1
|
Srivastava R, Mishra N, Arshi, Tripathi S, Smriti, Fatima NT, Mishra N. Influence of fruit stages on chemical compositions, phytochemicals, and antioxidant activity of wood apple ( Feronia limonia (L.) Swingle). Heliyon 2025; 11:e42223. [PMID: 39991204 PMCID: PMC11847055 DOI: 10.1016/j.heliyon.2025.e42223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The Feronia limonia (L.) Swingle is an underappreciated tropical fruit, contains several vitamins, minerals, and bioactive substances, yet it has received significantly less attention. The fruit is edible at all stages (unripe, intermediate, and ripe); however, it is only utilized in very limited cuisine recipes. The study's goal is to examine the fruit's chemical compositions, phytochemical content, and antioxidant activity over three stages. Since the fruit is consumed from unripe to ripe, our research demonstrates the scientific validity of its medical properties at each stage. The chemical composition of F. limonia fruit was examined at three stages, including nutritional composition, carbohydrate profile, and vitamin and mineral content. The fruit's phytochemicals (Total phenolic and total flavonoid content) were assessed using a spectrophotometer. The antioxidant properties of DPPH (2, 2-diphenyl-1-picrylhydrazylradical scavenging), FRAP (ferric reducing antioxidant power), MCA (metal chelating activity), and RC (reducing capacity) were measured. Pearson's correlation coefficients and multiple linear regressions were used to investigate the link between phytochemical components and antioxidant activity. The study found that protein, fiber, ash, calcium, phosphorus, iron, and vitamin C content declined by 44.7 percent, 47.3 percent, 18.16 percent, 20.3 percent, 8.7 percent, 32.4 percent, and 20.0 percent, respectively, as full ripening progressed. Sucrose (1377.2 mg/100 g) was the predominant sugar in the ripe stage, but fructose (668.72 mg/100 g) was prominent in the unripe stage. During ripening, sucrose concentration rose from 288.1 mg/100g to 1377.2 mg/100g, whereas other sugar contents fell. Similarly, the unripe stage demonstrated increased antioxidant activity, followed by the intermediate and ripe stages. Individually, phenol and flavonoid compounds shown a strong Pearson's association with the antioxidant activity of the fruit, including DPPH scavenging activity (0.945, 0.915), ferric reducing antioxidant power (FRAP) (0.980, 0.907), metal chelating activity (MCA) (0.953, 0.914), and reducing capacity (RC) (0.981, 0.906). The current study's findings could help the pharmaceutical and food processing sectors determine the optimal stage for bioactive ingredient extraction and direct intake.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| | - Neha Mishra
- Department of Food, Nutrition, and Public Health, ECHS, SHUATS, Prayagraj, 211008, U.P, India
| | - Arshi
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| | - Shraddha Tripathi
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| | - Smriti
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| | - Neha Taslim Fatima
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| | - Neetu Mishra
- Department of Family and Community Science, University of Allahabad, Prayagraj, 211002, U.P, India
| |
Collapse
|
2
|
Santos DS, Callefi MHBM, Ianda TF, da Silva Calixto EE, Pereira GAG, Toro JCS, Alzate CAC, Pessoa FLP, de Araújo Kalid R. Small and medium-scale biorefineries: biomass quantification and its bioeconomic potential in the Southern Coastal Territory of Bahia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2726-2746. [PMID: 39815112 DOI: 10.1007/s11356-025-35886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Small and medium-scale biorefineries are processing facilities designed to produce a portfolio of value-added products with applications in different productive sectors. The Territory of the Southern Coast (TSC) of Bahia in Brazil has a high potential to provide agricultural and forest biomass for these bioindustries. This study focuses on quantifying the biomass of key agricultural crops in the TSC from 1999 to 2019, utilizing data from the Municipal Agricultural Production (MAP) survey conducted by the Brazilian Institute of Geography and Statistics (IBGE). The biomass is subsequently categorized based on its applications in pharmaceutical and other industries, employing the Classification and Regression Tree (CART) algorithm, specifically using the Gini Index. Thus, our results reveal a noteworthy trend over 20 years through a time series analysis. For example, banana production (1.3 Mt) surpassed cocoa production (1.1 Mt) despite cocoa cultivation covering a vast 5.8 million hectares expanse compared to the smaller banana footprint. Cocoa and cassava are significant contributors, representing 41.95% and 30.51% of the total raw material, collectively constituting 72.46% of the TSC biomass. In addition, coffee biomass has been profiled as a raw material with potential applications across various industries, while bananas are oriented towards supplying pharmaceutical inputs. Forest species also have the potential for use in the pharmaceutical industry. In conclusion, small and medium-scale biorefineries can help increase agricultural and forest biomass use to provide inputs for various industries and guarantee positive social impacts for the population.
Collapse
|
3
|
Pulkkinen E, Fischer I, Laska M. Sour, but acceptable: Taste responsiveness to five food-associated acids in zoo-housed white-faced sakis, Pithecia pithecia. Physiol Behav 2024; 286:114679. [PMID: 39179015 DOI: 10.1016/j.physbeh.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
White-faced sakis (Pithecia pithecia) are commonly considered as frugivores but are unusual among primates as they do not specialize on ripe fruits but rather include a high proportion of unripe fruits into their diet, even during seasons when ripe fruits are available. Using a two-bottle preference test of short duration we therefore assessed whether this dietary specialization affects the taste responsiveness and sour-taste tolerance of four adult white-faced sakis for five food-associated acids. We found taste preference thresholds of the sakis to be 1-10 mM for citric acid, 0.5-20 mM for ascorbic acid, 2-10 mM for malic acid, 0.1-1 mM for tannic acid, and 2-20 mM for acetic acid, respectively. When given the choice between a reference solution of 50 mM sucrose and mixtures containing varying concentrations of sucrose plus citric acid, the sakis displayed a high sour-taste tolerance and required only 100 mM of sucrose (when mixed with 10 mM citric acid) or 200 mM of sucrose (when mixed with 30 or 50 mM citric acid), respectively, to prefer the sweet-sour mixture over the purely sweet 50 mM sucrose reference solution. These results demonstrate that white-faced sakis have a well-developed taste sensitivity for food-associated acids which is not inferior to that of primates specializing on ripe fruits. Compared to other platyrrhine primates, the sakis displayed a markedly higher sour-taste tolerance. These results may therefore reflect an evolutionary adaptation to the dietary specialization of the white-faced sakis to sour-tasting unripe fruits.
Collapse
Affiliation(s)
- Emma Pulkkinen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Santos-Neves PS, Bezerra-Silva A, Gomes MTD, A C A F, M I U O, Voeks RA, E M CN, Funch LS. Biocultural heritage of the Caatinga: a systematic review of Myrtaceae and its multiple uses. Biol Rev Camb Philos Soc 2024; 99:1791-1805. [PMID: 38700131 DOI: 10.1111/brv.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
The Caatinga, an exclusively Brazilian biome, stands as a reservoir of remarkable biodiversity. Its significance transcends ecological dimensions, given the direct reliance of the local population on its resources for sustenance and healthcare. While Myrtaceae, a pivotal botanical family within the Brazilian flora, has been extensively explored for its medicinal and nutritional attributes, scant attention has been directed towards its contextual relevance within the Caatinga's local communities. Consequently, this inaugural systematic review addresses the ethnobotanical roles of Myrtaceae within the Caatinga, meticulously anchored in the PRISMA 2020 guidelines. We searched Scopus, MEDLINE/Pubmed, Scielo, and LILIACS. No date-range filter was applied. An initial pool of 203 articles was carefully scrutinized, ultimately yielding 31 pertinent ethnobotanical studies elucidating the utility of Myrtaceae amongst the Caatinga's indigenous populations. Collectively, they revealed seven distinct utilization categories spanning ~54 species and 11 genera. Psidium and Eugenia were the genera with the most applications. The most cited categories of use were food (27 species) and medicinal (22 species). The importance of accurate species identification was highlighted, as many studies did not provide enough information for reliable identification. Additionally, the potential contribution of Myrtaceae fruits to food security and human health was explored. The diversity of uses demonstrates how this family is a valuable resource for local communities, providing sources of food, medicine, energy, and construction materials. This systematic review also highlights the need for more ethnobotanical studies to understand fully the relevance of Myrtaceae species in the Caatinga, promoting biodiversity conservation, as well as support for local populations.
