023]
Abstract
The thyroid hormone, 3,3,5-triiodo-L-thyronine (T3), modulates several physiological processes, including cellular growth, differentiation, metabolism and proliferation, via interactions with thyroid hormone response elements (TREs) in the regulatory regions of target genes. Several intracellular and extracellular protein candidates are regulated by T3. Moreover, T3-regulated secreted proteins participate in physiological processes or cellular transformation. T3 has been employed as a marker in several disorders, such as cardiovascular disorder in chronic kidney disease, as well as diseases of the liver, immune system, endocrine hormone metabolism and coronary artery. Our group subsequently showed that T3 regulates several tumor-related secretory proteins, leading to cancer progression via alterations in extracellular matrix proteases and tumor-associated signaling pathways in hepatocellular carcinomas. Therefore, elucidation of T3/thyroid hormone receptor-regulated secretory proteins and their underlying mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a detailed summary on the known secretory proteins regulated by T3 and their physiological significance. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | | | | | | |
Collapse
|
34
|
Desantis LM, Delehanty B, Weir JT, Boonstra R. Mediating free glucocorticoid levels in the blood of vertebrates: are corticosteroid-binding proteins always necessary? Funct Ecol 2013. [DOI: 10.1111/1365-2435.12038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lanna M. Desantis
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| | - Brendan Delehanty
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| | - Jason T. Weir
- Department of Biological Sciences; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| | - Rudy Boonstra
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| |
Collapse
|
35
|
Sivukhina E, Schäfer HH, Jirikowski GF. Differences in colocalization of corticosteroid-binding globulin and glucocorticoid receptor immunoreactivity in the rat brain. Ann Anat 2012; 195:219-24. [PMID: 23279724 DOI: 10.1016/j.aanat.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/22/2022]
Abstract
Endocrine regulation of central and systemic stress response as well as learning and memory are in part controlled by systemic glucocorticoid levels. So far steroids have been thought to act on the brain predominantly through nuclear receptors. However, some brain systems known to respond to glucocorticoids seem to be devoid of the respective receptor proteins (GR). It is likely that known central actions of adrenal steroids may also be mediated by non-genomic actions involving intrinsic binding globulins. In recent studies we described the intrinsic expression of corticosteroid-binding globulin (CBG) in rat, mouse and human brains. Here we report an immunohistochemical mapping study on the colocalization of CBG and of GR in the rat brain. In the nucleus accumbens, septum, hippocampus, globus pallidus, medial and basolateral amygdale nuclei, magnocellular preoptic nuclei, diagonal band of Broca high intensity of CBG immunoreactivity was accompanied by weak or moderate GR staining, and vice versa. In the caudate putamen, bed nucleus of stria terminalis, septohypothalamic nucleus and parvocellular subdivision of the paraventricular nucleus strong GR immunoreactivity was observed, but CBG was almost undetectable. In contrast, throughout the supraoptic nucleus and magnocellular subdivision of the paraventricular nucleus numerous strongly CBG-positive cells were observed, devoid of specific GR immunoreactivity. It is most likely that CBG in the brain may be involved in the response to changing systemic glucocorticoid levels in addition to known nuclear and membrane corticosteroid receptors, or in glucocorticoid responsive regions devoid of these receptors.
Collapse
Affiliation(s)
- Elena Sivukhina
- Department of Anatomy II, Friedrich-Schiller University, Jena, Germany.
