1
|
Wang T, Chen Z, Feng W, Wang R. Efficient purification and identification of α-glucosidase inhibitory peptides from rice proteins by enzyme membrane reactors. Food Chem 2025; 475:143182. [PMID: 39938264 DOI: 10.1016/j.foodchem.2025.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/11/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Bioactive peptides are growingly recognized with exceptional therapeutic abilities against numerous chronic diseases such as cardiovascular diseases. However, the advancement of peptide manufacturing is hindered by the trade-off between protein-peptide bioconversion and bioactivity retention. In this study, we demonstrate the efficient preparation of rice peptides using enzymatic membrane reactors (EMRs). Owing to the delicately coupled enzymatic hydrolysis and timely filtration, these peptides featured highly integral molecular structures pertinent to their bioactivities, while thorough hydrolysis ensured a high protein-peptide bioconversion (78.06 %). Specifically, over 89 % of the peptides prepared by EMRs had molecular weights <1 kDa, exhibiting significantly enhanced α-glucosidase inhibitory capacities (by 41.67 %) as compared to the conventional direct hydrolysis method (DEH). Furthermore, this technique significantly enhanced the peptide screening efficiency by 91.88 % due to increased screening accuracy. Our study would properly solve the technical challenges concerning the paradox between bioconversion and bioactivity for efficient manufacturing of bioactive peptides.
Collapse
Affiliation(s)
- Tao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zilong Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Feng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ren Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang L, Zhang F, Suo B, Han C, Ma Q, Sun J, Wang W. α-Glucosidase inhibitory peptides from the enzymolysis of Semen Ziziphi Spinosae protein using an ultrasound-assisted protease: Preparation and inhibitory mechanism. Food Res Int 2025; 208:116282. [PMID: 40263864 DOI: 10.1016/j.foodres.2025.116282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Peptides are promising sources of safe hypoglycemic drugs. The potential of Semen Ziziphi Spinosae protein (SZSP) as a natural source of α-glucosidase inhibitory peptides was investigated. SZSP was hydrolyzed using an ultrasound-assisted protease, and the four α-glucosidase inhibitory peptides were purified, identified, and screened. Their inhibitory mechanisms were investigated using molecular docking. Ultrasound-assisted enzymolysis enhanced the α-glucosidase inhibition and protein conversion rates, which cleaved the protein into small molecules. Fourier transform infrared spectroscopy results showed that the protease hydrolysis tended to transform α-helicals into β-sheets. A purification, identification, and screening process finally identified four α-glucosidase inhibitory peptides. The IC50 values of LPLLDK, PRLPEM, LPWK, and FPPR were 120.36 ± 6.73, 139.50 ± 7.21, 248.12 ± 10.27, and 106.67 ± 3.22 μM, respectively. Lineweaver-Burk analyses demonstrated that FPPR was a competitive inhibitor of -glucosidase, while LPLLDK and LPWK exhibited a mixed inhibition mechanism and PRLPEM was a non-competitive inhibitor. Molecular docking studies indicated that polypeptides occupy the active pockets of -glucosidase through hydrogen bonding, hydrophobic interactions, and salt Bridges, preventing -glucosidase from forming complexes with the substrate or non-competitive binding to other sites to form enzyme-substrate inhibitors to inhibit enzyme-substrate intermediates and prevent the release of catalytic reaction products. These results demonstrate that the peptides extracted from SZSP may be beneficial for the treatment of diabetes.
Collapse
Affiliation(s)
- Linnan Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Bingxin Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqi Han
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Ramezan M, Arzhang P, Shin AC. Milk-derived bioactive peptides in insulin resistance and type 2 diabetes. J Nutr Biochem 2025; 138:109849. [PMID: 39870329 DOI: 10.1016/j.jnutbio.2025.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Diabetes is a global health issue affecting over 6% of the world and 11% of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs). Taken from casein or whey fractions of various milks, MBAPs exhibit diverse health-promoting properties. Specific interactions between these peptides and enzymes involved in glucose digestion and metabolism have been examined, leading to the identification of some key peptides exerting the effects. This review emphasizes the positive impact of MBAPs on glycemic control through various mechanisms. Different cell lines have been used to investigate MBAPs' effects on insulin signaling, inflammation, and oxidative stress. Preclinical in vivo studies have also shown that MBAPs lower glucose, stimulate insulin, and reduce inflammation. Human trials further substantiate these findings and suggest the potential utility of milk protein hydrolysates containing MBAPs in individuals with insulin resistance or T2D to improve insulin action and glucose homeostasis.
Collapse
Affiliation(s)
- Marjan Ramezan
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Andrew C Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Health & Human Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
4
|
Li N, Liu K, Zhang Y, Hui Z, Wang P, Sun S, Du C. Identification of novel α-glucosidase inhibitory peptides in Meretrix meretrix Linnaeus and their inhibitory kinetics using in silico and in vitro analyses. Int J Biol Macromol 2025; 309:142480. [PMID: 40174823 DOI: 10.1016/j.ijbiomac.2025.142480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
This study aimed to identify novel peptides with α-glucosidase inhibitory activity from Meretrix meretrix Linnaeus hydrolysates (MMLHs) following simulated gastrointestinal digestion (SGD) and to elucidate their inhibitory mechanisms. The molecular weight distribution of MMLHs progressively decreased during SGD, with hydrolysates from the intestinal digestion phase (MMLHs-I) exhibiting the strongest α-glucosidase inhibition (IC50: 0.14 ± 0.02 mg/mL). A total of 127 peptides were identified in MMLHs-I, among which 58 were unique compared to those from the gastric digestion phase. In silico screening and molecular docking identified six novel peptides-FAGDDAPR, VPLF, YRRL, WDH, PPLA, and WSG-with significant α-glucosidase inhibitory activity, displaying IC50 values of 0.90, 1.30, 1.90, 1.20, 1.00, and 1.80 mg/mL, respectively. Among them, FAGDDAPR and PPLA exhibited the highest bioactivity. Kinetic analysis and fluorescence quenching assays demonstrated that both peptides acted as mixed-type inhibitors, forming stable complexes with α-glucosidase. Their inhibitory effects were primarily driven by hydrogen bonding and hydrophobic interactions, which hindered substrate binding and induced conformational changes in the enzyme. These findings suggest that peptides derived from MMLHs through gastrointestinal digestion possess potential antidiabetic properties, highlighting their promise as functional food ingredients for mitigating hyperglycemic damage.