Collapse
Affiliation(s)
- P S Santos-Neves
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Alexsandro Bezerra-Silva
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Maria Thereza Dantas Gomes
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Fagundes A C A
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Oliveira M I U
- Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Av. Marcelo Deda Chagas, s/n, Rosa Elze, São Cristóvão, Sergipe, 49107-230, Brazil
| | - Robert A Voeks
- Department of Geography & the Environment, California State University, Fullerton 800 N. State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Costa Neto E M
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| | - Ligia Silveira Funch
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Av. Transnordestina, s/n, Feira de Santana, Novo Horizonte, Bahia, 44036-900, Brazil
| |
Collapse
|
5
|
de Oliveira Raphaelli C, Guerra D, dos Santos Pereira E, da Rocha Vinholes J, Camargo TM, Schwarz SF, da Silva MAS, Vizzotto M, da Rosa Zavareze E, Nora L. Fruits, seeds and leaves of guabijuzeiro ( Myrcianthes pungens (O. Berg) D. Legrand): characteristics, uses and health benefits. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1035-1052. [PMID: 38562604 PMCID: PMC10981653 DOI: 10.1007/s13197-023-05822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/28/2023] [Accepted: 08/20/2023] [Indexed: 04/02/2024]
Abstract
Native fruit trees have potential for use in the food and pharmaceutical industries, which is widely used in folk medicine. Guabiju, known as guabijuzeiro (Myrcianthes pungens (O. Berg) D. Legrand) is a perennial tree that belongs to the family Myrtaceae, occurring in Brazil from São Paulo to Rio Grande do Sul, and other countries like Uruguay, Bolivia, Paraguay and Argentina. This species demonstrates great commercial potential regarding the consumption of its fresh fruit or industrialized. Due to its importance is necessary to develop studies aimed at characterization (phenotypic, propagative, reproductive, chemical and nutritional), uses and applications. However, the available information has never been systematized and in this sense the objective of this review is to compile information about the species to guide further research. Regarding morphology, the guabijuzeiro is a semi-deciduous tree species, with propagation is carried out mainly through seeds and vegetative. Regarding reproductive aspects, there is a lack of studies that assess the mode of reproduction. The fruit can be consumed fresh or processed as ice cream, juice, freeze-dried or dehydrated. It is sweet and slightly acidic, low in calories, high in carbohydrates, essential fatty acids, calcium and potassium. Both the fruit, the seed and the leaves have high levels of bioactive compounds and high antioxidant capacity. The fruit pulp stands out for its carotenoids and phenolic compounds and the peel is rich in anthocyanins, especially in the mature phase, in addition to terpenoids. M. pungens has antimicrobial effects, gastroprotective activity and is promising in the prevention of neurodegenerative diseases and against the side effects of cisplatin, an anticancer agent. Finally, there is a need for further studies with this species, mainly in the characterization of the leaves, uses and applications of the fruit.
Collapse
Affiliation(s)
- Chirle de Oliveira Raphaelli
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Avenida Eliseu Maciel, S/N, Capão Do Leão, RS 96160-000 Brazil
| | - Divanilde Guerra
- Universidade Estadual Do Rio Grande Do Sul, Unidade Três Passos, Três Passos, RS Brasil
| | - Elisa dos Santos Pereira
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Avenida Eliseu Maciel, S/N, Capão Do Leão, RS 96160-000 Brazil
| | | | - Taiane Mota Camargo
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Avenida Eliseu Maciel, S/N, Capão Do Leão, RS 96160-000 Brazil
| | - Sergio Francisco Schwarz
- Departamento de Horticultura E Silvicultura, Faculdade de Agronomia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Magnólia Aparecida Silva da Silva
- Departamento de Horticultura E Silvicultura, Faculdade de Agronomia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | | | - Elessandra da Rosa Zavareze
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Avenida Eliseu Maciel, S/N, Capão Do Leão, RS 96160-000 Brazil
| | - Leonardo Nora
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Avenida Eliseu Maciel, S/N, Capão Do Leão, RS 96160-000 Brazil
| |
Collapse
|
6
|
Shreelakshmi SV, Chaitrashree N, Nazareth MS, Kumar SS, Shetty NP, Giridhar P. Bioactive compounds and antioxidant activity during ripening of Malpighia glabra fruits. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:717-726. [PMID: 38410264 PMCID: PMC10894179 DOI: 10.1007/s13197-023-05872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 02/28/2024]
Abstract
Malpighia glabra (Malpighiaceae) is a cherry fruit popularly known as acerola or West Indian cherry, with nutraceuticals in each ripening stage. The changes in the phytoconstituents, pigments, sugars, organic acids, and antioxidants were investigated during the fruit ripening and expressed in fresh weight (FW). Gentisic acid was present in the highest concentration in IMGL fruits (11.43 mg/100 g), which was reduced to 0.362 mg/100 g over-ripening. The major flavonoid present was epicatechin, and the concentration increased from 2.11 mg/100 g in immature green large (IMGL) fruits to 19.52 mg/100 g in ripe fruits. Ascorbic acid was the most abundant organic acid present, and the highest concentration was found in the IMGL fruits (2030 mg/100 g). Fructose and galactose were found in the highest concentrations in overripe fruits (2290 mg/100 g and 1460 mg/100 g, respectively). The IMGL fruits showed the highest total antioxidant activity of 5.48% and 5.34% ascorbic acid equivalent in methanolic and aqueous extracts, respectively. Mineral quantification showed that the fruits were rich in potassium and calcium (150.43 and 12.90 mg/100 g, respectively). This study could identify the appropriate stage of acerola fruit for developing functional foods with maximum utilization of phytoconstituents in all stages.
Collapse
Affiliation(s)
- S. V. Shreelakshmi
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| | - N. Chaitrashree
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| | - Maria Sheeba Nazareth
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| | - Sandopu Sravan Kumar
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| | - Nandini P. Shetty
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| | - P. Giridhar
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research – Central Food Technological Research Institute, Mysore, 570020 India
| |
Collapse
|
7
|
Bonin AMF, Ávila S, Etgeton SAP, de Lima JJ, Dos Santos MP, Grassi MT, Krüger CCH. Ripening stage impacts nutritional components, antiglycemic potential, digestibility and antioxidant properties of grumixama (Eugenia brasiliensis Lam.) fruit. Food Res Int 2024; 178:113956. [PMID: 38309876 DOI: 10.1016/j.foodres.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the nutritional components (macronutrients ans minerals) and α-amylase inhibition capacity of freeze-dried grumixama (Eugenia brasiliensis Lam) seeds (S) and pulp/peel (P) portions, at ripe and mid-ripe stages. In vitro digestion was also performed on S and P from grumixama to assess the bioaccessibility of total phenolic compound (TPC), flavonoids (TFC), and anthocyanins (TAC), as well as to examine their impact on antioxidant activity (DPPH, ABTS, FRAP). The ripening process impacts the bioactive compounds and individual phenolics of S and P portions. The ripe S was source of myricetin and exhibited higher antioxidant activity, while mid-ripe S was high in flavonoids and cinnamic acid with higher antiglycemic potential. Ripe P showed higher soluble fiber, carbohydrate, TAC, and caffeic acid content, whereas mid-ripe P had increased mineral content (calcium, potassium, manganese), catechin, and TPC. After in vitro digestion, the P portion showed a bioaccessibility of total phenolic content (TPC) and total flavonoid content (TFC) exceeding 40% at intestinal phase. In contrast, the S portions had better release of TPC and TFC and antioxidant activity at gastric phase. Considering the outstanding nutritional and biological properties of grumixama fruit, freeze-dried S and P portions from both ripening stages possess could be explored as valuable sources of nutrients and antioxidant compounds.
