1
|
Okuyan D. Epidermal Growth Factor Downregulates Carbon Anhydrase III (CAIII) in Colon Cancer. Curr Issues Mol Biol 2024; 46:12994-13002. [PMID: 39590368 PMCID: PMC11593170 DOI: 10.3390/cimb46110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death in the world. Dysregulations in the EGF signaling pathway have been associated with colon cancer. Some members of the carbonic anhydrase family serve as biomarkers in cancer. Carbonic anhydrase III (CAIII), a member of this family, shows different activities than the other members of its family and has been associated with cancer. However, there are no studies on the effective regulation of EGF. In this study, we investigated the EGF-influenced regulation of CAIII in the HT29, SW480, and HUVEC cell lines and showed that CAIII regulation decreased with the effect of EGF. We aimed to investigate the EGF-affected mRNA and protein regulation of the CAIII gene in HT29, SW480, and HUVEC cell lines. For this purpose, we determined time-dependent CAIII mRNA and protein expression by applying EGF to HT29, SW480, and HUVEC cells. Time-dependent EGF-induced mRNA and protein level regulation of the CAIII gene decreased in the HT29, SW480, and HUVEC cell lines. EGF regulates the motility, adhesion, and metastasis of cancer cells. CAIII prevents cells from metastasizing through cell acidification. Therefore, our findings explained why the EGF-effective regulation of CAIII decreased. We suggest that the CAIII gene is promising as a targeted therapy due to the decrease in EGF-effected CAIII gene regulation in colon carcinoma.
Collapse
Affiliation(s)
- Derya Okuyan
- Department of Veterinary Medicine, Susurluk Agriculture and Forestry Vocational School, Bandırma Onyedi Eylül University, Susurluk 10600, Balıkesir, Türkiye
| |
Collapse
|
2
|
Pataky RE, Peacock S, Bryan S, Sadatsafavi M, Regier DA. Using Genomic Heterogeneity to Inform Therapeutic Decisions for Metastatic Colorectal Cancer: An Application of the Value of Heterogeneity Framework. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024:10.1007/s40258-024-00926-9. [PMID: 39520611 DOI: 10.1007/s40258-024-00926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Mutations in KRAS and NRAS are predictive of poor response to cetuximab and panitumumab, two anti-epidermal growth factor receptor (EGFR) monoclonal antibodies used in metastatic colorectal cancer (mCRC). Our objective was to explore the value of using KRAS and NRAS mutation status to inform third-line anti-EGFR therapy for mCRC using the value of heterogeneity (VOH) framework. METHODS We used administrative data to identify mCRC patients who were potentially eligible for third-line therapy in 2006-2019 in British Columbia (BC), Canada. We compared three alternative stratification policies in place during the study period: the unstratified policy where anti-EGFR therapy was not offered (2006-2009), stratification by KRAS mutation (2009-2016), and stratification by KRAS+NRAS mutation (2016-2019). We used inverse-probability-of-treatment weighting to balance covariates across the three groups. Cost and survival time were calculated using a 3-year time horizon and adjusted for censoring, with bootstrapping to characterize uncertainty. Mean net monetary benefit (NMB) was calculated at a range of threshold values. The VOH of using KRAS and NRAS mutation status to inform treatment selection was calculated as the change in NMB with increasing stratification, under current (static VOH) or perfect (dynamic VOH) information. RESULTS We included 2664 patients in the analysis. At a willingness-to-pay of CA$100,000/ life-year gained (LYG), stratification on KRAS mutation status provided a static VOH of CA$1565 per patient; further stratification on KRAS+NRAS provided additional static VOH of CA$594. The static VOH exceeded the marginal cost of genomic testing under both policies. CONCLUSIONS Stratification of anti-EGFR therapy by KRAS and NRAS mutation status can provide additional value at a threshold of CA$100,000/LYG. There is diminishing marginal value and increasing marginal costs as the policy becomes more stratified. The VOH framework can illustrate the value of subgroup-specific decisions in a comprehensive way, to better inform targeted treatment policies.
Collapse
Affiliation(s)
- Reka E Pataky
- Canadian Centre for Applied Research in Cancer Control, BC Cancer, Vancouver, BC, Canada.
- BC Cancer Research Centre, 675 W. 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
| | - Stuart Peacock
- Canadian Centre for Applied Research in Cancer Control, BC Cancer, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Stirling Bryan
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Mohsen Sadatsafavi
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
de Moraes FCA, de Oliveira Rodrigues ALS, Priantti JN, Limachi-Choque J, Burbano RMR. Efficacy and Safety of Anti-EGFR Therapy Rechallenge in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. J Gastrointest Cancer 2024; 56:9. [PMID: 39436445 DOI: 10.1007/s12029-024-01128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) represents the second leading cause of cancer-related mortality worldwide, with a significant portion of patients presenting with metastatic disease at diagnosis. Resistance to initial anti-EGFR therapy, a key treatment for RAS wild-type metastatic CRC, remains a major challenge. This study aimed to assess the efficacy and safety of rechallenge with anti-EGFR therapy in patients with metastatic CRC who have progressed after prior treatments. METHODS A systematic search was conducted across PubMed, Web of Science, Cochrane, and Scopus. Studies were included if they were randomized controlled trials (RCTs) or observational studies involving patients with EGFR-mutated metastatic CRC who received anti-EGFR therapy as a rechallenge. Endpoints included objective response rate (ORR), disease control rate (DCR), and the incidence of adverse events. Statistical analyses were performed using the DerSimonian/Laird random effect model, with heterogeneity assessed via I2 statistics. R, version 4.2.3, was used for statistical analyses. RESULTS Fourteen studies were included with 520 patients; 50.3% were male, and the median age was 63 years old. The median progression-free survival (mPFS) ranged between 2.4 and 4.9 months, while the median overall survival (mOS) ranged from 5 to 17.8 months. Our pooled analysis demonstrated an objective response rate (ORR) of 17.70% (95% CI, 8.58-26.82%) and a disease control rate (DCR) of 61.72% (95% CI, 53.32-70.11%), both with significant heterogeneity (I2, 84% and 80%, respectively; p < 0.01). In the subgroup analysis, cetuximab showed an ORR of 18.31% (95% CI, 4.67-31.94%), and panitumumab an ORR of 10.9% (95% CI, 0.00-26.82%), while the combination of both resulted in an ORR of 29.24% (95% CI, 0.00-65.84%). For DCR, cetuximab resulted in 62.1% (95% CI, 49.32-74.87%), panitumumab in 63.05% (95% CI, 52.13-73.97%), and the combination in 60.34% (95% CI, 31.92-88.77%), all with significant heterogeneity. Adverse events included anemia (15.39%), diarrhea (4.20%), hypomagnesemia (6.40%), neutropenia (22.57%), and skin rash (13.22%). CONCLUSIONS Rechallenge with anti-EGFR therapy in metastatic CRC patients shows moderate efficacy with manageable safety profiles. These findings highlight the need for careful patient selection and monitoring to optimize outcomes. Further studies are warranted to refine strategies for maximizing the therapeutic benefits of anti-EGFR rechallenge.
Collapse
|
4
|
Rutkowski D, Scholey R, Davies J, Pye D, Blackhall F, Warren RB, Jimenez F, Griffiths CEM, Paus R. Epidermal growth factor receptor/mitogen-activated kinase inhibitor treatment induces a distinct inflammatory hair follicle response that includes collapse of immune privilege. Br J Dermatol 2024; 191:791-804. [PMID: 38857906 DOI: 10.1093/bjd/ljae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood. OBJECTIVES To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo. METHODS Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization. RESULTS The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, β2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-β1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs. CONCLUSIONS The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
Collapse
Affiliation(s)
- David Rutkowski
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Manchester University Foundation Trust, Manchester, UK
| | | | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Derek Pye
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | | | - Richard B Warren
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Francisco Jimenez
- Mediteknia Skin and Hair Lab, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Christopher E M Griffiths
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - Ralf Paus
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
5
|
Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S, Abou-Kheir W. Colorectal cancer: Recent advances in management and treatment. World J Clin Oncol 2024; 15:1136-1156. [PMID: 39351451 PMCID: PMC11438855 DOI: 10.5306/wjco.v15.i9.1136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and the second most common cause of cancer-related death. In 2020, the estimated number of deaths due to CRC was approximately 930000, accounting for 10% of all cancer deaths worldwide. Accordingly, there is a vast amount of ongoing research aiming to find new and improved treatment modalities for CRC that can potentially increase survival and decrease overall morbidity and mortality. Current management strategies for CRC include surgical procedures for resectable cases, and radiotherapy, chemotherapy, and immunotherapy, in addition to their combination, for non-resectable tumors. Despite these options, CRC remains incurable in 50% of cases. Nonetheless, significant improvements in research techniques have allowed for treatment approaches for CRC to be frequently updated, leading to the availability of new drugs and therapeutic strategies. This review summarizes the most recent therapeutic approaches for CRC, with special emphasis on new strategies that are currently being studied and have great potential to improve the prognosis and lifespan of patients with CRC.