Collapse
Affiliation(s)
- Na Li
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China
| | - Kaiyue Liu
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China
| | - Yue Zhang
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China
| | - Zhenzhen Hui
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA; School of Engineering, East Institute of Technology, Ningbo, Zhejiang Province 315200, PR China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China
| | - Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China; Institute of Food and Drug Research for One Health, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province, 264025, PR China.
| |
Collapse
|
5
|
An N, Yang J, Zhang Y, Suo H, Song J. Enzymatic hydrolysis of buffalo casein enhances DPP-4 inhibition: Structural modifications and bioactive peptide identification. J Dairy Sci 2025; 108:2169-2181. [PMID: 39603500 DOI: 10.3168/jds.2024-25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4), the enzyme responsible for the rapid degradation of incretin hormones, plays a pivotal role in blood glucose regulation, and its inhibition serves as an effective strategy for maintaining glucose homeostasis. The aim of this study was to investigate the effect of enzymatic hydrolysis on the structure of buffalo casein and its DPP-4 inhibitory activity. Results demonstrated that Flavorzyme effectively hydrolyzed buffalo casein, as evidenced by scanning electron microscopy and electrophoretic analysis, with the degree of hydrolysis reaching its maximum value (20.05 ± 0.14%) after 3 h. The results of circular dichroism spectra, as well as endogenous and exogenous fluorescence spectra, indicated marked alterations in the secondary and tertiary structures of buffalo casein following enzymatic hydrolysis. Additionally, the DPP-4 inhibitory effect of buffalo casein was found to increase with longer hydrolysis times. The hydrolysate obtained after 3 h of hydrolysis demonstrated the highest level of inhibition, with a half-maximal inhibitory concentration (IC50) value of 1.04 mg/mL. The DPP-4 inhibitory peptide YPFPGPIPN, with an IC50 value of 0.88 mg/mL, was identified in the 1 to 3 kDa fraction of the 3-h hydrolysate. This peptide interacted with the active site of DPP-4 via hydrogen bonds, hydrophobic interactions, salt bridges, and π-cation interactions. This study offers a novel scientific foundation for the development of functional antidiabetic foods derived from buffalo casein.
Collapse
Affiliation(s)
- Ning An
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
7
|
Xie Y, Wang J, Wang S, He R, Wang Z, Zhao L, Ge W. Preparation, characterization, and mechanism of DPP-IV inhibitory peptides derived from Bactrian camel milk. Int J Biol Macromol 2024; 277:134232. [PMID: 39098667 DOI: 10.1016/j.ijbiomac.2024.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
In this study, double enzyme hydrolysis significantly enhanced the DPP-IV inhibition rate compared to single enzyme. The α + K enzymes exhibited the highest inhibition rate. Ultrasonic pretreatment for 30 min improved the hydrolysis efficiency and DPP-IV inhibition rate, potentially due to the structural changes in hydrolysates, such as the increased surface hydrophobicity, and reduced particle size, α-helix and β-turn. Six peptides were screened and verified in vitro. QPY, WPEYL, and YPPQVM displayed competitive inhibition, while LPAAP and IPAPSFPRL displayed mixed competitive/non-competitive inhibition. The interactions between these six peptides and DPP-IV primarily occurred through hydrogen bonds, electrostatic and hydrophobic interactions. Network pharmacological analysis indicated that LPAAP might inhibit DPP-IV activity trough interactions with diabetes-related targets such as CASP3, HSP90AA1, MMP9, and MMP9. These results uncover the potential mechanism of regulating blood glucose by camel milk hydrolysates, establishing camel milk peptide as a source of DPP-IV inhibitory peptide.
Collapse
Affiliation(s)
- Yuxia Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangshuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
9
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
10
|
Correa JL, Zapata JE, Hernández-Ledesma B. Impact of Alcalase Hydrolysis and Simulated Gastrointestinal Digestion on the Release of Bioactive Peptides from Erythrina edulis (Chachafruto) Proteins. Int J Mol Sci 2024; 25:9290. [PMID: 39273238 PMCID: PMC11394852 DOI: 10.3390/ijms25179290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (μmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.
Collapse
Affiliation(s)
- Jessica L Correa
- Nutrition and Food Technology Group, Universidad de Antioquia, Medellin 050010, Colombia
| | - José Edgar Zapata
- Nutrition and Food Technology Group, Universidad de Antioquia, Medellin 050010, Colombia
| | - Blanca Hernández-Ledesma
- Development and Innovation in Alternative Proteins Group (INNOVAPROT), Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 28049 Madrid, Spain
| |
Collapse
|
11
|
Mudgil P, Gan CY, Yap PG, Redha AA, Alsaadi RHS, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. Exploring the dipeptidyl peptidase IV inhibitory potential of probiotic-fermented milk: An in vitro and in silico comprehensive investigation into peptides from milk of different farm animals. J Dairy Sci 2024:S0022-0302(24)01060-9. [PMID: 39122154 DOI: 10.3168/jds.2024-25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Bioactive peptides produced via enzymatic hydrolysis have been widely investigated for their dipeptidyl peptidase-IV (DPP-IV) inhibitory properties. However, deficit of studies on fermentation as a mean to produce DPP-IV inhibitory peptides prompted us to draw a comparative study on DPP-IV inhibitory peptides generated from cow, camel, goat, and sheep milk using probiotic fermentation. Further, peptide identification, in silico molecular interactions with DPP-IV, and ensemble docking were performed. Results obtained suggested that goat milk consistently exhibited higher hydrolysis than other milk types. Further, Pediococcus pentosaceus (PP-957) emerged as a potent probiotic, with significantly lower DPP-IV-IC50 values 0.17, 0.12, and 0.25 µg/mL protein equivalent in fermented cow, camel, and goat milk, respectively. Overall, peptides (RPPPPVAM, CHNLDELKDTR, and VLSLSQPK) exhibited strong binding affinity with binding energies of -9.31, -9.18 and -8.9 Kcal·mol-1, respectively, suggesting their potential role as DPP-IV inhibitors. Overall, this study, offers valuable information toward antidiabetic benefits of fermented milk products via inhibition of DPP-IV.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates..
