1
|
Wang Z, Pan BS, Manne RK, Chen J, Lv D, Wang M, Tran P, Weldemichael T, Yan W, Zhou H, Martinez GM, Shao J, Hsu CC, Hromas R, Zhou D, Qin Z, Lin HK, Li HY. CD36-mediated endocytosis of proteolysis-targeting chimeras. Cell 2025:S0092-8674(25)00386-1. [PMID: 40250420 DOI: 10.1016/j.cell.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Passive diffusion does not explain why many drugs are too large and/or too polar for rule-breaking membrane penetration, such as proteolysis-targeting chimeras (PROTACs, generally of a molecular weight > 800 Da). Here, using biotinylated chemical-probe-based target fishing and genetic knockdown/knockin approaches, we discovered that the membrane cluster of differentiation 36 (CD36) binds to and facilitates the uptake and efficacy of diverse PROTACs (e.g., SIM1-Me, MZ1, and clinical ARV-110) and large and/or polar small-molecule drugs (e.g., rapalink-1, rapamycin, navitoclax, birinapant, tubacin, and doxorubicin) via the CD36-mediated early endosome antigen 1 (EEA1)/Ras-related protein 5A (Rab5) endosomal cascade in vitro and/or in vivo. We then devised a novel chemical endocytic medicinal chemistry strategy to improve binding of PROTACs to CD36 using structural modifications via the prodrug approach, markedly enhancing PROTAC anti-tumor efficacy through spontaneously augmenting permeability and solubility.
Collapse
Affiliation(s)
- Zhengyu Wang
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Jungang Chen
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, School of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology, Center for Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Minmin Wang
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Phuc Tran
- Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tsigereda Weldemichael
- Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wei Yan
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hongfei Zhou
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gloria M Martinez
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jingwei Shao
- Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Che-Chia Hsu
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Robert Hromas
- Department of Medicine and the Mays Cancer, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, Center for Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhiqiang Qin
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, School of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA.
| | - Hong-Yu Li
- Department of Pharmacology, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
2
|
Mulumba M, Le C, Schelsohn E, Namkung Y, Laporte SA, Febbraio M, Servant MJ, Chemtob S, Lubell WD, Marleau S, Ong H. Selective Azapeptide CD36 Ligand MPE-298 Regulates oxLDL-LOX-1-Mediated Inflammation and Mitochondrial Oxidative Stress in Macrophages. Cells 2025; 14:385. [PMID: 40072113 PMCID: PMC11898605 DOI: 10.3390/cells14050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed. After binding to CD36, MPE-298 was rapidly internalized by and simultaneously induced CD36 endocytosis through activation of the Lyn and Syk (spleen) tyrosine kinases. Within this internalized complex, MPE-298 inhibited oxLDL/LOX-1-induced chemokine ligand 2 (CCL2) secretion, abolished the production of mtROS, and prevented mitochondrial membrane potential depolarization in macrophages. This occurred through the inhibition of the multiple-component enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by oxLDL-activated LOX-1, which was further supported by the reduced recruitment of the p47phox subunit and small GTPase (Rac) 1/2/3 into the plasma membrane. A new mechanism for alleviating oxLDL-induced oxidative stress and inflammation in macrophages is highlighted using the CD36 ligand MPE-298.
Collapse
Affiliation(s)
- Mukandila Mulumba
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada; (M.M.); (C.L.); (M.J.S.); (S.M.)
| | - Catherine Le
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada; (M.M.); (C.L.); (M.J.S.); (S.M.)
| | - Emmanuelle Schelsohn
- Institut des Sciences Pharmaceutiques de Suisse Occidentale (ISPSO), Section Sciences Pharmaceutiques, Département des Sciences, Université de Genève, 1205 Genève, Switzerland;
| | - Yoon Namkung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (Y.N.); (S.A.L.)
| | - Stéphane A. Laporte
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (Y.N.); (S.A.L.)
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB T6G 2H5, Canada;
| | - Marc J. Servant
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada; (M.M.); (C.L.); (M.J.S.); (S.M.)
| | - Sylvain Chemtob
- Faculté de Médecine, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC H3T 1C5, Canada;
| | - William D. Lubell
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada; (M.M.); (C.L.); (M.J.S.); (S.M.)
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada; (M.M.); (C.L.); (M.J.S.); (S.M.)
| |
Collapse
|
3
|
Bleckwehl T, Babler A, Tebens M, Maryam S, Nyberg M, Bosteen M, Halder M, Shaw I, Fleig S, Pyke C, Hvid H, Voetmann LM, van Buul JD, Sluimer JC, Das V, Baumgart S, Kramann R, Hayat S. Encompassing view of spatial and single-cell RNA sequencing renews the role of the microvasculature in human atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:26-44. [PMID: 39715784 DOI: 10.1038/s44161-024-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
Atherosclerosis is a pervasive contributor to ischemic heart disease and stroke. Despite the advance of lipid-lowering therapies and anti-hypertensive agents, the residual risk of an atherosclerotic event remains high, and developing therapeutic strategies has proven challenging. This is due to the complexity of atherosclerosis with a spatial interplay of multiple cell types within the vascular wall. In this study, we generated an integrative high-resolution map of human atherosclerotic plaques combining single-cell RNA sequencing from multiple studies and spatial transcriptomics data from 12 human specimens with different stages of atherosclerosis. Here we show cell-type-specific and atherosclerosis-specific expression changes and spatially constrained alterations in cell-cell communication. We highlight the possible recruitment of lymphocytes via ACKR1 endothelial cells of the vasa vasorum, the migration of vascular smooth muscle cells toward the lumen by transforming into fibromyocytes and cell-cell communication in the plaque region, indicating an intricate cellular interplay within the adventitia and the subendothelial space in human atherosclerosis.
Collapse
Affiliation(s)
- Tore Bleckwehl
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Anne Babler
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Merel Tebens
- Department of Medical Biochemistry, Vascular Cell Biology Lab at Amsterdam UMC, location AMC, Sanquin Research and Landsteiner Laboratory and Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
| | - Sidrah Maryam
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | | | - Maurice Halder
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac Shaw
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Susanne Fleig
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Charles Pyke
- Pathology & Imaging, Global Drug Development, Novo Nordisk A/S, Måløv, Denmark
| | - Henning Hvid
- Pathology & Imaging, Global Drug Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Vascular Cell Biology Lab at Amsterdam UMC, location AMC, Sanquin Research and Landsteiner Laboratory and Leeuwenhoek Centre for Advanced Microscopy at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, ARIM School for Cardiovascular Sciences, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| | - Vivek Das
- Digital Science and Innovation, Computational Biology - AI & Digital Research, Novo Nordisk A/S, Måløv, Denmark
| | - Simon Baumgart
- Digital Science and Innovation, Computational Biology - AI & Digital Research, Novo Nordisk A/S, Måløv, Denmark
| | - Rafael Kramann
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Sikander Hayat
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
| |
Collapse
|
4
|
Geng X, Xia X, Liang Z, Li S, Yue Z, Zhang H, Guo L, Ma S, Jiang S, Lian X, Zhou J, Sung LA, Wang X, Yao W. Tropomodulin1 exacerbates inflammatory response in macrophages by negatively regulating LPS-induced TLR4 endocytosis. Cell Mol Life Sci 2024; 81:402. [PMID: 39276234 PMCID: PMC11401823 DOI: 10.1007/s00018-024-05424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-β (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-β. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.