Collapse
Affiliation(s)
- Hiba Fadlallah
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Chrystelle Chemaly
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
6
|
Pataky RE, Weymann D, Bosdet I, Yip S, Bryan S, Sadatsafavi M, Peacock S, Regier DA. Real-world cost-effectiveness of panel-based genomic testing to inform therapeutic decisions for metastatic colorectal cancer. J Cancer Policy 2024; 41:100496. [PMID: 39032558 DOI: 10.1016/j.jcpo.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Mutations in KRAS and NRAS are associated with a lack of response to cetuximab and panitumumab, two biologics used for third-line therapy of metastatic colorectal cancer (mCRC). In British Columbia, Canada, eligibility for cetuximab or panitumumab was first based on single-gene KRAS testing. OncoPanel, a multi-gene next-generation sequencing panel with both KRAS and NRAS, was introduced in 2016. Our objective was to estimate the real-world cost-effectiveness of OncoPanel versus to single-gene KRAS testing to inform eligibility for cetuximab or panitumumab in mCRC. METHODS Using population-based administrative health data, we identified a cohort of mCRC patients who had received a KRAS or OncoPanel test, and completed prior chemotherapy in 2010-2019. We matched KRAS- and OncoPanel-tested patients (1:1) using genetic matching to balance baseline covariates. Mean and incremental 3-year costs, survival, and quality-adjusted survival were estimated using inverse-probability-of-censoring weighting and bootstrapping. We conducted scenario-based sensitivity analysis for key costs and assumptions. FINDINGS All OncoPanel-tested cases (n=371) were matched to a KRAS-tested comparator. In the KRAS and OncoPanel groups, respectively, 55·8 % and 41·2 % of patients were potentially eligible for cetuximab or panitumumab based on mutation status. Incremental cost and effectiveness of OncoPanel were $72 (95 % CI: -6387, 6107), -0·004 life-years (95 % CI: -0·119, 0·113), and -0·011 quality-adjusted life-years (95 % CI: -0·094, 0·075). Reductions in systemic therapy costs were offset by increased costs in other resources. Results were moderately sensitive to time horizon and changes in testing or treatment cost. INTERPRETATION The use of OncoPanel resulted in more precise targeting of cetuximab and panitumumab, but there was no change in incremental cost or quality-adjusted survival. Understanding the balance of costs achieved in practice can provide insight into the effect of future changes in testing policy, test cost, treatment eligibility, or drug prices in this setting.
Collapse
Affiliation(s)
- Reka E Pataky
- Canadian Centre for Applied Research in Cancer Control, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada.
| | - Deirdre Weymann
- Canadian Centre for Applied Research in Cancer Control, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Ian Bosdet
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, BC, Canada; Department of Pathology, BC Cancer, Vancouver, BC, Canada
| | - Stirling Bryan
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mohsen Sadatsafavi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stuart Peacock
- Canadian Centre for Applied Research in Cancer Control, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control, Canada; Cancer Control Research, BC Cancer, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Singh M, Morris VK, Bandey IN, Hong DS, Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024; 10:598-609. [PMID: 38821852 DOI: 10.1016/j.trecan.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irfan N Bandey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
9
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
10
|
Kavyani B, Saffari F, Afgar A, Kavyani S, Rezaie M, Sharifi F, Ahmadrajabi R. Gallocin-derived Engineered Peptides Targeting EGFR and VEGFR in Colorectal Cancer: A Bioinformatic Approach. Curr Top Med Chem 2024; 24:1599-1614. [PMID: 38840394 DOI: 10.2174/0115680266295587240522050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) treatment using time-saving and cost-effective targeted therapies with high selectivity and low toxicity drugs, is a great challenge. In primary investigations on Gallocin, as the most proposed factor in CRC pathogenesis caused by Streptococcus gallolyticus, it was surprisingly found that this bacteriocin has four α-helix structures and some anti-cancer sequences. OBJECTIVE The aim of this study was to determine the ability of Gallocin-based anticancer peptides (ACPs) against epidermal growth factor receptor (EGFR) and vascular epidermal growth factor receptor (VEGFR) and the evaluation of their pharmacokinetic properties using bioinformatic approaches. METHODS Support vector machine algorithm web-based tools were used for predicting ACPs. The physicochemical characteristics and the potential of anti-cancer activity of Gallocin-derived ACPs were determined by in silico tools. The 3D structure of predicted ACPs was modeled using modeling tools. The interactions between predicted ACPs and targets were investigated by molecular docking exercises. Then, the stability of ligand-receptor interactions was determined by molecular dynamic simulation. Finally, ADMET analysis was carried out to check the pharmacokinetic properties and toxicity of ACPs. RESULTS Four amino acid sequences with anti-cancer potential were selected. Through molecular docking, Pep2, and Pep3 gained the best scores, more binding affinity, and strong attachments by the formation of reasonable H-bonds with both EGFR and VEGFR. Molecular simulation confirmed the stability of Pep3- EGFR. According to pharmacokinetic analysis, the ACPs were safe and truthful. CONCLUSION Designed peptides can be nominated as drugs for CRC treatment. However, different in-vitro and in-vivo assessments are required to approve this claim.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Kavyani
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Masoud Rezaie
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Nifontova G, Kalenichenko D, Kriukova I, Terryn C, Audonnet S, Karaulov A, Nabiev I, Sukhanova A. Impact of Macrophages on the Interaction of Cetuximab-Functionalized Polyelectrolyte Capsules with EGFR-Expressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917654 DOI: 10.1021/acsami.3c10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 μm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Christine Terryn
- Plateau Technique PICT, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| |
Collapse
|
12
|
Zeng J, Fan W, Li J, Wu G, Wu H. KRAS/NRAS Mutations Associated with Distant Metastasis and BRAF/PIK3CA Mutations Associated with Poor Tumor Differentiation in Colorectal Cancer. Int J Gen Med 2023; 16:4109-4120. [PMID: 37720173 PMCID: PMC10503567 DOI: 10.2147/ijgm.s428580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Background The occurrence, progression, and prognosis of colorectal cancer (CRC) are regulated by EGFR-mediated signaling pathways. However, the relationship between the core genes (KRAS/NRAS/BRAF/PIK3CA) status in the signaling pathways and clinicopathological characteristics of CRC patients in Hakka population remains controversial. Methods Patients were genotyped for KRAS (codons 12, 13, 61, 117, and 146), NRAS (codons 12, 61, 117, and 146), BRAF (codons 600), and PIK3CA (codons 542, 545 and 1047) mutations. Clinical records were collected, and clinicopathological characteristic associations were analyzed together with mutations of studied genes. Results Four hundred and eight patients (256 men and 152 women) were included in the analysis. At least one mutation in the four genes was detected in 216 (52.9%) patients, while none was detected in 192 (47.1%) patients. KRAS, NRAS, BRAF, and PIK3CA mutation status were detected in 190 (46.6%), 11 (2.7%), 10 (2.5%), 34 (8.3%) samples, respectively. KRAS exon 2 had the highest proportion (62.5%). Age, tumor site, tumor size, lymphovascular invasion, and perineural invasion were not associated with gene mutations. KRAS mutations (adjusted OR 1.675, 95% CI 1.017-2.760, P=0.043) and NRAS mutations (adjusted OR 5.183, 95% CI 1.239-21.687, P=0.024) appeared more frequently in patients with distant metastasis. BRAF mutations (adjusted OR 7.224, 95% CI 1.356-38.488, P=0.021) and PIK3CA mutations (adjusted OR 3.811, 95% CI 1.268-11.455, P=0.017) associated with poorly differentiated tumor. Conclusion KRAS/NRAS mutations are associated with distant metastasis and BRAF/PIK3CA mutations are associated with poor tumor differentiation in CRC. And the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.