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2 LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QDPP-IVFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reem H Sultan Alsaadi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación. División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma. Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
12
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
13
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Sousa NFC, Santos MPF, Barbosa RP, Bonomo RCF, Veloso CM, Souza Júnior EC. Pepsin immobilization on activated carbon and functionalized with glutaraldehyde and genipin for the synthesis of antioxidant peptides of goat casein. Food Res Int 2024; 186:114161. [PMID: 38729685 DOI: 10.1016/j.foodres.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 05/12/2024]
Abstract
In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, β-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.
Collapse
Affiliation(s)
- Núbina F C Sousa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Raiza P Barbosa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Evaldo C Souza Júnior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| |
Collapse
|
15
|
Yu Y, Sun P, Liu Y, Zhao WL, Wang TJ, Yu SX, Tian LK, Zhao L, Zhang MM, Zhang QY, Sun ZY, Zhang QL, Qin LP. Characterization and evaluation of the in vitro and in vivo anti-diabetic activities of camel milk protein hydrolysates derived with different protease digestions. J Funct Foods 2024; 117:106227. [DOI: 10.1016/j.jff.2024.106227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
16
|
Barzkar N, Bunphueak P, Chamsodsai P, Muangrod P, Thumthanaruk B, Rungsardthong V, Tabtimmai L. Jellyfish protein hydrolysates: Multifunctional bioactivities unveiled in the battle against diabetes, inflammation, and bacterial pathogenesis. Microb Pathog 2024; 191:106648. [PMID: 38641070 DOI: 10.1016/j.micpath.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells. This effect was dose-dependent and non-cytotoxic, highlighting the hydrolysate potential in treating inflammation-related conditions. Regarding anti-bacterial activity, pepsin-hydrolyzed jellyfish selectively exhibited a potent effect against S. aureus, including Methicillin-susceptible and Methicillin-resistant strains. This activity was evident at minimum inhibitory concentrations (MIC) of 25 μg/mL for S. aureus ATCC10832, while a modest effect was observed against other Gram-positive strains. The hydrolysates effectively delayed bacterial growth dose-dependently, suggesting their use as alternative agents against bacterial infections. Most notably, pepsin-hydrolyzed jellyfish showed significant anti-biofilm activity against S. aureus. The umbrella section hydrolysate of Rhopilema hispidum was particularly effective, reducing biofilm formation through downregulating the icaA gene, crucial for biofilm development. Furthermore, the hydrolysates modulated the expression of the agrA gene, a key regulator in the pathogenesis of S. aureus. In conclusion, pepsin-hydrolyzed jellyfish protein hydrolysates exhibit promising multifunctional bioactivities, including anti-diabetic, anti-inflammatory, antibacterial, and anti-biofilm properties. These findings suggest their potential application in pharmaceutical and nutraceutical fields, particularly in managing diabetic risks, inflammation, bacterial infections, and combating the biofilm-associated pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Pinchuta Bunphueak
- Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand; Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Phumin Chamsodsai
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10800, Thailand
| | - Pratchaya Muangrod
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Lueacha Tabtimmai
- Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand; Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 10800, Thailand.
| |
Collapse
|
17
|
Kröber TU, Holzer M, Kerpes R, Mittermeier-Kleßinger VK, Dawid C, Becker T. Enrichment and Quantitation of Dipeptidyl Peptidase IV Inhibitory Peptides in Quinoa upon Systematic Malting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11480-11492. [PMID: 38733562 PMCID: PMC11117401 DOI: 10.1021/acs.jafc.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 μmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.
Collapse
Affiliation(s)
- Tabea
D. U. Kröber
- Chair
of Brewing and Beverage Technology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Magdalena Holzer
- Chair
of Food Chemistry and Molecular Sensory Science, School of Life Sciences
Weihenstephan, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Roland Kerpes
- Chair
of Brewing and Beverage Technology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Verena K. Mittermeier-Kleßinger
- Chair
of Food Chemistry and Molecular Sensory Science, School of Life Sciences
Weihenstephan, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular Sensory Science, School of Life Sciences
Weihenstephan, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
- Professorship
for Functional Phytometabolomics, School of Life Sciences Weihenstephan, Technical University of Munich, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Thomas Becker
- Chair
of Brewing and Beverage Technology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
18
|
Zheng K, Wu Y, Dai Q, Yan X, Liu Y, Sun D, Yu Z, Jiang S, Ma Q, Jiang W. Extraction, identification, and molecular mechanisms of α-glucosidase inhibitory peptides from defatted Antarctic krill (Euphausia superba) powder hydrolysates. Int J Biol Macromol 2024; 266:131126. [PMID: 38527682 DOI: 10.1016/j.ijbiomac.2024.131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The objective of this study was to explore the potential of Antarctic krill-derived peptides as α-glucosidase inhibitors for the treatment of type 2 diabetes. The enzymolysis conditions of α-glucosidase inhibitory peptides were optimized by response surface methodology (RSM), a statistical method that efficiently determines optimal conditions with a limited number of experiments. Gel chromatography and LC-MS/MS techniques were utilized to determine the molecular weight (Mw) distribution and sequences of the hydrolysates. The identification and analysis of the mechanism behind α-glucosidase inhibitory peptides were conducted through conventional and computer-assisted techniques. The binding affinities between peptides and α-glucosidase were further validated using BLI (biolayer interferometry) assay. The results revealed that hydrolysates generated by neutrase exhibited the highest α-glucosidase inhibition rate. Optimal conditions for hydrolysis were determined to be an enzyme concentration of 6 × 103 U/g, hydrolysis time of 5.4 h, and hydrolysis temperature of 45 °C. Four peptides (LPFQR, PSFD, PSFDF, VPFPR) with strong binding affinities to the active site of α-glucosidase, primarily through hydrogen bonding and hydrophobic interactions. This study highlights the prospective utility of Antarctic krill-derived peptides in curtailing α-glucosidase activity, offering a theoretical foundation for the development of novel α-glucosidase inhibitors and related functional foods to enhance diabetes management.