Collapse
Affiliation(s)
- Anna Maria Forcelini Bonin
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Suelen Ávila
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil.
| | - Schaina Andriela Pontarollo Etgeton
- Postgraduate Program in Food and Nutrition, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Jair José de Lima
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| | - Mayara Padovan Dos Santos
- Postgraduate Program in Chemistry, Federal University of Paraná, Polytechnic Center, 81531-980 Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Chemistry Department, Federal University of Paraná, Polytechnic Center, 81530-000 Curitiba, Paraná, Brazil
| | - Claudia Carneiro Hecke Krüger
- Postgraduate Program in Food and Nutrition, Nutrition Department, Health Science Sector, Federal University of Paraná, Campus III, 80210-170 Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Machado PG, Londero DS, Farias CAA, Pudenzi MA, Barcia MT, Ballus CA. Guabijú (Myrcianthes pungens): A comprehensive evaluation of anthocyanins and free, esterified, glycosylated, and insoluble phenolic compounds in its peel, pulp, and seeds. Food Chem 2024; 432:137296. [PMID: 37703671 DOI: 10.1016/j.foodchem.2023.137296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Guabijú (Myrcianthes pungens) is a Brazilian native fruit from the Myrtaceae family, with few studies on the presence of phenolic compounds. Free, esterified, glycosylated, and insoluble phenolic compounds were studied for the first time in guabijú peel, pulp, and seed, by liquid chromatography coupled to mass spectrometry (LC-ESI-QTOF-MS/MS and LC-ESI-QqQ-MS/MS). Eighty-one phenolic compounds were tentatively identified in the three fractions, and eighteen were quantified using authentic standards. Furthermore, six anthocyanins were quantified in guabijú peel. Among the tentatively identified phenolic compounds, most belonged to the flavonols class. Major compounds quantified in the different fractions were ellagic and gallic acids, mainly in the hydrolyzed fractions. The peel presented the highest contents for most phenolic compounds, followed by the seed and pulp. This new data will add value to the fruit and facilitate the development of new products, as well as favoring and stimulating the consumption of the fruit.
Collapse
Affiliation(s)
- Patrícia Gotardo Machado
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Danielle Santos Londero
- Health Sciences Center, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Carla Andressa Almeida Farias
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | | | - Milene Teixeira Barcia
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil.
| |
Collapse
|
9
|
Spinelli LV, Anzanello MJ, Areze da Silva Santos R, Carboni Martins C, Freo Saggin J, Aparecida Silva Da Silva M, Rodrigues E. Uncovering the phenolic diversity of Guabiju fruit: LC-MS/MS-based targeted metabolomics approach. Food Res Int 2023; 173:113236. [PMID: 37803550 DOI: 10.1016/j.foodres.2023.113236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 10/08/2023]
Abstract
The comprehensive composition of phenolic compounds (PC) from seven genotypes of guabiju were analyzed by high-performance liquid chromatography coupled to a diode array detector and mass spectrometry (HPLC-ESI-qTOF-MS/MS), and a targeted metabolomic approach was utilized to explore the PC-related similarities among the genotypes. Sixty-seven phenolic compounds were annotated and twenty-four were quantified in all genotypes of guabiju. The phenolic acids and anthocyanins were the major PC, representing more than 63% (w/w) of the total PC. Di-O-galloylquinic and tri-O-galloylquinic acids and ellagitannins were reported for the first time in guabiju. The results of hierarchical clustering and principal components analysis (PCA) suggested seven groups as suitable clusters to be formed according to phenolic composition. Eleven PC were selected as relevant for sample clustering, and six of them were highlighted as the most informative (in decreasing order of importance): epicatechin, catechin, (epi)gallocatechin gallate II, di-O-galloylquinic acid I, tri-O-galloylquinic acid and delphinidin 3-O-glucoside. To the best of our knowledge, this study contributes to the literature with the most complete phenolic profile of guabiju genotypes up to date. Moreover, guabiju susceptibility to fungal infestation related to PC composition was briefly discussed based on a parallel study using the same genotypes.
Collapse
Affiliation(s)
- Liziane V Spinelli
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Michel J Anzanello
- Department of Industrial Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rodrigo Areze da Silva Santos
- Department of Horticulture and Forestry, Agronomy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Carboni Martins
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Justine Freo Saggin
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
10
|
Gomes LCA, de Medeiros PM, Prata APDN. Wild food plants of Brazil: a theoretical approach to non-random selection. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:28. [PMID: 37422690 DOI: 10.1186/s13002-023-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Ethnobiological investigations have focused on identifying factors that interfere with the criteria adopted for selection of plants, especially medicinal plants, by different populations, confirming the theory that plant selection is not random. However, regarding wild food plants, little effort has been made to confirm the theory in this context, especially in Brazil. Therefore, this systematic review aimed to contribute to the establishment of theoretical bases of the non-random selection of wild food plants by local populations in Brazil. For this, searches were made in 4 databases, namely, Web of Science, Scielo, Scopus and PubMed, using 8 sets of keywords in English and Portuguese in order to identify wild food plants occurring in Brazil. The steps were: application of inclusion and exclusion criteria, screening of articles, selection of studies based on risk of bias, data treatment and, finally, data analysis. Eighty articles met the inclusion criteria of this review. However, 45 of them were considered to present high risk of bias and thus 35 articles were kept for the identification of overused and underused families. The results were inferred through two different approaches (IDM and Bayesian). Annonaceae, Arecaceae, Basellaceae, Cactaceae, Capparaceae, Caryocaraceae, Myrtaceae, Passifloraceae, Rhamnaceae, Rosaceae, Sapotaceae, Talinaceae, and Typhaceae were considered overused. Eriocaulaceae, Orchidaceae, and Poaceae were considered underused. Therefore, considering that some families are more (or less) used than others, we confirm that the wild food plants occurring in Brazil, known and used by different populations, are not chosen at random.
Collapse
|
11
|
Spricigo PC, Almeida LS, Ribeiro GH, Correia BSB, Taver IB, Jacomino AP, Colnago LA. Quality Attributes and Metabolic Profiles of Uvaia ( Eugenia pyriformis), a Native Brazilian Atlantic Forest Fruit. Foods 2023; 12:foods12091881. [PMID: 37174419 PMCID: PMC10177832 DOI: 10.3390/foods12091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
The uvaia is a native Brazilian Atlantic Forest Myrtaceae fruit with a soft pulp, ranging from yellow to orange, with a sweet acidic flavor and sweet fruity aroma. Uvaias present consumption potential, but their physicochemical characteristics are still understudied. In this context, we describe herein the metabolites of uvaia that have been determined by nuclear magnetic resonance spectroscopy. We screened 41 accessions and selected 10 accessions based on their diversity of physicochemical attributes, i.e., their fresh mass, height, diameter, yield, seed mass, total soluble solids, and titratable acidity. Twenty-six metabolites were identified, including sugars, acids, and amino acids. The results of this study comprise the most complete report on sugars and acids in uvaias. The relevant metabolites in terms of abundance were the reducing sugars glucose and fructose, as well as malic and citric acids. Furthermore, this study represents the first description of the uvaia amino acid profile and an outline of its metabolic pathways. Uvaia quality attributes differ among accessions, demonstrating high variability, diversity, and several possibilities in different economic areas. Our findings may help in future breeding programs in the selection of plant material for industries such as food and pharmaceuticals.
Collapse
Affiliation(s)
- Poliana Cristina Spricigo
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
- School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal 14884-900, São Paulo, Brazil
| | - Luísa Souza Almeida
- Institute of Chemistry of São Carlos, University of São Paulo, 400 Trabalhador São Carlense Ave., São Carlos 13566-590, São Paulo, Brazil
| | | | - Banny Silva Barbosa Correia
- Institute of Chemistry of São Carlos, University of São Paulo, 400 Trabalhador São Carlense Ave., São Carlos 13566-590, São Paulo, Brazil
- Department of Food Science, Aarhus University, 48 Agro Food Park, 8200 Aarhus, Jutland, Denmark
| | - Isabela Barroso Taver
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
| | - Angelo Pedro Jacomino
- Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Ave., Piracicaba 13418-900, São Paulo, Brazil
| | - Luiz Alberto Colnago
- Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
12
|
Correia VTDV, Silva VDM, Mendonça HDOP, Ramos ALCC, Silva MR, Augusti R, de Paula ACCFF, Ferreira RMDSB, Melo JOF, Fante CA. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023; 28:2359. [PMID: 36903602 PMCID: PMC10005132 DOI: 10.3390/molecules28052359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 03/08/2023] Open
Abstract
Jabuticaba (Plinia cauliflora) and jambolan (Syzygium cumini) fruits are rich in phenolic compounds with antioxidant properties, mostly concentrated in the peel, pulp, and seeds. Among the techniques for identifying these constituents, paper spray mass spectrometry (PS-MS) stands out as a method of ambient ionization of samples for the direct analysis of raw materials. This study aimed to determine the chemical profiles of the peel, pulp, and seeds of jabuticaba and jambolan fruits, as well as to assess the efficiency of using different solvents (water and methanol) in obtaining metabolite fingerprints of different parts of the fruits. Overall, 63 compounds were tentatively identified in the aqueous and methanolic extracts of jabuticaba and jambolan, 28 being in the positive ionization mode and 35 in the negative ionization mode. Flavonoids (40%), followed by benzoic acid derivatives (13%), fatty acids (13%), carotenoids (6%), phenylpropanoids (6%), and tannins (5%) were the groups of substances found in greater numbers, producing different fingerprints according to the parts of the fruit and the different extracting solvents used. Therefore, compounds present in jabuticaba and jambolan reinforce the nutritional and bioactive potential attributed to these fruits, due to the potentially positive effects performed by these metabolites in human health and nutrition.