Collapse
Affiliation(s)
- Juanzi Zeng
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wenwei Fan
- Department of Gastroenterology, Dongguan Eighth People’s Hospital, Dongguan, People’s Republic of China
| | - Jiaquan Li
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Guowu Wu
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
13
|
Liu H, Huang Q, Fan Y, Li B, Liu X, Hu C. Dissecting the novel abilities of aripiprazole: The generation of anti-colorectal cancer effects by targeting G αq via HTR2B. Acta Pharm Sin B 2023; 13:3400-3413. [PMID: 37655314 PMCID: PMC10465950 DOI: 10.1016/j.apsb.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is a type of malignant tumor that seriously threatens human health and life, and its treatment has always been a difficulty and hotspot in research. Herein, this study for the first time reports that antipsychotic aripiprazole (Ari) against the proliferation of CRC cells both in vitro and in vivo, but with less damage in normal colon cells. Mechanistically, the results showed that 5-hydroxytryptamine 2B receptor (HTR2B) and its coupling protein G protein subunit alpha q (Gαq) were highly distributed in CRC cells. Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling. Blockade of HTR2B signaling suppressed the growth of CRC cells, but HTR2B was not found to have independent anticancer activity. Interestingly, the binding of Gαq to HTR2B was decreased after Ari treatment. Knockdown of Gαq not only restricted CRC cell growth, but also directly affected the anti-CRC efficacy of Ari. Moreover, an interaction between Ari and Gαq was found in that the mutation at amino acid 190 of Gαq reduced the efficacy of Ari. Thus, these results confirm that Gαq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation. Collectively, this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.
Collapse
Affiliation(s)
- Haowei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuming Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yunqi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| |
Collapse
|
14
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
15
|
Manzi J, Hoff CO, Ferreira R, Pimentel A, Datta J, Livingstone AS, Vianna R, Abreu P. Targeted Therapies in Colorectal Cancer: Recent Advances in Biomarkers, Landmark Trials, and Future Perspectives. Cancers (Basel) 2023; 15:cancers15113023. [PMID: 37296986 DOI: 10.3390/cancers15113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to the tremendous therapeutic improvements, especially after the 2000s, in addition to increased social awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002. Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic choice. Thus, this review will summarize the current literature on targeted therapies, highlighting the molecular biomarkers involved and their pathways.
Collapse
Affiliation(s)
- Joao Manzi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Agustin Pimentel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alan S Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Ye Y, Huang Z, Zhang M, Li J, Zhang Y, Lou C. Synergistic therapeutic potential of alpelisib in cancers (excluding breast cancer): Preclinical and clinical evidences. Biomed Pharmacother 2023; 159:114183. [PMID: 36641927 DOI: 10.1016/j.biopha.2022.114183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is well-known for its important role in cancer growth, proliferation and migration. The activation of PI3K pathway is always connected with endocrine resistance and poor prognosis in cancers. Alpelisib, a selective inhibitor of PI3K, has been demonstrated to be effective in combination with endocrine therapy in HR+ PIK3CA-mutated advanced breast cancer in preclinical and clinical trials. Recently, the synergistic effects of alpelisib combined with targeted agents have been widely reported in PIK3CA-mutated cancer cells, such as breast, head and neck squamous cell carcinoma (HNSCC), cervical, liver, pancreatic and lung cancer. However, previous reviews mainly focused on the pharmacological activities of alpelisib in breast cancer. The synergistic therapeutic potential of alpelisib in other cancers has not yet been well reviewed. In this review, an extensive study of related literatures (published until December 20, 2022) regarding the anti-cancer functions and synergistic effects of alpelisib was carried out through the databases. Useful information was extracted. We summarized the preclinical and clinical studies of alpelisib in combination with targeted anti-cancer agents in cancer treatment (excluding breast cancer). The combinations of alpelisib and other targeted agents significantly improved the therapeutic efficacy both in preclinical and clinical studies. Unfortunately, synergistic therapies still could not effectively avoid the possible toxicities and adverse events during treatment. Finally, some prospects for the combination studies in cancer treatment were provided in the paper. Taken together, this review provided valuable information for alpelisib in preclinical and clinical applications.
Collapse
Affiliation(s)
- Yuhao Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhiyu Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Maoqing Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiayue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yiqiong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Zhang Q, Zheng Y, Liu J, Tang X, Wang Y, Li X, Li H, Zhou X, Tang S, Tang Y, Wang X, He H, Li T. CircIFNGR2 enhances proliferation and migration of CRC and induces cetuximab resistance by indirectly targeting KRAS via sponging to MiR-30b. Cell Death Dis 2023; 14:24. [PMID: 36639711 PMCID: PMC9839739 DOI: 10.1038/s41419-022-05536-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Currently the clinical efficacy of colorectal cancer (CRC) which is the most common malignant tumors over the world has not reached an ideal level. Cetuximab, the monoclonal antibody targeting the extracellular domain of EGFR, has shown its great efficacy in the promotion of apoptosis and the inhibition of tumor cells-like characteristics in numerous cancers. However certain KRAS wild-type CRC patients unexpectedly show cetuximab resistance and the specific mechanism remains unclear. Circular RNAs (circRNAs) as the promising novel type of biomarkers in the cancer diagnosis and therapy, have been reported to be related with the drug resistance. In this study, with wondering the mechanism of cetuximab resistance in KRAS wild-type CRC patients, we evaluate the impact of circIFNGR2 on CRC and detect the association among circIFNGR2, miR-30b and KRAS via various experiments such as RT-qPCR, immunohistochemistry, luciferase assays, cell functional experiments and xenograft model. We conclude that circIFNGR2 induces cetuximab resistance in colorectal cancer cells by indirectly regulating target gene KRAS by sponging miR-30b at the post-transcriptional level. It is thus suggested that inhibition of circIFNGR2 can be a promising therapeutic strategy for malignant CRC patients with cetuximab resistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Jiajia Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Xiaoxiao Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yuan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Xianzheng Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Huibin Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiaoying Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Shiru Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yitao Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Wong C, Fu Y, Li M, Mu S, Chu X, Fu J, Lin C, Zhang H. MRI-Based Artificial Intelligence in Rectal Cancer. J Magn Reson Imaging 2023; 57:45-56. [PMID: 35993550 DOI: 10.1002/jmri.28381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Rectal cancer (RC) accounts for approximately one-third of colorectal cancer (CRC), with death rates increasing in patients younger than 50 years old. Magnetic resonance imaging (MRI) is routinely performed for tumor evaluation. However, the semantic features from images alone remain insufficient to guide treatment decisions. Functional MRIs are useful for revealing microstructural and functional abnormalities and nevertheless have low or modest repeatability and reproducibility. Therefore, during the preoperative evaluation and follow-up treatment of patients with RC, novel noninvasive imaging markers are needed to describe tumor characteristics to guide treatment strategies and achieve individualized diagnosis and treatment. In recent years, the development of artificial intelligence (AI) has created new tools for RC evaluation based on MRI. In this review, we summarize the research progress of AI in the evaluation of staging, prediction of high-risk factors, genotyping, response to therapy, recurrence, metastasis, prognosis, and segmentation with RC. We further discuss the challenges of clinical application, including improvement in imaging, model performance, and the biological meaning of features, which may also be major development directions in the future. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chinting Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Shengnan Mu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Xiaotong Chu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Jiahui Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Chenghe Lin
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| |
Collapse
|
19
|
Crutcher M, Waldman S. Biomarkers in the development of individualized treatment regimens for colorectal cancer. Front Med (Lausanne) 2022; 9:1062423. [DOI: 10.3389/fmed.2022.1062423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionColorectal cancer (CRC) is the third most common and second most deadly malignancy in the world with an estimated 1. 9 million cases and 0.9 million deaths in 2020. The 5-year overall survival for stage I disease is 92% compared to a dismal 11% in stage IV disease. At initial presentation, up to 35% of patients have metastatic colorectal cancer (mCRC), and 20–50% of stage II and III patients eventually progress to mCRC. These statistics imply both that there is a proportion of early stage patients who are not receiving adequate treatment and that we are not adequately treating mCRC patients.BodyTargeted therapies directed at CRC biomarkers are now commonly used in select mCRC patients. In addition to acting as direct targets, these biomarkers also could help stratify which patients receive adjuvant therapies and what types. This review discusses the role of RAS, microsatellite instability, HER2, consensus molecular subtypes and ctDNA/CTC in targeted therapy and adjuvant chemotherapy.DiscussionGiven the relatively high recurrence rate in early stage CRC patients as well as the continued poor survival in mCRC patients, additional work needs to be done beyond surgical management to limit recurrence and improve survival. Biomarkers offer both a potential target and a predictive method of stratifying patients to determine those who could benefit from adjuvant treatment.