| | | | | |
Collapse
|
36
|
Li Y, Wu L, Lei J, Zhu C, Wang H, Yu X, Lin H. Single nucleotide polymorphisms in the human corticosteroid-binding globulin promoter alter transcriptional activity. SCIENCE CHINA-LIFE SCIENCES 2012; 55:699-708. [PMID: 22932886 DOI: 10.1007/s11427-012-4365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that transports glucocorticoids and progesterone. Others and we have reported non-synonymous single nucleotide polymorphisms (SNPs) that influence CBG production or steroid-binding activity. However, no promoter polymorphisms affecting the transcription of human CBG gene (Cbg) have been reported. In the present study we investigated function implications of six promoter SNPs, including -26 C/G, -54 C/T, -144 G/C, -161 A/G, -205 C/A, and -443/-444 AG/-, five of which are located within the first 205 base pairs of 5'-flanking region and close to the highly conserved footprinted elements, TATA-box, or CCAAT-box. Luciferase reporter assays demonstrated that basal activity of the promoter carrying -54 T or -161 G was significantly enhanced. The first three polymorphisms, -26 C/G, -54 C/T, and -144 G/C located close to the putative hepatic nuclear factor (HNF) 1 binding elements, altered the transactivation effect of HNF1β. We also found a negative promoter response to dexamethasone-activated glucocorticoid receptor (GR) α, although none of the SNPs affected its transrepression function. Our results suggest that human Cbg -26 C/G, -54 C/T, -144 G/C, and -161 A/G promoter polymorphisms alter transcriptional activity, and further studies are awaited to explore their association with physiological and pathological conditions.
Collapse
Affiliation(s)
- Yue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, 150081, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Sanchez WY, de Veer SJ, Swedberg JE, Hong EJ, Reid JC, Walsh TP, Hooper JD, Hammond GL, Clements JA, Harris JM. Selective cleavage of human sex hormone-binding globulin by kallikrein-related peptidases and effects on androgen action in LNCaP prostate cancer cells. Endocrinology 2012; 153:3179-89. [PMID: 22547569 DOI: 10.1210/en.2012-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.
Collapse
Affiliation(s)
- Washington Y Sanchez
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou JY, Shi R, Yu HL, Zheng WL, Ma WL. Association between SHBG Asp327Asn (rs6259) polymorphism and breast cancer risk: a meta-analysis of 10,454 cases and 13,111 controls. Mol Biol Rep 2012; 39:8307-14. [PMID: 22711300 DOI: 10.1007/s11033-012-1680-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/05/2012] [Indexed: 11/28/2022]
Abstract
Sex hormone-binding globulin (SHBG) is a plasma glycoprotein that plays an important role in breast cancer pathophysiology and risk definition, since it regulates the bioavailable fraction of circulating estradiol. Epidemiological studies have evaluated the association between SHBG Asp327Asn polymorphism and breast cancer risk in diverse populations. However, the results remain conflicting rather than conclusive. This meta-analysis of literatures was performed to derive a more precise estimation of the relationship. A total of 10 studies were identified for the meta-analysis, including 10,454 cases and 13,111 controls for SHBG Asp327Asn polymorphism. When all studies were pooled into the meta-analysis, there was no evidence for significant association between SHBG Asp327Asn polymorphism and breast cancer risk (for Asn/Asn vs. Asp/Asp: OR = 1.20, 95 % CI = 0.94-1.55; for Asp/Asn vs. Asp/Asp: OR = 0.94, 95 % CI = 0.87-1.01; for dominant model: OR = 0.95, 95 % CI = 0.90-1.02; for recessive model: OR = 1.22, 95 % CI = 0.95-1.57). In the subgroup analyses by ethnicity, menopausal status, and source of controls, no significant associations were found in all genetic models. Interestingly, further analyses stratified by menopausal status in different ethnicities revealed that this polymorphism might provide protective effects against breast cancer risk in postmenopausal Asian women (for dominant model: OR = 0.83, 95 % CI = 0.70-0.97). Sensitivity analyses were performed by sequential removal of individual studies and cumulative statistics have showed combined ORs were not materially altered by any individual study under all comparisons. In summary, this meta-analysis suggests that SHBG Asp327Asn polymorphism is not associated with breast cancer risk overall, while it might be an important genetic susceptibility factor in postmenopausal Asian women for developing breast cancer. Larger and well-designed studies are warranted to confirm our findings in the future.
