1
|
Mahbubi Sani M, Pradnyan Kloping Y, Surahmad F. Benign prostatic hyperplasia genetic variants in Asians. Clin Chim Acta 2025; 565:119986. [PMID: 39368687 DOI: 10.1016/j.cca.2024.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
The global prevalence of benign prostatic hyperplasia (BPH) is increasing annually, with a notably higher incidence in Asian populations. This condition can increase the risk of developing prostate cancer 2- to 12-fold, underscoring the critical need for comprehensive clinical guidelines and appropriate risk stratification testing. This review is the first to address the gap by focusing on genetic screening for risk stratification in Asians, followed by the development of pathophysiology based on the genetic variants identified. For example, the CYP17 gene, which plays a crucial role in testosterone synthesis and BPH progression, includes the CYP17 rs743572 C allele, a genetic variant that increases the risk of BPH by 1.58 times in Asians. Identifying such genetic variants can enable the tailoring of therapies to individual genetic profiles. Furthermore, this review provides new insights into the pathophysiology of BPH, suggesting that ethnicity may play a role in its progression, and explores genetic links between BPH and other diseases traditionally considered risk factors for BPH.
Collapse
Affiliation(s)
- Muhammad Mahbubi Sani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Department of Urology, Jombang General Hospital, Jombang 61416, Indonesia.
| | | | - Fakhri Surahmad
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Urology, Jombang General Hospital, Jombang 61416, Indonesia
| |
Collapse
|
2
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
3
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
4
|
Moorhouse J, Val N, Shahriari S, Nelson M, Ashby R, Ghildyal R. Rhinovirus protease cleavage of nucleoporins: perspective on implications for airway remodeling. Front Microbiol 2024; 14:1321531. [PMID: 38249483 PMCID: PMC10797083 DOI: 10.3389/fmicb.2023.1321531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Human Rhinoviruses (RV) are a major cause of common colds and infections in early childhood and can lead to subsequent development of asthma via an as yet unknown mechanism. Asthma is a chronic inflammatory pulmonary disease characterized by significant airway remodeling. A key component of airway remodeling is the transdifferentiation of airway epithelial and fibroblast cells into cells with a more contractile phenotype. Interestingly, transforming growth factor-beta (TGF-β), a well characterized inducer of transdifferentiation, is significantly higher in airways of asthmatics compared to non-asthmatics. RV infection induces TGF-β signaling, at the same time nucleoporins (Nups), including Nup153, are cleaved by RV proteases disrupting nucleocytoplasmic transport. As Nup153 regulates nuclear export of SMAD2, a key intermediate in the TGF-β transdifferentiation pathway, its loss of function would result in nuclear retention of SMAD2 and dysregulated TGF-β signaling. We hypothesize that RV infection leads to increased nuclear SMAD2, resulting in sustained TGF-β induced gene expression, priming the airway for subsequent development of asthma. Our hypothesis brings together disparate studies on RV, asthma and Nup153 with the aim to prompt new research into the role of RV infection in development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Reena Ghildyal
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
5
|
Wang L, Gu S, Chen F, Yu Y, Cao J, Li X, Gao C, Chen Y, Yuan S, Liu X, Qin J, Zhao B, Xu P, Liang T, Tong H, Lin X, Feng XH. Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia. Signal Transduct Target Ther 2023; 8:120. [PMID: 36959211 PMCID: PMC10036327 DOI: 10.1038/s41392-023-01327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 03/25/2023] Open
Abstract
Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-β signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-β signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-β signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-β-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-β, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-β signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-β signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-β anti-growth responses.
Collapse
Affiliation(s)
- Lijing Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fenfang Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Yanzhen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchong Yuan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Jun Qin
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
6
|
Rodari MM, Cerf-Bensussan N, Parlato M. Dysregulation of the immune response in TGF-β signalopathies. Front Immunol 2022; 13:1066375. [PMID: 36569843 PMCID: PMC9780292 DOI: 10.3389/fimmu.2022.1066375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines exerts pleiotropic functions during embryonic development, tissue homeostasis and repair as well as within the immune system. Single gene defects in individual component of this signaling machinery cause defined Mendelian diseases associated with aberrant activation of TGF-β signaling, ultimately leading to impaired development, immune responses or both. Gene defects that affect members of the TGF-β cytokine family result in more restricted phenotypes, while those affecting downstream components of the signaling machinery induce broader defects. These rare disorders, also known as TGF-β signalopathies, provide the unique opportunity to improve our understanding of the role and the relevance of the TGF-β signaling in the human immune system. Here, we summarize this elaborate signaling pathway, review the diverse clinical presentations and immunological phenotypes observed in these patients and discuss the phenotypic overlap between humans and mice genetically deficient for individual components of the TGF-β signaling cascade.
Collapse
|
7
|
Wang Z, Chen J, Wang S, Sun Z, Lei Z, Zhang HT, Huang J. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4. Cell Death Dis 2022; 13:656. [PMID: 35902557 PMCID: PMC9334288 DOI: 10.1038/s41419-022-05093-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Regulator of G-protein signaling 6 (RGS6) is a newly discovered tumor suppressor that has been shown to be protective in development of various cancers such as breast cancer and bladder cancer. But the mechanisms underlying these tumor-suppressing functions of RGS6 are not fully understood. Here, we discover a novel function of RGS6 in suppressing TGF-β-induced epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) cells and in vivo NSCLC metastasis. Using both bioinformatics and experimental tools, we showed that RGS6 was downregulated in lung cancer tissues compared to noncancerous counterparts, and low expression of RGS6 was associated with poor survival of lung cancer patients. Overexpression of RGS6 suppressed TGF-β-induced EMT in vitro and TGF-β-promoted metastasis in vivo, by impairing gene expression of downstream effectors induced by the canonical TGF-β-SMAD signaling. The ability of RGS6 to suppress TGF-β-SMAD-mediated gene expression relied on its binding to SMAD4 to prevent complex formation between SMAD4 and SMAD2/3, but independent of its regulation of the G-protein signaling. Interaction between RGS6 and SMAD4 caused less nuclear entry of p-SMAD3 and SMAD4, resulting in inefficient SMAD3-mediated gene expression. Taken together, our findings reveal a novel and noncanonical role of RGS6 in regulation of TGF-β-induced EMT and metastasis of NSCLC and identify RGS6 as a prognostic marker and a potential novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Zhao Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Chen
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Shengjie Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.89957.3a0000 0000 9255 8984Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 China
| | - Zelong Sun
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Zhe Lei
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Hong-Tao Zhang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Jie Huang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| |
Collapse
|
8
|
Takata T, Matsumura M. The LINC Complex Assists the Nuclear Import of Mechanosensitive Transcriptional Regulators. Results Probl Cell Differ 2022; 70:315-337. [PMID: 36348113 DOI: 10.1007/978-3-031-06573-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical forces play pivotal roles in directing cell functions and fate. To elicit gene expression, either intrinsic or extrinsic mechanical information are transmitted into the nucleus beyond the nuclear envelope via at least two distinct pathways, possibly more. The first and well-known pathway utilizes the canonical nuclear transport of mechanoresponsive transcriptional regulators through the nuclear pore complex, which is an exclusive route for macromolecular trafficking between the cytoplasm and nucleoplasm. The second pathway depends on the linker of the nucleoskeleton and cytoskeleton (LINC) complex, which is a molecular bridge traversing the nuclear envelope between the cytoskeleton and nucleoskeleton. This protein complex is a central component in mechanotransduction at the nuclear envelope that transmits mechanical information from the cytoskeleton into the nucleus to influence the nuclear structure, nuclear stiffness, chromatin organization, and gene expression. Besides the mechanical force transducing function, recent increasing evidence shows that the LINC complex plays a role in controlling nucleocytoplasmic transport of mechanoresponsive transcriptional regulators. Here we discuss recent findings regarding the contribution of the LINC complex to the regulation of intracellular localization of the most-notable mechanosensitive transcriptional regulators, β-catenin, YAP, and TAZ.
