1
|
Nurko E, Nakilcioğlu E. Optimization of Spirulina-Enriched Vegan Cake Formulation Using Response Surface Methodology. Food Sci Nutr 2025; 13:e70116. [PMID: 40130000 PMCID: PMC11932053 DOI: 10.1002/fsn3.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Vegan lifestyle is gaining momentum across the globe due to its environmental effects and health benefits. In parallel with the increasing diet trends, the demand for vegan bakery products is increasing. Since vegan bakery products generally have low protein and bioactive compound content, they have little nutritional contribution to the daily diet of vegan individuals. In light of this, a study was conducted to develop a vegan cake formulation enriched with Spirulina to improve the physical, nutritional, and sensory properties of the product. Response surface methodology (RSM) was used to determine the optimum formulation for the production of Spirulina-enriched vegan cakes. The effects of Spirulina content (5-15 g), sugar content (90-110 g), flour content (90-110 g), and fat content (25-40 g) on some chemical, physical, and sensory properties of vegan cakes were investigated. It was found that the amount of Spirulina, the amount of sugar, the amount of flour, and the amount of fat could significantly affect the responses (p < 0.05). The optimum values for the independent variables were 11.965 g Spirulina, 106.206 g sugar, 110 g flour, and 25 g oil. The optimum formulation confirmed the fit of the regression models. In the optimum formulation of vegan cake enriched with Spirulina, baking loss was found to be 11.22%, hardness to be 43.96 N, Lcrumb* value to be 37.54, Lcrust* value to be 41.94, protein content to be 4.2%, total phenolic content to be 186.475 mg GAE/100 g DW, ABTS antioxidant activity to be 15.5679 μmol TE/100 g DW, and overall acceptability value to be 8.2. It is thought that vegan cake enriched with Spirulina can create a new trend for vegan individuals. Additionally, the developed product stands out as a nutritious alternative to vegan cakes on the bakery market.
Collapse
Affiliation(s)
- Eda Nurko
- Ege University, Engineering FacultyFood Engineering DepartmentIzmirTürkiye
| | - Emine Nakilcioğlu
- Ege University, Engineering FacultyFood Engineering DepartmentIzmirTürkiye
| |
Collapse
|
2
|
Yang Y, Shi X, Zhang J, Xiao H, Li C. Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis. Food Chem 2025; 465:142068. [PMID: 39577262 DOI: 10.1016/j.foodchem.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
Collapse
Affiliation(s)
- Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junze Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd., Kunming 650106, China.
| |
Collapse
|
3
|
Guimarães AP, Uliana DS, Sant'Ana MR, de São José JFB. Lacticaseibacillus rhamnosus: An Overview of the Viability in Fruit and Vegetable Juices and Their Potential Effects on Human Health. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10454-0. [PMID: 39904828 DOI: 10.1007/s12602-025-10454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Consumer demand for health-enhancing foods is growing, with plant-based probiotic foods gaining prominence. Fruit and vegetable juices offer promising matrices for delivering probiotic strains due to their rich bioactive compound content, which holds nutritional and technological significance. Lacticaseibacillus rhamnosus is commonly employed in viability studies, offering both technological benefits and potential health advantages for consumers. The main databases were searched to bring together a compilation of studies that assessed the feasibility and technological parameters of fruit and vegetable juices enriched with Lacticaseibacillus rhamnosus. In addition, this review aims to analyze promising points, gaps, and challenges in the development of these products, such as the relationship between the technological aspect of manufacturing this type of food and impacts on human health. The strain most used in the studies was Lacticaseibacillus rhamnosus GG. More than half of the formulations maintained viability above 8 log CFU/mL. Low pH, high dissolved oxygen concentrations, and low free amino acid concentrations can all be obstacles to preserving viability in fruit and vegetable juices. Various techniques, including microencapsulation, prebiotic supplementation, and pH adjustments, have been employed by researchers to achieve more favorable results. Despite numerous meta-analyses on supplementation alone, human studies on the consumption of probiotic-enriched juices remain scarce, which highlight the need for more research.
Collapse
Affiliation(s)
- Alessandra Peres Guimarães
- Department of Integrated Health Education, Federal University of Espírito Santo, CCS Directorate, Health Sciences Center Building, Av. Mal. Campos, 1468, Maruípe, Vitória, ES, 29047-105, Brazil
| | - Daniel Sgrancio Uliana
- Department of Integrated Health Education, Federal University of Espírito Santo, CCS Directorate, Health Sciences Center Building, Av. Mal. Campos, 1468, Maruípe, Vitória, ES, 29047-105, Brazil
| | - Marcella Ramos Sant'Ana
- Department of Integrated Health Education, Federal University of Espírito Santo, CCS Directorate, Health Sciences Center Building, Av. Mal. Campos, 1468, Maruípe, Vitória, ES, 29047-105, Brazil
| | - Jackline Freitas Brilhante de São José
- Department of Integrated Health Education, Federal University of Espírito Santo, CCS Directorate, Health Sciences Center Building, Av. Mal. Campos, 1468, Maruípe, Vitória, ES, 29047-105, Brazil.