Collapse
|
20
|
Crutcher MM, Snook AE, Waldman SA. Overview of predictive and prognostic biomarkers and their importance in developing a clinical pharmacology treatment plan in colorectal cancer patients. Expert Rev Clin Pharmacol 2022; 15:1317-1326. [PMID: 36259230 PMCID: PMC9847576 DOI: 10.1080/17512433.2022.2138339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Although overall survival for CRC patients has improved with earlier screening, survival continues to vary substantially across stages. Also, while the introduction of targeted therapies, including VEGF and EGFR inhibitors, has contributed to improving survival, better tools are needed to optimize patient selection and maximize therapeutic benefits. Emerging biomarkers can be used to guide pharmacologic decision-making, as well as monitor treatment response, clarify the need for adjuvant therapies, and indicate early signs of recurrence. This is a narrative review examining the current and evolving use of predictive and prognostic biomarkers in colorectal cancer. AREAS COVERED Areas covered include mutations of the MAPK (KRAS, BRAF) and HER2 pathways and their impacts on treatment decisions. In addition, novel methods for assessing tumor mutations and tracking treatment responses are examined. EXPERT OPINION The standard of care pathway for staging, and treatment selection and surveillance, of CRC will expand to include novel biomarkers in the next 5 years. It is anticipated that these new biomarkers will assist in decision-making regarding selection of targeted therapies and, importantly, in risk stratification for treatment decisions in patients at high risk for recurrence.
Collapse
Affiliation(s)
| | - Adam E. Snook
- Departmnet of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Scott A. Waldman
- Departmnet of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
21
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Gamez-Belmonte R, Mahapatro M, Erkert L, Gonzalez-Acera M, Naschberger E, Yu Y, Tena-Garitaonaindia M, Patankar JV, Wagner Y, Podstawa E, Schödel L, Bubeck M, Neurath MF, Stürzl M, Becker C. Epithelial presenilin-1 drives colorectal tumour growth by controlling EGFR-COX2 signalling. Gut 2022; 72:1155-1166. [PMID: 36261293 DOI: 10.1136/gutjnl-2022-327323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/02/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.
Collapse
Affiliation(s)
- Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yara Wagner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Podstawa
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany .,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Lamtha T, Krobthong S, Yingchutrakul Y, Samutrtai P, Gerner C, Tabtimmai L, Choowongkomon K. A novel nanobody as therapeutics target for EGFR-positive colorectal cancer therapy: exploring the effects of the nanobody on SW480 cells using proteomics approach. Proteome Sci 2022; 20:9. [PMID: 35578244 PMCID: PMC9109347 DOI: 10.1186/s12953-022-00190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) overexpression is found in metastatic colorectal cancer (mCRC). Targeted molecular therapies such as monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI) are becoming more precise, targeting specifically for cancer therapeutics. However, there are adverse effects of currently available anti-EGFR drugs, including drug-resistant and side effects. Nanobodies can overcome these limitations. Our previous study has found that cell-penetrable nanobodies targeted at EGFR-tyrosine kinase were significantly reduced EGFR-positive lung cancer cells viability and proliferation. The aim of the present study was to determine the effect of cell-penetrable nanobody (R9VH36) on cell viability and proteomic profile in EGFR-positive human colorectal cancer cell lines. Methods The human colorectal carcinoma cell line (SW480) was treated with R9VH36, compared with gefitinib. Cell viability was monitored using the MTT cell viability assay. The proteomic profiling was analyzed by LC–MS/MS . Results The half-maximal inhibitory concentration (IC50) values determined for R9VH36 and gefitinib against SW480 were 527 ± 0.03 nM and 13.31 ± 0.02 μM, respectively. Moreover, both the gefitinib-treated group and nanobody-treated group had completely different proteome profiles. A total 6626 differentially expressed proteins were identified. PCA analysis revealed different proteome profiling in R9VH36 experiment. There were 8 proteins in R9VH36 that significantly exhibited opposite expression directions when compared to gefitinib. These proteins are involved in DNA-damage checkpoint processes. Conclusion The proteomics explored those 6,626 proteins had different expressions between R9VH36 and gefitinib. There were 8 proteins in R9VH36 exhibited opposite expression direction when comparing to gefitinib. Our findings suggest that R9VH36 has the potential to be an alternative remedy for treating EGFR-positive colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00190-6.
Collapse
|
25
|
Zeronian MR, Doulkeridou S, van Bergen En Henegouwen PMP, Janssen BJC. Structural insights into the non-inhibitory mechanism of the anti-EGFR EgB4 nanobody. BMC Mol Cell Biol 2022; 23:12. [PMID: 35232398 PMCID: PMC8887186 DOI: 10.1186/s12860-022-00412-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is involved in various developmental processes, and alterations of its extracellular segment are associated with several types of cancers, in particular glioblastoma multiforme (GBM). The EGFR extracellular region is therefore a primary target for therapeutic agents, such as monoclonal antibodies and variable domains of heavy chain antibodies (VHH), also called nanobodies. Nanobodies have been previously shown to bind to EGFR, and to inhibit ligand-mediated EGFR activation. Results Here we present the X-ray crystal structures of the EgB4 nanobody, alone (to 1.48 Å resolution) and bound to the full extracellular EGFR-EGF complex in its active conformation (to 6.0 Å resolution). We show that EgB4 binds to a new epitope located on EGFR domains I and II, and we describe the molecular mechanism by which EgB4 plays a non-inhibitory role in EGFR signaling. Conclusion This work provides the structural basis for the application of EgB4 as a tool for research, for targeted therapy, or as a biomarker to locate EGFR-associated tumors, all without affecting EGFR activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00412-x.
Collapse
Affiliation(s)
- Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sofia Doulkeridou
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Present address: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Almeida C, Teixeira AL, Dias F, Machado V, Morais M, Martins G, Palmeira C, Sousa ME, Godinho I, Batista S, Costa-Silva B, Medeiros R. Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. BIOLOGY 2022; 11:biology11010145. [PMID: 35053143 PMCID: PMC8773288 DOI: 10.3390/biology11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5410)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Gabriela Martins
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Carlos Palmeira
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
- Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Maria Emília Sousa
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Inês Godinho
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Sílvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
27
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
28
|
Bofinger R, Weitsman G, Evans R, Glaser M, Sander K, Allan H, Hochhauser D, Kalber TL, Årstad E, Hailes HC, Ng T, Tabor AB. Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors. NANOSCALE 2021; 13:18520-18535. [PMID: 34730152 PMCID: PMC8601123 DOI: 10.1039/d1nr02770k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - Rachel Evans
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Matthias Glaser
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Kerstin Sander
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Erik Årstad
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
29
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
30
|
Qiu J, Hu F, Shao T, Guo Y, Dai Z, Nie H, Olasunkanmi OI, Qi Y, Chen Y, Lin L, Zhao W, Zhong Z, Wang Y. Blocking of EGFR Signaling Is a Latent Strategy for the Improvement of Prognosis of HPV-Induced Cancer. Front Oncol 2021; 11:633794. [PMID: 34646755 PMCID: PMC8503613 DOI: 10.3389/fonc.2021.633794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Human papillomavirus (HPV) is a double-stranded DNA (dsDNA) virus, and its high-risk subtypes increase cancer risks. However, the mechanism of HPV infection and pathogenesis still remain unclear. Therefore, understanding the molecular mechanisms and the pathogenesis of HPV are crucial in the prevention of HPV-related cancers. In this study, we analyzed cervix squamous cell carcinoma (CESC) and head and neck carcinoma (HNSC) combined data to investigate various HPV-induced cancer common features. We showed that epidermal growth factor receptor (EGFR) was downregulated in HPV-positive (HPV+) cancer, and that HPV+ cancer patients exhibited better prognosis than HPV-negative (HPV-) cancer patients. Our study also showed that TP53 mutation rate is lower in HPV+ cancer than in HPV- cancer and that TP53 can be modulated by HPV E7 protein. However, there was no significant difference in the expression of wildtype TP53 in both groups. Subsequently, we constructed HPV-human interaction network and found that EGFR is a critical factor. From the network, we also noticed that EGFR is regulated by HPV E7 protein and hsa-miR-944. Moreover, while phosphorylated EGFR is associated with a worse prognosis, EGFR total express level is not significantly correlated with prognosis. This indicates that EGFR activation will induce a worse outcome in HPV+ cancer patients. Further enrichment analysis showed that EGFR downstream pathway and cancer relative pathway are diversely activated in HPV+ cancer and HPV- cancer. In summary, HPV E7 protein downregulates EGFR that downregulates phosphorylated EGFR and inhibit EGFR-related pathways which in turn and consequently induce better prognosis.