Collapse
Affiliation(s)
- Tomoyo Takata
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan
| | - Miki Matsumura
- Ehime Prefectural University of Health Sciences, Tobe, Ehime, Japan.
| |
Collapse
|
9
|
Serras AS, Camões SP, Antunes B, Costa VM, Dionísio F, Yazar V, Vitorino R, Remião F, Castro M, Oliveira NG, Miranda JP. The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. Int J Mol Sci 2021; 22:ijms222313072. [PMID: 34884877 PMCID: PMC8657836 DOI: 10.3390/ijms222313072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox. A comprehensive proteomic analysis of CM3D/CM2D was also performed to unravel the underlying mechanism. CM3D/CM2D co-incubation with Dox revealed no significant differences in MDA-MB-231 viability when compared to Dox alone, whereas MCF10A and AC16 viability was consistently improved in Dox+CM3D-treated cells. Moreover, neither CM2D nor CM3D affected Dox anti-migratory and anti-invasive effects in MDA-MB-231. Notably, Ge-LC-MS/MS proteomic analysis revealed that CM3D displayed protective features that might be linked to the regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP8, PDCD5), invasion (TIMP1/2), oxidative stress (COX6B1, AIFM1, CD9, GSR) and inflammation (CCN3, ANXA5, CDH13, GDF15). Overall, CM3D decreased Dox-induced cytotoxicity in non-tumor cells, without compromising Dox chemotherapeutic profile in malignant cells, suggesting its potential use as a chemotherapy adjuvant to reduce off-target side effects.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Bernardo Antunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Vera M. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Flávio Dionísio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Volkan Yazar
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Rui Vitorino
- LAQV-REQUIMTE, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Cardiovascular R&D Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Oporto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
- Correspondence:
| |
Collapse
|
10
|
Li Q, Huang Z, Peng Y, Wang X, Jiang G, Wang T, Mou K, Feng W. RanBP3 Regulates Proliferation, Apoptosis and Chemosensitivity of Chronic Myeloid Leukemia Cells via Mediating SMAD2/3 and ERK1/2 Nuclear Transport. Front Oncol 2021; 11:698410. [PMID: 34504783 PMCID: PMC8421687 DOI: 10.3389/fonc.2021.698410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal subcellular localization of proteins is an important cause of tumorigenesis and drug resistance. Chromosome region maintenance 1 (CRM1), the nuclear export regulator of most proteins, has been confirmed to be over-expressed in various malignancies and is regarded as an efficient target. But the potential role of the CRM1 cofactor RanBP3 (Ran Binding Protein 3) is left unrevealed in chronic myeloid leukemia (CML). Here, we first detected the level of RanBP3 in CML and found an elevated RanBP3 expression in CML compared with control. Then we used shRNA lentivirus to down-regulated RanBP3 in imatinib sensitive K562 cells and resistant K562/G01 cells and found RanBP3 silencing inhibited cell proliferation by up-regulating p21, induced caspase3-related cell apoptosis, and enhanced the drug sensitivity of IM in vitro. Notably, we observed that RanBP3 silencing restored imatinib sensitivity of K562 cells in NOD/SCID mice. Mechanistically, the nuclear aggregation of SMAD2/3 revealed that tumor suppressor axis (TGF-β)-SMAD2/3-p21 was the anti-proliferation program related to RanBP3 knockdown, and the decrease of cytoplasmic ERK1/2 caused by RanBP3 interference leaded to the down-regulation of anti-apoptosis protein p(Ser112)-BAD, which was the mechanism of increased cell apoptosis and enhanced chemosensitivity to imatinib in CML. In summary, this study revealed the expression and potential role of RanBP3 in CML, suggesting that targeting RanBP3 alone or combined with TKIs could improve the clinical response of CML.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Yuhang Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyun Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Mou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Abd El hafez A. Nuclear Localization of SMAD3 as an Independent Predictor of Recurrence in Ovarian Adult Granulosa Cell Tumor. JOURNAL OF OBSTETRICS, GYNECOLOGY AND CANCER RESEARCH 2021; 7:38-44. [DOI: 10.30699/jogcr.7.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Chernyakov D, Groß A, Fischer A, Bornkessel N, Schultheiss C, Gerloff D, Edemir B. Loss of RANBP3L leads to transformation of renal epithelial cells towards a renal clear cell carcinoma like phenotype. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:226. [PMID: 34233711 PMCID: PMC8265145 DOI: 10.1186/s13046-021-01982-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/16/2021] [Indexed: 01/21/2023]
Abstract
Background Renal cell carcinomas (RCC) are characterized by the deregulation of several hundred hyperosmolality-responsive genes. High expression of a subset of these genes including the Ran binding protein 3 like (RANBP3L) is linked to a favorable prognostic outcome in RCC. However, the cellular function of RANBP3L remains largely unknown. Methods We used CRISPR/Cas9-mediated gene editing to generate functional deletions of the Ranbp3l and nuclear factor of activated T cells 5 (Nfat5) gene loci in a murine renal cell line. The NFAT5-KO cells were used to assess the regulation of Ranbp3l by NFAT5 using immunofluorescence, RNA-Seq and promoter assays. RANBP3L-deficient cells were analyzed for changes in cell morphology, proliferation, migration and colony-forming capacity using immunofluorescence and live cell imaging. RANPB3L-dependent changes in gene expression were identified by RNA-Seq. Results We show that NFAT5 directly regulates Ranpb3l under hyperosmotic conditions by binding its promoter. Functional analysis of RANBP3L-deficient cells revealed a loss of epithelial structure, an increased cell migration behavior and colony forming capacity, accompanied by massive alterations in gene expression, all of which are hallmarks for tumor cells. Strikingly, a RANBP3L dependent signature of 60 genes separated samples with clear cell carcinoma (KIRC) from papillary (KIRP), chromophobe renal carcinoma (KICH) and healthy tissue. Conclusions Loss of RANBP3L induces a tumor like phenotype resembles RCC, especially KIRC, on the morphological and gene expression level and might promote tumor development and progression. Therapeutic reconstitution or elevation of osmoregulated RANBP3L expression might represent a novel treatment strategy for RCC or KIRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01982-y.