| |
Collapse
|
4
|
Vasundaradevi R, Sarvajith M, Divyashree S, Deepa N, Achar PN, Sreenivasa MY. Tropical fruit-derived Lactiplantibacillus as potential probiotic and antifungal agents against Fusarium oxysporum. Sci Rep 2025; 15:2144. [PMID: 39821089 PMCID: PMC11739408 DOI: 10.1038/s41598-025-85190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Fifty-five lactic acid bacteria (LAB) were isolated from seven selected tropical fruits, with Solanum nigrum exhibiting the highest LAB prevalence and Couroupita guianenis and Musa fruits showing the lowest counts. Two strains isolated from Ficus racemosa demonstrated significant antifungal activity against Fusarium oxysporum. 16S rDNA sequencing identified these strains as Lactiplantibacillus plantarum MYSVCF3 and Lpb. argentoratensis MYSVCF5. The isolates displayed adaptability to a broad range of environmental conditions, including temperatures of 10-45 °C, pH 2-6, and salt up to 7%. The strains tolerated simulated gastrointestinal conditions of acid (pH-2), phenol (0.6%), and bile (0.3%) suggesting potential probiotic attributes. Lpb. argentoratensis MYSVCF5 inhibited F. oxysporum, two ESKAPE group bacteria (P. aeruginosa, S. aureus) plus S. paratyphi and E. coli. The cell-free supernatant (CFS) of Lpb. argentoratensis MYSVCF5 reduced the growth of fungal biomass by 94% and completely inhibited conidial germination, retaining activity even after extended cold storage. LC-MS/MS analysis identified organic acids in the CFS, with citric acid as the most abundant at 34.9 (± 0.3) µg/mL, followed by lactic (8.3 µg/mL) and malic acids (5.2 µg/mL). This study isolated a novel LAB, a potential candidate having probiotics and antifungal properties for application in food and agriculture.
Collapse
Affiliation(s)
- R Vasundaradevi
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - M Sarvajith
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
- WDRC, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Divyashree
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - N Deepa
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Premila N Achar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA30144, USA.
| | - M Y Sreenivasa
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India.
| |
Collapse
|
5
|
Ait Sidhoum A, Stygar A, Bedoin F, Niemi JK. Public acceptance of microbiome management strategy in dairy calves: a European survey on colostrum, probiotic provision and prolonged cow-calf contact. Animal 2025; 19:101380. [PMID: 39673817 DOI: 10.1016/j.animal.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024] Open
Abstract
The microbiome plays a crucial role in the calves' early stages of life. Several management practices can be considered to enhance the development and composition of the microbiome in calves. However, their social acceptance is largely unknown. The aim of this study was to investigate the public acceptance of innovative microbiome management practices aimed at improving the health and welfare of calves and to assess the factors influencing these levels of acceptance. Data used in the analysis were obtained from an online survey conducted in July 2023. The final sample consists of 3 220 citizens from four EU countries (Finland = 813, France = 803, Ireland = 801 and Poland = 803). Participants were asked to assess four management practices designed to improve calves' health and welfare: (1) using colostrum, (2) providing mix probiotics powder, (3) providing probiotics as yogurt or kefir and (4) prolonged cow-calf contact. Participants were provided with different levels of information: one group received only a short description of the intervention, while the other group received both the intervention description and information on aspects such as potential costs and environmental impact of the intervention. Participants were asked to rate the acceptance on a standardised scale ranging from 1 to 5, with 1 indicating "strongly agree" and 5 indicating "strongly disagree". Additionally, the participants were questioned about their socio-demographic background (e.g. age, education). They were also asked to provide their perspectives on various dimensions concerning familiarity with farming and microbiome, food safety, environmental awareness, cost consideration, and cultural perspective of consuming dairy products. Obtained data were analysed using the ordinary least squares regression model. The findings reveal that prolonged cow-calf contact was the most acceptable measure among tested interventions in all countries (79% of responders agreed or strongly agreed). Attitudinal and socio-economic variables were found to have a differential effect across the studied management strategies. For instance, individuals with greater familiarity with farming systems and microbiomes were more inclined to accept all four interventions, while women, compared to men, showed higher acceptance of prolonged cow-calf contact. Results also indicate that the provision of additional information to the participants was associated with a decrease in the acceptance of the measures. In conclusion, the public's perceptions regarding microbiome management strategies in dairy calves are shaped by complex factors. Also, our discussion emphasises the importance of clarity and transparency of messages, ethical dissemination of scientific knowledge, and the necessity for balanced and coherent communication.
Collapse
Affiliation(s)
- A Ait Sidhoum
- Natural Resources Institute Finland (Luke), Business Economics, Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - A Stygar
- Natural Resources Institute Finland (Luke), Business Economics, Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | | | - J K Niemi
- Natural Resources Institute Finland (Luke), Business Economics, Latokartanonkaari 9, FI-00790, Helsinki, Finland
| |
Collapse
|
6
|
Hua Q, Li D. Effects of probiotic coating and vacuum packaging on the microbial safety and quality of fresh-cut cantaloupe stored at different temperatures. J Food Sci 2025; 90:e17665. [PMID: 39828412 DOI: 10.1111/1750-3841.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Fresh-cut cantaloupes are highly susceptible to contamination by foodborne pathogens and spoilage-causing microorganisms. This study evaluated the efficacy of a probiotic coating produced by fermenting Lactiplantibacillus plantarum 299 V in pomelo peel extract in combination with vacuum packaging in controlling the microbial loads of fresh-cut cantaloupe during storage. As temperature abuse is common in transportation and at retail sale of such products in many countries, we evaluated their efficacy at different temperatures. Both the probiotic edible coating and vacuum packaging, when used alone, effectively inhibited microbial growth in fresh-cut cantaloupe at all the tested temperatures. The combination had a statistically significant synergistic effect (p < 0.05) on reducing psychrotrophic total counts (4.5 ± 0.3 log lower than control on day 9) and yeast and mold (>3.1 log lower than control on day 9) at 4°C, Listeria monocytogenes (2.9 ± 0.2 log lower than control on day 6) at 12°C, and yeast and mold (3.1 ± 0.7 log lower than control on day 2) and L. monocytogenes (4.6 ± 0.4 log lower than control on day 2) at room temperature (23 ± 2°C). The solution proposed in this study has the potential to increase the resilience of products to temperature abuse, which can impact the safety of the food supply.