Collapse
Affiliation(s)
- Jianfa Qiu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Feifei Hu
- Department of Obstetrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuqiang Guo
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zongmao Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Huanhuan Nie
- Department of Microbiology, Harbin Medical University, Harbin, China
| | | | - Yue Qi
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, Jinga M. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci 2021; 22:10260. [PMID: 34638601 PMCID: PMC8508474 DOI: 10.3390/ijms221910260] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant malignancy worldwide, being the fourth most common cause of mortality and morbidity. The CRC incidence in adolescents, young adults, and adult populations is increasing every year. In the pathogenesis of CRC, various factors are involved including diet, sedentary life, smoking, excessive alcohol consumption, obesity, gut microbiota, diabetes, and genetic mutations. The CRC tumor microenvironment (TME) involves the complex cooperation between tumoral cells with stroma, immune, and endothelial cells. Cytokines and several growth factors (GFs) will sustain CRC cell proliferation, survival, motility, and invasion. Epidermal growth factor receptor (EGFR), Insulin-like growth factor -1 receptor (IGF-1R), and Vascular Endothelial Growth Factor -A (VEGF-A) are overexpressed in various human cancers including CRC. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and all the three major subfamilies of the mitogen-activated protein kinase (MAPK) signaling pathways may be activated by GFs and will further play key roles in CRC development. The main aim of this review is to present the CRC incidence, risk factors, pathogenesis, and the impact of GFs during its development. Moreover, the article describes the relationship between EGF, IGF, VEGF, GFs inhibitors, PI3K/AKT/mTOR-MAPK signaling pathways, and CRC.
Collapse
Affiliation(s)
- Constantin Stefani
- Department of Family Medicine and Clinical Base, ‘‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Remus Iulian Nica
- Surgery 2, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Mariana Jinga
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| |
Collapse
|
32
|
Kong L, Zhang Q, Mao J, Cheng L, Shi X, Yu L, Hu J, Yang M, Li L, Liu B, Qian X. A dual-targeted molecular therapy of PP242 and cetuximab plays an anti-tumor effect through EGFR downstream signaling pathways in colorectal cancer. J Gastrointest Oncol 2021; 12:1625-1642. [PMID: 34532116 DOI: 10.21037/jgo-21-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) and its downstream Ras-mitogen-activated protein kinase kinase (MAPKK, MEK)-extracellular regulated protein kinase (ERK) signaling pathway and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway play important roles in the pathogenesis of colorectal cancer (CRC). The combination therapy of anti-EGFR and anti-mTOR needs to be explored. Methods Here we combined the anti-EGFR monoclonal antibody cetuximab (CTX) with the mTOR inhibitor PP242 in CRC cell lines and mouse xenograft models and discussed the changes of EGFR downstream signaling pathways of CRC cell lines. Results In HT-29 cells and Caco-2 cells, combined application of CTX and PP242 significantly inhibited the proliferation of CRC cells in vivo and in vitro. In BRAF wild-type Caco-2 cells, combined application of CTX and PP242 inhibited the activation of the EGFR and its downstream signaling pathways. Conclusions Our research further demonstrates the effectiveness of the combined application of CTX and PP242 in inhibiting CRC cell lines from the perspective of cell proliferation, cell cycle, apoptosis, and mouse xenografts. We revealed that the combined application of CTX and PP242 can inhibit tumor growth and proliferation by inhibiting the phosphorylation of key molecules in EGFR downstream MEK-ERK and MEK 4/7 (MKK)-c-Jun N-terminal kinase (JNK) signaling pathways in BRAF wild-type CRC cells. In addition, we found that in BRAF mutant CRC cells, the monotherapy of PP242 resulted in negative feedback increased EGFR phosphorylation rates, accompanied by significant up-regulation of downstream MEK and ERK phosphorylation.
Collapse
Affiliation(s)
- Linghui Kong
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jialei Mao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Cheng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Hu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mi Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
33
|
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory Colorectal Cancer: Trends and future prospective. Int Immunopharmacol 2021; 99:108017. [PMID: 34352568 DOI: 10.1016/j.intimp.2021.108017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), known as a frequently fatal disease, ranking as the third most common malignancy, is the second leading cause of cancer related mortality worldwide. Metastases are common in CRC patients which account for approximately 25% of the patients at diagnosis, 50% of patients during treatment which is associated closely with CRC mortality. Conventional therapies such as surgery, chemotherapy, and radiotherapy are standards of care for the treatment of CRC patients. However, primary tumor recurrence and secondary disease in patients receiving standard of care treatment modalities occur in 50% of patients so that new treatment modalities are needed. Immune checkpoint inhibition (ICI) has transformed the management of patients suffered from metastatic CRC (mCRC) with mismatch repair deficiency (dMMR) and microsatellite instability (MSI) -high (MSI-H) while manifests ineffectiveness in preserved mismatch repair (pMMR) or microsatellite stable (MSS) "cold" tumors which makes up the majority (95%) of mCRC. In this review, we mainly lay emphasis on the development of combinations in therapy strategies with ICIs with other immune based treatment approaches to increase the intra-tumoral immune response and render tumors 'immune-reactive', thereby increasing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
34
|
Zhang G, Chen L, Liu A, Pan X, Shu J, Han Y, Huan Y, Zhang J. Comparable Performance of Deep Learning-Based to Manual-Based Tumor Segmentation in KRAS/NRAS/BRAF Mutation Prediction With MR-Based Radiomics in Rectal Cancer. Front Oncol 2021; 11:696706. [PMID: 34395262 PMCID: PMC8358773 DOI: 10.3389/fonc.2021.696706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
Radiomic features extracted from segmented tumor regions have shown great power in gene mutation prediction, while deep learning–based (DL-based) segmentation helps to address the inherent limitations of manual segmentation. We therefore investigated whether deep learning–based segmentation is feasible in predicting KRAS/NRAS/BRAF mutations of rectal cancer using MR-based radiomics. In this study, we proposed DL-based segmentation models with 3D V-net architecture. One hundred and eight patients’ images (T2WI and DWI) were collected for training, and another 94 patients’ images were collected for validation. We evaluated the DL-based segmentation manner and compared it with the manual-based segmentation manner through comparing the gene prediction performance of six radiomics-based models on the test set. The performance of the DL-based segmentation was evaluated by Dice coefficients, which are 0.878 ± 0.214 and 0.955 ± 0.055 for T2WI and DWI, respectively. The performance of the radiomics-based model in gene prediction based on DL-segmented VOI was evaluated by AUCs (0.714 for T2WI, 0.816 for DWI, and 0.887 for T2WI+DWI), which were comparable to that of corresponding manual-based VOI (0.637 for T2WI, P=0.188; 0.872 for DWI, P=0.181; and 0.906 for T2WI+DWI, P=0.676). The results showed that 3D V-Net architecture could conduct reliable rectal cancer segmentation on T2WI and DWI images. All-relevant radiomics-based models presented similar performances in KRAS/NRAS/BRAF prediction between the two segmentation manners.
Collapse
Affiliation(s)
- Guangwen Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Aie Liu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xianpan Pan
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Jun Shu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ye Han
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Zhu X, Jia W, Yan Y, Huang Y, Wang B. NOP14 regulates the growth, migration, and invasion of colorectal cancer cells by modulating the NRIP1/GSK-3β/β-catenin signaling pathway. Eur J Histochem 2021; 65. [PMID: 34218653 PMCID: PMC8273630 DOI: 10.4081/ejh.2021.3246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide. Recently, nucleolar complex protein 14 (NOP14) has been discovered to play a critical role in cancer development and progression, but the mechanisms of action of NOP14 in colorectal cancer remain to be elucidated. In this study, we used collected colorectal cancer tissues and cultured colorectal cancer cell lines (SW480, HT29, HCT116, DLD1, Lovo), and measured the mRNA and protein expression levels of NOP14 in colorectal cancer cells using qPCR and Western blotting. GFP-NOP14 was constructed and siRNA fragments against NOP14 were synthesized to investigate the importance of NOP14 for the development of colorectal cells. Transwell migration assays were used to measure cell invasion and migration, CCK-8 kits were used to measure cell activity, and flow cytometry was applied to the observation of apoptosis. We found that both the mRNA and protein levels of NOP14 were significantly upregulated in CRC tissues and cell lines. Overexpression of GFP-NOP14 markedly promoted the growth, migration, and invasion of the CRC cells HT19 and SW480, while genetic knockdown of NOP14 inhibited these behaviors. Overexpression of NOP14 promoted the expression of NRIP1 and phosphorylated inactivation of GSK-3β, leading to the upregulation of β-catenin. Genetic knockdown of NOP14 had the opposite effect on NRIP1/GSK-3/β-catenin signals. NOP14 therefore appears to be overexpressed in clinical samples and cell lines of colorectal cancer, and promotes the proliferation, growth, and metastasis of colorectal cancer cells by modulating the NRIP1/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xuanjin Zhu
- Department of General Surgery, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou.
| | - Weilu Jia
- School of Clinical Medicine, Guizhou Medical University, Guiyang.