Collapse
Affiliation(s)
- Dmitry Chernyakov
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Groß
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Annika Fischer
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicola Bornkessel
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiss
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. .,Current address: Klinik für Innere Medizin IV, Hämatologie und Onkologie, Universitätsklinikum Halle (Saale), Halle (Saale), Germany.
| |
Collapse
|
13
|
Cai C, Gu S, Yu Y, Zhu Y, Zhang H, Yuan B, Shen L, Yang B, Feng X. PRMT5 Enables Robust STAT3 Activation via Arginine Symmetric Dimethylation of SMAD7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003047. [PMID: 34026434 PMCID: PMC8132155 DOI: 10.1002/advs.202003047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Indexed: 05/30/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the type II arginine methyltransferase that catalyzes the mono- and symmetrical dimethylation of protein substrates at the arginine residues. Emerging evidence reveals that PRMT5 is involved in the regulation of tumor cell proliferation and cancer development. However, the exact role of PRMT5 in human lung cancer cell proliferation and the underlying molecular mechanism remain largely elusive. Here, it is shown that PRMT5 promotes lung cancer cell proliferation through the Smad7-STAT3 axis. Depletion or inhibition of PRMT5 dramatically dampens STAT3 activation and thus suppresses the proliferation of human lung cancer cells. Furthermore, depletion of Smad7 blocks PRMT5-mediated STAT3 activation. Mechanistically, PRMT5 binds to and methylates Smad7 on Arg-57, enhances Smad7 binding to IL-6 co-receptor gp130, and consequently ensures robust STAT3 activation. The findings position PRMT5 as a critical regulator of STAT3 activation, and suggest it as a potential therapeutic target for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Congcong Cai
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - HanChenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Second Affiliated HospitalZhejiang UniversityHangzhouZhejiang310009China
| |
Collapse
|
14
|
Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, Zeng J, Wong KH, Di L, Wong AHH, Xu X, Deng CX. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Am J Cancer Res 2021; 11:2442-2459. [PMID: 33500735 PMCID: PMC7797698 DOI: 10.7150/thno.46460] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer growth is usually accompanied by metastasis which kills most cancer patients. Here we aim to study the effect of cisplatin at different doses on breast cancer growth and metastasis. Methods: We used cisplatin to treat breast cancer cells, then detected the migration of cells and the changes of epithelial-mesenchymal transition (EMT) markers by migration assay, Western blot, and immunofluorescent staining. Next, we analyzed the changes of RNA expression of genes by RNA-seq and confirmed the binding of activating transcription factor 3 (ATF3) to cytoskeleton related genes by ChIP-seq. Thereafter, we combined cisplatin and paclitaxel in a neoadjuvant setting to treat xenograft mouse models. Furthermore, we analyzed the association of disease prognosis with cytoskeletal genes and ATF3 by clinical data analysis. Results: When administered at a higher dose (6 mg/kg), cisplatin inhibits both cancer growth and metastasis, yet with strong side effects, whereas a lower dose (2 mg/kg) cisplatin blocks cancer metastasis without obvious killing effects. Cisplatin inhibits cancer metastasis through blocking early steps of EMT. It antagonizes transforming growth factor beta (TGFβ) signaling through suppressing transcription of many genes involved in cytoskeleton reorganization and filopodia formation which occur early in EMT and are responsible for cancer metastasis. Mechanistically, TGFβ and fibronectin-1 (FN1) constitute a positive reciprocal regulation loop that is critical for activating TGFβ/SMAD3 signaling, which is repressed by cisplatin induced expression of ATF3. Furthermore, neoadjuvant administration of cisplatin at 2 mg/kg in conjunction with paclitaxel inhibits cancer growth and blocks metastasis without causing obvious side effects by inhibiting colonization of cancer cells in the target organs. Conclusion: Thus, cisplatin prevents breast cancer metastasis through blocking early EMT, and the combination of cisplatin and paclitaxel represents a promising therapy for killing breast cancer and blocking tumor metastasis.
Collapse
|
15
|
Long J, Galvan DL, Mise K, Kanwar YS, Li L, Poungavrin N, Overbeek PA, Chang BH, Danesh FR. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J Biol Chem 2020; 295:15840-15852. [PMID: 32467232 PMCID: PMC7681008 DOI: 10.1074/jbc.ra120.013228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in a variety of biological activities of the cell. However, less is known about how lncRNAs respond to environmental cues and what transcriptional mechanisms regulate their expression. Studies from our laboratory have shown that the lncRNA Tug1 (taurine upregulated gene 1) is crucial for the progression of diabetic kidney disease, a major microvascular complication of diabetes. Using a combination of proximity labeling with the engineered soybean ascorbate peroxidase (APEX2), ChIP-qPCR, biotin-labeled oligonucleotide pulldown, and classical promoter luciferase assays in kidney podocytes, we extend our initial observations in the current study and now provide a detailed analysis on a how high-glucose milieu downregulates Tug1 expression in podocytes. Our results revealed an essential role for the transcription factor carbohydrate response element binding protein (ChREBP) in controlling Tug1 transcription in the podocytes in response to increased glucose levels. Along with ChREBP, other coregulators, including MAX dimerization protein (MLX), MAX dimerization protein 1 (MXD1), and histone deacetylase 1 (HDAC1), were enriched at the Tug1 promoter under high-glucose conditions. These observations provide the first characterization of the mouse Tug1 promoter's response to the high-glucose milieu. Our findings illustrate a molecular mechanism by which ChREBP can coordinate glucose homeostasis with the expression of the lncRNA Tug1 and further our understanding of dynamic transcriptional regulation of lncRNAs in a disease state.