Collapse
Affiliation(s)
- Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Xue Xia
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, Jiangsu Province, China
| | - Zhenhui Liang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Shuo Li
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zejun Yue
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Huan Zhang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Guo
- Department of Rehabilitation Medicine, Caoxian People's Hospital, Heze, 274400, Shandong Province, China
| | - Shan Ma
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Siyu Jiang
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Xiang Lian
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Zhang X, Yang YX, Lu JJ, Hou DY, Abudukeyoumu A, Zhang HW, Li MQ, Xie F. Active Heme Metabolism Suppresses Macrophage Phagocytosis via the TLR4/Type I IFN Signaling/CD36 in Uterine Endometrial Cancer. Am J Reprod Immunol 2024; 92:e13916. [PMID: 39166450 DOI: 10.1111/aji.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Uterine endometrial cancer (UEC) is a common gynecological estrogen-dependent carcinoma, usually accompanied by intermenstrual bleeding. Active heme metabolism frequently plays an increasingly important role in many diseases, especially in cancers. Tumor-associated macrophages (TAMs) are the major population in the immune microenvironment of UEC. However, the roles of heme metabolisms in the crosstalk between UEC cells (UECCs) and macrophages are unclear. MATERIALS AND METHODS In our study, by using TCGA database analysis, integration analysis of the protein-protein interaction (PPI) network and sample RNA transcriptome sequencing were done. The expression level of both heme-associated molecules and iron metabolism-related molecules were measured by quantitative real-time polymerase chain reaction. Heme level detection was done through dehydrohorseradish peroxidase assay. In addition to immunohistochemistry, phagocytosis assay of macrophages, immunofluorescence staining, intracellular ferrous iron staining, as well as enzyme-linked immune sorbent assay were performed. RESULTS In the study, we verified that heme accumulation in UECCs is apparently higher than in endometrial epithelium cells. Low expression of succinate dehydrogenase B under the regulation of estrogen contributes to over-production of succinate and heme accumulation in UECC. More importantly, excessive heme in UECCs impaired macrophage phagocytosis by regulation of CD36. Mechanistically, this process is dependent on toll-like receptor (TLR4)/type I interferons alpha (IFN Iα) regulatory axis in macrophage. CONCLUSION Collectively, these findings elucidate that active heme metabolism of UECCs directly decreases phagocytosis by controlling the secretion of TLR4-mediated IFN Iα and the expression of CD36, and further contributing to the immune escape of UEC.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi-Xing Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ding-Yu Hou
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Hong-Wei Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Kandasamy T, Sarkar S, Sen P, Venkatesh D, Ghosh SS. Concurrent inhibition of IR, ITGB1, and CD36 perturbated the interconnected network of energy metabolism and epithelial-to-mesenchymal transition in breast cancer cells. J Cell Biochem 2024; 125:e30574. [PMID: 38704688 DOI: 10.1002/jcb.30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Altered energy metabolism is an emerging hallmark of cancer and plays a pivotal in cell survival, proliferation, and biosynthesis. In a rapidly proliferating cancer, energy metabolism acts in synergism with epithelial-to-mesenchymal transition (EMT), enabling cancer stemness, dissemination, and metastasis. In this study, an interconnected functional network governing energy metabolism and EMT signaling pathways was targeted through the concurrent inhibition of IR, ITGB1, and CD36 activity. A novel multicomponent MD simulation approach was employed to portray the simultaneous inhibition of IR, ITGB1, and CD36 by a 2:1 combination of Pimozide and Ponatinib. Further, in-vitro studies revealed the synergistic anticancer efficacy of drugs against monolayer as well as tumor spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231). In addition, the combination therapy exerted approximately 40% of the apoptotic population and more than 1.5- to 3-fold reduction in the expression of ITGB1, IR, p-IR, IRS-1, and p-AKT in MCF-7 and MDA-MB-231 cell lines. Moreover, the reduction in fatty acid uptake, lipid droplet accumulation, cancer stemness, and migration properties were also observed. Thus, targeting IR, ITGB1, and CD36 in the interconnected network with the combination of Pimozide and Ponatinib represents a promising therapeutic approach for breast cancer.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dheepika Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
7
|
Wang J, Cao H, Yang H, Wang N, Weng Y, Luo H. The function of CD36 in Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1413947. [PMID: 38881887 PMCID: PMC11176518 DOI: 10.3389/fimmu.2024.1413947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Hongwei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yiwei Weng
- Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
8
|
Jiang M, Karsenberg R, Bianchi F, van den Bogaart G. CD36 as a double-edged sword in cancer. Immunol Lett 2024; 265:7-15. [PMID: 38122906 DOI: 10.1016/j.imlet.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Renske Karsenberg
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Nijenborgh 7, Groningen, the Netherlands.