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou .
| | - Yong Huang
- Department of General Surgery, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou .
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou .
| |
Collapse
|
36
|
Yu Y, Wei SG, Weiss RM, Felder RB. Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience 2021; 463:227-237. [PMID: 33540053 PMCID: PMC8106624 DOI: 10.1016/j.neuroscience.2021.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling in cardiovascular regulatory regions of the brain contributes to sympathetic excitation in myocardial infarction (MI)-induced heart failure (HF) by increasing brain renin-angiotensin system (RAS) activity, neuroinflammation, and endoplasmic reticulum (ER) stress. The mechanisms eliciting brain ERK1/2 signaling in HF are still poorly understood. We tested the involvement of the epidermal growth factor receptor (EGFR) which, upon activation, stimulates ERK1/2 activity. Adult male Sprague-Dawley rats received bilateral microinjections of a lentiviral vector encoding a small interfering RNA (siRNA) for EGFR, or a scrambled siRNA, into the hypothalamic paraventricular nucleus (PVN), a recognized source of sympathetic overactivity in HF. One week later, coronary artery ligation was performed to induce HF. Four weeks later, the EGFR siRNA-treated HF rats, compared with the scrambled siRNA-treated HF rats, had lower mRNA and protein levels of EGFR, lower levels of phosphorylated (p-) EGFR and p-ERK1/2 and lower mRNA levels of the inflammatory mediators TNF-α, IL-1β and cyclooxygenase-2, the RAS components angiotensin-converting enzyme and angiotensin II type 1a receptor and the ER stress markers BIP and ATF4 in the PVN. They also had lower plasma and urinary norepinephrine levels and improved peripheral manifestations of HF. Additional studies revealed that p-EGFR was increased in the PVN of HF rats, compared with sham-operated control rats. These results suggest that activation of EGFR in the PVN triggers ERK1/2 signaling, along with ER stress, neuroinflammation and RAS activity, in MI-induced HF. Brain EGFR may be a novel target for therapeutic intervention in MI-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA; VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
37
|
Cetin S, Elmazoglu Z, Karaman O, Gunduz H, Gunbas G, Kolemen S. Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Med Chem Lett 2021; 12:752-757. [PMID: 34055222 PMCID: PMC8155232 DOI: 10.1021/acsmedchemlett.1c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Iodination of the silicon-fluorescein core revealed a new class of highly cytotoxic, red-shifted and water-soluble photosensitizer (SF-I) which is also fairly emissive to serve as a theranostic agent. Singlet oxygen generation capacity of SF-I was evaluated chemically, and up to 45% singlet oxygen quantum yield was reported in aqueous solutions. SF-I was further tested in triple negative breast (MDA MB-231) and colon (HCT-116) cancer cell lines, which are known to have limited chemotherapy options as well as very poor prognosis. SF-I induced efficient singlet oxygen generation and consequent photocytotoxicity in both cell lines upon light irradiation with a negligible dark toxicity while allowing cell imaging at the same time. SF-I marks the first ever example of a silicon xanthene-based photosensitizer and holds a lot of promise as a small-molecule-based theranostic scaffold.
Collapse
Affiliation(s)
- Sultan Cetin
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Zubeyir Elmazoglu
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Osman Karaman
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Hande Gunduz
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
- Surface
Science and Technology Center (KUYTAM), Koc University, 34450 Istanbul, Turkey
- Boron
and Advanced Materials Application and Research Center, Koc University, 34450 Istanbul, Turkey
- TUPRAS
Energy Center (KUTEM), Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
38
|
Chen T, Zeineldin M, Johnson BA, Dong Y, Narkar A, Li T, Zhu J, Li R, Larman TC. Colonic epithelial adaptation to EGFR-independent growth induces chromosomal instability and is accelerated by prior injury. Neoplasia 2021; 23:488-501. [PMID: 33906087 PMCID: PMC8099723 DOI: 10.1016/j.neo.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Although much is known about the gene mutations required to drive colorectal cancer (CRC) initiation, the tissue-specific selective microenvironments in which neoplasia arises remains less characterized. Here, we determined whether modulation of intestinal stem cell niche morphogens alone can exert a neoplasia-relevant selective pressure on normal colonic epithelium. Using adult stem cell-derived murine colonic epithelial organoids (colonoids), we employed a strategy of sustained withdrawal of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibition to select for and expand survivors. EGFR-signaling-independent (iEGFR) colonoids emerged over rounds of selection and expansion. Colonoids derived from a mouse model of chronic mucosal injury showed an enhanced ability to adapt to EGFR inhibition. Whole-exome and transcriptomic analyses of iEGFR colonoids demonstrated acquisition of deleterious mutations and altered expression of genes implicated in EGF signaling, pyroptosis, and CRC. iEGFR colonoids acquired dysplasia-associated cytomorphologic changes, an increased proliferative rate, and the ability to survive independently of other required niche factors. These changes were accompanied by emergence of aneuploidy and chromosomal instability; further, the observed mitotic segregation errors were significantly associated with loss of interkinetic nuclear migration, a fundamental and dynamic process underlying intestinal epithelial homeostasis. This study provides key evidence that chromosomal instability and other phenotypes associated with neoplasia can be induced ex vivo via adaptation to EGF withdrawal in normal and stably euploid colonic epithelium, without introducing cancer-associated driver mutations. In addition, prior mucosal injury accelerates this evolutionary process.
Collapse
Affiliation(s)
- Tiane Chen
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Blake A Johnson
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yi Dong
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Akshay Narkar
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Taibo Li
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jin Zhu
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Li
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA; Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
| | - Tatianna C Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA.
| |
Collapse
|
39
|
Yang YCSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, Wang K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci 2021; 28:24. [PMID: 33827580 PMCID: PMC8028191 DOI: 10.1186/s12929-021-00719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone analogues-particularly, L-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Jui Ko
- School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Shin Pan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.
| | - Jacqueline Whang-Peng
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.,Albany Medical College, Albany, NY, 12144, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
40
|
Preparation of a novel EGFR specific immunotoxin and its efficacy of anti-colorectal cancer in vitro and in vivo. Clin Transl Oncol 2021; 23:1549-1560. [PMID: 33474678 DOI: 10.1007/s12094-020-02548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Epithelial growth factor receptor (EGFR), as a malignancy marker, is overly expressed in multiple solid tumors including colorectal neoplasms, one of the most prevalent malignancies worldwide. The main objective of this study is to enhance the efficacy of anti-tumor therapy targeting EGFR by constructing a novel EGFR-specific immunotoxin (C-CUS245C) based on Cetuximab and recombinant Cucurmosin (CUS245C). METHODS E. coli BL21 (DE3) PlysS (E. coli) was used to express CUS245C with a cysteine residue inserting to the C-terminus of Cucurmosin. Then immobilized metal ion affinity chromatography (IMAC) was used to purify CUS245C. The chemical conjugation method was used for the preparation of C-CUS245C. Then dialysis and IMAC were used to purify C-CUS245C. Western blot as well as SDS-PAGE was carried out to characterize the formation of C-CUS245C. At last the anti-colorectal cancer activity of C-CUS245C was investigated in vitro and in vivo. RESULTS CUS245C with high purity could be obtained from the prokaryotic system. C-CUS245C was successfully constructed and highly purified. The cytotoxicity assays in vitro showed a significant proliferation inhibition of C-CUS245C on EGFR-positive cells for 120 h with IC50 values less than 0.1 pM. Besides, the anti-tumor efficacy of C-CUS245C was remarkably more potent than that of Cetuximab, CUS245C, and C + CUS245C (P < 0.001). Whereas the cytotoxicity of C-CUS245C could hardly be detected on EGFR-null cell line. Our results also showed that C-CUS245C had efficacy of anti-colorectal cancer in mouse xenograft model, indicating the therapeutic potential of C-CUS245C for the targeted therapy of colorectal neoplasms. CONCLUSIONS C-CUS245C exhibits potent and EGFR-specific cytotoxicity. Insertional mutagenesis technique is worthy to be adopted in the preparation of immunotoxin. Immunotoxin can be highly purified through dialysis followed by IMAC.