Collapse
Affiliation(s)
- Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paul A Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
16
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
17
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 508] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
18
|
Zhang X, Zhou Y, Yu X, Huang Q, Fang W, Li J, Bonventre JV, Sukhova GK, Libby P, Shi GP. Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis. iScience 2019; 19:607-622. [PMID: 31446224 PMCID: PMC6715892 DOI: 10.1016/j.isci.2019.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor beta (TGF-β) signaling contributes to tissue fibrosis. Here we demonstrate that TGF-β enhances CatS and CatK expression but reduces CatB and CatL expression in mouse kidney tubular epithelial cells (TECs). CatS- and CatK deficiency reduces TEC nuclear membrane importer importin-β expression, Smad-2/3 activation, and extracellular matrix (ECM) production. Yet CatB- and CatL-deficiency displays the opposite observations with reduced nuclear membrane exporter RanBP3 expression. CatS and CatK form immunocomplexes with the importin-β and RanBP3 more effectively than do CatB and CatL. On the plasma membrane, CatS and CatK preferentially form immunocomplexes with and activate TGF-β receptor-2, whereas CatB and CatL form immunocomplexes with and inactivate TGF-β receptor-1. Unilateral ureteral obstruction-induced renal injury tests differential cathepsin activities in TGF-β signaling and tissue fibrosis. CatB- or CatL-deficiency exacerbates fibrosis, whereas CatS- or CatK-deficiency protects kidneys from fibrosis. These cathepsins exert different effects in the TGF-β signaling cascade independent of their proteolytic properties.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Zhou
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Huang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqian Fang
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Jie Li
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-7, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Yuan B, Liu J, Cao J, Yu Y, Zhang H, Wang F, Zhu Y, Xiao M, Liu S, Ye Y, Ma L, Xu D, Xu N, Li Y, Zhao B, Xu P, Jin J, Xu J, Chen X, Shen L, Lin X, Feng X. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity. EMBO J 2019; 38:e99945. [PMID: 31304624 PMCID: PMC6627230 DOI: 10.15252/embj.201899945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
TGF-β controls a variety of cellular functions during development. Abnormal TGF-β responses are commonly found in human diseases such as cancer, suggesting that TGF-β signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-β signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-β type I receptor (TβRI) through attenuating the interaction between Smurf2 and TβRI. Consequently, PTPN3 facilitates TGF-β-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-β signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-β signaling during normal physiology and pathogenesis.
Collapse
Affiliation(s)
- Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jinquan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Sisi Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Youqiong Ye
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Le Ma
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Dewei Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Jianming Xu
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Xi Chen
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xia Lin
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Michael DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
20
|
Ma P, Song NN, Li Y, Zhang Q, Zhang L, Zhang L, Kong Q, Ma L, Yang X, Ren B, Li C, Zhao X, Li Y, Xu Y, Gao X, Ding YQ, Mao B. Fine-Tuning of Shh/Gli Signaling Gradient by Non-proteolytic Ubiquitination during Neural Patterning. Cell Rep 2019; 28:541-553.e4. [DOI: 10.1016/j.celrep.2019.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/08/2018] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
|
21
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
22
|
Zhao Y, Liu J, Chen F, Feng XH. C-terminal domain small phosphatase-like 2 promotes epithelial-to-mesenchymal transition via Snail dephosphorylation and stabilization. Open Biol 2019; 8:rsob.170274. [PMID: 29618518 PMCID: PMC5936716 DOI: 10.1098/rsob.170274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cellular reprogramming process converting epithelial cells into mesenchymal cell morphology. Snail is a critical regulator of EMT by both suppressing epithelial gene expression and promoting mesenchymal gene expression. Expression and activity of Snail are tightly controlled at transcriptional and post-translational levels. It has previously been reported that Snail undergoes phosphorylation and ubiquitin-dependent proteasome degradation. Here, we report nuclear phosphatase SCP4/CTDSPL2 acts as a novel Snail phosphatase. SCP4 physically interacts with and directly dephosphorylates Snail. SCP4-mediated dephosphorylation of Snail suppresses the ubiquitin-dependent proteasome degradation of Snail and consequently enhances TGFβ-induced EMT. The knockdown of SCP4 in MCF10A mammary epithelial cells leads to attenuated cell migration. Collectively, our finding demonstrates that SCP4 plays a critical role in EMT through Snail dephosphorylation and stabilization.
Collapse
Affiliation(s)
- Yulan Zhao
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jinquan Liu
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fenfang Chen
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xin-Hua Feng
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China .,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
24
|
Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1170-1181. [PMID: 30639224 DOI: 10.1016/j.bbadis.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4-/- mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4-/- mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4-/- mice, yet fibroblasts from Mcpt4-/- mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.
Collapse
|
25
|
Liu J, Zhao M, Yuan B, Gu S, Zheng M, Zou J, Jin J, Liu T, Feng XH. WDR74 functions as a novel coactivator in TGF-β signaling. J Genet Genomics 2018; 45:639-650. [PMID: 30594465 DOI: 10.1016/j.jgg.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
Smads are critical intracellular signal transducers for transforming growth factor-β (TGF-β) in mammalian cells. In this study, we have identified WD repeat-containing protein 74 (WDR74) as a novel transcriptional coactivator for Smads in the canonical TGF-β signaling pathway. Through direct interactions with Smad proteins, WDR74 enhances TGF-β-mediated phosphorylation and nuclear accumulation of Smad2 and Smad3. Consequently, WDR74 enables stronger transcriptional responses and more robust TGF-β-induced physiological responses. Our findings have elucidated a critical role of WDR74 in regulating TGF-β signaling.
Collapse
Affiliation(s)
- Jinquan Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meiling Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bo Yuan
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuchen Gu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jian Zou
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ting Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Molecular & Cellular Biology and Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Huang F, Shi Q, Li Y, Xu L, Xu C, Chen F, Wang H, Liao H, Chang Z, Liu F, Zhang XHF, Feng XH, Han JDJ, Luo S, Chen YG. HER2/EGFR-AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Res 2018; 78:6073-6085. [PMID: 30171053 DOI: 10.1158/0008-5472.can-18-0136] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
TGFβ signaling inhibits cell proliferation to block cancer initiation, yet it also enhances metastasis to promote malignancy during breast cancer development. The mechanisms underlying these differential effects are still unclear. Here, we report that HER2/EGFR signaling switches TGFβ function in breast cancer cells from antiproliferation to cancer promotion. Inhibition of HER2/EGFR activity attenuated TGFβ-induced epithelial-mesenchymal transition and migration but enhanced the antiproliferative activity of TGFβ. Activation of HER2/EGFR induced phosphorylation of Smad3 at Ser208 of the linker region through AKT, which promoted the nuclear accumulation of Smad3 and subsequent expression of the genes related to EMT and cell migration. In contrast, HER2/EGFR signaling had no effects on the nuclear localization of Smad2. Knockdown of Smad3, but not Smad2, blocked TGFβ-induced breast cancer cell migration. We observed a positive correlation between the nuclear localization of Smad3 and HER2 activation in advanced human breast cancers. Our results demonstrate a key role for HER2/EGFR in differential regulation of Smad3 activity to shift TGFβ function from antitumorigenic to protumorigenic during breast cancer development.Significance: TGFβ signaling can shift from inhibiting to promoting breast cancer development via HER2/EGFR AKT-mediated phosphorylation of Smad3 at S208, enhancing its nuclear accumulation and upregulation of EMT-related genes.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6073/F1.large.jpg Cancer Res; 78(21); 6073-85. ©2018 AACR.