| |
Collapse
|
9
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. Biophys J 2023; 122:3798-3815. [PMID: 37571825 PMCID: PMC10541498 DOI: 10.1016/j.bpj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins' actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cell-wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
10
|
Onyishi CU, Desanti GE, Wilkinson AL, Lara-Reyna S, Frickel EM, Fejer G, Christophe OD, Bryant CE, Mukhopadhyay S, Gordon S, May RC. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat Commun 2023; 14:4895. [PMID: 37580395 PMCID: PMC10425417 DOI: 10.1038/s41467-023-40635-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Guillaume E Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Alex L Wilkinson
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase inflammation thrombose HITH U1176, 94276, Le Kremlin-Bicêtre, France
| | - Clare E Bryant
- University of Cambridge, Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
11
|
Liu J, Wei L, Chen T, Wang H, Luo J, Chen X, Jiang Q, Xi Q, Sun J, Zhang L, Zhang Y. MiR-143 Targets SYK to Regulate NEFA Uptake and Contribute to Thermogenesis in Male Mice. Endocrinology 2023; 164:bqad114. [PMID: 37486737 DOI: 10.1210/endocr/bqad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) and white adipose tissue (WAT) thermogenesis has emerged as an attractive tool for antiobesity. Although miR-143 has been reported to be associated with BAT thermogenesis, its role remains unclear. Here, we found that miR-143 had highest expression in adipose tissue, especially in BAT. During short-term cold exposure or CL316,243 was injected, miR-143 was markedly downregulated in BAT and subcutaneous WAT (scWAT). Moreover, knockout (KO) of miR-143 increases the body temperature of mice upon cold exposure, which may be due to the increased thermogenesis of BAT and scWAT. More importantly, supplementation of miR-143 in BAT of KO mice can inhibit the increase in body temperature in KO mice. Mechanistically, spleen tyrosine kinase was revealed for the first time as a new target of miR-143, and deletion of miR-143 facilitates fatty acid uptake in BAT. In addition, we found that brown adipocytes can promote fat mobilization of white adipocytes, and miR-143 may participate in this process. Meanwhile, we demonstrate that inactivation of adenylate cyclase 9 (AC9) in BAT inhibits thermogenesis through AC9-PKA-AMPK-CREB-UCP1 signaling pathway. Overall, our results reveal a novel function of miR-143 on thermogenesis, and a new functional link of the BAT and WAT.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| |
Collapse
|
12
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525112. [PMID: 36747866 PMCID: PMC9900770 DOI: 10.1101/2023.01.22.525112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. This was however shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins’ actin binding ability, diffusion type and local CA density. It also highlighted the complexity of cell wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes, such as cell migration. Significance Plasma membrane protein organization, an important factor for shaping cellular behaviors, is influenced by cortical actin, the subset of the actin cytoskeleton near the plasma membrane. Yet it is challenging to directly and quantitatively probe this influence. Here, we developed an imaging and analysis approach that combines single-molecule imaging, fluorescent speckle microscopy and computational statistical analysis to characterize and correlate the spatiotemporal organization of plasma membrane proteins and cortical actin. Our approach revealed different relationships between different proteins and cortical actin, and highlighted the complexity of interpreting cell wide actin perturbation experiments. We expect this approach to be widely used to study the influence of cortical actin on different plasma membrane components, especially in actin-dependent processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta; Edmonton, AB, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| |
Collapse
|
13
|
Colicchia M, Schrottmaier WC, Perrella G, Reyat JS, Begum J, Slater A, Price J, Clark JC, Zhi Z, Simpson MJ, Bourne JH, Poulter NS, Khan AO, Nicolson PLR, Pugh M, Harrison P, Iqbal AJ, Rainger GE, Watson SP, Thomas MR, Mutch NJ, Assinger A, Rayes J. S100A8/A9 drives the formation of procoagulant platelets through GPIbα. Blood 2022; 140:2626-2643. [PMID: 36026606 PMCID: PMC10653093 DOI: 10.1182/blood.2021014966] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Joanne C. Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Megan J. Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George E. Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
14
|
Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM, Velasco-Velázquez MA. Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol 2022; 10:1079076. [PMID: 36568966 PMCID: PMC9772993 DOI: 10.3389/fcell.2022.1079076] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
CD36 is highly expressed in diverse tumor types and its expression correlates with advanced stages, poor prognosis, and reduced survival. In cancer cells, CD36: 1) increases fatty acid uptake, reprogramming lipid metabolism; 2) favors cancer cell proliferation, and 3) promotes epithelial-mesenchymal transition. Furthermore, CD36 expression correlates with the expression of cancer stem cell markers and CD36+ cancer cells display increased stemness functional properties, including clonogenicity, chemo- and radioresistance, and metastasis-initiating capability, suggesting CD36 is a marker of the cancer stem cell population. Thus, CD36 has been pointed as a potential therapeutic target in cancer. At present, at least three different types of molecules have been developed for reducing CD36-mediated functions: blocking monoclonal antibodies, small-molecule inhibitors, and compounds that knock-down CD36 expression. Herein, we review the role of CD36 in cancer progression, its participation in stemness control, as well as the efficacy of reported CD36 inhibitors in cancer cell cultures and animal models. Overall, the evidence compiled points that CD36 is a valid target for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
| | - Cecilia Mata-Cruz
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Research and Development in Biotherapeutics Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological products LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Marco A. Velasco-Velázquez
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Abe I, Oguri Y, Verkerke ARP, Monteiro LB, Knuth CM, Auger C, Qiu Y, Westcott GP, Cinti S, Shinoda K, Jeschke MG, Kajimura S. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell 2022; 57:2623-2637.e8. [PMID: 36473459 PMCID: PMC9875052 DOI: 10.1016/j.devcel.2022.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.
Collapse
Affiliation(s)
- Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauar B Monteiro
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yunping Qiu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada; Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E. Crosslinking of membrane CD13 in human neutrophils mediates phagocytosis and production of reactive oxygen species, neutrophil extracellular traps and proinflammatory cytokines. Front Immunol 2022; 13:994496. [PMID: 36439182 PMCID: PMC9686367 DOI: 10.3389/fimmu.2022.994496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Aminopeptidase N, or CD13, is a cell membrane ectopeptidase highly expressed in myeloid cells. Through its enzymatic activity, CD13 regulates the activity of several bioactive peptides, such as endorphins and enkephalins, chemotactic peptides like MCP-1 and IL-8, angiotensin III, bradikinin, etc. In recent years, it has been appreciated that independently of its peptidase activity, CD13 can activate signal transduction pathways and mediate effector functions such as phagocytosis and cytokine secretion in monocytes and macrophages. Although neutrophils are known to express CD13 on its membrane, it is currently unknown if CD13 can mediate effector functions in these cells. Here, we show that in human neutrophils CD13 can mediate phagocytosis, which is dependent on a signaling pathway that involves Syk, and PI3-K. Phagocytosis mediated by CD13 is associated with production of reactive oxygen species (ROS). The level of phagocytosis and ROS production mediated by CD13 are similar to those through FcγRIII (CD16b), a widely studied receptor of human neutrophils. Also, CD13 ligation induces the release of neutrophil extracellular traps (NETs) as well as cytokine secretion from neutrophils. These results support the hypothesis that CD13 is a membrane receptor able to activate effector functions in human neutrophils.