Collapse
Affiliation(s)
- Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | | | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mauro Ramalho Silva
- Departamento de Nutrição, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte 30640-070, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
13
|
Capillary electrophoresis in phytochemical analysis: Advances and applications in the period 2018–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Tischer B, Pangloli P, Nieto-Veloza A, Reeder M, Dia VP. Bioactive compounds, antioxidant capacity and anti-inflammatory activity of native fruits from Brazil. PLoS One 2023; 18:e0285625. [PMID: 37163497 PMCID: PMC10171607 DOI: 10.1371/journal.pone.0285625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The purpose of this study was to extract, identify, and quantify the phenolic compounds in grumixama (Eugenia brasilienses Lam.) and guabiju (Myrcianthes pungens), native fruits from southern region of Brazil, and to explore their antioxidant and anti-inflammatory properties. The phenolic compounds were extracted with acidified water and acidified methanol and evaluated for their bioactive constituents, antioxidant capacity, and anti-inflammatory properties. Spectrophotometric quantification shows tannins to be the most prevalent at 2.3 to 5.8 g/100g fresh fruit with acidified methanol containing higher concentrations of different phenolics than acidified water. HPLC analysis indicates that gallic acid, catechin, vanillic acid, and ellagic acid are the most prevalent phenolics in the two fruits extracts. Scavenging of DPPH and NO radicals showed inhibition by as much as 95% and 80%, respectively, at 2.5 gallic acid equivalent (GAE)/mL of the extract. At 50 μg GAE/mL, the release of pro-inflammatory molecules NO and IL-6 was significantly reduced with acidified methanol extract having higher inhibitory activity. Our results revealed that these native fruits, grown in the south of Brazil, are rich sources of phenolic compounds and have great antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Bruna Tischer
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Philipus Pangloli
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Andrea Nieto-Veloza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew Reeder
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| |
Collapse
|
15
|
Development on chemical characteristics including the bioactive compounds and antioxidant activity during maturation of jambolan (Syzygium cuminii L.) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Duarte JA, Alves-Ribeiro G, Machado FP, Folly D, Peñaloza E, Garret R, Santos MG, Ventura JA, Wermelinger GF, Robbs BK, Rocha L, Fiaux SB. Glimpsing the chemical composition and the potential of Myrtaceae plant extracts against the food spoilage fungus Thielaviopsis ethacetica. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
da Veiga Correia VT, da Silva PR, Ribeiro CMS, Ramos ALCC, Mazzinghy ACDC, Silva VDM, Júnior AHO, Nunes BV, Vieira ALS, Ribeiro LV, de Paula ACCFF, Melo JOF, Fante CA. An Integrative Review on the Main Flavonoids Found in Some Species of the Myrtaceae Family: Phytochemical Characterization, Health Benefits and Development of Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:2796. [PMID: 36297820 PMCID: PMC9608453 DOI: 10.3390/plants11202796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This integrative review aims to identify the main flavonoids present in some species of the Myrtaceae family. Studies published between 2016 and 2022 were selected, specifically those which were fully available and written in Portuguese, English, or Spanish, and which were related to the fruits araçá (Psidium cattleianum), cambuí (Myrciaria floribunda), gabiroba (Campomanesia xanthocarpa), jabuticaba (Plinia cauliflora), and jambolan (Syzygium cumini). Scientific studies were gathered and selected in Google Scholar, Scielo, and Science Direct indexed databases, out of which 14 were about araçá, 7 concerned cambuí, 4 were about gabiroba, 29 were related to jabuticaba, and 33 concerned jambolan, when we observed the pre-established inclusion criteria. Results showed that the anthocyanins, such as cyanidin, petunidin, malvidin, and delphinidin, were the mostly identified class of flavonoids in plants of the Myrtaceae family, mainly relating to the purple/reddish color of the evaluated fruits. Other compounds, such as catechin, epicatechin, quercetin, and rutin were also identified in different constituent fractions, such as leaves, peel, pulp, seeds, and in developed products, such as jams, desserts, wines, teas, and other beverages. It is also worth noting the positive health effects verified in these studies, such as anti-inflammatory qualities for jambolan, antidiabetic qualities for gabiroba, antioxidant qualities for araçá, and cardioprotective actions for jabuticaba, which are related to the presence of these phytochemicals. Therefore, it is possible to point out that flavonoids are important compounds in the chemical constitution of the studied plants of the Myrtaceae family, with promising potential in the development of new products by the food, chemical, and pharmaceutical industries due to their bioactive properties.
Collapse
Affiliation(s)
- Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Pâmela Rocha da Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Carla Mariele Silva Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Carolina do Carmo Mazzinghy
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Afonso Henrique Oliveira Júnior
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Bruna Vieira Nunes
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Luiza Santos Vieira
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas Victor Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | | | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
18
|
Honfo FG, Togbe EC, Dekker M, Akissoe N. Effects of packaging and ripeness on plantain flour characteristics during storage. Food Sci Nutr 2022; 10:3453-3461. [PMID: 36249960 PMCID: PMC9548346 DOI: 10.1002/fsn3.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
The increasing implication of plantain flour in various food formulations calls for the need to evaluate the effects of ripening stage, packaging materials, and storage duration on its proximal composition and functional properties. For this study, plantain flours were produced from the cultivar Alloga at unripe and semiripe stage 3. They were stored both in transparent polyethylene bags and in an opaque aluminum foil. Physicochemical analyses and functional characterization of the plantain flour were performed on samples taken prior to storage and on monthly basis for 6 months during storage. Ash and carbohydrate contents decreased while the yellowness and redness increased with ripening. Pasting viscosity drastically decreased with ripening. During storage, significant differences in color and among most functional characteristics were observed as a consequence of both storage duration and packaging materials. Based on this research, flour from semiripe plantain could be recommended for use in formulations requiring low viscosity. Besides, it is suggested to store plantain flours in opaque containers to reduce the variability in its properties, thus maintaining its original quality.
Collapse
Affiliation(s)
- Fernande G. Honfo
- Laboratory of Food Sciences, Faculté des Sciences AgronomiquesUniversité, d'Abomey‐CalaviJéricho CotonouBenin
| | - Euloge C. Togbe
- Laboratory of Plant Pathology, Faculté des Sciences AgronomiquesUniversité, d'Abomey‐CalaviJéricho CotonouBenin
| | - Matthijs Dekker
- Food Quality and DesignWageningen UniversityAA WageningenThe Netherlands
| | - Noël Akissoe
- Laboratory of Food Sciences, Faculté des Sciences AgronomiquesUniversité, d'Abomey‐CalaviJéricho CotonouBenin
| |
Collapse
|
19
|
Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int J Mol Sci 2022; 23:ijms231911512. [PMID: 36232825 PMCID: PMC9569437 DOI: 10.3390/ijms231911512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Horticultural products display fast senescence after harvest at ambient temperatures, resulting in decreased quality and shorter shelf life. As a gaseous signal molecule, nitric oxide (NO) has an important physiological effect on plants. Specifically, in the area of NO and its regulation of postharvest senescence, tremendous progress has been made. This review summarizes NO synthesis; the effect of NO in alleviating postharvest senescence; the mechanism of NO-alleviated senescence; and its interactions with other signaling molecules, such as ethylene (ETH), abscisic acid (ABA), melatonin (MT), hydrogen sulfide (H2S), hydrogen gas (H2), hydrogen peroxide (H2O2), and calcium ions (Ca2+). The aim of this review is to provide theoretical references for the application of NO in postharvest senescence in horticultural products.