Collapse
Affiliation(s)
- Fei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhen Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linlin Xu
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chi Xu
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fenfang Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Hongwei Liao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Chang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiwen Luo
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Sun S, Liu S, Zhang Z, Zeng W, Sun C, Tao T, Lin X, Feng XH. Phosphatase UBLCP1 controls proteasome assembly. Open Biol 2018; 7:rsob.170042. [PMID: 28539385 PMCID: PMC5451543 DOI: 10.1098/rsob.170042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1), an FCP/SCP phosphatase family member, was identified as the first proteasome phosphatase. UBLCP1 binds to proteasome subunit Rpn1 and dephosphorylates the proteasome in vitro. However, it is still unclear which proteasome subunit(s) are the bona fide substrate(s) of UBLCP1 and the precise mechanism for proteasome regulation remains elusive. Here, we show that UBLCP1 selectively binds to the 19S regulatory particle (RP) through its interaction with Rpn1, but not the 20S core particle (CP) or the 26S proteasome holoenzyme. In the RP, UBLCP1 dephosphorylates the subunit Rpt1, impairs its ATPase activity, and consequently disrupts the 26S proteasome assembly, yet it has no effects on the RP assembly from precursor complexes. The Rpn1-binding and phosphatase activities of UBLCP1 are essential for its function on Rpt1 dephosphorylation and proteasome activity both in vivo and in vitro. Our study establishes the essential role of the UBLCP1/Rpn1/Rpt1 complex in regulating proteasome assembly.
Collapse
Affiliation(s)
- Shuangwu Sun
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sisi Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhengmao Zhang
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wang Zeng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuang Sun
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA
| | - Tao Tao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xia Lin
- Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China .,Michael E. DeBakey, Department of Surgery, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Cao J, Yu Y, Zhang Z, Chen X, Hu Z, Tong Q, Chang J, Feng XH, Lin X. SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation. Diabetes 2018; 67:46-57. [PMID: 28851713 PMCID: PMC5741142 DOI: 10.2337/db17-0546] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022]
Abstract
FoxO1 and FoxO3a (collectively FoxO1/3a) proteins regulate a wide array of cellular processes, including hepatic gluconeogenesis. Phosphorylation of FoxO1/3a is a key event that determines its subcellular location and transcriptional activity. During glucose synthesis, the activity of FoxO1/3a is negatively regulated by Akt-mediated phosphorylation, which leads to the cytoplasmic retention of FoxO1/3a. However, the nuclear phosphatase that directly regulates FoxO1/3a remains to be identified. In this study, we discovered a nuclear phosphatase, SCP4/CTDSPL2 (SCP4), that dephosphorylated FoxO1/3a and promoted FoxO1/3a transcription activity. We found that SCP4 enhanced the transcription of FoxO1/3a target genes encoding PEPCK1 and G6PC, key enzymes in hepatic gluconeogenesis. Ectopic expression of SCP4 increased, while knockdown of SCP4 inhibited, glucose production. Moreover, we demonstrated that gene ablation of SCP4 led to hypoglycemia in neonatal mice. Consistent with the positive role of SCP4 in gluconeogenesis, expression of SCP4 was regulated under pathophysiological conditions. SCP4 expression was induced by glucose deprivation in vitro and in vivo and was elevated in obese mice caused by genetic (Avy) and dietary (high-fat) changes. Thus, our findings provided experimental evidence that SCP4 regulates hepatic gluconeogenesis and could serve as a potential target for the prevention and treatment of diet-induced glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Jin Cao
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Zhengmao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Xi Chen
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Zhaoyong Hu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Xin-Hua Feng
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Li Y, Yang FL, Zhu CF, Tang LM. Effect and mechanism of RNAi targeting WWTR1 on biological activity of gastric cancer cells SGC7901. Mol Med Rep 2017; 17:2853-2860. [PMID: 29207147 PMCID: PMC5783499 DOI: 10.3892/mmr.2017.8192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is essential to develop novel targets and therapeutic approaches for GC, which requires identification of novel functional molecules. WW‑domain containing transcription regulator 1 (WWTR1) may activate many transcriptional factors and exhibit an important role in the development of various tissues in mammals. The results of the present study demonstrated that mRNA and protein levels of WWTR1 are increased in GC tissues and cell lines. The SGC7901 cell line was selected to perform RNA interference (RNAi) targeting WWTR1, and for subsequent study. Compared with control groups (cells without any treatment) and mock groups (cells treated with nonspecific siRNA), cell proliferation of siWWTR1 cells (cells treated with WWTR1 siRNA) was detected using a Cell Counting Kit‑8 assay at 12, 24 and 48 h, and decreased in a time‑dependent manner. Cell cycle and apoptosis status were determined by flow cytometry, and it was demonstrated that G1/S transition was blocked in the cell cycle and apoptosis promoted in siWWTR1 cells, compared with control and mock cells. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to detect the mRNA and protein levels of cell cycle and apoptosis‑associated factors. The expression of Cyclin D1, cancer Myc and B cell lymphoma/leukemia‑2 (Bcl‑2) decreased and Bcl‑2 associated X protein increased significantly in siWWRT1 cells, at the mRNA and protein level, compared with control and mock cells. With the exception of the Hippo pathway, siWWTR1 regulated downstream factors, including mothers against decapentaplegic homolog family member 3 (SMAD3) and inhibitor of DNA binding 1, HLH protein (ID1), HLH protein in the transforming growth factor (TGF)‑β pathway. The expression of asparagine synthetase was decreased whereas ID1, SMAD3 (proteins that participate in intracellular TGF‑β transduction) and betacellulin increased notably in siWWRT1 cells. In conclusion, WWTR1 promotes cell proliferation and inhibits apoptosis of GC cells by regulating cell cycle/apoptosis‑associated factors, and effectors in the TGF‑β pathway.