Collapse
Affiliation(s)
- Qian Hua
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
D’Almeida AP, Neta AAI, de Andrade-Lima M, de Albuquerque TL. Plant-based probiotic foods: current state and future trends. Food Sci Biotechnol 2024; 33:3401-3422. [PMID: 39493382 PMCID: PMC11525375 DOI: 10.1007/s10068-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract Plant-based probiotic foods (PBPFs) have recently become a notable choice for many consumers. While less recognized than dairy products, these foods offer efficient alternatives for individuals with lactose intolerance, vegans, or those aiming for more sustainable dietary practices. Traditional fermented PBPFs, such as kimchi, sauerkraut, and kombucha, are part of cultures from different countries and have gained more significant popularity in recent years globally due to their peculiar flavors and health benefits. However, new plant-based probiotic products have also been studied and made available to consumers of the growing demand in this sector. Therefore, this review discusses trends in plant-based probiotic production, known benefits, and characteristics. Challenges currently faced in manufacturing, distribution, marketing, consumer acceptance, and legislation are also discussed. Graphical abstract
Collapse
Affiliation(s)
- Alan Portal D’Almeida
- Department of Chemical Engineering, Technology Center, Federal University of Ceará, Fortaleza, CE 60455-760 Brazil
| | - Aida Aguilera Infante Neta
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Micael de Andrade-Lima
- Natural Resources Institute (NRI), University of Greenwich, Medway Campus, Chatham, ME4 4TB UK
| | - Tiago Lima de Albuquerque
- Department of Food Engineering, Center for Agricultural Sciences, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| |
Collapse
|
9
|
Sabahi S, Noori SMA, Ekrami A, Hosseini SA, Seyedtabib M, Akrami S. Application of lactobacillus casei and lactobacillus plantarum to develop dried functional apple and banana. Microsc Res Tech 2024; 87:2636-2642. [PMID: 38925599 DOI: 10.1002/jemt.24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The goal of this research was to create dried fruits loaded with probiotic microorganisms (Lactobacillus casei and Lactobacillus plantarum). In separate bottles for each probiotic microbe, apple and banana pieces have been submerged into the impermeability solution with gentle shaking. The vacuum pressure was applied. By the conclusion of the incubation time, L. casei and L. plantarum colonies were enumerated (CFU/g). The scanning electron microscope method was applied to confirm the penetration of impregnation solutions into the intercellular spaces of fruit tissue. On day 28, the population of L. plantarum was 5 log CFU/g for apples and 5.5 log CFU/g for bananas. After storage, the number of L. casei in apples was 5 log CFU/g and 5.5 log CFU/g, respectively. L. casei was found on the surface of apple and banana tissue. After one-week, whole phenolic content of probiotic-enriched bananas and apples augmented. After storage, the antioxidant activity of all samples decreased greatly. The sensory qualities of the samples were excellent throughout storage in terms of color, quality, scent, sensitivity, chewiness, and general adequacy. As a result, dried apples and bananas infused with L. plantarum and L. casei might be a novel probiotic meal. RESEARCH HIGHLIGHTS: Dried apples and bananas infused with L. plantarum and L. casei are novel probiotic meal. After one-week, whole phenolic content of probiotic-enriched bananas and apples augmented. The sensory qualities of the samples were excellent throughout storage in terms of color, quality, scent, sensitivity, chewiness, and general adequacy.
Collapse
Affiliation(s)
- Sahar Sabahi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ekrami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bavaro AR, Tarantini A, Bruno A, Logrieco AF, Gallo A, Mita G, Valerio F, Bleve G, Cardinali A. Functional foods in Mediterranean diet: exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin Exp Res 2024; 36:208. [PMID: 39412623 PMCID: PMC11485090 DOI: 10.1007/s40520-024-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Collapse
Affiliation(s)
- Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Annamaria Tarantini
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Angelica Bruno
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
- Xianghu Lab, Biomanufactoring Institute, Hangzhou, Zhejiang, China
| | - Antonia Gallo
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Giovanni Mita
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Francesca Valerio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy.
| | - Gianluca Bleve
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy.
| | - Angela Cardinali
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| |
Collapse
|
11
|
Janiszewska-Turak E, Wierzbicka A, Rybak K, Pobiega K, Synowiec A, Woźniak Ł, Trych U, Krzykowski A, Gramza-Michałowska A. Studying the Influence of Salt Concentrations on Betalain and Selected Physical and Chemical Properties in the Lactic Acid Fermentation Process of Red Beetroot. Molecules 2024; 29:4803. [PMID: 39459172 PMCID: PMC11510701 DOI: 10.3390/molecules29204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study emphasizes the significance of optimizing salt content during the fermentation of red beetroot to produce healthier and high-quality fermented products. It investigates the impact of different salt levels on fermentation, analyzing various parameters such as pH levels, dry matter content, total acidity, salt content, color changes, pigment content, and lactic acid bacteria count. This study identifies the most favorable salt concentration for bacterial growth during fermentation and storage as 2-3%. It was evaluated that salt levels fluctuated significantly during fermentation, with nearly 50% of the added salt absorbed by the beetroot tissues, mainly when lower salt concentrations were used. The fermentation process had a negative effect on the content of betalain pigments, as well as yellow pigments, including vulgaxanthin-I. It was also found that fermentation and storage affected the proportions of red pigments, with betacyanins proving to be more stable than betaxanthins, and that salt addition affected negatively pH and total acidity while causing an increase in yellow color. The pH was negatively correlated with the duration of the process, the amount of red pigment, and bacterial count. The results indicate that lower salt levels can lead to favorable physicochemical and microbiological parameters, allowing for the production of fermented red beetroot with reduced salt content without compromising quality.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Anna Wierzbicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| |
Collapse
|
12
|
de Assis BBT, Pimentel TC, Vidal H, Dos Santos Lima M, de Sousa Galvão M, Madruga MS, Noronha MF, Cabral L, Magnani M. Mangaba pulp fermented with Lacticaseibacillus casei 01 has improved chemical, technological, and sensory properties and positively impacts the colonic microbiota of vegan adults. Food Res Int 2024; 186:114403. [PMID: 38729705 DOI: 10.1016/j.foodres.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.