Collapse
|
20
|
Tak Y, Kaur M, Jain MC, Samota MK, Meena NK, Kaur G, Kumar R, Sharma D, Lorenzo JM, Amarowicz R. Jamun Seed: A Review on Bioactive Constituents, Nutritional Value and Health Benefits. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Encapsulation of Anthocyanic Extract of Jambolan (Syzygium cumini (L.)) in Zein Sub-micron Fibers Produced by Electrospinning. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Halim MA, Kanan KA, Nahar T, Rahman MJ, Ahmed KS, Hossain H, Mozumder NR, Ahmed M. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Grumixama (Eugenia brasiliensis Lamarck) functional phytochemicals: Effect of environmental conditions and ripening process. Food Res Int 2022; 157:111460. [DOI: 10.1016/j.foodres.2022.111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
24
|
Santana LF, Sasso S, Aquino DFS, de Cássia Freitas K, de Cássia Avellaneda Guimarães R, Pott A, do Nascimento VA, Bogo D, de Oliveira Figueiredo P, Hiane PA. Nutraceutic Potential of Bioactive Compounds of Eugenia dysenterica DC in Metabolic Alterations. Molecules 2022; 27:molecules27082477. [PMID: 35458674 PMCID: PMC9024852 DOI: 10.3390/molecules27082477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical potentials of these phenolic compounds for treating obesity, diabetes mellitus and intestinal inflammatory disease. The phenolic compounds in E. dysenterica have demonstrated effects on carbohydrate metabolism, which can prevent the development of these chronic diseases and reduce LDL (low-density lipoprotein) cholesterol and hypertension. E. dysenterica also improves intestinal motility and microbiota and protects gastric mucosa, thereby preventing inflammation. However, studies are necessary to identify the mechanism by which E. dysenterica nutraceutical compounds act on such pathological processes to support future research.
Collapse
Affiliation(s)
- Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Sandramara Sasso
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Diana Figueiredo Santana Aquino
- Higher Level Technician, Personnel Development Division, State University of Mato Grosso do Sul—UEMS, Dourados 79804-970, Brazil;
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
- Correspondence: ; Tel.: +55-67-3345-7410
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79079-900, Brazil;
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Patrícia de Oliveira Figueiredo
- Laboratory Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79074-460, Brazil;
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| |
Collapse
|
25
|
do Nascimento-Silva NRR, Bastos RP, da Silva FA. Jambolan (Syzygium cumini (L.) Skeels)):A review on its nutrients, bioactive compounds and health benefits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Rossi GB, Seraglio SKT, Honaiser TC, Toaldo IM, Costa ACDO, Faria JCD, Arisi ACM. Protein profile and antioxidant capacity of processed seeds from two common bean (
Phaseolus vulgaris
L.) cultivars. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gabriela Barbosa Rossi
- Food Science and Technology Department Federal University of Santa Catarina CAL CCA UFSC Florianópolis SC Brazil
| | | | - Tuany Camila Honaiser
- Food Science and Technology Department Federal University of Santa Catarina CAL CCA UFSC Florianópolis SC Brazil
| | - Isabela Maia Toaldo
- Food Science and Technology Department Federal University of Santa Catarina CAL CCA UFSC Florianópolis SC Brazil
| | | | | | | |
Collapse
|
27
|
ARAÚJO ALD, PENA RDS. Influence of process conditions on the mass transfer of osmotically dehydrated jambolan fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.37520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Santos AED, Aguiar GPS, Magro CD, Lacowicz RA, Fedrigo IMT, Bordignon-Luiz MT, Oliveira JV, Lanza M. Impact of drying method as pretreatment for extraction of bioactive compounds from jambolan (Syzygium cumini (L.) Skeels). BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Jambolan (Syzygium cumini (L.) Skeels) is an under-explored fruit rich in polyphenols, which are associated with health benefits, such as increasing resistance to oxidative stress, inflammatory processes and cardiovascular, and platelet functions. These polyphenols can be obtained by extraction, but an efficient standard method remains a challenge. In this context, this work evaluated the impact of different pretreatments on jambolans to obtain bioactive compounds by aqueous extraction. An Air Circulation Oven (ACO) and Lyophilization (LYO) were used as pretreatments. In addition, the influence of mass, temperature, cycle, and time parameters were studied in the extraction methods used: Percolated Solid-Liquid (PSL), Conventional Solid-Liquid (CSL), and solid-liquid assisted by ultrasound (USL). The extraction yield was from 7.3% (ACO) to 46.3% (LYO), both using the PSL method. In addition, eleven phenolic compounds and six anthocyanins were detected by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), in expressive amounts of catechin and cyaniding in the LYO sample and, these extracts showed higher concentrations of bioactive compounds. The CSL method was more efficient on ACO samples and PSL on LYO samples. LYO extracts showed higher concentrations of bioactive compounds. Therefore, the use of a drying pretreatment results in extracts with a high antioxidant potential for application in the food, cosmetic, and pharmaceutical markets.
Collapse
|
29
|
Chen M, Cao JQ, Ang S, Zeng TN, Li NP, Yang TJ, Liu JS, Wu Y, Ye WC, Wang L. Eugenunilones A–H: rearranged sesquiterpenoids from Eugenia uniflora. Org Chem Front 2022. [DOI: 10.1039/d1qo01629f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Six rearranged sesquiterpenoids (1–6) with four types of new polycyclic caged skeletons were isolated from Eugenia uniflora.
Collapse
Affiliation(s)
- Mu Chen
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jia-Qing Cao
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Song Ang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ting-Ni Zeng
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ni-Ping Li
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Tang-Jia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan Wu
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Wang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
30
|
Velásquez P, Orellana J, Muñoz-Carvajal E, Faúndez M, Gómez M, Montenegro G, Giordano A. Biological activity of native Myrtaceae fruits from Chile as a potential functional food. Nat Prod Res 2021; 36:3138-3142. [PMID: 34528843 DOI: 10.1080/14786419.2021.1940176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Myrtaceae fruits (Myrceugenia obtusa, Luma apiculata, and Luma chequen) were used as food and medicine by Chilean indigenous people. This study aimed to evaluate the bioactive properties of these berry-type fruits. The antioxidant capacity determined by the FRAP assay varied between 10.4 and 646.9 mmol Fe+2/g, while the antibacterial activity against Staphylococcus aureus and Salmonella typhi was 0 - 33 mm and 0 - 7.33 mm, respectively. All the extracts were rich in polyphenols and showed low cytotoxicity. Overall, M. obtusa presented dissimilar results compared to those of L. apiculata and L. chequen, encouraging the use of these native fruits as food, nutraceutical, or pharmacological ingredients.
Collapse
Affiliation(s)
- Patricia Velásquez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Quimica Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jocelyn Orellana
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Muñoz-Carvajal
- Departamento de Quimica Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Chile
| | - Miguel Gómez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gloria Montenegro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Departamento de Quimica Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Shreelakshmi SV, Nazareth MS, Kumar SS, Giridhar P, Prashanth KVH, Shetty NP. Physicochemical Composition and Characterization of Bioactive Compounds of Mulberry (Morus indica L.) Fruit During Ontogeny. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:304-310. [PMID: 34260014 DOI: 10.1007/s11130-021-00909-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Mulberry fruit is well recognized as one of the richest sources of bioactive compounds. We investigated the physicochemical composition and characterized the bioactive compounds during different ripening stages of mulberry (Morus indica) fruit and evaluated their anti-quorum sensing activity on Chromobacterium violaceum. The proximate components such as carbohydrates, proteins and lipids were found to be high in the ripe fruit compared to unripe and mid-ripe fruit. The ripe fruit contained higher content of total phenolics and flavonoids (336.05 and 282.55 mg/100 g fresh weight (FW), respectively). Epicatechin and resveratrol were the major polyphenols detected in the fruit with the range 5.13-19.46 and 4.07-14.45 mg/100 g FW, respectively. Chlorogenic acid and myricetin were predominant in the unripe and mid-ripe fruit (7.14 and 1.84 mg/100 g FW, respectively). The fruit was found to be an excellent source of anti-diabetic compound 1-deoxynojirimycin. The highest content of 1-deoxynojirimycin was present in the mid-ripe fruit, with a content of 2.91 mg/100 g FW. Furthermore, fruit extracts exhibited anti-quorum sensing activity against Chromobacterium violaceum by effectively inhibiting violacein production. Ripe fruit extracts showed the highest activity of 76.30% at 1 mg/mL and thus, could be used as a potent anti-quorum sensing agent. The results could be promising in the selection of appropriate developmental stages for M. indica fruit commercial exploitation in the food formulations rich in potential health components.