Collapse
Affiliation(s)
- Yuan Li
- Department of General Surgery, Nanjing Medical University Affiliated Changzhou No. 2 Hospital, Changzhou, Jiangsu 213164, P.R. China
| | - Fang-Liang Yang
- Department of General Surgery, Nanjing Medical University Affiliated Changzhou No. 2 Hospital, Changzhou, Jiangsu 213164, P.R. China
| | - Chun-Fu Zhu
- Department of General Surgery, Nanjing Medical University Affiliated Changzhou No. 2 Hospital, Changzhou, Jiangsu 213164, P.R. China
| | - Li-Ming Tang
- Department of General Surgery, Nanjing Medical University Affiliated Changzhou No. 2 Hospital, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
31
|
Qian X, Xu D, Liu H, Lin X, Yu Y, Kang J, Sheng X, Xu J, Zheng S, Xu D, Qi J. Genetic variants in 5p13.2 and 7q21.1 are associated with treatment for benign prostatic hyperplasia with the α-adrenergic receptor antagonist. Aging Male 2017; 20:250-256. [PMID: 28787260 DOI: 10.1080/13685538.2017.1358261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The etiology of benign prostatic hyperplasia (BPH) has not been well established. The preferred medical treatment for many men with symptomatic benign prostatic hyperplasia is either an α-adrenergic receptor antagonist (α-blocker), or a 5α-reductase inhibitor. Single nucleotide polymorphism (SNP) is a powerful tool for successful implementation of individualized treatment. METHODS Eighteen SNPs associated with drug efficacy in a Chinese population were genotyped in 790 BPH cases (330 aggressive and 460 non-aggressive BPH cases) and 1008 controls. All BPH patients were treated with α-adrenergic blockers for at least 9 months. We tested the associations between tagging single nucleotide polymorphism and BPH risk/aggressiveness, clinical characteristics at baseline, including the International Prostate Symptom Score (IPSS) and total prostate volume, and changes in clinical characteristics after treatment. RESULTS There were nine SNPs associated with BPH risk, clinical progression and therapeutic effect. (1) There were nine tSNPs been chosen in CYP3A4, CYP3A5 and RANBP3L genes. (2) The SNP, rs16902947 in RANBP3L at 5p13.2 (p = .01), was significantly associated with BPH. (3) We found two SNPs, rs16902947 in RANBP3L at 5p13.2 (p = .0388) and rs4646437 in CYP3A4 at 7q21.1 (p = .0325), associated with drug effect. (4) Allele "G" for rs16902947 was found to be risk alleles for BPH risk (OR= 2.357, 95%CI 1.01-1.48). The "A" allele of rs4646437 was associated with lower IPSS at baseline (β= -0.4232, p= .03255). CONCLUSIONS rs16902947, rs16902947 and rs4646437 single nucleotide polymorphisms are significantly associated with the clinical characteristics of benign prostatic hyperplasia and the efficacy of benign prostatic hyperplasia treatment.
Collapse
Affiliation(s)
- Xiaoqiang Qian
- a Urology Department , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ding Xu
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Hailong Liu
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xiaoling Lin
- c Fudan Institute of Urology , Huashan Hospital, Fudan University , Shanghai , China
| | - Yongjiang Yu
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jian Kang
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xujun Sheng
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jianfeng Xu
- c Fudan Institute of Urology , Huashan Hospital, Fudan University , Shanghai , China
- d Program for Personalized Cancer Care , NorthShore University HealthSystem , Evanston , IL , USA
| | - Siqun Zheng
- d Program for Personalized Cancer Care , NorthShore University HealthSystem , Evanston , IL , USA
| | - Danfeng Xu
- a Urology Department , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jun Qi
- b Urology Department , Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
32
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
33
|
Xiao X, Senavirathna LK, Gou X, Huang C, Liang Y, Liu L. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. Physiol Rep 2017; 4:4/17/e12915. [PMID: 27582065 PMCID: PMC5027349 DOI: 10.14814/phy2.12915] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
The accumulation of fibroblasts/myofibroblasts in fibrotic foci is one of the characteristics of idiopathic pulmonary fibrosis (IPF). Enhancer of zeste homolog 2 (EZH2) is the catalytic component of a multiprotein complex, polycomb repressive complex 2, which is involved in the trimethylation of histone H3 at lysine 27. In this study, we investigated the role and mechanisms of EZH2 in the differentiation of fibroblasts into myofibroblasts. We found that EZH2 was upregulated in the lungs of patients with IPF and in mice with bleomycin-induced lung fibrosis. The upregulation of EZH2 occurred in myofibroblasts. The inhibition of EZH2 by its inhibitor 3-deazaneplanocin A (DZNep) or an shRNA reduced the TGF-β1-induced differentiation of human lung fibroblasts into myofibroblasts, as demonstrated by the expression of the myofibroblast markers α-smooth muscle actin and fibronectin, and contractility. DZNep inhibited Smad2/3 nuclear translocation without affecting Smad2/3 phosphorylation. DZNep treatment attenuated bleomycin-induced pulmonary fibrosis in mice. We conclude that EZH2 induces the differentiation of fibroblasts to myofibroblasts by enhancing Smad2/3 nuclear translocation.
Collapse
Affiliation(s)
- Xiao Xiao
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Lakmini K Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| |
Collapse
|
34
|
Wang Y, Feng Q, Ji C, Liu X, Li L, Luo J. RUNX3 plays an important role in mediating the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med 2017; 40:1991-1999. [PMID: 29039519 DOI: 10.3892/ijmm.2017.3155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Although bone morphogenetic protein 9 (BMP9) is highly capable of promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo, the molecular mechanisms involved remain to be fully elucidated. Runt-related transcription factor (RUNX)3 is an essential regulator of osteoblast/chondrocyte maturation. However, the exact role of RUNX3 in BMP9 osteoinductive activity is unknown. In this study, we sought to investigate the functional role of RUNX3 in the BMP9-induced osteogenic differentiation of MSCs. We found that BMP9 upregulated the endogenous expression of RUNX3 in MSCs. The overexpression or/and knockdown of RUNX3 both increased the levels of alkaline phosphatase (ALP) a marker of BMP9-induced early osteogenic differentiation. Nevertheless, matrix mineralization, a marker of BMP9-induced late osteogenic differentiation was enhanced by the overexpression of RUNX3, whereas it was inhibited by the knockdown of RUNX3. The BMP9-induced expression of osteogenic pivotal transcription factors [inhibitor of differentiation (Id)3, distal-less homeobox 5 (DLX5) and RUNX2)] was further increased by the overexpression of RUNX3; however, it was reduced by the knockdown of RUNX3. However, the expression levels of Id1 and Id2 were both enhanced by the overexpression or/and knockdown of RUNX3. The BMP9-induced phosphorylation of Smad1/5/8 was increased with the overexpression of RUNX3, and yet was decreased with the knockdown of RUNX3. Collectively, our findings suggest that RUNX3 is an essential modulator of the BMP9-induced osteoblast lineage differentiation of MSCs.
Collapse
Affiliation(s)
- Yufeng Wang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiaoling Feng
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Caixia Ji
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohua Liu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Li
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Koyama M, Matsuura Y. Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochem Biophys Res Commun 2017; 491:609-613. [DOI: 10.1016/j.bbrc.2017.07.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
|
36
|
Ma P, Ren B, Yang X, Sun B, Liu X, Kong Q, Li C, Mao B. ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus. Open Biol 2017; 7:rsob.170122. [PMID: 28814648 PMCID: PMC5577449 DOI: 10.1098/rsob.170122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance, differentiation and embryonic development. Intracellularly, BMP signalling is mediated by Smad proteins, which are regulated post-transcriptionally through reversible phosphorylation and ubiquitination. ZC4H2 is a small nuclear protein associated with intellectual disability and neural development in humans. Here, we report that ZC4H2 is highly expressed in the developing neural system and is involved in neural patterning and BMP signalling in Xenopus Knockdown of ZC4H2 led to expansion of the expression of the pan neural plate marker Sox2 in Xenopus embryos. In mammalian cells, ZC4H2 promotes BMP signalling and is involved in BMP regulated myogenic and osteogenic differentiation of mouse myoblast cells. Mechanistically, ZC4H2 binds and stabilizes Smad1 and Smad5 proteins through reducing their association with the Smurf ubiquitin ligases and thus their ubiquitination. We also found that a group of ZC4H2 mutations, which have been isolated in patients with intellectual disorders, showed weaker Smad-stabilizing activity, suggesting that the ZC4H2-Smad interaction might contribute to proper neural development in humans.