Collapse
Affiliation(s)
- Jue-Yu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | |
Collapse
|
39
|
Klaassen M, Hoye BJ, Nolet BA, Buttemer WA. Ecophysiology of avian migration in the face of current global hazards. Philos Trans R Soc Lond B Biol Sci 2012; 367:1719-32. [PMID: 22566678 PMCID: PMC3350656 DOI: 10.1098/rstb.2012.0008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Long-distance migratory birds are often considered extreme athletes, possessing a range of traits that approach the physiological limits of vertebrate design. In addition, their movements must be carefully timed to ensure that they obtain resources of sufficient quantity and quality to satisfy their high-energy needs. Migratory birds may therefore be particularly vulnerable to global change processes that are projected to alter the quality and quantity of resource availability. Because long-distance flight requires high and sustained aerobic capacity, even minor decreases in vitality can have large negative consequences for migrants. In the light of this, we assess how current global change processes may affect the ability of birds to meet the physiological demands of migration, and suggest areas where avian physiologists may help to identify potential hazards. Predicting the consequences of global change scenarios on migrant species requires (i) reconciliation of empirical and theoretical studies of avian flight physiology; (ii) an understanding of the effects of food quality, toxicants and disease on migrant performance; and (iii) mechanistic models that integrate abiotic and biotic factors to predict migratory behaviour. Critically, a multi-dimensional concept of vitality would greatly facilitate evaluation of the impact of various global change processes on the population dynamics of migratory birds.
Collapse
Affiliation(s)
- Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria 3220, Australia.
| | | | | | | |
Collapse
|
40
|
Direct measurement of free estradiol in human serum by equilibrium dialysis-liquid chromatography-tandem mass spectrometry and reference intervals of free estradiol in women. Clin Chim Acta 2012; 413:1008-14. [PMID: 22421268 DOI: 10.1016/j.cca.2012.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Measurement of free estradiol offers a better representation of the bioactive fraction of the hormone. We describe a direct equilibrium dialysis-liquid chromatography-tandem mass spectrometry (ED-LC-MS/MS) method for serum free estradiol. METHODS Two hundred fifty microliter aliquots of serum were dialyzed for 22h followed by liquid-liquid extraction and derivatization with dansyl chloride. Free estradiol was measured using LC-MS/MS with an AB SCIEX 5500 mass spectrometer in positive ion and multiple reaction monitoring (MRM) mode. RESULTS The limits of detection and quantification for free estradiol were 0.25 and 0.5pg/ml (0.9 and 1.8pmol/l) respectively. Total imprecision was less than 10%. Results of method comparison showed 3 times overestimation using indirect methods of measurement. Reference intervals in pre-menopausal women in follicular, mid-cycle, and luteal phases of cycle were <2.4, <3.1 and <2.6pg/ml (8.8, 11.4, 9.5pmol/l) respectively; in post menopausal women the concentrations were ≤0.5pg/ml (1.8pmol/l). CONCLUSIONS ED-LC-MS/MS is a direct method for accurately measuring free estradiol, independent of total estradiol or sex hormone binding globulin concentrations. Imprecision and sensitivity of the method are adequate for clinical diagnostic applications. The degree of variation observed in the method comparison reinforces the relevance of method specific reference ranges.