Collapse
Affiliation(s)
- S V Shreelakshmi
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
- Department of Bioscience, Mangalore University, Mangalagangotri, Mangaluru, 574 199, India
| | - Maria Sheeba Nazareth
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Sandopu Sravan Kumar
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - K V Harish Prashanth
- Biochemistry Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, India
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
- Department of Bioscience, Mangalore University, Mangalagangotri, Mangaluru, 574 199, India.
| |
Collapse
|
32
|
Screening of six medicinal plant species for antileishmanial activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:399-414. [PMID: 36654098 DOI: 10.2478/acph-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/20/2023]
Abstract
This study is aimed to investigate the in vitro anti-leishmanial activity of ethanolic, aqueous or dichloromethane extracts of leaves, flowers, fruits or roots, of six medicinal plant species, namely, Nectandra megapotamica, Brunfelsia uniflora, Myrcianthes pungens, Anona muricata, Hymenaea stigonocarpa and Piper corcovandesis. After isolation and analysis of chemical components by ultra-high performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS), the extracts were also tested for toxicity in J774.A1 macrophages and human erythrocytes. Phenolic acids, flavonoids, acetogenins, alkaloids and lignans were identified in these extracts. Grow inhibition of promastigotes forms of Leishmania amazonensis and Leishmania braziliensis and the cytotoxicity in J774.A1 macrophages were estimated by the XTT method. The most promising results for L. amazonensis and L. braziliensis were shown by the ethanolic extract of the fruits of Hymenaea stigonocarpa and dichloromethane extract of the roots of Piper corcovadensis, with IC 50 of 160 and 150 μg mL-1, resp. Ethanolic extracts of A. muricata (leaf), B. uniflora (flower and leaf), M. pungens (fruit and leaf), N. megapotamica (leaf), and aqueous extract of H. stigonocarpa (fruit) showed IC 50 > 170 μg mL-1 for L. amazonensis and > 200 μg mL-1 for L. braziliensis. The extracts exhibited low cytotoxicity towards J774.A1 macrophages with CC 50 > 1000 μg mL-1 and hemolytic activity from 0 to 46.1 %.
Collapse
|
33
|
García YM, Ramos ALCC, de Paula ACCFF, do Nascimento MH, Augusti R, de Araújo RLB, de Lemos EEP, Melo JOF. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules 2021; 26:molecules26175281. [PMID: 34500715 PMCID: PMC8434304 DOI: 10.3390/molecules26175281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Among the many species of native fruit of Brazil that have been little explored, there is Myrciaria floribunda (also known as rumberry, cambuizeiro, or guavaberry), a species with significant variability, which has fruits of different colors (orange, red, and purple) when ripe. The physical-chemical characteristics evaluated were fruit weight (FW), seed weight (SW), pulp weight (PW), number of seeds (NS), longitudinal diameter (LD), transverse diameter (TD), format (LD/TD), hydrogen potential (pH), soluble solids (SS), titratable acidity (TA), and ratio (SS/TA); further, the volatile organic compounds (VOCs) of nine accesses of rumberry orchards were identified. The averages of the variables FW, SW, PW, NS, LD, TD, shape, and firmness were 0.76 g, 0.22 g, 0.54 g, 1.45, 10.06 mm, 9.90 mm, 1.02, 2.96 N, respectively. LD/TD data showed that the fruits have a slightly rounded shape (LD/TD = 1). The averages for pH, SS, TA, and SS/TA were 3.74, 17.58 Brix, 4.31% citric acid, and 4.31, respectively. The evaluated parameters indicated that the fruits can be consumed both in natura and industrialized, with the red-colored fruits presenting a good balance of SS/TA, standards demanded by the processing industries. Thirty-six VOCs were identified, with emphasis on the sesquiterpenes. Caryophyllene (21.6% to 49.3%) and γ-selinene (11.3% to 16.3%) were the most predominant compounds in rumberry fruits.
Collapse
Affiliation(s)
- Yesenia Mendoza García
- Centro de Ciências Agrárias, Campus A. C. Simões, Universidade Federal de Alagoas, Rio Largo 57072-970, Brazil; (Y.M.G.); (E.E.P.d.L.)
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.C.C.R.); (R.L.B.d.A.)
| | | | - Maicon Heitor do Nascimento
- Departamento de Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Bambuí 38900-000, Brazil; (A.C.C.F.F.d.P.); (M.H.d.N.)
| | - Rodinei Augusti
- Departamento de Química, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 35702-031, Brazil;
| | - Raquel Linhares Bello de Araújo
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.C.C.R.); (R.L.B.d.A.)
| | - Eurico Eduardo Pinto de Lemos
- Centro de Ciências Agrárias, Campus A. C. Simões, Universidade Federal de Alagoas, Rio Largo 57072-970, Brazil; (Y.M.G.); (E.E.P.d.L.)
| | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João Del-Rei, Sete Lagoas 36307-352, Brazil
- Correspondence:
| |
Collapse
|
34
|
Variability in the molecular, phenological, and physicochemical characteristics of uvaia (Eugenia pyriformis Cambess - Myrtaceae) accessions from the Brazilian Atlantic rainforest. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Corrêa JGDS, Bianchin M, Lopes AP, Silva E, Ames FQ, Pomini AM, Carpes ST, de Carvalho Rinaldi J, Cabral Melo R, Kioshima ES, Bersani-Amado CA, Pilau EJ, de Carvalho JE, Ruiz ALTG, Visentainer JV, Santin SMDO. Chemical profile, antioxidant and anti-inflammatory properties of Miconia albicans (Sw.) Triana (Melastomataceae) fruits extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113979. [PMID: 33647428 DOI: 10.1016/j.jep.2021.113979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Miconia albicans (Sw.) Triana has been widely used in Brazilian popular medicine for the treatment of several diseases. Aerial parts are used as an infusion to treat arthrosis and arthritis, to relieve rheumatic and stomach pains, and intestinal disorders due to its anti-inflammatory, anti-mutagenic anti-nociceptive, digestive and hepatoprotective properties. AIM OF THE STUDY This study aimed to characterize the of M. albicans (Sw.) Triana fruits extract (MAFRE) chemical profile and to evaluate its antioxidant, anti-inflammatory and antitumor activities, as well as its toxicity. MATERIALS AND METHODS Maceration with methanol as liquid extractor was used to prepare MAFRE. M. albicans (Sw.) Triana fruits chemical composition was characterized by UHPLC-QTOF-MS/MS and GC-FID (fatty acid methyl esters composition from lyophilized fruits). MAFRE antioxidant potential was evaluated in vitro using a combination of assays: Folin-Ciocalteu reducing capacity, DPPH• and ABTS radical scavenging ability and ferric reducing antioxidant power (FRAP). In vitro antiproliferative activity was investigated in four human tumor cell lines (U251, 786-0, HT29 and MDA-MB-231) while the effect on the non-tumor cell viability was assessed in the VERO cell line using the on-step MTT assay. In addition, in vivo anti-inflammatory effect was assessed by Croton oil-induced ear edema in mice followed by myeloperoxidase (MPO) activity evaluation. RESULTS Thirty-five compounds were identified by UHPLC-QTOF-MS/MS. Among it flavonoids derived from quercetin (8), myricetin (1), kaempferol (2), terpenoids (6) and other compounds (18). GC-FID analysis identified and quantified nine fatty acids: palmitic, stearic, arachidic, behenic, elaidic, oleic, eicosenoic, and linoleic acids. The most abundant fatty acids were polyunsaturated fatty acids (5.33 ± 0.17 mg g-1), followed by saturated fatty acids (2.38 ± 0.07 mg g-1) and monounsaturated fatty acids (1.74 ± 0.09 mg g-1). The extract revealed high content of phenolic compounds (43.68 ± 0.50 mg GAE/g of extract), potent antioxidant, and ferrous chelating capacities. Morever, it proved to be non-toxic to the VERO cells, not affecting cells viability (95% of viable cells). No antiproliferative effect against human tumor cell lines were found. Furthermore, MAFRE significantly (p<0.05) reduced ear edema (≈35%) and MPO activity (84.5%) having a statistical effect similar to traditional steroidal and non-steroidal anti-inflammatory drugs. CONCLUSIONS Taken together, the results evidenced that M. albicans fruit extract has antioxidant properties, a higher concentration of phenolic compounds, flavonoids, fatty acids, and also topical anti-inflammatory activity with low toxicity of extract on VERO cells. Through the ethnomedicinal study, these findings supporting the popular use of M. albicans, but also highlight that not only aerial parts and leaves deserve attention, but the fruits also have anti-inflammatory proprieties and can be a source of phenolic compounds and other substances with potential health benefices.