Collapse
Affiliation(s)
- Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Biyu Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Institute of Health Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Xiangcai Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China
| | - Bin Sun
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, People's Republic of China
| | - Xiaoliang Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, People's Republic of China
| | - Qinghua Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| |
Collapse
|
37
|
Wang P, Ying J, Luo C, Jin X, Zhang S, Xu T, Zhang L, Mi M, Chen D, Tong P, Jin H. Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes. Int J Biol Sci 2017; 13:996-1007. [PMID: 28924381 PMCID: PMC5599905 DOI: 10.7150/ijbs.19986] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2flox/flox conditional knockout (KO) mice (Bmp2Col2Cre) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre- control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2Col2Creconditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing.
Collapse
Affiliation(s)
- Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Cheng Luo
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Xing Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,Department of Orthopaedics and Traumatology, Wangjiang Sub-District Community Health Service Centre, Hangzhou 310016, Zhejiang Province, China
| | - Shanxing Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Taotao Xu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Lei Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Meng Mi
- Department of Traumatology, Beijing Jishuitan Hospital, 100035, Beijing, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
38
|
Ji C, Liu X, Xu L, Yu T, Dong C, Luo J. RUNX1 Plays an Important Role in Mediating BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells Line C3H10T1/2, Murine Multi-Lineage Cells Lines C2C12 and MEFs. Int J Mol Sci 2017. [PMID: 28644396 PMCID: PMC5535841 DOI: 10.3390/ijms18071348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As one of the least studied bone morphogenetic proteins (BMPs), BMP9 is highly capable of promoting osteogenic differentiation. However, the underlying mechanism involved remains largely unknown. Recent studies have demonstrated that RUNX1 (runt-related transcription factor 1) is essential in osteoblast/chondrocyte maturation. In this study, we investigated the function of RUNX1 in BMP9-induced osteogenic of murine mesenchymal stem cell line (C3H10T1/2) and murine multi-lineage cell lines (C2C12 and MEFs). Our data showed that BMP9 promoted the endogenous expression of RUNX1 in C3H10T1/2, C2C12 and MEFs. Moreover, RUNX1 was probably a direct target of BMP9/Smad signaling. BMP9-induced osteogenic differentiation was enhanced by overexpression of RUNX1, whereas inhibited by knockdown RUNX1 in C3H10T1/2, C2C12 and MEFs. Further mechanism studies demonstrated that RUNX1 might affect BMP9-induced phosphorylation of Smad1/5/8, but not the phosphorylation of p38 and ERK1/2.Our results suggest that RUNX1 may be an essential modulator in BMP9- induced osteogenic differentiation of MSCs (Mesenchymal stem cells).
Collapse
Affiliation(s)
- Caixia Ji
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| | - Xiaohua Liu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| | - Li Xu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| | - Tingting Yu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| | - Chaoqun Dong
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| | - Jinyong Luo
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016,China.
| |
Collapse
|
39
|
Zhu Y, Gu J, Zhu T, Jin C, Hu X, Wang X. Crosstalk between Smad2/3 and specific isoforms of ERK in TGF-β1-induced TIMP-3 expression in rat chondrocytes. J Cell Mol Med 2017; 21:1781-1790. [PMID: 28230313 PMCID: PMC5571561 DOI: 10.1111/jcmm.13099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.
Collapse
Affiliation(s)
- Yanhui Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianhua Gu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chen Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaopeng Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Xu P, Lin X, Feng XH. Posttranslational Regulation of Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022087. [PMID: 27908935 DOI: 10.1101/cshperspect.a022087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor β (TGF-β) family signaling dictates highly complex programs of gene expression responses, which are extensively regulated at multiple levels and vary depending on the physiological context. The formation, activation, and destruction of two major functional complexes in the TGF-β signaling pathway (i.e., the TGF-β receptor complexes and the Smad complexes that act as central mediators of TGF-β signaling) are direct targets for posttranslational regulation. Dysfunction of these complexes often leads or contributes to pathogenesis in cancer and fibrosis and in cardiovascular, and autoimmune diseases. Here we discuss recent insights into the roles of posttranslational modifications in the functions of the receptor-activated Smads in the common Smad4 and inhibitory Smads, and in the control of the physiological responses to TGF-β. It is now evident that these modifications act as decisive factors in defining the intensity and versatility of TGF-β responsiveness. Thus, the characterization of posttranslational modifications of Smads not only sheds light on how TGF-β controls physiological and pathological processes but may also guide us to manipulate the TGF-β responses for therapeutic benefits.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
41
|
Liu S, Long J, Yuan B, Zheng M, Xiao M, Xu J, Lin X, Feng XH. SUMO Modification Reverses Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF-β Responses. J Biol Chem 2016; 291:24418-24430. [PMID: 27703003 DOI: 10.1074/jbc.m116.755850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
SNIP1 (Smad nuclear interacting protein 1) is a transcription repressor for the TGF-β and NF-κB signaling pathways through disrupting the recruitment of co-activator p300. However, it is unclear how the functions of SNIP1 in the TGF-β signaling pathway are controlled. Our present studies show that SNIP1 is covalently modified by small ubiquitin-like modifier (SUMO) in vitro and in vivo at three lysine sites: Lys5, Lys30, and Lys108, with Lys30 being the major SUMO modification site. SUMOylation of SNIP1 is enhanced by SUMO E3 ligase PIAS proteins and inhibited by SUMO proteases SENP1/2. Furthermore, we find that SUMOylation of SNIP1 attenuates its inhibitory effect in TGF-β signaling because the SUMO-conjugated form of SNIP1 exhibits impaired ability to disrupt the formation of Smad complex and the interaction between p300 and Smads. Subsequently, SUMOylation of SNIP1 leads to the loss of SNIP1-mediated inhibition on expression of the TGF-β target genes PAI-1 and MMP2 and eventually enhances TGF-β-regulated cell migration and invasion.
Collapse
Affiliation(s)
- Sisi Liu
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China,; the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, and; the Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jianyin Long
- the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, and
| | - Bo Yuan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingjie Zheng
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mu Xiao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- the Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Xia Lin
- the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, and
| | - Xin-Hua Feng
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China,; the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, and; the Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
42
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, Lin X, Feng XH. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene 2016; 35:4388-98. [PMID: 26616859 PMCID: PMC4885808 DOI: 10.1038/onc.2015.446] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates transforming growth factor-β (TGF-β)-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation.