Collapse
Affiliation(s)
- Bianca Beatriz Torres de Assis
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | | | - Marta Suely Madruga
- Laboratory of Flavor, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
13
|
Bordini FW, Fernandes JC, de Souza VLC, Galhardo EC, de Mancilha IM, de Almeida Felipe MDG. Characterization of a symbiotic beverage based on water-soluble soybean extract fermented by Lactiplantibacillus plantarum ATCC 8014. Braz J Microbiol 2024; 55:1655-1667. [PMID: 38635155 PMCID: PMC11153477 DOI: 10.1007/s42770-024-01330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL-1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL-1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.
Collapse
Affiliation(s)
- Fernanda Weber Bordini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Júlia Cristina Fernandes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Viviane Lívia Carvalho de Souza
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Elaine Cristina Galhardo
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Ismael Maciel de Mancilha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho n°100, Ponte Nova, Lorena, São Paulo, 12.602.810, Brazil.
| |
Collapse
|
14
|
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum Strains as Novel Probiotic Candidates to Promote Host Health Benefits and Development of Biotherapeutics: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10235-1. [PMID: 38393628 DOI: 10.1007/s12602-024-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Estefânia Fernandes Garcia
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
15
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
16
|
Penha Rodrigues Pereira E, Silva da Graça J, Manfrinato Ferreira B, Fasura Balthazar C, Xavier-Santos D, França Bezerril F, Magnani M, Sant'Ana AS. What are the main obstacles to turning foods healthier through probiotics incorporation? a review of functionalization of foods by probiotics and bioactive metabolites. Food Res Int 2024; 176:113785. [PMID: 38163702 DOI: 10.1016/j.foodres.2023.113785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Functional foods are gaining significant attention from people all over the world. When added to foods, probiotic bacteria can turn them healthier and confer beneficial health effects, such as improving the immune system and preventing cancer, diabetes, and cardiovascular disease. However, adding probiotics to foods is a challenging task. The processing steps often involve high temperatures, and intrinsic food factors, such as pH, water activity, dissolved oxygen, post-acidification, packaging, and cold storage temperatures, can stress the probiotic strain and impact its viability. Moreover, it is crucial to consider these factors during food product development to ensure the effectiveness of the probiotic strain. Among others, techniques such as microencapsulation and lyophilization, have been highlighted as industrial food functionalization strategies. In this review, we present and discuss alternatives that may be used to functionalize foods by incorporating probiotics and/or delivering bioactive compounds produced by probiotics. We also emphasize the main challenges in different food products and the technological characteristics influencing them. The knowledge available here may contribute to overcoming the practical obstacles to food functionalization with probiotics.
Collapse
Affiliation(s)
| | - Juliana Silva da Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Beatriz Manfrinato Ferreira
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso Fasura Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Douglas Xavier-Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Fabrícia França Bezerril
- Department of Food Engineering, Center of Technology, Federal University of Paraíba, Paraíba, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Center of Technology, Federal University of Paraíba, Paraíba, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Goksen G, Sugra Altaf Q, Farooq S, Bashir I, Capozzi V, Guruk M, Bavaro SL, Sarangi PK. A glimpse into plant-based fermented products alternative to animal based products: Formulation, processing, health benefits. Food Res Int 2023; 173:113344. [PMID: 37803694 DOI: 10.1016/j.foodres.2023.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Fermented foods and beverages are increasingly being included in the diets of people around the world, as they significantly contribute to flavor and interest in nutrition and food consumption. Plant sources, like cereals and pulses, are employed to produce vegan fermented foods that are either commercially available or the subject of ongoing scientific investigation. In addition, the inclination towards nutritionally healthy, natural, and clean-label products amongst consumers has encouraged the development of vegan fermented products alternative to animal-based products for industrial-scale production. However, as the vegan diet is more restrictive than the vegetarian diet, manufacturing food products for vegans presents a significant problem due to the limited availability of many raw materials. So further research is required on this topic. This paper aims to review the formulation, quality, microbial resources, health benefits, and safety of foods that can be categorised as vegan fermented foods and beverages.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| | - Qazi Sugra Altaf
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Salma Farooq
- Desh Bhagat University, Mandi Gobindgarh, Punjab 147203, India; Islamic University of Science and Technology Awantipora, Pulwama 192301, India
| | - Iqra Bashir
- Sher-e-Kashmir University of Agricultural Sciences and Technology, India
| | - Vittorio Capozzi
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), c/o CS-DAT, via Protano, 71121 Foggia, Italy
| | - Mumine Guruk
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Simona Lucia Bavaro
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | | |
Collapse
|
18
|
Aktas B, Budinich M, Hoza L, Rankin SA, Broadbent JR, Steele JL. Shelf-life studies of putative probiotic Lacticaseibacillus casei strains in milk and model yogurt. FOOD SCI TECHNOL INT 2023; 29:729-738. [PMID: 35790393 DOI: 10.1177/10820132221112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lacticaseibacillus casei are commonly utilized as probiotic in a wide-range of fermented and unfermented dairy products. The stability of probiotics in fermented dairy products during shelf-life is of concern due to low pH and high level of organic acids. The objective of this study is to evaluate L. casei for their ability to survive in a model yogurt and fluid milk; additionally, their impact on the pH, organic acids, and sensory attributes of these products was examined. The strain-to-strain differences in cell densities in yogurt and milk inoculated at a therapeutic level at the end of shelf-life were 1.2 and 1.4 log CFU/mL, respectively. Five of the strains examined increased the pH of the yogurt, while two strains were observed to reduce the pH. In milk, one strain raised the pH, while eleven strains reduced the pH. The levels of lactate, acetate, and formate in both the yogurt and milk were altered in a strain-specific manner. The results suggested that the metabolism by these strains differed significantly during the shelf-life. Careful strain selection is required to identify probiotic L. casei strains that will survive through shelf-life in either yogurt or fluid milk and not impact product quality.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Mateo Budinich