Collapse
Affiliation(s)
| | | | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
17
|
Lawler J. Counter Regulation of Tumor Angiogenesis by Vascular Endothelial Growth Factor and Thrombospondin-1. Semin Cancer Biol 2022; 86:126-135. [PMID: 36191900 DOI: 10.1016/j.semcancer.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
Considerable progress has been made in our understanding of the process of angiogenesis in the context of normal and tumor tissue over the last fifty years. Angiogenesis, like most physiological processes, is carefully controlled by dynamic and opposing effects of positive factors, such as vascular endothelial growth factor (VEGF), and negative factors, such as thrombospondin-1. In most cases, the progression of a small mass of cancerous cells to a life-threatening tumor depends upon the initiation of angiogenesis and involves the dysregulation of the angiogenic balance. Whereas our newfound appreciation for the role of angiogenesis in cancer has opened up new avenues for treatment, the success of these treatments, which have focused almost exclusively on antagonizing the VEGF pathway, has been limited to date. It is anticipated that this situation will improve as more therapeutics that target other pathways are developed, more strategies for combination therapies are advanced, more detailed stratification of patient populations occurs, and a better understanding of resistance to anti-angiogenic therapy is gained.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, The Center for Vascular Biology Research, 99 Brookline Ave, Boston MA 02215, United States.
| |
Collapse
|
18
|
Lorentzen LG, Hansen GM, Iversen KK, Bundgaard H, Davies MJ. Proteomic Characterization of Atherosclerotic Lesions In Situ Using Percutaneous Coronary Intervention Angioplasty Balloons-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:857-864. [PMID: 35443792 DOI: 10.1161/atvbaha.122.317491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Materials extracted from atherosclerotic arteries can disclose data about the molecular pathology of cardiovascular disease, but obtaining such samples is complex and requires invasive surgery. To overcome this barrier, this study investigated whether angioplasty balloons inflated during standard percutaneous coronary interventions retain proteins from treated (dilated) atherosclerotic lesions and whether proteomic analysis of this material could provide data on lesion protein profiles and distinguish between patients with stable and unstable coronary artery disease. METHODS Patients with ST-segment-elevation myocardial infarction and stable angina pectoris were subjected to routine percutaneous coronary interventions. All angioplasty balloons inflated in a coronary artery were collected. Proteins retained on the balloons were extracted and analyzed using shotgun proteomic analysis. RESULTS Proteomics identified and quantified 1365 unique proteins captured on percutaneous coronary intervention balloons. Control balloons inflated in the ascending aorta showed minimal nonspecific protein binding, indicating specificity to the luminal region of atherosclerotic lesions of the diseased artery wall. Clustering and principal component analyses showed that ST-segment-elevation myocardial infarction and stable angina pectoris subjects could be separated by variations in protein content and abundance. We identified 206 proteins as differentially abundant between ST-segment-elevation myocardial infarction and stable angina pectoris subjects. Pathway analysis indicated several enriched processes in the ST-segment-elevation myocardial infarction group involved in neutrophil-mediated immunity and platelet activation. CONCLUSIONS Disease-related proteins from coronary artery lesions adhere to angioplasty balloons and constitute a source of material for proteomic analysis. This approach can identify proteins and processes occurring in unstable coronary atherosclerotic lesions and suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute (L.G.L., M.J.D.), University of Copenhagen, Denmark
| | - Gorm M Hansen
- Department of Cardiology, Rigshospitalet, Capital Region, Copenhagen, Denmark (G.M.H., H.B.)
| | - Kasper K Iversen
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Capital Region, Copenhagen, Denmark (K.K.I.)
| | - Henning Bundgaard
- Department of Clinical Medicine (H.B.), University of Copenhagen, Denmark.,Department of Cardiology, Rigshospitalet, Capital Region, Copenhagen, Denmark (G.M.H., H.B.)
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute (L.G.L., M.J.D.), University of Copenhagen, Denmark
| |
Collapse
|
19
|
Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med 2022; 219:e20211314. [PMID: 35438721 PMCID: PMC9022290 DOI: 10.1084/jem.20211314] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
CD36 is a type 2 cell surface scavenger receptor widely expressed in many immune and non-immune cells. It functions as both a signaling receptor responding to DAMPs and PAMPs, as well as a long chain free fatty acid transporter. Recent studies have indicated that CD36 can integrate cell signaling and metabolic pathways through its dual functions and thereby influence immune cell differentiation and activation, and ultimately help determine cell fate. Its expression along with its dual functions in both innate and adaptive immune cells contribute to pathogenesis of common diseases, including atherosclerosis and tumor progression, which makes CD36 and its downstream effectors potential therapeutic targets. This review comprehensively examines the dual functions of CD36 in a variety of immune cells, especially macrophages and T cells. We also briefly discuss CD36 function in non-immune cells, such as adipocytes and platelets, which impact the immune system via intercellular communication. Finally, outstanding questions in this field are provided for potential directions of future studies.
Collapse
Affiliation(s)
- Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti, Blood Research Institute, Milwaukee, WI
| | - Jue Zhang
- Versiti, Blood Research Institute, Milwaukee, WI
| | - Weiguo Cui
- Versiti, Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti, Blood Research Institute, Milwaukee, WI
| |
Collapse
|
20
|
A New Role of Acute Phase Proteins: Local Production Is an Ancient, General Stress-Response System of Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062972. [PMID: 35328392 PMCID: PMC8954921 DOI: 10.3390/ijms23062972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The prevailing general view of acute-phase proteins (APPs) is that they are produced by the liver in response to the stress of the body as part of a systemic acute-phase response. We demonstrated a coordinated, local production of these proteins upon cell stress by the stressed cells. The local, stress-induced APP production has been demonstrated in different tissues (kidney, breast cancer) and with different stressors (hypoxia, fibrosis and electromagnetic heat). Thus, this local acute-phase response (APR) seems to be a universal mechanism. APP production is an ancient defense mechanism observed in nematodes and fruit flies as well. Local APP production at the tissue level is also supported by sporadic literature data for single proteins; however, the complex, coordinated, local appearance of this stress response has been first demonstrated only recently. Although a number of literature data are available for the local production of single acute-phase proteins, their interpretation as a local, coordinated stress response is new. A better understanding of the role of APPs in cellular stress response may also be of diagnostic/prognostic and therapeutic significance.
Collapse
|
21
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
23
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
24
|
Ceafalan LC, Niculae AM, Ioghen O, Gherghiceanu M, Hinescu ME. Metastatic potential. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:153-173. [DOI: 10.1016/b978-0-12-821789-4.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Banesh S, Layek S, Trivedi DV. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 2022; 243:1-18. [DOI: 10.1016/j.imlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|
26
|
He F, Umrath F, von Ohle C, Reinert S, Alexander D. Analysis of the Influence of Jaw Periosteal Cells on Macrophages Phenotype Using an Innovative Horizontal Coculture System. Biomedicines 2021; 9:biomedicines9121753. [PMID: 34944569 PMCID: PMC8698728 DOI: 10.3390/biomedicines9121753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Jaw periosteum-derived mesenchymal stem cells (JPCs) represent a promising cell source for bone tissue engineering in oral and maxillofacial surgery due to their high osteogenic potential and good accessibility. Our previous work demonstrated that JPCs are able to regulate THP-1-derived macrophage polarization in a direct coculture model. In the present study, we used an innovative horizontal coculture system in order to understand the underlying paracrine effects of JPCs on macrophage phenotype polarization. Therefore, JPCs and THP-1-derived M1/M2 macrophages were cocultured in parallel chambers under the same conditions. After five days of horizontal coculture, flow cytometric, gene and protein expression analyses revealed inhibitory effects on costimulatory and proinflammatory molecules/factors as well as activating effects on anti-inflammatory factors in M1 macrophages, originating from multiple cytokines/chemokines released by untreated and osteogenically induced JPCs. A flow cytometric assessment of DNA synthesis reflected significantly decreased numbers of proliferating M1/M2 cells when cocultured with JPCs. In this study, we demonstrated that untreated and osteogenically induced JPCs are able to switch macrophage polarization from a classical M1 to an alternative M2-specific phenotype by paracrine secretion, and by inhibition of THP-1-derived M1/M2 macrophage proliferation.