Collapse
|
41
|
Pryke SR, Astheimer LB, Griffith SC, Buttemer WA. Covariation in life-history traits: differential effects of diet on condition, hormones, behavior, and reproduction in genetic finch morphs. Am Nat 2012; 179:375-90. [PMID: 22322225 DOI: 10.1086/664078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The relative contribution of genetic and environmental factors in determining variation in life-history traits is of central interest to evolutionary biologists, but the physiological mechanisms underlying these traits are still poorly understood. Here we experimentally demonstrate opposing effects of nutritional stress on immune function, endocrine physiology, parental care, and reproduction between red and black head-color morphs of the Gouldian finch (Erythrura gouldiae). Although the body condition of black morphs was largely unaffected by diet manipulation, red birds were highly sensitive to dietary changes, exhibiting considerable within-individual changes in condition and immune function. Consequently, nutritionally stressed red birds delayed breeding, produced smaller broods, and reared fewer and lower-quality foster offspring than black morphs. Differences in offspring quality were largely due to morph-specific differences in parental effort: red morphs reduced parental provisioning, whereas black morphs adaptively elevated their provisioning effort to meet the increased nutritional demands of their foster brood. Nutritionally stressed genetic morphs also exhibited divergent glucocorticoid responses. Black morphs showed reduced corticosterone-binding globulin (CBG) concentrations and increased levels of free corticosterone, whereas red morphs exhibited reduced free corticosterone levels and elevated CBG concentrations. These opposing glucocorticoid responses highlight intrinsic differences in endocrine sensitivities and plasticity between genetic morphs, which may underlie the morph-specific differences in condition, behavior, and reproduction and thus ultimately contribute to the evolution and maintenance of color polymorphism.
Collapse
Affiliation(s)
- Sarah R Pryke
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
42
|
Sivukhina E, Helbling JC, Minni AM, Schäfer HH, Pallet V, Jirikowski GF, Moisan MP. Intrinsic expression of transcortin in neural cells of the mouse brain: a histochemical and molecular study. J Exp Biol 2012; 216:245-52. [DOI: 10.1242/jeb.076893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary
Corticosteroid binding globulin (CBG, transcortin) has been shown to be expressed in the brain of rat and human species. In this study we examined the CBG brain expression and cDNA structure in mice, comparing wild-type (Cbg+/+) and Cbg knockout mice (Cbg-/-, obtained by genetic disruption of the SerpinA6 alias Cbg gene). We used double immunofluorescence labelling with specific neuronal and glial markers to analyze the cellular localization of CBG in various regions of the mouse brain. In wild-type (Cbg+/+) mice we found CBG immunoreactivity in neuronal perikarya of the magnocellular hypothalamic nuclei, amygdala, hippocampus, cerebral cortex, cerebellum and pituitary. A portion of glial cells (astrocytes, oligodendrocytes) contained CBG immunoreactivity, including some of the ependymal cells and choroid plexus cells. No CBG immunoreactivity was detected in Cbg-/- brain tissues. We showed by RT-PCR that the full-length Cbg mRNA is present in those regions, indicating an intrinsic expression of the steroid-binding globulin. Furthermore, we found by sequencing analysis that Cbg cDNA obtained from the mouse hypothalamus was homologous to Cbg cDNA obtained from the liver. Finally, we have evaluated the relative levels of CBG expression by quantitative PCR in various brain regions and in the liver. We found that brain levels of Cbg mRNA are low compared to the liver but significantly higher than in CBG-deficient mice. Although derived from the same gene than liver CBG, brain CBG protein may play a specific or complementary role that requires the production and analysis of brain-specific Cbg knockout models.
Collapse
Affiliation(s)
- Elena Sivukhina
- Institute of Anatomy II, Friedrich-Schiller University, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Delehanty B, Boonstra R. Coping with Intense Reproductive Aggression in Male Arctic Ground Squirrels: The Stress Axis and Its Signature Tell Divergent Stories. Physiol Biochem Zool 2011; 84:417-28. [DOI: 10.1086/660809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 2011; 166:869-87. [PMID: 21344254 DOI: 10.1007/s00442-011-1943-y] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 02/08/2011] [Indexed: 12/20/2022]
Abstract
Stress responses play a key role in allowing animals to cope with change and challenge in the face of both environmental certainty and uncertainty. Measurement of glucocorticoid levels, key elements in the neuroendocrine stress axis, can give insight into an animal's well-being and can aid understanding ecological and evolutionary processes as well as conservation and management issues. We give an overview of the four main biological samples that have been utilized [blood, saliva, excreta (feces and urine), and integumentary structures (hair and feathers)], their advantages and disadvantages for use with wildlife, and some of the background and pitfalls that users must consider in interpreting their results. The matrix of choice will depend on the nature of the study and of the species, on whether one is examining the impact of acute versus chronic stressors, and on the degree of invasiveness that is possible or desirable. In some cases, more than one matrix can be measured to achieve the same ends. All require a significant degree of expertise, sometimes in obtaining the sample and always in extracting and analyzing the glucocorticoid or its metabolites. Glucocorticoid measurement is proving to be a powerful integrator of environmental stressors and of an animal's condition.