Collapse
Affiliation(s)
- Kewei Zheng
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuanyuan Wu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingfei Dai
- Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaojun Yan
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China; Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Di Sun
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongjie Yu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
19
|
Abdisa KB, Szerdahelyi E, Molnár MA, Friedrich L, Lakner Z, Koris A, Toth A, Nath A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective-A Narrative Review. Biomolecules 2024; 14:478. [PMID: 38672494 PMCID: PMC11048494 DOI: 10.3390/biom14040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is considered one of the most relevant topics of discussion because an epidemic heave of the incidence of obesity in both developing and underdeveloped countries has been reached. According to the World Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight. One of the causes of obesity is an imbalance of energy intake and energy expenditure, where nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic interactions among different risk factors of obesity are highly complex; however, the underpinnings of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic calories. Several experimental studies have pointed out that dairy proteins and peptides may modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of obesity were assessed. Comprehensive information about the impact of proteins and peptides from dairy milks on fast food-induced obesity is presented in this narrative review article.
Collapse
Affiliation(s)
- Kenbon Beyene Abdisa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary;
| | - Máté András Molnár
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - László Friedrich
- Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zoltán Lakner
- Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary
| | - Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| |
Collapse
|
20
|
Hiago Bellaver E, Eliza Redin E, Militão da Costa I, Schittler Moroni L, Pinto Kempka A. Food peptidomic analysis of bovine milk fermented by Lacticaseibacillus casei LBC 237: In silico prediction of bioactive peptides and anticancer potential. Food Res Int 2024; 180:114060. [PMID: 38395580 DOI: 10.1016/j.foodres.2024.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Bioactive peptides, which exhibited diverse biological activities such as anti-cancer, anti-inflammatory, bactericidal, antiviral, and quorum sensing properties, were considered promising alternative therapeutic agents. Sourced from various raw materials, particularly foods, these peptides garnered significant interest. In this context, the study focused on exploring bioactive peptides derived from bovine whole milk fermentation by Lacticaseibacillus casei LBC 237. Comprehensive peptidomic analysis and in silico predictions, with a specific emphasis on anti-cancer properties, were conducted. The study categorized peptides into BP-LBC, originating from the metabolism of L. casei LBC 237 and not matching any sequence in the Bos taurus database, and BP-MILK, matching a sequence in the Bos taurus database. Among the 143 identified peptides with potential biological activity, 33.56% were attributed to BP-LBC, while 66.43% originated from BP-MILK, demonstrating the important contribution of proteins in bovine milk in the generation of bioactive peptides. Hydrophobic peptides, enriched in Leucine, Lysine, and Proline, dominated both fractions, significantly influencing their functional properties. Pearson correlation analysis revealed inverse relationships between bioactive peptides, molecular weight, and anti-tumor activity in BP-MILK. The DGKVWEESLK peptide exhibited in silico activity against 10 different cancer cell lines. Studying the bioactive properties of peptides from familiar sources enhances the connection between food science and human health. In addition, in silico studies have been crucial in deepening our understanding of the bioactive potential of these peptides and their mode of action.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Santa Catarina State University. Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology. Lages, SC, Brazil
| | - Eduarda Eliza Redin
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Ingrid Militão da Costa
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Liziane Schittler Moroni
- Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| | - Aniela Pinto Kempka
- Santa Catarina State University. Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology. Lages, SC, Brazil; Santa Catarina State University. Department of Food Engineering and Chemical Engineering, Pinhalzinho, SC, Brazil.
| |
Collapse
|
21
|
Zhang J, Wu Y, Tang H, Li H, Da S, Ciren D, Peng X, Zhao K. Identification, characterization, and insights into the mechanism of novel dipeptidyl peptidase-IV inhibitory peptides from yak hemoglobin by in silico exploration, molecular docking, and in vitro assessment. Int J Biol Macromol 2024; 259:129191. [PMID: 38184042 DOI: 10.1016/j.ijbiomac.2023.129191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 μM), DEV (IC50 = 339.45 μM), and HCDKL (IC50 = 632.93 μM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Yulong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Se Da
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Dajie Ciren
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
22
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Flis Z, Szatkowski P, Pielichowska K, Molik E. The Potential of Sheep or Camel Milk Constituents to Contribute to Novel Dressings for Diabetic Wounds. Int J Mol Sci 2023; 24:17551. [PMID: 38139380 PMCID: PMC10744295 DOI: 10.3390/ijms242417551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Impaired wound healing is a complication of diabetes, which constitutes a serious problem in clinical practice. Currently, there is a high demand on the market for local treatment options for difficult-to-heal wounds caused by diabetes. The development of dressings that accelerate wound healing has recently been the subject of much research. Sheep and camel milk is gaining importance due to the content of many bioactive substances with health-promoting effects, such as insulin, LF, proline, or CLA. Sheep and camel milk proteins are a promising source of insulin, antidiabetic, and antihypertensive peptides. Numerous studies show that local administration of insulin has a significant impact on the healing of diabetic wounds. Sheep and camel milk, due to the highest LF content among ruminants, reduces autoimmune inflammatory processes and protects against bacterial and viral infections in the wound environment. Sheep's milk has the highest content of proline and CLA, and their addition to a hydrogel dressing can help in the development of an effective dressing material. The production of hydrogel dressings containing sheep and camel milk, which are naturally rich in the bioactive substances presented in this review, may be a promising step in the market of specialized dressings for difficult-to-heal diabetic wounds.