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Lulu Hoza
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Scott A Rankin
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Jeff R Broadbent
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT, USA
| | - James L Steele
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Gomes Soares M, Bevilaqua GC, Marcondes Tassi ÉM, Reolon Schmidt VC. Fermented foods and beverages: a potential in situ vitamin B12 biofortification - a literature review. Int J Food Sci Nutr 2023; 74:655-667. [PMID: 37612883 DOI: 10.1080/09637486.2023.2248422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Millions of dollars have been increasingly spent on plant-based diets. Considering that vitamin B12 is obtained from the consumption of animal-derived foods, new sources of vitamin B12 and methods of food fortification are being eagerly sought. Therefore, this work aims to evaluate advances in situ fermentation processes of food and beverages produced on a large scale and industrial applications for obtaining cobalamin-rich products. Bibliometric analysis was performed and revealed that several studies report a great capacity for in situ biofortification of B12 in foods, mostly on the use of propionic (PB) and lactic (LAB) bacteria. In this context, market potentials for such products, the main microorganisms, including simultaneous cultures, and their respective applications have been presented herein. Although knowledge on potential applications is still limited, field research has been increasingly conducted, thus revealing scientific and technological opportunities, both for the production and the stability of B12 found in plant-based foods.
Collapse
Affiliation(s)
- Marcelo Gomes Soares
- Department of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | |
Collapse
|
20
|
Gupta A, Sanwal N, Bareen MA, Barua S, Sharma N, Joshua Olatunji O, Prakash Nirmal N, Sahu JK. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res Int 2023; 170:113046. [PMID: 37316029 DOI: 10.1016/j.foodres.2023.113046] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The World Health Organization's emphasis on the health benefits of functional foods and beverages that has contributed to the rise in its popularity globally. Besides these consumers have become more aware of the importance of their food composition and nutrition. Among the fastest-growing market segments within the functional food industries, the functional drinks market focuses on fortified beverages or products that are novel with improved bioavailability of bioactive compounds, and their implicated health benefits. The bioactive ingredients in functional beverages include phenolic compounds, minerals, vitamins, amino acids, peptides, unsaturated fatty acids, etc. which can be obtained from plant, animal and microorganisms. The types of functional beverages which are globally intensifying the markets are pre-/pro-biotics, beauty drinks, cognitive and immune system enhancers, energy and sports drink produced via several thermal and non-thermal processes. Researchers are focusing on improving the stability of the active compounds by encapsulation, emulsion, and high-pressure homogenization techniques to strengthen the positive consumer perspective in functional beverages. However, more research is needed in terms of bioavailability, consumer safety, and sustainability of the process. Hence, product development, storage stability, and sensory properties of these products are vital for consumer acceptance. This review focuses on the recent trends and developments in the functional beverages industry. The review provides a critical discussion on diverse functional ingredients, bioactive sources, production processes, emerging process technologies, improvement in the stability of ingredients and bioactive compounds. This review also outlines the global market and consumer perception of functional beverages with the future perspective and scope.
Collapse
Affiliation(s)
- Achala Gupta
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Sanwal
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohammed A Bareen
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; The University of Queensland-Indian Institute of Technology Delhi Academy of Research, New Delhi 110016, India; School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sreejani Barua
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nitya Sharma
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Rd., Salaya, Nakhon Pathom 73170, Thailand.
| | - Jatindra K Sahu
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
21
|
Maia MS, Domingos MM, de São José JFB. Viability of Probiotic Microorganisms and the Effect of Their Addition to Fruit and Vegetable Juices. Microorganisms 2023; 11:1335. [PMID: 37317309 DOI: 10.3390/microorganisms11051335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Consumers' recent interest in healthier diets has increased the demand for food products with functional properties, such as probiotics. However, most probiotic food types available on the market are of dairy origin, which limits their consumption by individuals with food intolerances and by those who adhere to strict vegan and vegetarian diets. The aim of the current review is to assess both the limitations and impacts of the addition of probiotic microorganisms to fruit, vegetable, and/or mixed juices. Thus, an integrative literature review was herein carried out. A bibliographic survey was carried out in the following databases: Lilacs, Medline, Web of Science, Scopus, and Scielo. In addition, searches for studies published in English from 2010 to 2021 were carried out, based on the following meshes: "fruit", ''vegetable", ''juice", and "probiotics", which were used both in combination with each other and with Boolean operators such as "AND" and "OR". Although 254 articles were initially found in the literature search, only 21 of them were selected to compose the final sample. The included studies mainly addressed microorganism viability and physicochemical analyses. Overall, fruit and/or vegetable juices can be suitable matrices used to help the development of probiotic food types. However, the microorganisms added to these products must be capable of adapting to and surviving in them to enable a product's success. Therefore, factors such as pH, fiber content, amino acids, and phenolic compounds play an essential role in the survival of probiotic microorganisms. Given the wide variety of analyses, a comparison between parameters was the major limitation of the present study. Future studies should focus on filling the gaps persisting in the development of probiotic fruit and/or vegetable juices as well as mixed juices.