Collapse
Affiliation(s)
| | - Mirelli Bianchin
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Ana Paula Lopes
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Evandro Silva
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Franciele Q Ames
- Department of Pharmacology Applied to Therapeutics, State University of Maringá, Paraná, Brazil
| | - Armando M Pomini
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Solange T Carpes
- Department of Chemistry, Federal Technological University of Paraná, Pato Branco, PR, Brazil
| | | | - Raquel Cabral Melo
- Postgraduate Program in Biosciences and Pathophysiology, State University of Maringá, Paraná, Brazil
| | - Erika S Kioshima
- Postgraduate Program in Biosciences and Pathophysiology, State University of Maringá, Paraná, Brazil
| | - Ciomar A Bersani-Amado
- Department of Pharmacology Applied to Therapeutics, State University of Maringá, Paraná, Brazil
| | - Eduardo J Pilau
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Ana Lúcia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
de Oliveira Raphaelli C, Pereira EDS, Camargo TM, Ribeiro JA, Pereira MC, Vinholes J, Dalmazo GO, Vizzotto M, Nora L. Biological activity and chemical composition of fruits, seeds and leaves of guabirobeira (Campomanesia xanthocarpa O. Berg – Myrtaceae): A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Schulz M, Tischer Seraglio SK, Gonzaga LV, Costa ACO, Fett R. Phenolic Compounds in Euterpe Fruits: Composition, Digestibility, and Stability – A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1909060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
39
|
Koop BL, Knapp MA, Di Luccio M, Pinto VZ, Tormen L, Valencia GA, Monteiro AR. Bioactive Compounds from Jambolan (Syzygium cumini (L.)) Extract Concentrated by Ultra- and Nanofiltration: a Potential Natural Antioxidant for Food. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:90-97. [PMID: 33517518 DOI: 10.1007/s11130-021-00878-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Jambolan is an unexplored fruit rich in bioactive compounds like anthocyanins, catechin, and gallic acid. Thus, the extraction of bioactive compounds allows adding value to the fruit. In this context, the present study reports the recovery and concentration of jambolan fruit extract by ultra and nanofiltration for the first time. Acidified water was used to extract polyphenols from the pulp and peel of jambolan. The extracts were concentrated using ultrafiltration and nanofiltration membranes with nominal molecular weight cut-off ranging from 180 to 4000 g mol-1. Total monomeric anthocyanin, total phenolic compounds, and antioxidant capacity were analyzed. Phenolic compounds were quantified, and anthocyanins were identified by high-performance liquid chromatography coupled to diode-array detection and mass spectrometry (HPLC-DAD-MS). Concentration factors higher than 4.0 were obtained for anthocyanins, gallic acid, and catechin after nanofiltration of the extracts. Other compounds such as epicatechin, p-Coumaric acid, and ferulic acid were quantified in the concentrated extract, and the main anthocyanins identified were 3,5-diglucoside: petunidin, malvidin, and delphinidin. Therefore, jambolan extract showed a high potential to be used as a natural dye and antioxidant in food products.
Collapse
Affiliation(s)
- Betina Luiza Koop
- Laboratory of Physical Properties, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Mateus Antonio Knapp
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Vania Zanella Pinto
- Analytical Center, Federal University of Fronteira Sul, Laranjeiras do Sul, PR, 85301-970, Brazil
| | - Luciano Tormen
- Analytical Center, Federal University of Fronteira Sul, Laranjeiras do Sul, PR, 85301-970, Brazil
| | - Germán Ayala Valencia
- Laboratory of Biological Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Alcilene Rodrigues Monteiro
- Laboratory of Physical Properties, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil.
| |
Collapse
|
40
|
Pereira APA, Angolini CFF, Adani HB, Usberti FCS, Paulino BN, Clerici MTPS, Neri-Numa IA, Moro TDMA, Eberlin MN, Pastore GM. Impact of ripening on the health-promoting components from fruta-do-lobo (Solanum lycocarpum St. Hill). Food Res Int 2021; 139:109910. [PMID: 33509477 DOI: 10.1016/j.foodres.2020.109910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
Fruta-do-lobo (Solanum lycocarpum St. Hill) is an underutilized native fruit commonly found in the Brazilian Cerrado, very known due to the presence of glycoalkaloids. In this work we evaluated the biochemical changes on carbohydrates, phenolic and alkaloids during ripening of fruta-do-lobo using chromatographic and spectrometric techniques. During ripening, we observed an increase in glucose, fructose and sucrose, while oligosaccharides levels varied. Chlorogenic acid isomers represented 80% of the identified phenolic compounds in unripe stage, but they reduced during ripening, resulting in predominance of p-coumaroylquinic acid (peel and pulp) and 1-O-sinapoyl-glucoside (seeds). Statistical analysis shows that the unripe fractions were richer in alkaloids compounds, which were the most important for antioxidant activity. Molecular network analysis summarizes the compound changes during ripening, especially regarding the alkaloid compounds, with a reduction of around 85% of solamargine abundance. These data show that fruta-do-lobo can presents different chemical compositions due their ripening stage providing support for future research aimed to the application of these compounds in glycemia control or uses of their extracts with higher content of alkaloids compounds.
Collapse
Affiliation(s)
- Ana Paula Aparecida Pereira
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil; Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Avenida Fernando Corrêa da Costa, 2367 Cuiabá, Mato Grosso, Brazil
| | | | - Heloísa Banin Adani
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | - Franciane Colares Souza Usberti
- School of Agriculture Engineering, University of Campinas, Av. Cândido Rondon, 501 - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Bruno Nicolau Paulino
- School of Pharmaceutical Sciences, Federal University of Amazonas, Avenida General Rodrigo Octávio Jordão Ramos, 6200 Manaus, Amazonas, Brazil
| | | | - Iramaia Angelica Neri-Numa
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | - Thaísa de Menezes Alves Moro
- Department of Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Institute of Chemistry, University of Campinas, Rua Josué de Castro, 126, Campinas, São Paulo, Brazil; School of Engineering, Mackenzie Presbyterian University, São Paulo-SP, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Dos Santos MCP, Cavalcanti EDC, Santos MCB, Seljan MP, Cameron LC, Ferreira MSL, Gonçalves ÉCBDA. Profile of phenolic compounds in jabuticaba ( Myrciaria sp.) a potential functional ingredient. Nat Prod Res 2021; 36:3717-3720. [PMID: 33397138 DOI: 10.1080/14786419.2020.1868459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenolic compounds have attracted a lot of attention due to their benefits to human health. Jabuticaba (Myrciaria sp.) fruit has been described as an excellent source of these compounds, while Jabuticaba leaf, considered as plant residue, has shown functional effects. The present study aimed to characterize the phenolic profile in two different leaves extracts (hydroalcoholic ethanol and butanol) of Myrciaria sp. by UPLC-ESI-QTOF-MSE. A total of 40 phenolic compounds were tentatively identified. Jabuticaba leaf extracts presented a rich and diversified composition of phenolic compounds, especially flavonoids, being ellagic acid, quercetin 3-O-glucoside, gallocatechin, and epigallocatechin the most abundant in butanol extracts. Very distinct phenolic profiles were obtained depending on the the solvent indicating that specific preparations can be obtained from the jabuticaba leaf depending on the desired application. This work emphasized the potential of this residue vegetable to be used as a functional ingredient.