Collapse
Affiliation(s)
- Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| |
Collapse
|
24
|
Deng F, Liang Y, Lei Y, Xiong S, Rong J, Hu Y. Development and Identification of Novel α-Glucosidase Inhibitory Peptides from Mulberry Leaves. Foods 2023; 12:3917. [PMID: 37959036 PMCID: PMC10649714 DOI: 10.3390/foods12213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The mulberry leaf is a botanical resource that possesses a substantial quantity of protein. In this study, alcalase hydrolysis conditions of mulberry leaf protein were optimized using the response surface method. The results showed that the optimum conditions were as follows: substrate protein concentration was 0.5% (w/v), enzymatic hydrolysis temperature was 53.0 °C, enzymatic hydrolysis time was 4.7 h, enzyme amount was 17,800 U/g, and pH was 10.5. Then mulberry leaf peptides were separated by ultrafiltration according to molecular weight. Peptides (<3 kDa) were screened and subsequently identified using LC-MS/MS after the evaluation of α-glucosidase inhibition across various fractions. Three novel potential bioactive peptides RWPFFAFM (1101.32 Da), AAGRLPGY (803.91 Da), and VVRDFHNA (957.04 Da) with the lowest average docking energy were screened for molecular dynamics simulation to examine their binding stability with enzymes in a 37 °C simulated human environment. Finally, they were prepared by solid phase synthesis for in vitro verification. The former two peptides exhibited better IC50 values (1.299 mM and 1.319 mM, respectively). These results suggest that the α-glucosidase inhibitory peptides from mulberry leaf protein are potential functional foods or drugs for diabetes treatment, but further in vivo studies are needed to identify the bioavailability and toxicity.
Collapse
Affiliation(s)
- Fanghui Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yihao Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuelei Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Bioactive Peptide Technology Hubei Engineering Research Center, Jingzhou 434000, China
| |
Collapse
|
25
|
Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023; 15:4267. [PMID: 37836551 PMCID: PMC10574726 DOI: 10.3390/nu15194267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
With the change in people's lifestyle, diabetes has emerged as a chronic disease that poses a serious threat to human health, alongside tumor, cardiovascular, and cerebrovascular diseases. α-glucosidase inhibitors, which are oral drugs, have proven effective in preventing and managing this disease. Studies have suggested that bioactive peptides could serve as a potential source of α-glucosidase inhibitors. These peptides possess certain hypoglycemic activity and can effectively regulate postprandial blood glucose levels by inhibiting α-glucosidase activity, thus intervening and regulating diabetes. This paper provides a systematic summary of the sources, isolation, purification, bioavailability, and possible mechanisms of α-glucosidase inhibitory peptides. The sources of the α-glucosidase inhibitory peptides were introduced with emphasis on animals, plants, and microorganisms. This paper also points out the problems in the research process of α-glucosidase inhibitory peptide, with a view to providing certain theoretical support for the further study of this peptide.
Collapse
Affiliation(s)
- Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya School of Medicine, Central South University, Changsha 410008, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
26
|
Taghipour MJ, Ezzatpanah H, Ghahderijani M. In vitro and in silico studies for the identification of anti-cancer and antibacterial peptides from camel milk protein hydrolysates. PLoS One 2023; 18:e0288260. [PMID: 37437001 DOI: 10.1371/journal.pone.0288260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Today, breast cancer and infectious diseases are very worrying that led to a widespread effort by researchers to discover natural remedies with no side effects to fight them. In the present study, we isolated camel milk protein fractions, casein and whey proteins, and hydrolyzed them using pepsin, trypsin, and both enzymes. Screening of peptides with anti-breast cancer and antibacterial activity against pathogens was performed. Peptides derived from whey protein fraction with the use of both enzymes showed very good activity against MCF-7 breast cancer with cell viability of 7.13%. The separate use of trypsin and pepsin to digest whey protein fraction yielded peptides with high antibacterial activity against S. aureus (inhibition zone of 4.17 ± 0.30 and 4.23 ± 0.32 cm, respectively) and E. coli (inhibition zone of 4.03 ± 0.15 and 4.03 ± 0.05 cm, respectively). Notably, in order to identify the effective peptides in camel milk, its protein sequences were retrieved and enzymatically digested in silico. Peptides that showed both anticancer and antibacterial properties and the highest stability in intestinal conditions were selected for the next step. Molecular interaction analysis was performed on specific receptors associated with breast cancer and/or antibacterial activity using molecular docking. The results showed that P3 (WNHIKRYF) and P5 (WSVGH) peptides had low binding energy and inhibition constant so that they specifically occupied active sites of protein targets. Our results introduced two peptide-drug candidates and new natural food additive that can be delivered to further animal and clinical trials.