Collapse
Affiliation(s)
- Maria Spinasse Maia
- Integrated Health Education Department, Federal University of Espírito Santo, Maruípe Campus, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
| | - Manueli Monciozo Domingos
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Maruípe Campus, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
| | | |
Collapse
|
22
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
23
|
Niu Z, Zou M, Bei T, Zhang N, Li D, Wang M, Li C, Tian H. Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Lee M, Yun YR, Choi EJ, Song JH, Kang JY, Kim D, Lee KW, Chang JY. Anti-obesity effect of vegetable juice fermented with lactic acid bacteria isolated from kimchi in C57BL/6J mice and human mesenchymal stem cells. Food Funct 2023; 14:1349-1356. [PMID: 36630124 DOI: 10.1039/d2fo02998g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the effect of fermented vegetable juice (VJ) obtained from a blend of four crops (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) on adipogenesis along with the identification of active compounds. Two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124), isolated from kimchi, were used to ferment the VJ and their effectiveness was evaluated in differentiated human mesenchymal stem cells and obese mice. In vitro antibody array analysis was done to understand signaling proteins in adipogenesis. Gene Ontology enrichment analysis showed that differentially expressed proteins are related to biological processes including immunological processes. These were effectively regulated by LAB and fermented VJ. Supplementation of fermented VJ reduced the weight gain, blood biochemical indicators, and liver fat accumulation in mice. Oil Red O staining indicated that the fermentation metabolites of VJ (indole-3-lactic acid, leucic acid, and phenyllactic acid) had an inhibitory effect on lipid accumulation in vitro. Therefore, it can be concluded that LAB-fermented VJ and its metabolites have the potential to counter obesity, and thus can be therapeutically effective.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea. .,Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jin Yong Kang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Daun Kim
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| |
Collapse
|
25
|
Giordano I, Mauriello G. Ultrasound Attenuation Improves Some Surface Properties of the Probiotic Strain Lacticaseibacillus casei ATCC 393. Microorganisms 2023; 11:microorganisms11010142. [PMID: 36677433 PMCID: PMC9862422 DOI: 10.3390/microorganisms11010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Ultrasound attenuation has been recently proposed as a tool to modulate probiotic metabolism. The study aimed to characterize the response of the probiotic Lacticaseibacillus casei ATCC 393 to sonication. Two ultrasound treatments were tested (57 W, duty cycle 50%, 6 or 8 min). Attenuation was assessed as a pH decrease in MRS broth after 6 and 24 h of incubation at 37 °C. Cultivability was evaluated by plate count immediately after sonication and by growth index on overnight cultures. Surface changes were determined by auto-aggregation, hydrophobicity, biofilm production tests, and by membrane damages. The 6 min treatment induced a temporary attenuation, while a prolongated exposure to sonic waves caused major attenuation effects (ΔpH 0.97 after 24 h). Both sonication treatments affected probiotic cultivability with a significant (p < 0.05) reduction of plate counts and an alteration of the growth index. Although auto-aggregation was negatively affected upon sonication, the hydrophobicity and biofilm production were improved with no significant differences (p > 0.05) between the sonicated samples. Moreover, sonicated L. casei ATCC 393 resulted in increased membrane permeability. These results suggest that ultrasound technology can be successfully used to modulate the L. casei ATCC 393 fermentative metabolism and to improve its surface properties.
Collapse
|
26
|
ZAHRANI AJA, SHORI AB. Improve the antioxidant activity and viability of B. longum and B. animalis subsp lactis in fermented soy and almond milk. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Chen B, Wang X, Li P, Feng X, Mao Z, Wei J, Lin X, Li X, Wang L. Exploring the protective effects of freeze-dried Lactobacillus rhamnosus under optimized cryoprotectants formulation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Probiotics and Postbiotics as the Functional Food Components Affecting the Immune Response. Microorganisms 2022; 11:microorganisms11010104. [PMID: 36677396 PMCID: PMC9862734 DOI: 10.3390/microorganisms11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The food market is one of the most innovative segments of the world economy. Recently, among consumers there is a forming trend of a healthier lifestyle and interest in functional foods. Products with positive health properties are a good source of nutrients for consumers' nutritional needs and reduce the risk of metabolic diseases such as diabetes, atherosclerosis, or obesity. They also seem to boost the immune system. One of the types of functional food is "probiotic products", which contain viable microorganisms with beneficial health properties. However, due to some technical difficulties in their development and marketing, a new alternative has started to be sought. Many scientific studies also point to the possibility of positive effects on human health, the so-called "postbiotics", the characteristic metabolites of the microbiome. Both immunobiotics and post-immunobiotics are the food components that affect the immune response in two ways: as inhibition (suppressing allergies and inflammation) or as an enhancement (providing host defenses against infection). This work's aim was to conduct a literature review of the possibilities of using probiotics and postbiotics as the functional food components affecting the immune response, with an emphasis on the most recently published works.