Collapse
|
45
|
Balthazart J, Charlier TD, Cornil CA, Dickens MJ, Harada N, Konkle ATM, Voigt C, Ball GF. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front Endocrinol (Lausanne) 2011; 2:34. [PMID: 22645508 PMCID: PMC3355826 DOI: 10.3389/fendo.2011.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity (AA), and transcription are markedly (four- to sixfold) increased by genomic actions of sex steroids. Initial work indicated that the preoptic AA is higher in males than in females and it was hypothesized that this differential production of estrogen could be a critical factor responsible for the lack of behavioral activation in females. Subsequent studies revealed, however, that this enzymatic sex difference might contribute but is not sufficient to explain the sex difference in behavior. Studies of AA, immunoreactivity, and mRNA concentrations revealed that sex differences observed when measuring enzymatic activity are not necessarily observed when one measures mRNA concentrations. Discrepancies potentially reflect post-translational controls of the enzymatic activity. AA in quail brain homogenates is rapidly inhibited by phosphorylation processes. Similar rapid inhibitions occur in hypothalamic explants maintained in vitro and exposed to agents affecting intracellular calcium concentrations or to glutamate agonists. Rapid changes in AA have also been observed in vivo following sexual interactions or exposure to short-term restraint stress and these rapid changes in estrogen production modulate expression of male sexual behaviors. These data suggest that brain estrogens display most if not all characteristics of neuromodulators if not neurotransmitters. Many questions remain however concerning the mechanisms controlling these rapid changes in estrogen production and their behavioral significance.
Collapse
Affiliation(s)
- Jacques Balthazart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
- *Correspondence: Jacques Balthazart, Research Group in Behavioral Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of Liège, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium. e-mail:
| | - Thierry D. Charlier
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Charlotte A. Cornil
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Molly J. Dickens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Nobuhiro Harada
- Molecular Genetics, Fujita Health UniversityToyoake, Aichi, Japan
| | - Anne T. M. Konkle
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Cornelia Voigt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Science, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
46
|
Malisch JL, Breuner CW. Steroid-binding proteins and free steroids in birds. Mol Cell Endocrinol 2010; 316:42-52. [PMID: 19786069 DOI: 10.1016/j.mce.2009.09.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/16/2022]
Abstract
Within the comparative literature, corticosteroid-binding globulin (CBG) has recently emerged as a potential modulator of the glucocorticoids-driven stress response. Many avian field studies include the measurement of CBG with the goal of making behavioral and ecological inferences. However, the field of stress physiology is divided on how to interpret the biological importance of the different states of circulating hormones. Here we review evidence for the biological relevance of each fraction of glucocorticoid hormone; the CBG-glucocorticoid complex (the bound fraction) and the remainder which is either unbound or loosely attached to albumin (the free fraction). We suggest that the biological importance of free vs. bound hormone depends on the location of interest (plasma or tissues), and the time frame of interest (current or future need). While a large body of evidence suggests that free hormones are the biologically active fraction, evidence also suggests that the bound fraction is a biologically relevant reservoir of glucocorticoids. We review two salient topics from the avian stress literature; stress-induced decreases in CBG capacity and glucocorticoid influences in life history strategies. These topics are discussed with an emphasis on free vs. bound hormone concentration and how that compares to current vs. future glucocorticoid needs.