Collapse
Affiliation(s)
- Mohammad Javad Taghipour
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ghahderijani
- Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Fu Y, Liu Z, Wang H, Zhang F, Guo S, Shen Q. Comparison of the generation of α-glucosidase inhibitory peptides derived from prolamins of raw and cooked foxtail millet: In vitro activity, de novo sequencing, and in silico docking. Food Chem 2023; 411:135378. [PMID: 36669338 DOI: 10.1016/j.foodchem.2022.135378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Foxtail millet prolamin has been demonstrated to have anti-diabetic effects. In this study, we compared the generation of anti-α-glucosidase peptides derived from prolamins of raw and cooked foxtail millet (PRFM and PCFM). PRFM and PCFM hydrolysates (PRFMH and PCFMH) both exhibited α-glucosidase inhibitory activity. After ultrafiltration according to molecular weight (Mw), the fraction with Mw < 3 kDa in PCFMH (PCFMH<3) showed higher α-glucosidase inhibitory activity than that in PRFMH (PRFMH<3). The composition of α-glucosidase inhibitory peptides identified by de novo sequencing in PCFMH<3 and PRFMH<3 was compared by virtual screening, combining biological activity, net charge, grand average of hydropathicity (GRAVY), and key hydrophobic amino acids (Met, Pro, Phe, and Leu). We found that the proportion of peptides with excellent α-glucosidase binding force in PCFMH<3 was higher than in PRFMH<3. Overall, cooking may positively affect the generation of peptides that perform well in inhibiting α-glucosidase derived from foxtail millet prolamin.
Collapse
Affiliation(s)
- Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Liu
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fan Zhang
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Industrial Technology Research Institute Ltd, Beijing, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Qun Shen
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
29
|
Mudgil P, Redha A, Nirmal NP, Maqsood S. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds. J Dairy Sci 2023; 106:3098-3108. [PMID: 36935238 DOI: 10.3168/jds.2022-22701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 03/19/2023]
Abstract
Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
30
|
Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates. Foods 2023; 12:foods12030663. [PMID: 36766195 PMCID: PMC9914213 DOI: 10.3390/foods12030663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. All PMHs showed good α-glucosidase inhibitory activity with the best inhibition effect coming from the dual enzyme system of Alcalase and Neutrase with an IC50 of 5.63 ± 0.19 mg/mL. The fractions with the highest inhibition effect were separated and purified using ultrafiltration and cation exchange chromatography. Four novel α-glucosidase inhibitory peptides (FYNPAAGR, PGVLPVAS, FFVPPSQQ, and FSYNPQAG) were identified by nano-HPLC-MS/MS and molecular docking. Molecular docking showed that peptides could occupy the active pocket of α-glucosidase through hydrogen bonding, hydrophobic interaction, salt bridges, and π-stacking, thus preventing the formation of complexes between α-glucosidase and the substrate. In addition, the α-glucosidase inhibitory activity of PMHs was stable against hot, pH treatment and in vitro gastrointestinal digestion. The study demonstrated that PMHs might be used as a natural anti-diabetic material with the potential to inhibit α-glucosidase.
Collapse
|
31
|
Sharma S, Pradhan R, Manickavasagan A, Tsopmo A, Thimmanagari M, Dutta A. Corn distillers solubles by two-step proteolytic hydrolysis as a new source of plant-based protein hydrolysates with ACE and DPP4 inhibition activities. Food Chem 2023; 401:134120. [DOI: 10.1016/j.foodchem.2022.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
32
|
Wan P, Cai B, Chen H, Chen D, Zhao X, Yuan H, Huang J, Chen X, Luo L, Pan J. Antidiabetic effects of protein hydrolysates from Trachinotus ovatus and identification and screening of peptides with α-amylase and DPP-IV inhibitory activities. Curr Res Food Sci 2023; 6:100446. [PMID: 36816000 PMCID: PMC9932700 DOI: 10.1016/j.crfs.2023.100446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
In the present study, the antidiabetic properties of Trachinotus ovatus protein hydrolysates (TOH) in streptozotocin-induced diabetic mice were investigated, and peptides with α-amylase (AAM) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities were identified and screened. The results showed that TOH alleviated body weight loss, polyphagia, blood glucose elevation and insulin secretion decline in diabetic mice. After 4 weeks of TOH administration, random blood glucose (RBG) decreased significantly. The TOH groups showed a dose-dependent reduction in fasting blood glucose (FBG), especially in the high-dose TOH group, which reduced FBG by 58% versus the effect of metformin. Moreover, TOH exerted a remarkable protective effect on hepatorenal function, as evidenced by increased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) and decreased serum urea levels. Histopathological studies confirmed that TOH can significantly protect the kidney and pancreas from histological changes, which was of great benefit for ensuring the normal secretion of insulin and preventing the occurrence of complications such as diabetic nephropathy. Two fractions with higher inhibitory activity against AAM and DPP-IV, F4 and F6, were obtained from the ultrafiltration of TOH-2 (≤3 kDa). A total of 19 potentially active peptides from F4 and 3 potentially active peptides from F6 were screened by LC‒MS/MS combined with bioinformatic analysis. These peptides are small molecular peptides composed of 2-6 amino acids, rich in characteristic amino acids such as proline, arginine, phenylalanine and asparagine, and contain high proportions of peptides (68% for F4, 67% for F6) with hydrophobicity ≥50%. They offer potent antidiabetic potential and could potentially bind to the active sites in the internal cavities of the target enzymes AAM and DPP-IV. In summary, this study revealed for the first time the antidiabetic effects of protein hydrolysates of Trachinotus ovatus and their derived peptides, which are promising natural ingredients with the potential to be used for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Peng Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huabiao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jingtong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Corresponding author. Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China.