Collapse
|
29
|
Navyashree N, Buvaneswaran M, Sunil CK, Rawson A, Natarajan V. Development of white finger millet probiotic beverage using
Lactocaseibacillus rhamnosus
(
LGG
): Process optimization and study of physicochemical and nutritional properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Narayanaswamy Navyashree
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management‐Thanjavur (NIFTEM‐T) Tamil Nadu India
| | - Malini Buvaneswaran
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management‐Thanjavur (NIFTEM‐T) Tamil Nadu India
| | - Chikkaballapur Krishnappa Sunil
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management‐Thanjavur (NIFTEM‐T) Tamil Nadu India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management‐Thanjavur (NIFTEM‐T) Tamil Nadu India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management‐Thanjavur (NIFTEM‐T) Tamil Nadu India
| |
Collapse
|
30
|
Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022; 8:e11063. [PMID: 36276732 PMCID: PMC9578979 DOI: 10.1016/j.heliyon.2022.e11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics–banana rehydrated beverage.
Collapse
|
31
|
Application of ultrasound and microencapsulation on Limosilactobacillus reuteri DSM 17938 as a metabolic attenuation strategy for tomato juice probiotication. Heliyon 2022; 8:e10969. [PMID: 36254285 PMCID: PMC9568839 DOI: 10.1016/j.heliyon.2022.e10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Counteracting probiotic-induced physicochemical and sensory changes is a challenge in the development of probiotic beverages. The aim of the study is to apply ultrasound and microencapsulation for the attenuation of Limosilactobacillus reuteri DSM 17938 to avoid change in a probiotic tomato juice. Preliminarily, six ultrasound treatments were applied. Probiotic survival in acid environment (pH 2.5) and bile salts (1.5 g/l) after ultrasound treatment was also studied. The probiotic was inoculated in tomato juice in four forms: free cells (PRO-TJ), sonicated-free cells (US-TJ), untreated-microencapsulated (PRO-MC-TJ) and sonicated-microencapsulated cells (US-MC-TJ). Probiotic viability and pH were monitored during 28 days of storage at 4 and 20 °C. Sensory analysis was performed for PRO-TJ and US-MC-TJ sample (4 °C). Ultrasound (57 W for 6 min) did not affect cell survival and transitorily modulated probiotic acidifying capacity; it reduced probiotic survival in acidic environment but increased probiotic survival in bile salts solution. Ultrasound was effective in maintain pH value of tomato juice but only at 4 °C. Instead, microencapsulation with sodium-alginate leads to a more stable probiotic juice, particularly at 20 °C. Finally, probiotication slightly modified some sensory attributes of the juice. This study shows the potential of ultrasound and microencapsulation as attenuation strategies and highlights the need for process optimization to increase ultrasound efficacy.
Collapse
|
32
|
de Lourdes Chaves Macêdo E, Colombo Pimentel T, de Sousa Melo D, Cristina de Souza A, Santos de Morais J, Dos Santos Lima M, Ribeiro Dias D, Freitas Schwan R, Magnani M. Yeasts from fermented Brazilian fruits as biotechnological tools for increasing phenolics bioaccessibility and improving the volatile profile in derived pulps. Food Chem 2022; 401:134200. [PMID: 36115231 DOI: 10.1016/j.foodchem.2022.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Caatinga Biome fruits have been scarcely explored as a source of biotechnological yeasts. This study isolated yeasts from naturally fermented Caatinga fruits and evaluated Hanseniaspora opuntiae125,Issatchenkia terricola 129, and Hanseniaspora opuntiae 148 on fermentation of soursop and umbu-cajá pulps. All strains were able to ferment the pulps (72 h), increasing (p < 0.05) acetic acid, phenolics concentration and bioaccessibility, and maintaining counts above 7 log CFU/mL after fermentation and/or in vitro digestion. H. opuntiae 125 showed the highest counts (8.43-8.76 log CFU/mL; p < 0.05) in pulps and, higher organic acids production, increased survival to digestion, and higher bioaccessibility of various phenolics (p < 0.05) in the umbu-cajá pulp.I. terricola129 andH. opuntiae 148 showed higher metabolic activity, concentration and bioaccessibility of specific phenolics in umbu-cajá and soursop pulps, respectively (p < 0.05). Volatiles varied (p < 0.05) with the yeast strain. Generally, the yeast biotechnological performance for pulp fermentation was better on its fruit source.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil.
| |
Collapse
|
33
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
34
|
Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health: Concepts, Methodologies, and Action Mechanisms. Microorganisms 2022; 10:microorganisms10091700. [PMID: 36144301 PMCID: PMC9502345 DOI: 10.3390/microorganisms10091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
Probiotics and related preparations, including synbiotics and postbiotics, are living and non-living microbial-based multi-components, which are now among the most popular bioactive agents. Such interests mainly arise from the wide range and numerous beneficial effects of their use for various hosts. The current minireview article attempts to provide an overview and discuss in a holistic way the concepts, methodologies, action mechanisms, and applications of probiotic-based multi-components in human, animal, plant, soil, and environment health. Probiotic-based multi-component preparations refer to a mixture of bioactive agents, containing probiotics or postbiotics as main functional ingredients, and prebiotics, protectants, stabilizers, encapsulating agents, and other compounds as additional constituents. Analyzing, characterizing, and monitoring over time the traceability, performance, and stability of such multi-component ingredients require relevant and sensitive analytical tools and methodologies. Two innovative profiling and monitoring methods, the thermophysical fingerprinting thermogravimetry-differential scanning calorimetry technique (TGA-DSC) of the whole multi-component powder preparations, and the Advanced Testing for Genetic Composition (ATGC) strain analysis up to the subspecies level, are presented, illustrated, and discussed in this review to respond to those requirements. Finally, the paper deals with some selected applications of probiotic-based multi-components to human, animal, plant, soil and environment health, while mentioning their possible action mechanisms.