Collapse
Affiliation(s)
- Fang He
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Christiane von Ohle
- Department of Conservative Dentistry and Periodontology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
- Correspondence: ; Tel.: +49-7071-298-2418
| |
Collapse
|
27
|
Scavenger receptor MARCO contributes to macrophage phagocytosis and clearance of tumor cells. Exp Cell Res 2021; 408:112862. [PMID: 34626585 DOI: 10.1016/j.yexcr.2021.112862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) is a member of the class A scavenger receptor family which is expressed on the cell surface of macrophages. It is well known that MARCO avidly binds to unopsonized pathogens, leading to its ingestion by macrophages. However, the role of MARCO in the recognition and phagocytosis of tumor cells by macrophages remains poorly understood. In this study, we used lentiviral technology to knockdown and overexpress MARCO and investigated the ability of macrophages to phagocytose tumor cells. Our results showed that MARCO expression was correlated with the ability of macrophages to carry on phagocytosis. MARCO knockdown led to significant decreases in the number of engulfment pseudopodia of macrophages and inhibition of the phagocytosis of tumor cells. On the other hand, MARCO overexpression elevated activity of SYK, PI3K and Rac1 in macrophages, which led to changes in macrophage morphology and enhanced phagocytosis by promoting formation of stress fibers and pseudopodia. By Co-IP analysis we showed that MARCO directly binds to the β5 integrin of SL4 tumor cells. In summary, these results demonstrated the important role for MARCO in demonstrated tumor cells uptake and clearance by macrophages.
Collapse
|
28
|
Goldberg IJ, Cabodevilla AG, Samovski D, Cifarelli V, Basu D, Abumrad NA. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 2021; 329:1-8. [PMID: 34130222 DOI: 10.1016/j.atherosclerosis.2021.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitri Samovski
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
29
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
30
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
31
|
Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol 2021; 9:664696. [PMID: 33869231 PMCID: PMC8044760 DOI: 10.3389/fcell.2021.664696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.
Collapse
Affiliation(s)
| | - Jim Petrik
- University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. NANOMATERIALS 2021; 11:nano11020539. [PMID: 33672587 PMCID: PMC7924066 DOI: 10.3390/nano11020539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023]
Abstract
Previously, we noted that carboxylated multi-walled carbon nanotubes (cMWNTs) coated with Pluronic® F-108 (PF108) bound to and were accumulated by macrophages, but that pristine multi-walled carbon nanotubes (pMWNTs) coated with PF108 were not (Wang et al., Nanotoxicology2018, 12, 677). Subsequent studies with Chinese hamster ovary (CHO) cells that overexpressed scavenger receptor A1 (SR-A1) and with macrophages derived from mice knocked out for SR-A1 provided evidence that SR-A1 was a receptor of PF108-cMWNTs (Wang et al., Nanomaterials (Basel) 2020, 10, 2417). Herein, we replaced the PF108 coat with bovine serum albumin (BSA) to investigate how a BSA corona affected the interaction of multi-walled carbon nanotubes (MWNTs) with cells. Both BSA-coated cMWNTs and pMWNTs bound to and were accumulated by RAW 264.7 macrophages, although the cells bound two times more BSA-coated cMWNT than pMWNTs. RAW 264.7 cells that were deleted for SR-A1 using CRISPR-Cas9 technology had markedly reduced binding and accumulation of both BSA-coated cMWNTs and pMWNTs, suggesting that SR-A1 was responsible for the uptake of both MWNT types. Moreover, CHO cells that ectopically expressed SR-A1 accumulated both MWNT types, whereas wild-type CHO cells did not. One model to explain these results is that SR-A1 can interact with two structural features of BSA-coated cMWNTs, one inherent to the oxidized nanotubes (such as COOH and other oxidized groups) and the other provided by the BSA corona; whereas SR-A1 only interacts with the BSA corona of BSA-pMWNTs.
Collapse
|
33
|
Yusuf B, Mukovozov I, Patel S, Huang YW, Liu GY, Reddy EC, Skrtic M, Glogauer M, Robinson LA. The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Sci Rep 2021; 11:3614. [PMID: 33574432 PMCID: PMC7878733 DOI: 10.1038/s41598-021-83046-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Atherosclerosis is characterized by retention of modified lipoproteins, especially oxidized low density lipoprotein (oxLDL) within the sub-endothelial space of affected blood vessels. Recruited monocyte-derived and tissue-resident macrophages subsequently ingest oxLDL by binding and internalizing oxLDL via scavenger receptors, particularly CD36. The secreted neurorepellent, Slit2, acting through its transmembrane receptor, Roundabout-1 (Robo-1), was previously shown to inhibit recruitment of monocytes into nascent atherosclerotic lesions. The effects of Slit2 on oxLDL uptake by macrophages have not been explored. We report here that Slit2 inhibits uptake of oxLDL by human and murine macrophages, and the resulting formation of foam cells, in a Rac1-dependent and CD36-dependent manner. Exposure of macrophages to Slit2 prevented binding of oxLDL to the surface of cells. Using super-resolution microscopy, we observed that exposure of macrophages to Slit2 induced profound cytoskeletal remodeling with formation of a thick ring of cortical actin within which clusters of CD36 could not aggregate, thereby attenuating binding of oxLDL to the surface of cells. By inhibiting recruitment of monocytes into early atherosclerotic lesions, and the subsequent binding and internalization of oxLDL by macrophages, Slit2 could represent a potent new tool to combat individual steps that collectively result in progression of atherosclerosis.