Collapse
Affiliation(s)
- Gaohang Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuang Sun
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixing Zhan
- Institute of Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Miret N, Pontillo C, Ventura C, Carozzo A, Chiappini F, Kleiman de Pisarev D, Fernández N, Cocca C, Randi A. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion. Toxicology 2016; 366-367:20-31. [PMID: 27519288 DOI: 10.1016/j.tox.2016.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell assay) through the Smad, JNK, and p38 pathways, while ERK1/2 is only involved in HCB-induced cell migration. These results demonstrate that HCB modulates the crosstalk between AhR and TGF-β1 and consequently exacerbates a pro-migratory phenotype in MDA-MB-231 cells, which contributes to a high degree of malignancy. Taken together, our findings help to characterize the molecular mechanism underlying the effects of HCB on breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Clara Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Alejandro Carozzo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Natalia Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Liu T, Zhao M, Liu J, He Z, Zhang Y, You H, Huang J, Lin X, Feng XH. Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-β responses. Oncogene 2016; 36:362-372. [PMID: 27270427 PMCID: PMC5140778 DOI: 10.1038/onc.2016.204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022]
Abstract
Smad proteins are central mediators in the canonical transforming growth factor-β (TGF-β) signaling pathway in mammalian cells. We report here that bromodomain-containing protein 7 (BRD7) functions as a novel transcription coactivator for Smads in TGF-β signaling. BRD7 forms a TGF-β inducible complex with Smad3/4 through its N-terminal Smad-binding domain. BRD7 simultaneously binds to acetylated histones to promote Smad-chromatin association, and associates with histone acetyltransferase p300 to enhance Smad transcriptional activity. Ectopic expression of BRD7, but not its mutants defective in Smad binding, enhances TGF-β transcriptional, tumor suppressing and epithelial-mesenchymal transition (EMT) responses. Conversely, depletion of BRD7 inhibits TGF-β responses. Thus, our study provides compelling evidence for a new function of BRD7 in fine-tuning TGF-β physiological responses.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meiling Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinquan Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhou He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ye Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology and Innovation Center for Cell Signaling Network, College of Life Sciences, Xiamen, Fujian 361102, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Michael E. DeBakey Department of Surgery and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
RanBP3 Regulates Melanoma Cell Proliferation via Selective Control of Nuclear Export. J Invest Dermatol 2016; 136:264-74. [PMID: 26763446 DOI: 10.1038/jid.2015.401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 01/12/2023]
Abstract
Chromosome region maintenance 1-mediated nucleocytoplasmic transport has been shown as a potential anticancer target in various malignancies. However, the role of the most characterized chromosome region maintenance 1 cofactor ran binding protein 3 (RanBP3) in cancer cell biology has never been investigated. Utilizing a loss-of-function experimental setting in a vast collection of genetically varied melanoma cell lines, we observed the requirement of RanBP3 in melanoma cell proliferation and survival. Mechanistically, we suggest the reinstatement of transforming growth factor-β (TGF-β)-Smad2/3-p21(Cip1) tumor-suppressor axis as part of the RanBP3 silencing-associated antiproliferative program. Employing extensive nuclear export sequence analyses and immunofluorescence-based protein localization studies, we further present evidence suggesting the requirement of RanBP3 function for the nuclear exit of the weak nuclear export sequence-harboring extracellular signal-regulated kinase protein, although it is dispensable for general CRM1-mediated nuclear export of strong nuclear export sequence-harboring cargoes. Rendering mechanistic support to RanBP3 silencing-mediated apoptosis, consequent to extracellular signal-regulated kinase nuclear entrapment, we observed increased levels of cytoplasmically restricted nonphosphorylated/active proapoptotic Bcl-2-antagonist of cell death (BAD) protein. Last, we present evidence suggesting the frequently activated mitogen-activated protein kinase signaling in melanoma as a potential founding basis for a deregulated post-translational control of RanBP3 activity. Collectively, the presented data suggest RanBP3 as a potential target for therapeutic intervention in human melanoma.
Collapse
|
47
|
Aasebø E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Curr Pharm Biotechnol 2016; 17:52-70. [PMID: 26306748 PMCID: PMC5388801 DOI: 10.2174/1389201016666150826115626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging.
Collapse
Affiliation(s)
| | | | | | | | - Maria Hernandez-Valladares
- Department of Biomedicine, Faculty of Medicine, Building for Basic Biology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
48
|
Liu X, Chen Z, Ouyang G, Song T, Liang H, Liu W, Xiao W. ELL Protein-associated Factor 2 (EAF2) Inhibits Transforming Growth Factor β Signaling through a Direct Interaction with Smad3. J Biol Chem 2015; 290:25933-45. [PMID: 26370086 DOI: 10.1074/jbc.m115.663542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/29/2022] Open
Abstract
A series of in vitro and in vivo studies has shown that EAF2 can affect multiple signaling pathways involved in cellular processes. However, the molecular mechanisms underlying its effects have remained elusive. Here we report the discovery of a new functional link between EAF2 and TGF-β signaling. Promoter reporter assays indicated that EAF2 suppresses Smad3 transcriptional activity, resulting in inhibition of TGF-β signaling. Coimmunoprecipitation assays showed that EAF2 specifically interacts with Smad3 in vitro and in vivo but not with other Smad proteins. In addition, we observed that EAF2 binding does not alter Smad3 phosphorylation but causes Smad3 cytoplasmic retention, competes with Smad4 for binding to Smad3, and prevents p300-Smad3 complex formation. Furthermore, we demonstrated that EAF2 suppresses both TGF-β-induced G1 cell cycle arrest and TGF-β-induced cell migration. This study identifies and characterizes a novel repressor of TGF-β signaling.
Collapse
Affiliation(s)
- Xing Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhu Chen
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Gang Ouyang
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tieshan Song
- Hubei University of Science and Technology, Xianning 437100, China, and
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,
| |
Collapse
|
49
|
Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Mol Cell Biol 2015; 35:1700-11. [PMID: 25755279 DOI: 10.1128/mcb.00121-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.
Collapse
|
50
|
Abstract
Activin/Nodal growth factors control a broad range of biological processes, including early cell fate decisions, organogenesis and adult tissue homeostasis. Here, we provide an overview of the mechanisms by which the Activin/Nodal signalling pathway governs stem cell function in these different stages of development. We describe recent findings that associate Activin/Nodal signalling to pathological conditions, focusing on cancer stem cells in tumorigenesis and its potential as a target for therapies. Moreover, we will discuss future directions and questions that currently remain unanswered on the role of Activin/Nodal signalling in stem cell self-renewal, differentiation and proliferation.
Collapse
Affiliation(s)
- Siim Pauklin
- Anne McLaren Laboratory For Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, West Forvie Building, Robinson Way, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Anne McLaren Laboratory For Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, West Forvie Building, Robinson Way, University of Cambridge, Cambridge CB2 0SZ, UK
| |
Collapse
|