| |
Collapse
|
33
|
Alblooshi M, Devarajan AR, Singh BP, Ramakrishnan P, Mostafa H, Kamal H, Mudgil P, Maqsood S. Multifunctional bioactive properties of hydrolysates from colocynth (Citrullus colocynthis) seeds derived proteins: Characterization and biological properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:326-334. [PMID: 36459867 DOI: 10.1016/j.plaphy.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Citrullus colocynthis (Colocynth) has gained a great deal of interest in their applications as indigenous nutraceutical and as a functional food ingredient. The intact colocynth seed protein was enzymatically hydrolyzed using proteolytic enzymes (alcalase, bromelain, and chymotrypsin) at different time intervals of 3, 6, and 9 h. The highest degree of hydrolysis (87.82%) was observed in chymotrypsin derived colocynth seed protein hydrolysates (CSPH) for 9 h. The CSPHs was further investigated through in-vitro assay to explore its potential biological activity such as antioxidant, inhibition of enzymatic marker related to diabetes (DPP-IV, α-glucosidase and α-amylase) and hyperlipidaemia (cholesteryl esterase and pancreatic lipase). Chymotrypsin hydrolysate showed the strongest DPPH (65.7 mM TEAC) and ABTS (525.2 mM TEAC) radical scavenging activity after 6 h of hydrolysis. Moreover, chymotrypsin-treated CSPH for 6 h inhibited cholesteryl esterase (IC50 = 13.68 μg/mL) and pancreatic lipase (IC50 = 14.12 μg/mL) significantly when compared to native protein. Whereas, bromelain and alcalase treated hydrolysate for 6 h effectively inhibited α-glucosidase and α-amylase at an inhibitory concentration of IC50 = 13.27 μg/mL and of IC50 = 17 μg/mL. Overall, the findings indicated that protein hydrolysates exhibited superior biological activity than intact colocynth seed proteins isolate (CSPI) and could be a sustainable source of bioactive peptides.
Collapse
Affiliation(s)
- Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Aarthi Rekha Devarajan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Preethi Ramakrishnan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hina Kamal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
34
|
Nutraceutical and bioactive potential of high-quality date fruit varieties (Phoenix dactylifera L.) as a function of in-vitro simulated gastrointestinal digestion. J Pharm Biomed Anal 2023; 223:115113. [DOI: 10.1016/j.jpba.2022.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
35
|
Zhang J, Liu M, Deng H, Zhao Y, Zhu Y, Bai J, Xiao X. Purification and Identification of Lipid-Lowering Protein from Barley Extract after Lactiplantibacillus plantarum dy-1 fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14488-14498. [PMID: 36345907 DOI: 10.1021/acs.jafc.2c05211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Previous studies have found that the protein in barley extract fermented by Lactiplantibacillus plantarum dy-1 has the ability to inhibit lipid accumulation. However, the isolation, purification, and structural identification of the protein with lipid-lowering activity were still needed. In the present study, barley protein fermented by L. plantarum dy-1 with the optimal lipid-lowering ability was isolated and purified in three steps: using ammonium sulfate precipitation, anion-exchange chromatography, and size-exclusion chromatography. Combined with the model of HepG2 cells induced by oleic acid, the results showed that the pure protein LFBEP-C1 had the best lipid-lowering potential. Furthermore, our research found that LFBEP-C1 enriched the content of hydrophobic amino acids in LFBEP-C1. Ultraviolet spectroscopy analysis indicated that the glycosidic bond in LFBEP-C1 was an O-type glycosidic bond. The FTIR and circular dichroism spectra indicated that α-helix and random coil were the main secondary structures of LFBEP-C1. Mass spectrometry determined the theoretical molecular weight of LFBEP-C1 as 48 kDa, and its amino acid coverage was 63%. These findings suggest that the protein LFBEP-C1 with the best lipid-lowering activity was isolated and purified, and its structural characteristics were identified.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Inspection Quarantine Bureau Inspection and Quarantine Technology Center, Zhenjiang 212000, China
| | - Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huan Deng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
36
|
Pedroni L, Perugino F, Galaverna G, Dall’Asta C, Dellafiora L. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria. Nutrients 2022; 14:nu14214680. [PMID: 36364940 PMCID: PMC9658718 DOI: 10.3390/nu14214680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Bioactive peptides may exert beneficial activities in living organisms such as the regulation of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining a growing interest for their health-promoting properties, and possible effects on glucose metabolism have been described, although the underlying mechanisms need clarification. This study proposes a computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall, this work presents an innovative and versatile approach to support the identification of bioactive peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory peptides within the proteomes under investigation (including ELS, which is among the most potent inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and A. flos-aquae, and on CSSL and PGG sequences.
Collapse
|
37
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Kumar D, Tarafdar A, Kumar Y, Dass SL, Pareek S, Badgujar PC. Production of functional spent hen protein hydrolysate powder and its fortification in food supplements: A waste to health strategy. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
40
|
Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022; 14:nu14204275. [PMID: 36296965 PMCID: PMC9607871 DOI: 10.3390/nu14204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The current bibliometric review evaluated recent papers that researched dietary protein sources to generate antidiabetic bioactive peptides/hydrolysates for the management of diabetes. Scopus and PubMed databases were searched to extract bibliometric data and, after a systematic four-step process was performed to select the articles, 75 papers were included in this review. The countries of origin of the authors who published the most were China (67%); Ireland (59%); and Spain (37%). The journals that published most articles on the subject were Food Chemistry (n = 12); Food & Function (n = 8); and Food Research International (n = 6). The most used keywords were ‘bioactive peptides’ (occurrence 28) and ‘antidiabetic’ (occurrence 10). The most used enzymes were Alcalase® (17%), Trypsin (17%), Pepsin, and Flavourzyme® (15% each). It was found that different sources of protein have been used to generate dipeptidyl peptidase IV (DPP-IV), α-amylase, and α-glucosidase inhibitory peptides. In addition to antidiabetic properties, some articles (n = 30) carried out studies on multifunctional bioactive peptides, and the most cited were reported to have antioxidant and antihypertensive activities (n = 19 and 17, respectively). The present review intended to offer bibliometric data on the most recent research on the production of antidiabetic peptides from dietary proteins to those interested in their obtention to act as hypoglycemic functional ingredients. The studies available in this period, compiled, are not yet enough to point out the best strategies for the production of antidiabetic peptides from food proteins and a more systematic effort in this direction is necessary to allow a future scale-up for the production of these possible functional ingredients.