Collapse
|
41
|
Zhao Y, Liu X, Huo M, Wang Y, Li Y, Xu N, Zhu H. Cetuximab enhances the anti-tumor function of macrophages in an IL-6 dependent manner. Life Sci 2020; 267:118953. [PMID: 33359746 DOI: 10.1016/j.lfs.2020.118953] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023]
Abstract
AIMS Cetuximab improves the survival of patients with advanced colorectal cancer (CRC). However, how cetuximab affects the tumor microenvironment has not been sufficiently understood. This study was to investigate whether cetuximab could inhibit the pro-tumor function of tumor-associated macrophages (TAMs) by suppressing the EGFR/IL-6 pathway. MAIN METHODS The azoxymethane/dextran sodium sulfate (AOM/DSS) and tumor xenograft mouse models were used to assess the effect of cetuximab on TAMs. Flow cytometry, Western blotting, RT-qPCR, and ELISA were used to assess the prevalence of M2 and M1 phenotypes. Publicly available datasets of CRC patients were used to assess the relevance of EGFR and IL-6 expression as prognostic indicators. KEY FINDINGS The two mouse models showed that cetuximab could attenuate the pro-tumor function of TAMs and decrease tumor burden. Cetuximab repolarized TAMs from M2-like to M1-like phenotypes, mainly by suppressing the IL-6 expression through NFκB and STAT3 pathways. Analysis of public scRNA-seq data indicated EGFR was mainly expressed on the surface of macrophage infiltration into tumor microenvironment. The public transcriptomics datasets showed that the expression level of IL-6 was positively correlated with EGFR in CRC patients, and PROGgeneV2 analysis indicated that IL-6 and CD206 both predicted poor recurrence-free and overall survival of CRC patients. Furthermore, the inhibition efficacy of cetuximab was significantly attenuated in IL-6 knockout CRC mice model. SIGNIFICANCE These results indicate a new macrophage-based molecular mechanism explaining the effect of cetuximab in treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xianghe Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yinuo Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ningzhi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Hongxia Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
42
|
EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm 2020; 592:120082. [PMID: 33188892 DOI: 10.1016/j.ijpharm.2020.120082] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase receptors family and is present in the epithelial cell membrane. Its endogenous activation occurs through the binding of different endogenous ligands, including the epidermal growth factor (EGF), leading to signaling cascades able to maintain normal cellular functions. Although involved in the development and maintenance of tissues in normal conditions, when EGFR is overexpressed, it stimulates the growth and progression of tumors, resulting in angiogenesis, invasion and metastasis, through some main cascades such as Ras/Raf/MAPK, PIK-3/AKT, PLC-PKC and STAT. Besides, considering the limitations of conventional chemotherapy that result in high toxicity and low tumor specificity, EGFR is currently considered an important target. As a result, several monoclonal antibodies are currently approved for use in cancer treatment, such as cetuximab (CTX), panitumumab, nimotuzumab, necitumumab and others are in clinical trials. Aiming to combine the chemotherapeutic agent toxicity and specific targeting to EGFR overexpressing tumor tissues, two main strategies will be discussed in this review: antibody-drug conjugates (ADCs) and antibody-nanoparticle conjugates (ANCs). Briefly, ADCs consist of antibodies covalently linked through a spacer to the cytotoxic drug. Upon administration, binding to EGFR and endocytosis, ADCs suffer chemical and enzymatic reactions leading to the release and accumulation of the drug. Instead, ANCs consist of nanotechnology-based formulations, such as lipid, polymeric and inorganic nanoparticles able to protect the drug against inactivation, allowing controlled release and also passive accumulation in tumor tissues by the enhanced permeability and retention effect (EPR). Furthermore, ANCs undergo active targeting through EGFR receptor-mediated endocytosis, leading to the formation of lysosomes and drug release into the cytosol. Herein, we will present and discuss some important aspects regarding EGFR structure, its role on internal signaling pathways and downregulation aspects. Then, considering that EGFR is a potential therapeutic target for cancer therapy, the monoclonal antibodies able to target this receptor will be presented and discussed. Finally, ADCs and ANCs state of the art will be reviewed and recent studies and clinical progresses will be highlighted. To the best of our knowledge, this is the first review paper to address specifically the EGFR target and its application on ADCs and ANCs.
Collapse
|
43
|
Yue C, Chen J, Li Z, Li L, Chen J, Guo Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:240. [PMID: 33183350 PMCID: PMC7659164 DOI: 10.1186/s13046-020-01731-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the frequently occurred malignancies in the world. To date, several onco-microRNAs (miRNAs or miRs), including miR-96, have been identified in the pathogenesis of CRC. In the present study, we aimed to corroborate the oncogenic effect of miR-96 on CRC and to identify the specific mechanisms related to AMPKα2/FTO/m6A/MYC. METHODS RT-qPCR and Western blot analysis were performed to examine the expression pattern of miR-96, AMPKα2, FTO and MYC in the clinical CRC tissues and cells. The relationship between miR-96 and AMPKα2 was then predicted using in silico analysis and identified by dual-luciferase reporter assay. Gain- or loss-of-function approaches were manipulated to evaluate the modulatory effects of miR-96, AMPKα2, FTO and MYC on cell growth, cycle progression and apoptosis. The mechanism of FTO-mediated m6A modification of MYC was analyzed via Me-RIP and PAR-CLIP analysis. The mediatory effects of miR-96 antagomir on cancerogenesis were validated in vivo. RESULTS miR-96, FTO and MYC were upregulated, while AMPKα2 was downregulated in CRC tissues and cells. miR-96 could down-regulate AMPKα2, which led to increased expression of FTO and subsequent upregulated expression of MYC via blocking its m6A modification. This mechanism was involved in the pro-proliferative and anti-apoptotic roles of miR-96 in CRC cells. Besides, down-regulation of miR-96 exerted inhibitory effect on tumor growth in vivo. CONCLUSIONS Taken together, miR-96 antagomir could potentially retard the cancerogenesis in CRC via AMPKα2-dependent inhibition of FTO and blocking FTO-mediated m6A modification of MYC, highlighting novel mechanisms associated with colorectal cancerogenesis.
Collapse
Affiliation(s)
- Caifeng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, P. R. China
| | - Jierong Chen
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, P. R. China
| | - Ziyue Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, P. R. China
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, P. R. China
| | - Jugao Chen
- Department of Oncology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, No. 3046, Shennan East Road, Luohu District, 518020, Shenzhen, Guangdong Province, P. R. China.
| | - Yunmiao Guo
- Clinical Research Institute of Zhanjiang, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, Guangdong Province, P. R. China.
| |
Collapse
|
44
|
Abstract
Imaging has played a critical role in the management of patients with cancer. Novel therapies are emerging rapidly; however, they are effective only in some patients. With the advent of new targeted therapeutics and immunotherapy, the limitations of conventional imaging methods are becoming more evident. FDG-PET imaging is restricted to the optimal assessment of immune therapies. There is a critical unmet need for pharmacodynamic and prognostic imaging biomarkers. Radiolabeled antibodies or small molecules can allow for specific assessment of targets in expression and concentration. Several such imaging agents have been under preclinical development. Early human studies with radiolabeled monoclonal antibodies or small molecules targeted to the epidermal growth factor receptor pathway have shown potential; targeted imaging of CA19.9 and CA-IX and are being further explored. Immune-directed imaging agents are highly desirable as biomarkers and preliminary studies with radiolabeled antibodies targeting immune mechanisms appear promising. While novel agents are being developed, larger well-designed studies are needed to validate the role of these agents as biomarkers in the clinical management of patients.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY.