Collapse
Affiliation(s)
- Bushra Yusuf
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2Z9, Canada
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Guang Ying Liu
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Emily C Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Marko Skrtic
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2Z9, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
34
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
35
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
36
|
Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, Yao Z, Chang L, Pan G, Zhong H, Luo X, Yao K, Sun A, Qian J, Ding Z, Ge J. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 2020; 143:45-61. [PMID: 32988222 DOI: 10.1161/circulationaha.120.046290] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND PCSK9 (proprotein convertase subtilisin/kexin 9), mainly secreted by the liver and released into the blood, elevates plasma low-density lipoprotein cholesterol by degrading low-density lipoprotein receptor. Pleiotropic effects of PCSK9 beyond lipid metabolism have been shown. However, the direct effects of PCSK9 on platelet activation and thrombosis, and the underlying mechanisms, as well, still remain unclear. METHODS We detected the direct effects of PCSK9 on agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbβ3 activation, α-granule release, spreading, and clot retraction. These studies were complemented by in vivo analysis of FeCl3-injured mouse mesenteric arteriole thrombosis. We also investigated the underlying mechanisms. Using the myocardial infarction (MI) model, we explored the effects of PCSK9 on microvascular obstruction and infarct expansion post-MI. RESULTS PCSK9 directly enhances agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbβ3 activation, P-selectin release from α-granules, spreading, and clot retraction. In line, PCSK9 enhances in vivo thrombosis in a FeCl3-injured mesenteric arteriole thrombosis mouse model, whereas PCSK9 inhibitor evolocumab ameliorates its enhancing effects. Mechanism studies revealed that PCSK9 binds to platelet CD36 and thus activates Src kinase and MAPK (mitogen-activated protein kinase)-extracellular signal-regulated kinase 5 and c-Jun N-terminal kinase, increases the generation of reactive oxygen species, and activates the p38MAPK/cytosolic phospholipase A2/cyclooxygenase-1/thromboxane A2 signaling pathways downstream of CD36 to enhance platelet activation, as well. Using CD36 knockout mice, we showed that the enhancing effects of PCSK9 on platelet activation are CD36 dependent. It is important to note that aspirin consistently abolishes the enhancing effects of PCSK9 on platelet activation and in vivo thrombosis. Last, we showed that PCSK9 activating platelet CD36 aggravates microvascular obstruction and promotes MI expansion post-MI. CONCLUSIONS PCSK9 in plasma directly enhances platelet activation and in vivo thrombosis, and MI expansion post-MI, as well, by binding to platelet CD36 and thus activating the downstream signaling pathways. PCSK9 inhibitors or aspirin abolish the enhancing effects of PCSK9, supporting the use of aspirin in patients with high plasma PCSK9 levels in addition to PCSK9 inhibitors to prevent thrombotic complications.
Collapse
Affiliation(s)
- Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Liang Hu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China (L.H., Z.D.)
| | - Jianjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (J.Z., L.C., G.P., Z.D.)
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Xin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Zhifeng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (J.Z., L.C., G.P., Z.D.)
| | - Guanxing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (J.Z., L.C., G.P., Z.D.)
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China (H.Z., X. Luo)
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China (H.Z., X. Luo)
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| | - Zhongren Ding
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China (L.H., Z.D.).,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (J.Z., L.C., G.P., Z.D.)
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (Z.Q., W.Y., D.J., Z.Y., K.Y., A.S., J.Q., J.G.)
| |
Collapse
|
37
|
CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun 2020; 11:4765. [PMID: 32958780 PMCID: PMC7505845 DOI: 10.1038/s41467-020-18565-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Fatty acids (FAs) are essential nutrients, but how they are transported into cells remains unclear. Here, we show that FAs trigger caveolae-dependent CD36 internalization, which in turn delivers FAs into adipocytes. During the process, binding of FAs to CD36 activates its downstream kinase LYN, which phosphorylates DHHC5, the palmitoyl acyltransferase of CD36, at Tyr91 and inactivates it. CD36 then gets depalmitoylated by APT1 and recruits another tyrosine kinase SYK to phosphorylate JNK and VAVs to initiate endocytic uptake of FAs. Blocking CD36 internalization by inhibiting APT1, LYN or SYK abolishes CD36-dependent FA uptake. Restricting CD36 at either palmitoylated or depalmitoylated state eliminates its FA uptake activity, indicating an essential role of dynamic palmitoylation of CD36. Furthermore, blocking endocytosis by targeting LYN or SYK inhibits CD36-dependent lipid droplet growth in adipocytes and high-fat-diet induced weight gain in mice. Our study has uncovered a dynamic palmitoylation-regulated endocytic pathway to take up FAs.
Collapse
|
38
|
Nogieć A, Bzowska M, Demczuk A, Varol C, Guzik K. Phenotype and Response to PAMPs of Human Monocyte-Derived Foam Cells Obtained by Long-Term Culture in the Presence of oxLDLs. Front Immunol 2020; 11:1592. [PMID: 32849539 PMCID: PMC7417357 DOI: 10.3389/fimmu.2020.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cholesterol-laden, foam macrophages constitute the most characteristic component of human atherosclerotic plaques. Persistent uptake of oxLDLs results in accumulation of lipid bodies inside the cells and determines their phenotype and subsequent functions. In this work, we describe the phenotype of human monocyte-derived foam cells obtained by differentiation in the constant presence of oxLDLs for 30 days (prolonged-hMDFCs). Although neither the total cellular nor the cell surface expression of Toll-like receptors (TLR) was regulated by oxLDLs, the prolonged-hMDFCs changed dramatically their responsiveness to TLR ligands and inactivated bacteria. Using multiplex technology, we observed an acute decline in cytokine and chemokine production after surface and endosomal TLR stimulation with the exception of TLR2/6 triggering with agonists Pam2CSK4 and MALP-2. We also noted significant reduction of some surface receptors which can have accessory function in recognition of particulate antigens (CD47, CD81, and CD11b). In contrast, the prolonged-hMDFCs responded to inflammasome activation by LPS/nigericin with extensive, necrotic type cell death, which was partially independent of caspase-1. This pyroptosis-like cell death was aggravated by necrostatin-1 and rapamycin. These findings identify a potential contribution of mature foam cells to inflammatory status by increasing the immunogenic cell death burden. The observed cross-talk between foam cell death pathways may lead to recognition of a potential new marker for atherosclerosis disease severity. Overall, our study demonstrates that, in contrast to other cellular models of foam cells, the prolonged-hMDFCs acquire a functional phenotype which may help understanding the role of foam cells in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Demczuk
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Chen Varol
- The Research Center for Digestive Tract & Liver Diseases, The Tel Aviv Souraski Medical Center, Tel Aviv, Israel
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
39
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
40
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
41
|
Fan Y, Yang J, Li H, Li H, Zhang S, Li X, Song Y, Dang W, Liu L, Cao X, Wang X, Nandakumar KS, Shen X, You Y. WITHDRAWN: SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol 2020:S0828-282X(20)30456-6. [PMID: 32428616 DOI: 10.1016/j.cjca.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jialin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - HaiDong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Xiaoyan Shen
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan You
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, USA.