Collapse
|
41
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022; 64:2053-2075. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dipeptidyl Peptidase IV (DPP-IV) inhibitory peptides are attracting increasing attention, owing to their potential role in glycemic regulation by preventing the inactivation of incretins. However, few reviews have summarized the current understanding of DPP-IV inhibitory peptides and their knowledge gaps. This paper reviews the production, identification and structure-activity relationships (SAR) of DPP-IV inhibitory peptides. Importantly, their bioavailability and hypoglycemic effects are critically discussed. Unlike the traditional method to identifying peptides after separation step by step, the bioinformatics approach identifies peptides via virtual screening that is more convenient and efficient. In addition, the bioinformatics approach was also used to investigate the SAR of peptides. Peptides with proline (Pro) or alanine (Ala) residue at the second position of N-terminal are exhibit strong DPP-IV inhibitory activity. Besides, the bioavailability of DPP-IV inhibitory peptides is related to their gastrointestinal stability and cellular permeability, and in vivo studies showed that the glucose homeostasis has been improved by these peptides. Especially, the intestinal transport of DPP-IV inhibitory peptides and cell biological assays used to evaluate their potential role in glycemic regulation are innovatively summarized. For further successful development of DPP-IV inhibitory peptides in glycemic regulation, future study should elucidate their SAR and in vivo hypoglycemic effects .
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
42
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
43
|
Liu C, Guo Z, Yang Y, Hu B, Zhu L, Li M, Gu Z, Xin Y, Sun H, Guan Y, Zhang L. Identification of dipeptidyl peptidase-IV inhibitory peptides from yak bone collagen by in silico and in vitro analysis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Phoenix dactylifera L. seed protein hydrolysates as a potential source of peptides with antidiabetic and anti-hypercholesterolemic properties: An in vitro study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Multifunctional Analysis of Chia Seed (Salvia hispanica L.) Bioactive Peptides Using Peptidomics and Molecular Dynamics Simulations Approaches. Int J Mol Sci 2022; 23:ijms23137288. [PMID: 35806294 PMCID: PMC9266559 DOI: 10.3390/ijms23137288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chia seed peptides (CSP) can be a source of multifunctional biopeptides to treat non-communicable diseases. However, interactions and binding affinity involved in targeting specific receptors remains unexplored. In this study, molecular simulation techniques were used as virtual screening of CSP to determine drug-like candidates using a multi-target-directed ligand approach. CSP fraction with the best bioactivities in vitro was sequenced. Then, a prediction model was built using physicochemical descriptors (hydrophobicity, hydrophilicity, intestinal stability, antiangiogenic, antihypertensive, and anti-inflammatory) to calculate potential scores and rank possible biopeptides. Furthermore, molecular dynamics simulations (MDS) and ensemble molecular docking analysis were carried out using four human protein targets (ACE, angiotensin converting enzyme; VEGF, vascular endothelial growth factor; GLUC, glucocorticoid and MINC, mineralocorticoid receptors). Five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR, GSRFDWTR) and five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF) had the lowest energy score and higher affinity for ACE and VEGF. The therapeutic effects of these selected peptides can be related to the inhibition of the enzymes involved in angiogenesis and hypertension, due to formation of stable complexes with VEGF and ACE binding sites, respectively. The application of MDS is a good resource for identifying bioactive peptides for future experimental validation.
Collapse
|
46
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
47
|
Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, Murtaza MS, Ibrahim SA, Siddiqui SA. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front Nutr 2022; 9:780151. [PMID: 35694165 PMCID: PMC9178506 DOI: 10.3389/fnut.2022.780151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background In recent years, researchers have focused on functional ingredients, functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive components, especially in bioactive peptides. Dairy proteins are a rich and balanced source of amino acids and their derived bioactive peptides, which possess biological and physiological properties. In the dairy industry, microbial fermentation and enzymatic hydrolysis are promising methods for producing bioactive peptides because of their rapid efficiency, and mild reaction conditions. However, these methods utilize less raw material, take long reaction time, result in low yields, and low activity products when used alone, which pose industry to seek for novel methods as pretreatments to increase the yield of bioactive peptides. Scope and Approach This review emphasizes the production of peptides from the dairy proteins and discusses the potential use of novel technologies as pretreatments to conventional methods of bioactive peptides production from dairy proteins, including the mechanisms of novel technologies along with respective examples of use, advantages, limitations, and challenges to each technology. Key Findings and Conclusion Noteworthily, hydrolysis of dairy proteins liberate wide-range of peptides that possess remarkable biological functions to maintain human health. Novel technologies in the dairy industry such as ultrasound-assisted processing (UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are innovative and environmentally friendly. Generally, novel technologies are less effectual compared to conventional methods, therefore used in combination with fermentation and enzymatic hydrolysis, and are promising pretreatments to modify peptides’ profile, improve the yields, and high liberation of bioactive peptides as compared to conventional technologies. UAP is an innovative and most efficient technology as its mechanical effects and cavitation change the protein conformation, increase the biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.
Collapse
Affiliation(s)
- Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Mian Anjum Murtaza,
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Iram Hafiz
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mian Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim,
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
48
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
49
|
Wang B, Xiao S, Chen X, Wang J. Structural characterisation, gastrointestinal digestion stability and transepithelial transport study of casein peptide–zinc chelate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bo Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Shan Xiao
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Xiangyu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| |
Collapse
|
50
|
Mudgil P, Aldhaheri F, Hamdi M, Punia S, Maqsood S. Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|