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
45
|
Chataigner LMP, Leloup N, Janssen BJC. Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Front Mol Biosci 2020; 7:129. [PMID: 32850948 PMCID: PMC7427315 DOI: 10.3389/fmolb.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Type-I transmembrane proteins represent a large group of 1,412 proteins in humans with a multitude of functions in cells and tissues. They are characterized by an extracellular, or luminal, N-terminus followed by a single transmembrane helix and a cytosolic C-terminus. The domain composition and structures of the extracellular and intercellular segments differ substantially amongst its members. Most of the type-I transmembrane proteins have roles in cell signaling processes, as ligands or receptors, and in cellular adhesion. The extracellular segment often determines specificity and can control signaling and adhesion. Here we focus on recent structural understanding on how the extracellular segments of several diverse type-I transmembrane proteins engage in interactions and can undergo conformational changes for their function. Interactions at the extracellular side by proteins on the same cell or between cells are enhanced by the transmembrane setting. Extracellular conformational domain rearrangement and structural changes within domains alter the properties of the proteins and are used to regulate signaling events. The combination of structural properties and interactions can support the formation of larger-order assemblies on the membrane surface that are important for cellular adhesion and intercellular signaling.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nadia Leloup
- Structural Biology and Protein Biochemistry, Morphic Therapeutic, Waltham, MA, United States
| | - Bert J. C. Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Golabi N, Larroque AL, Peyrard L, Williams C, Jean-Claude BJ. Subcellular distribution and mechanism of action of AL906, a novel and potent EGFR inhibitor rationally designed to be green fluorescent. Invest New Drugs 2020; 39:240-250. [PMID: 32648119 DOI: 10.1007/s10637-020-00958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
To enhance the potency of EGFR inhibitors, we developed a novel strategy that seeks to conjugate EGFR to a bioactive moiety leading to a molecule termed "combi-molecule". In order to mimic the penetration of this type of molecules, based upon previously reported structure activity relationship studies, we designed a new molecule containing a quinazoline moiety tethered to a p-nitrobenzoxadiazole (NBD) moiety [molecular weight (MW) 700]. Despite its size, AL906 growth inhibitory activity was superior to that of the clinical drug gefitinib. Furthermore, AL906 retained significant EGFR inhibitory activity and good cellular penetration with abundant distribution in the perinuclear region of the cells. In an isogenic NIH3T3 transfected cell panel, it selectively inhibited the growth of the NIH3T3-EGFR and HER2 transfectants. Confocal microscopy analysis revealed that it was capable of penetrating multilayer aggregates although to a lesser extent than FD105, a small inhibitor of EGFR inhibitor of the same class (MW 300). Its ability to inhibit EGFR auto-phosphorylation in monolayer culture was stronger than in the aggregates. The results suggest that our strategy did not negatively affect EGFR inhibitory potency, EGFR selectivity and growth inhibition. However, its molecular size may account for its decreased aggregate penetration when compared with a smaller EGFR inhibitor of the quinazoline class.
Collapse
Affiliation(s)
- Nahid Golabi
- Cancer Drug Research Laboratory, Department of Medicine, The Research Institute of the McGill University Health Center, 1001 Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Anne-Laure Larroque
- Cancer Drug Research Laboratory, Department of Medicine, The Research Institute of the McGill University Health Center, 1001 Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Lisa Peyrard
- Cancer Drug Research Laboratory, Department of Medicine, The Research Institute of the McGill University Health Center, 1001 Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Christopher Williams
- Scientific Support Chemical Computing Group Inc., Montreal, Quebec, H3A 2R7, Canada
| | - Bertrand J Jean-Claude
- Cancer Drug Research Laboratory, Department of Medicine, The Research Institute of the McGill University Health Center, 1001 Decarie, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
47
|
Panzeri D, Guzzetti L, Sacco G, Tedeschi G, Nonnis S, Airoldi C, Labra M, Fusi P, Forcella M, Regonesi ME. Effectiveness of Vigna unguiculata seed extracts in preventing colorectal cancer. Food Funct 2020; 11:5853-5865. [PMID: 32589172 DOI: 10.1039/d0fo00913j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer, especially in Western countries, and its incidence rate is increasing every year. In this study, for the first time Vigna unguiculata L. Walp. (cowpea) water boiled seed extracts were found to reduce the viability of different colorectal cancer (CRC) cell lines, such as E705, DiFi and SW480 and the proliferation of Caco-2 line too, without affecting CCD841 healthy cell line. Furthermore, the extracts showed the ability to reduce the level of Epidermal Growth Factor Receptor (EGFR) phosphorylation in E705, DiFi and SW480 cell lines and to lower the EC50 of a CRC common drug, cetuximab, on E705 and DiFi lines from 161.7 ng mL-1 to 0.06 ng mL-1 and from 49.5 ng mL-1 to 0.2 ng mL-1 respectively. The extract was characterized in its protein and metabolite profiles by tandem mass spectrometry and 1H-NMR analyses. A Bowman-Birk protease inhibitor was identified within the protein fraction and was supposed to be the main active component. These findings confirm the importance of a legume-based diet to prevent the outbreak of many CRC and to reduce the amount of drug administered during a therapeutic cycle.
Collapse
Affiliation(s)
- Davide Panzeri
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vaňková B, Vaněček T, Ptáková N, Hájková V, Dušek M, Michal M, Švajdler P, Daum O, Daumová M, Michal M, Mezencev R, Švajdler M. Targeted next generation sequencing of MLH1-deficient, MLH1 promoter hypermethylated, and BRAF/RAS-wild-type colorectal adenocarcinomas is effective in detecting tumors with actionable oncogenic gene fusions. Genes Chromosomes Cancer 2020; 59:562-568. [PMID: 32427409 DOI: 10.1002/gcc.22861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Oncogenic gene fusions represent attractive targets for therapy of cancer. However, the frequency of actionable genomic rearrangements in colorectal cancer (CRC) is very low, and universal screening for these alterations seems to be impractical and costly. To address this problem, several large scale studies retrospectivelly showed that CRC with gene fusions are highly enriched in groups of tumors defined by MLH1 DNA mismatch repair protein deficiency (MLH1d), and hypermethylation of MLH1 promoter (MLH1ph), and/or the presence of microsatellite instability, and BRAF/KRAS wild-type status (BRAFwt/KRASwt). In this study, we used targeted next generation sequencing (NGS) to explore the occurence of potentially therapeutically targetable gene fusions in an unselected series of BRAFwt/KRASwt CRC cases that displayed MLH1d/MLH1ph. From the initially identified group of 173 MLH1d CRC cases, 141 cases (81.5%) displayed MLH1ph. BRAFwt/RASwt genotype was confirmed in 23 of 141 (~16%) of MLH1d/MLH1ph cases. Targeted NGS of these 23 cases identified oncogenic gene fusions in nine patients (39.1%; CI95: 20.5%-61.2%). Detected fusions involved NTRK (four cases), ALK (two cases), and BRAF genes (three cases). As a secondary outcome of NGS testing, we identified PIK3K-AKT-mTOR pathway alterations in two CRC cases, which displayed PIK3CA mutation. Altogether, 11 of 23 (~48%) MLH1d/MLH1ph/BRAFwt/RASwt tumors showed genetic alterations that could induce resistance to anti-EGFR therapy. Our study confirms that targeted NGS of MLH1d/MLH1ph and BRAFwt/RASwt CRCs could be a cost-effective strategy in detecting patients with potentially druggable oncogenic kinase fusions.
Collapse
Affiliation(s)
- Bohuslava Vaňková
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Tomáš Vaněček
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Nikola Ptáková
- Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Martin Dušek
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michael Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Ondřej Daum
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Magdaléna Daumová
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Michal Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic.,Bioptická Laboratoř, s.r.o, Pilsen, Czech Republic
| |
Collapse
|
49
|
Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol 2020; 71:143-156. [PMID: 32526354 DOI: 10.1016/j.semcancer.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Liver metastases from gastrointestinal and non-gastrointestinal malignancies remain a major cause of cancer-related mortality and a major clinical challenge. The liver has unique properties that facilitate metastatic expansion, including a complex immune system that evolved to dampen immunity to neoantigens entering the liver from the gut, through the portal circulation. In this review, we describe the unique microenvironment encountered by cancer cells in the liver, focusing on elements of the innate and adaptive immune response that can act as a double-edge sword, contributing to the elimination of cancer cells on the one hand and promoting their survival and growth, on the other. We discuss this microenvironment in a clinical context, particularly for colorectal carcinoma, and highlight how a better understanding of the role of the microenvironment has spurred an intense effort to develop novel and innovative strategies for targeting liver metastatic disease, some of which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Aaron T Ciner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Keaton Jones
- Oxford Institute for Radiation Oncology, Department of Surgery, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Pnina Brodt
- Departments of Surgery, Medicine and Oncology, McGill University, and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
50
|
Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev 2020; 88:102030. [PMID: 32505807 DOI: 10.1016/j.ctrv.2020.102030] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers include colorectal, gastric, oesophageal, pancreatic and liver cancers. They continue to be a significant cause of mortality and morbidity worldwide. Current treatment strategies include chemotherapy, surgery, radiotherapy and targeted therapies. Immunotherapy has recently been incorporated in treatment regimens for some gastrointestinal malignancies and research into different immune modifying treatments is being carried out in this context. Approaches to immune modulation such as vaccination, adoptive cell therapy and checkpoint inhibition have shown varying clinical benefit, with most of the benefit seen in checkpoint inhibition. This review summarises recent advances and future direction of immunotherapy in patients with gastrointestinal malignancies.
Collapse
|