Collapse
Affiliation(s)
- Mônica Cristine Pereira Dos Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Elisa d'Avila Costa Cavalcanti
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Millena C Barros Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Pulmar Seljan
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil.,Food Science Department, Nutrition School, UNIRIO, Rio de Janeiro, Brazil
| | - Édira Castello Branco de Andrade Gonçalves
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Food Science Department, Nutrition School, UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Senes CER, Rodrigues CA, Nicácio AE, Boeing JS, Maldaner L, Visentainer JV. Determination of phenolic acids and flavonoids from Myrciaria cauliflora edible part employing vortex-assisted matrix solid-phase dispersion (VA-MSPD) and UHPLC-MS/MS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Schulz M, Brugnerotto P, Seraglio SKT, Gonzaga LV, Borges GDSC, Costa ACO, Fett R. Aliphatic organic acids and sugars in seven edible ripening stages of juçara fruit (Euterpe edulis Martius). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Pereira MT, Charret TS, G-C Lopez B, Carneiro MJ, Sawaya AC, Pascoal VD, Pascoal AC. The in vivo anti-inflammatory potential of Myrciaria glazioviana fruits and its chemical profile using mass spectrometry. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Camboim Rockett F, de Oliveira Schmidt H, Schmidt L, Rodrigues E, Tischer B, Ruffo de Oliveira V, Lima da Silva V, Rossini Augusti P, Hickmann Flôres S, Rios A. Phenolic compounds and antioxidant activity in vitro and in vivo of Butia and Opuntia fruits. Food Res Int 2020; 137:109740. [PMID: 33233305 DOI: 10.1016/j.foodres.2020.109740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/29/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Despite the consumption recommendations and the potential health benefits, Brazilian biodiversity has a large number of fruit species that are still unexplored, such as Butia catarinensis (Butiá da Praia), Butia eriospatha (Butiá da Serra) and Opuntia elata (Arumbeva). The phenolic compounds of these fruits were determined by HPLC-DAD-MS/MS. Morever, in vitro assays of antioxidant capacity on hydroethanolic extracts against hydrogen peroxide (H2O2), hydroxyl (OH), peroxyl (ROO) and ABTS radicals were evaluated. In vivo assays evaluating the survival of worms and reactive oxygen species (ROS) generation were performed using the nematode Caenorhabditis elegans. Eighteen, twenty-eight and seventeen phenolic compounds were identified in Butiá da Praia, Butiá da Serra and Arumbeva, respectively. The main groups of phenolic compounds found in the fruits were hydroxybenzoic acids (60.5, 26.5 and 96.1% of the total phenolic compounds for Butiá da Praia, Butiá da Serra and Arumbeva, respectively), flavan-3-ols (23.6 and 61.2% of the total phenolic compounds for Butiá da Praia and Butiá da Serra) and flavonols (2.6% of the total phenolic compounds for Arumbeva). The hydroethanolic extracts of these fruits were free radical scavenger, sources of phenolic compounds and did not cause toxic effects in vivo. In hydroethanolic extracts of Butiá da Praia and Arumbeva, the total phenolic content increased by around 67% and 35%, respectively. Besides the health benefits, these proved to be promising sources of natural antioxidants, with phenolic composition variating among species and collection site. The obtained results enable future applications of studied fruits extracts in food and/or pharmaceutical products, encouraging and valuing the sustainable use of biodiversity.
Collapse
Affiliation(s)
- Fernanda Camboim Rockett
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Luana Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Bruna Tischer
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Viviani Ruffo de Oliveira
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos St., 2400, Porto Alegre, RS Zip Code: 90040-060, Brazil
| | - Vanuska Lima da Silva
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos St., 2400, Porto Alegre, RS Zip Code: 90040-060, Brazil
| | - Paula Rossini Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil
| | - Alessandro Rios
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Ave., 9500, Porto Alegre, RS Zip Code: 91501-970, Brazil.
| |
Collapse
|
46
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res Int 2020; 139:109904. [PMID: 33509473 DOI: 10.1016/j.foodres.2020.109904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Eugenia stipitata is a fruit native to the Brazilian Amazonian region, belonging to the Myrtaceae family whose chemical composition has been little evidenced. In this study, we evaluated for the first time the nutritional composition, bioactive compounds and antioxidant properties of two fractions of this fruit. It was observed that the edible fraction had a higher content of minerals such as K, Ca and Mg (827.66 ± 14.51; 107.16 ± 1.54; and 75.65 ± 1.28 mg 100 g-1 dw, respectively), sucrose (38.01 ± 2.94 mg g-1 dw), fructose (17.58 ± 0.80 mg g-1 dw), and maltotetraose (1.63 ± 0.09 mg g-1 dw). In this same fraction, about 30 volatile compounds were found, mainly biciclo(3.2.1)octan-3-one, 6 (2-hydroxyethyl)-, endo-; butanoic acid, 2-methyl-, hexyl ester and p-ocimene. In turn, the seed had the highest number of compounds identified by ESI-LTQ-MS/MS (including vanillic acid, gallic acid hexoside, catechin hexoside, luteolin hexoside, among others), higher content of phenolics (142.43 ± 0.82 mg GAE g-1 dw), flavonoids (43.73 ± 0.23 mg CE g-1 dw), and antioxidant capacity (139.59 ± 2.47; 447.94 ± 2.70; and 100.07 ± 10.50 µM TE g-1 dw for DPPH, ABTS, and ORAC, respectively). These results suggest that Eugenia stipitata has excellent nutritional value and great functional potential, and may contribute to a greater commercial exploitation of this fruit, not only in food, but also in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Florisvaldo Gama de Souza
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
47
|
Schulz M, Seraglio SKT, Brugnerotto P, Gonzaga LV, Costa ACO, Fett R. Composition and potential health effects of dark-colored underutilized Brazilian fruits – A review. Food Res Int 2020; 137:109744. [DOI: 10.1016/j.foodres.2020.109744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
|
48
|
Distribution of nutrients and functional potential in fractions of Eugenia pyriformis: An underutilized native Brazilian fruit. Food Res Int 2020; 137:109522. [DOI: 10.1016/j.foodres.2020.109522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/26/2023]
|
49
|
Ballard CR, Dos Santos EF, Dubois MJ, Pilon G, Cazarin CBB, Maróstica Junior MR, Marette A. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct 2020; 11:8800-8810. [PMID: 32959866 DOI: 10.1039/d0fo01912g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of polyphenol-rich food is associated with better metabolic health. Tucum-do-Pantanal (Bactris setosa Mart) and taruma-do-cerrado (Vitex cymosa Bertero ex Spreng) are underexploited native Brazilian fruits with an important source of phytochemicals. In this study, we assessed the effects of 100 mg kg-1 tucum (TPE) and taruma (TCE) extracts on diet-induced obesity (DIO) C57BL/6J mice. After 8 weeks of daily treatment, TPE and TCE were found to significantly prevented the diet-induced body weight gain and fully protected against hepatic steatosis associated with a tendency to stimulate hepatic AMPK phosphorylation. TPE reduced visceral obesity and improved glucose metabolism as revealed by an improvement of the insulin tolerance test, a reduction in the insulin fasting level, and a decreased glucose-induced hyperinsulinemia during an oral glucose tolerance test. TPE and TCE showed promising effects on the treatment of obesity and NAFLD, furthermore, TPE on insulin resistance.
Collapse
Affiliation(s)
- Cíntia Reis Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Elisvânia Freitas Dos Santos
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, S/N Costa e Silva, 79070-900, Mato Grosso do Sul, Brazil.
| | - Marie-Julie Dubois
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Cinthia Baú Betim Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Mário Roberto Maróstica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Andre Marette
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| |
Collapse
|
50
|
Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food Chem Toxicol 2020; 142:111439. [PMID: 32450285 DOI: 10.1016/j.fct.2020.111439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the effects of different solvents and maximize the extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) seeds. In general, the solvent system composed of water and propanone (52:48 v/v) modified the extract polarity and increased extraction yield of bioactive compounds. The optimized extract presented antioxidant capacity measured by different chemical and biological assays. The optimized extract exerted antiproliferative and cytotoxic effects against A549 and HCT8 cells, antimicrobial and antihemolytic effects, inhibited α-amylase/α-glucosidase activities and presented in vitro antihypertensive effect. Nonetheless, the optimized extract showed no cytotoxicity in a human cell model (IMR90). Vescalagin, castalagin and ellagic acid were the major phenolic compounds in the optimized extract. Our results show that jabuticaba seed may be a potential ingredient for the development of potentially functional foods.
Collapse
|