| |
Collapse
|
42
|
Tepperman A, Zheng DJ, Taka MA, Vrieze A, Le Lam A, Heit B. Customizable live-cell imaging chambers for multimodal and multiplex fluorescence microscopy. Biochem Cell Biol 2020; 98:612-623. [PMID: 32339465 DOI: 10.1139/bcb-2020-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using multiple imaging modalities while performing independent experiments in parallel can greatly enhance the throughput of microscopy-based research, but requires the provision of appropriate experimental conditions in a format that meets the optical requirements of the microscope. Although customized imaging chambers can meet these challenges, the difficulty of manufacturing custom chambers and the relatively high cost and design inflexibility of commercial chambers has limited the adoption of this approach. Herein, we demonstrate the use of 3D printing to produce inexpensive, customized, live-cell imaging chambers that are compatible with a range of imaging modalities, including super-resolution microscopy. In this approach, biocompatible plastics are used to print imaging chambers designed to meet the specific needs of an experiment, followed by adhesion of the printed chamber to a glass coverslip, producing a chamber that is impermeant to liquids and that supports the growth and imaging of cells over multiple days. This approach can also be used to produce moulds for casting microfluidic devices made of polydimethylsiloxane. The utility of these chambers is demonstrated using designs for multiplex microscopy, imaging under shear, chemotaxis, and general cellular imaging. Together, this approach represents an inexpensive yet highly customizable approach for producing imaging chambers that are compatible with modern microscopy techniques.
Collapse
Affiliation(s)
- Adam Tepperman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David Jiao Zheng
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Angela Vrieze
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Austin Le Lam
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.,Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
You Y, Bao WL, Zhang SL, Li HD, Li H, Dang WZ, Zou SL, Cao XY, Wang X, Liu LX, Jiang H, Qu LF, Zheng M, Shen X. Sorting Nexin 10 Mediates Metabolic Reprogramming of Macrophages in Atherosclerosis Through the Lyn-Dependent TFEB Signaling Pathway. Circ Res 2020; 127:534-549. [PMID: 32316875 DOI: 10.1161/circresaha.119.315516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE SNX10 (sorting nexin 10) has been reported to play a critical role in regulating macrophage function and lipid metabolism. OBJECTIVE To investigate the precise role of SNX10 in atherosclerotic diseases and the underlying mechanisms. METHODS AND RESULTS SNX10 expression was compared between human healthy vessels and carotid atherosclerotic plaques. Myeloid cell-specific SNX10 knockdown mice were crossed onto the APOE-/- (apolipoprotein E) background and atherogenesis (high-cholesterol diet-induced) was monitored for 16 weeks. We found that SNX10 expression was increased in atherosclerotic lesions of aortic specimens from humans and APOE-/- mice. Myeloid cell-specific SNX10 deficiency (Δ knockout [KO]) attenuated atherosclerosis progression in APOE-/- mice. The population of anti-inflammatory monocytes/macrophages was increased in the peripheral blood and atherosclerotic lesions of ΔKO mice. In vitro experiments showed that SNX10 deficiency-inhibited foam cell formation through interrupting the internalization of CD36, which requires the interaction of SNX10 and Lyn-AKT (protein kinase B). The reduced Lyn-AKT activation by SNX10 deficiency promoted the nuclear translocation of TFEB (transcription factor EB), thereby enhanced lysosomal biogenesis and LAL (lysosomal acid lipase) activity, resulting in an increase of free fatty acids to fuel mitochondrial fatty acid oxidation. This further promoted the reprogramming of macrophages and shifted toward the anti-inflammatory phenotype. CONCLUSIONS Our data demonstrate for the first time that SNX10 plays a crucial role in diet-induced atherogenesis via the previously unknown link between the Lyn-Akt-TFEB signaling pathway and macrophage reprogramming, suggest that SNX10 may be a potentially promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yan You
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.).,National Institute of Allergy and Infectious, National Institute of Health, Rockville, MD (Y. You)
| | - Wei-Lian Bao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Su-Lin Zhang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hai-Dong Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hui Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Wen-Zhen Dang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Si-Li Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Xin-Yue Cao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Xu Wang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Li-Xin Liu
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Xiaoyan Shen
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| |
Collapse
|
44
|
Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180147. [PMID: 30967001 DOI: 10.1098/rstb.2018.0147] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed 'receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Sasha A Doodnauth
- 1 Princess Margaret Cancer Center, University Health Network , Toronto, ON , Canada M5G 1L7.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada M5G 1L7
| | - Sergio Grinstein
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4.,4 Department of Biochemistry, University of Toronto , 1 King's Circle, Toronto, ON , Canada M5S 1A8.,5 Keenan Research Centre of the Li Ka Shing Knowledge Institute , St. Michael's Hospital, 290 Victoria Street, Toronto, ON , Canada M5C 1N8
| | - Michelle E Maxson
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4
| |
Collapse
|
45
|
Cabrera A, Neculai D, Tran V, Lavstsen T, Turner L, Kain KC. Plasmodium falciparum-CD36 Structure-Function Relationships Defined by Ortholog Scanning Mutagenesis. J Infect Dis 2020; 219:945-954. [PMID: 30335152 DOI: 10.1093/infdis/jiy607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The interaction of Plasmodium falciparum-infected erythrocytes (IEs) with the host receptor CD36 is among the most studied host-parasite interfaces. CD36 is a scavenger receptor that binds numerous ligands including the cysteine-rich interdomain region (CIDR)α domains of the erythrocyte membrane protein 1 family (PfEMP1) expressed on the surface of IEs. CD36 is conserved across species, but orthologs display differential binding of IEs. METHODS In this study, we exploited these differences, combined with the recent crystal structure and 3-dimensional modeling of CD36, to investigate malaria-CD36 structure-function relationships and further define IE-CD36 binding interactions. RESULTS We show that a charged surface in the membrane-distal region of CD36 is necessary for IE binding. Moreover, IE interaction with this binding surface is influenced by additional CD36 domains, both proximal to and at a distance from this site. CONCLUSIONS Our data indicate that subtle sequence and spatial differences in these domains modify receptor conformation and regulate the ability of CD36 to selectively interact with its diverse ligands.