Collapse
Affiliation(s)
- Jessica L Malisch
- Organismal Biology and Ecology, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
47
|
Fortunati N, Catalano MG, Boccuzzi G, Frairia R. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol 2010; 316:86-92. [PMID: 19770023 DOI: 10.1016/j.mce.2009.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 01/13/2023]
Abstract
The human serum Sex Hormone-Binding Globulin (SHBG) plays an important role in breast cancer pathophysiology and risk definition, since it regulates the bioavailable fraction of circulating estradiol. We here summarize data reported over the years concerning the involvement of SHBG and SHBG polymorphisms in the definition of breast cancer risk. We also report what is known about the direct action of SHBG in breast cancer cells, illustrating its interaction with these cells and the subsequent initiation of a specific intracellular pathway leading to cross-talk with the estradiol-activated pathway and, finally, to the inhibition of several effects of estradiol in breast cancer cells. In conclusion, as a result of its unique property of regulating the estrogen free fraction and cross-talking with the estradiol pathways, by inhibiting estradiol-induced breast cancer cell growth and proliferation, SHBG is associated with a reduced risk of developing the neoplasm after estrogen exposure.
Collapse
Affiliation(s)
- N Fortunati
- Laboratory of Oncological Endocrinology, AUO San Giovanni Battista, Turin, Italy.
| | | | | | | |
Collapse
|
48
|
Lynn SE, Prince LE, Phillips MM. A single exposure to an acute stressor has lasting consequences for the hypothalamo-pituitary-adrenal response to stress in free-living birds. Gen Comp Endocrinol 2010; 165:337-44. [PMID: 19682993 DOI: 10.1016/j.ygcen.2009.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
In vertebrates, activation of the hypothalamo-pituitary-adrenal (HPA) axis in response to unpredictable events results in elevated glucocorticoid secretion. Repeated exposure to stressors alters subsequent glucocorticoid secretion, either by inducing chronic stress or as a result of habituation. However, most studies of repeated stress focus on the impacts of multiple and frequent exposures to acute stressors, and few have been carried out in free-living animals. We investigated whether a single exposure to a novel stressor was sufficient to produce long-lasting alterations in HPA function in free-living eastern bluebirds (Sialia sialis). We subjected adult females to a capture/restraint protocol in which we collected serial blood samples over an hour of restraint to be analyzed for corticosterone. We administered this protocol to three groups of females during the nestling phase of their first and/or second brood of the season: Repeaters (sampled during brood 1 and brood 2), Naïve-Brood 1 (sampled only during brood 1), and Naïve-Brood 2 (sampled only during brood 2). Repeaters had attenuated corticosterone responses to the second restraint bout compared to the first, and in brood 2, Repeaters had lower responses than Naïve-Brood 2 females. However, Naïve-Brood 1 and Naïve-Brood 2 birds did not differ in their responses to restraint. Thus, as little as one prior experience with an acute stressor was sufficient to alter subsequent HPA responsiveness, and this effect was not due to a natural change in HPA responsiveness as the breeding season progressed. These data may have important implications for understanding how acute stressors can alter a free-living animal's ability to cope in the face of subsequent stressors, and for longitudinal field studies in which individuals are repeatedly sampled for glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Sharon E Lynn
- The College of Wooster, Department of Biology, Wooster, OH 44691, USA.
| | | | | |
Collapse
|
49
|
Charlier TD. Importance of steroid receptor coactivators in the modulation of steroid action on brain and behavior. Psychoneuroendocrinology 2009; 34 Suppl 1:S20-9. [PMID: 19524371 DOI: 10.1016/j.psyneuen.2009.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/01/2009] [Accepted: 05/10/2009] [Indexed: 11/30/2022]
Abstract
Steroid receptors such as estrogen and androgen receptors are nuclear receptors involved in the transcriptional regulation of a large number of target genes. Steroid-dependent protein expression in the brain controls a large array of biological processes including spatial cognition, copulatory behavior and neuroprotection. The discovery of a competition, or squelching, between two different nuclear receptors introduced the notion that common cofactors may be involved in the modulation of transcriptional activity of nuclear receptors. These cofactors or coregulatory proteins are functionally divided into coactivators and corepressors and are involved in chromatin remodeling and stabilization of the general transcription machinery. Although a large amount of information has been collected about the in vitro function of these coregulatory proteins, relatively little is known regarding their physiological role in vivo, particularly in the brain. Our laboratory and others have demonstrated the importance of SRC-1 in the differentiation and activation of steroid-dependent sexual behaviors and the related neural genes. For example, we report that the inhibition of SRC-1 expression blocks the activating effects of exogenous testosterone on male sexual behaviors and increases the volume of the median preoptic area. Other coactivators are likely to be involved in the modulation in vivo of steroid receptor activity and it seems that the presence of a precise subset of coactivators could help define the phenotype of the cell by modulating a specific downstream pathway after steroid receptor activation. The very large number of coactivators and their association into preformed complexes potentially allows the determination of hundreds of different phenotypes. The study of the expression of the coactivator and their function in vivo is required to fully understand steroid action and specificity in the brain.
Collapse
Affiliation(s)
- Thierry D Charlier
- University of Liege, GIGA Neuroscience, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| |
Collapse
|
50
|
Napoli N, Varadharajan A, Rini GB, Del Fiacco R, Yarramaneni J, Mumm S, Villareal DT, Armamento-Villareal RC. Effects of polymorphisms of the sex hormone-binding globulin (SHBG) gene on free estradiol and bone mineral density. Bone 2009; 45:1169-74. [PMID: 19679209 PMCID: PMC3689651 DOI: 10.1016/j.bone.2009.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Polymorphisms of the sex hormone-binding globulin (SHBG) gene are associated with differences in SHBG levels, influencing the risk for breast cancer and polycystic ovarian syndrome, but no association has been reported for osteoporosis in postmenopausal women. OBJECTIVE To determine the effect of G to A substitution in the 5'UTR (rs1799941) and the Asp356Asn (rs6259) polymorphisms of the SHBG gene on bone mineral density (BMD). METHODS This is a cross-sectional study in a university-based research center from May, 2002 to December, 2007. A total of two hundred and thirteen healthy postmenopausal Caucasian women > or = 1 year from last menstrual period participated to this study. Serum estradiol by ultrasensitive radioimmnunoassay, serum sex hormone-binding globulin by immunoradiometric assay, and urinary NTx by enzyme-linked immunoassay were measured. BMD measurements were performed by dual energy X-ray absorptiometry and genotyping by Pyrosequencing. RESULTS There were no significant differences in SHBG levels associated with either rs1799941 or rs6259. Using a p value of <0.00625 for significance, we found that subjects with the A allele (GA+AA) for the rs1799941, had a trend for lower free estradiol index (FEI) compared to the GG genotype (p=0.04). They also had significantly lower BMD at the intertrochanter (p=0.003) and trend for lower BMD at the total hip (p=0.02). There was no significant difference in FEI levels between the genotypes for the rs6259 polymorphism, but women with the Asn allele (Asp/Asn+Asn/Asn), had significantly lower BMD in the total femur (p=0.004) and intertrochanter (0.002) compared to those with the Asp/Asp genotype. CONCLUSIONS Our data suggest that polymorphisms of the SHBG gene are associated with significant differences in BMD at the proximal femur sites. Thus, genetic variations in the SHBG gene may influence BMD at the hip in postmenopausal women.
Collapse
Affiliation(s)
- Nicola Napoli
- Division of Bone and Mineral Diseases at Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology, University Campus Bio-Medico, Rome, Italy
| | - Ana Varadharajan
- Internal Medicine, St. Luke’s Hospital, St. Louis, MO, USA; Department of Internal Medicine, University ‘’La Sapienza”, Rome, Italy
| | | | | | - Jayasree Yarramaneni
- Division of Bone and Mineral Diseases at Washington University School of Medicine, St. Louis, MO
| | - Steven Mumm
- Division of Bone and Mineral Diseases at Washington University School of Medicine, St. Louis, MO
| | - Dennis T. Villareal
- Division of Geriatrics and Nutritional Science at Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|