Collapse
Affiliation(s)
- Ana Cabrera
- SAR Laboratories, Sandra Rotman Centre, Toronto General Hospital-University Health Network, Ontario, Canada
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University, School of Basic Medical Sciences, Hangzhou, People's Republic of China
| | - Vanessa Tran
- SAR Laboratories, Sandra Rotman Centre, Toronto General Hospital-University Health Network, Ontario, Canada
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Denmark
| | - Kevin C Kain
- SAR Laboratories, Sandra Rotman Centre, Toronto General Hospital-University Health Network, Ontario, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of TorontoOntarioCanada
| |
Collapse
|
46
|
Huang R, Guo G, Lu L, Fu R, Luo J, Liu Z, Gu Y, Yang W, Zheng Q, Chao T, He L, Wang Y, Niu Z, Wang H, Lawrence T, Malissen M, Malissen B, Liang Y, Zhang L. The three members of the Vav family proteins form complexes that concur to foam cell formation and atherosclerosis. J Lipid Res 2019; 60:2006-2019. [PMID: 31570505 DOI: 10.1194/jlr.m094771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
During foam cell formation and atherosclerosis development, the scavenger receptor CD36 plays critical roles in lipid uptake and triggering of atherogenicity via the activation of Vav molecules. The Vav family includes three highly conserved members known as Vav1, Vav2, and Vav3. As Vav1 and Vav3 were found to exert function in atherosclerosis development, it remains thus to decipher whether Vav2 also plays a role in the development of atherosclerosis. In this study we found that Vav2 deficiency in RAW264.7 macrophages significantly diminished oxidized LDL uptake and CD36 signaling, demonstrating that each Vav protein family member was required for foam cell formation. Genetic disruption of Vav2 in ApoE-deficient C57BL/6 mice significantly inhibited the severity of atherosclerosis. Strikingly, we further found that the genetic deletion of each member of the Vav protein family by CRISPR/Cas9 resulted in a similar alteration of transcriptomic profiles of macrophages. The three members of the Vav proteins were found to form complexes, and genetic ablation of each single Vav molecule was sufficient to prevent endocytosis of CD36. The functional interdependence of the three Vav family members in foam cell formation was due to their indispensable roles in transcriptomic programing, lipid uptake, and activation of the JNK kinase in macrophages.
Collapse
Affiliation(s)
- Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Guo Guo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Rui Fu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Jing Luo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Zhuangzhuang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Wenyi Yang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Qianqian Zheng
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Tianzhu Chao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Le He
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Ying Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, Marseille, France
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan Province, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan Province, China .,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, China
| |
Collapse
|
47
|
Goiko M, de Bruyn JR, Heit B. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking. Biophys J 2019; 114:2887-2899. [PMID: 29925025 DOI: 10.1016/j.bpj.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022] Open
Abstract
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
48
|
Miyake K, Saitoh S, Sato R, Shibata T, Fukui R, Murakami Y. Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. J Leukoc Biol 2019; 106:853-862. [DOI: 10.1002/jlb.mr0119-020r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Shin‐ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Yusuke Murakami
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| |
Collapse
|
49
|
Blackburn JWD, Lau DHC, Liu EY, Ellins J, Vrieze AM, Pawlak EN, Dikeakos JD, Heit B. Soluble CD93 is an apoptotic cell opsonin recognized by α x β 2. Eur J Immunol 2019; 49:600-610. [PMID: 30656676 DOI: 10.1002/eji.201847801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 01/16/2019] [Indexed: 11/11/2022]
Abstract
Efferocytosis is essential for homeostasis and prevention of the inflammatory and autoimmune diseases resulting from apoptotic cell lysis. CD93 is a transmembrane glycoprotein previously implicated in efferocytosis, with mutations in CD93 predisposing patients to efferocytosis-associated diseases. CD93 is a cell surface protein, which is proteolytically shed under inflammatory conditions, but it is unknown how CD93 mediates efferocytosis or whether its efferocytic activity is mediated by the soluble or membrane-bound form. Herein, using cell lines and human monocytes and macrophages, we demonstrate that soluble CD93 (sCD93) potently opsonizes apoptotic cells but not a broad range of microorganisms, whereas membrane-bound CD93 has no phagocytic, efferocytic, or tethering activity. Using mass spectrometry, we identified αx β2 as the receptor that recognizes sCD93, and via deletion mutagenesis determined that sCD93 binds to apoptotic cells via its C-type lectin-like domain and to αx β2 by its EGF-like repeats. The bridging of apoptotic cells to αx β2 markedly enhanced efferocytosis by macrophages and was abrogated by αx β2 knockdown. Combined, these data elucidate the mechanism by which CD93 regulates efferocytosis and identifies a previously unreported opsonin-receptor system utilized by phagocytes for the efferocytic clearance of apoptotic cells.
Collapse
Affiliation(s)
- Jack W D Blackburn
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Darius H C Lau
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Elaine Y Liu
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jessica Ellins
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Angela M Vrieze
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
50
|
Wang QL, Zhuang X, Sriwastva MK, Mu J, Teng Y, Deng Z, Zhang L, Sundaram K, Kumar A, Miller D, Yan J, Zhang HG. Blood exosomes regulate the tissue distribution of grapefruit-derived nanovector via CD36 and IGFR1 pathways. Theranostics 2018; 8:4912-4924. [PMID: 30429877 PMCID: PMC6217058 DOI: 10.7150/thno.27608] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022] Open
Abstract
Tumor-specific delivery of therapeutics is challenging. One of the major hurdles for successfully delivering targeted agents by nanovectors is the filtering role of the liver in rapidly sequestering nanovectors from the circulation. Exosomes, a type of endogenous nanoparticle, circulate continuously in the peripheral blood and play a role in intercellular communication. The aim of this study was to determine whether the level of endogenous exosomes has an effect on nanovector delivery efficiency of targeted agents. Methods: Exosomes were isolated from peripheral blood and intravenously (I.V.) injected into tumor-bearing mice. Subsequently, 1,1-dioctadecyl-3,3,3'3'-tetramethylindotricarbocyanine-iodide (DiR) fluorescent dye-labeled nanoparticles, including grapefruit nanovectors (GNV) and standard liposomes, were I.V. injected in the mice. The efficiency of redirecting GNVs from liver to other organs of injected mice was further analyzed with in vivo imaging. The concentration of chemo drugs delivered by GNV was measured by HPLC and the anti-lung metastasis therapeutic effects of chemo drugs delivered by GNVs in mouse breast cancer and melanoma cancer models were evaluated. Results: We show that tail vein-injected exosomes isolated from mouse peripheral blood were predominately taken up by liver Kupffer cells. Injection of peripheral blood-derived exosomes before I.V. injection of grapefruit-derived nanovector (GNV) decreased the deposition of GNV in the liver and redirected the GNV to the lung and to the tumor in breast and melanoma tumor-bearing mouse models. Enhanced therapeutic efficiency of doxorubicin (Dox) or paclitaxel (PTX) carried by GNVs for lung metastases was demonstrated when there was an I.V. injection of exosomes before therapeutic treatment. Furthermore, we found that CD36 and IGFR1 receptor-mediated pathways played a critical role in the exosome-mediated inhibitory effect of GNV entry into liver macrophages. Conclusions: Collectively, our findings provide a foundation for using autologous exosomes to enhance therapeutic vector targeted delivery to the lung.
Collapse
|