Collapse
|
35
|
Xavier-Santos D, Scharlack NK, Pena FDL, Antunes AEC. Effects of Lacticaseibacillus rhamnosus GG supplementation, via food and non-food matrices, on children's health promotion: A scoping review. Food Res Int 2022; 158:111518. [PMID: 35840226 DOI: 10.1016/j.foodres.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
The literature considers children both a risk group for administering probiotic strains and one of the populations that can most benefit from it. Due to the health benefits associated to probiotic supplementation, this scope review sought to formulate a critical evaluation of how Lacticaseibacillus rhamnosus GG, carried in food and non-food matrices, and experimental design may affect the health promotion of infants and children. In this study, a literature search was conducted in three scientific databases: PubMed, Web of Science, and SciELO to retrieve research, published in English or Spanish, which administered L. rhamnosus GG to infants and children with any disease or in eutrophic condition. Three reviewers with an expert supervision screened 540 articles, published between 2001 and 2022, which were retrieved from the databases. The data extracted was compiled and shown in this scoping review. In total, was included, after criteria observation, 44 articles in this review. Intestinal disorders were the most frequent outcome in these studies (36.4%) and capsules, the most common vehicle for administering the probiotic strain (40.9%). Probiotic strain dose ranged from 105 to 1012 cfu/dose of L. rhamnosus GG and intervention length extended from one to more than 6 months. Food matrix showed health effects in 57.1% of the clinical trials and non-food matrix 46.7%, which indicates that the health-promoting effect of the probiotic GG strain may be equivalent between the two forms of delivery. However, the highly heterogeneous experimental designs prevent further analysis and a systematic review and meta-analysis is recommended to address just the outcomes of studies and achieve data homogeneity in order to determine which vehicle is the most suitable for health promoting.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Nayara Kastem Scharlack
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Fabíola de Lima Pena
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | | |
Collapse
|
36
|
Wang F, Mutukumira AN. Microencapsulation of
Limosilactobacillus reuteri
DPC16
by spray drying using different encapsulation wall materials. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fang Wang
- School of Food and Advanced Technology Massey University Auckland New Zealand
| | | |
Collapse
|
37
|
Production of plant-based fermented beverages possessing functional ingredients antioxidant, γ-aminobutyric acid and antimicrobials using a probiotic Lactiplantibacillus plantarum strain L42g as an efficient starter culture. J Biosci Bioeng 2022; 134:226-232. [PMID: 35764446 DOI: 10.1016/j.jbiosc.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Plant-based probiotic beverages have gained increasing interest due to demand from health-conscious consumers. In this study, we aimed to isolate and screen lactic acid bacteria possessing functional properties for use as a starter culture of fermented almond and coix beverages. Lactiplantibacillus plantarum L42g isolated from fermented beef was selected. Both intact cells and cell free supernatant of this strain exhibited high antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging at 38.2% and 44.9%, respectively. L. plantarum L42g grown in MRS broth supplemented with 1% (w v-1) monosodium glutamate (MSG) produced a large amount of γ-aminobutyric acid (GABA) at 496.7 μg mL-1. Moreover, strain L42g displayed remarkable antibacterial activity against several potential foodborne bacterial pathogens, including Bacillus cereus, Listeria monocytogenes, Listeria inocua, Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Shigella sp., Vibrio cholerae and Vibrio parahaemolyticus. Strain L42g also possessed additional probiotic properties including abilities to tolerate gastrointestinal conditions, adhere to gut mucosa, co-aggregate with pathogens, be susceptible to antibiotics, and produce protease. Probiotic strain L42g was subsequently employed in fermenting almond and coix juices containing MSG (1%) supplementation. Levels of antioxidant, GABA and antibacterial formation along with cell growth were clearly higher in fermented almond juice than in fermented coix juice. Nonetheless, both fermented almond and coix juices meet the standards required for the consumption of fermented beverages. Therefore, L. plantarum strain L42g represents a promising starter culture for producing functional plant-based probiotic beverages.
Collapse
|
38
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
39
|
Camelo-Silva C, Verruck S, Ambrosi A, Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Pimentel TC, Torres de Assis BB, dos Santos Rocha C, Marcolino VA, Rosset M, Magnani M. Prebiotics in non-dairy products: Technological and physiological functionality, challenges, and perspectives. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Kumar S, Rattu G, Mitharwal S, Chandra A, Kumar S, Kaushik A, Mishra V, Nema PK. Trends in non‐dairy‐based probiotic food products: advances and challenges. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sachin Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Gurdeep Rattu
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Swati Mitharwal
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Abhishek Chandra
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Sourabh Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Aman Kaushik
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Vijendra Mishra
- Department of Basic and Applied Science National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli Haryana 131028 India
| |
Collapse
|
42
|
Arepally D, Reddy RS, Goswami TK, Coorey R. A Review on Probiotic Microencapsulation and Recent Advances of their Application in Bakery Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Tao L, Song S, Liu C, Huang W, Bi Y, Yu L. Fermentation reduced the
in vitro
glycemic index values of probiotic‐rich bean powders. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Tao
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Shixin Song
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Chang Liu
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Wanru Huang
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Yunfeng Bi
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Lei Yu
- School of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 China
| |
Collapse
|
44
|
Influence of Fermentation Beetroot Juice Process on the Physico-Chemical Properties of Spray Dried Powder. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031008. [PMID: 35164290 PMCID: PMC8840475 DOI: 10.3390/molecules27031008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/25/2023]
Abstract
Picking vegetables is, along with salting and drying, one of the oldest ways to preserve food in the world. This is the process of decomposition of simple sugars into lactic acid with the participation of lactic bacteria. The aim of the study was to obtain powders from fermented red beet juice with the highest possible amount of lactic acid bacteria (LAB) and active ingredients. For the analysis, juices were squeezed from the vegetables and two types of fermentation were used: a spontaneous fermentation and a dedicated one. After inoculation, samples were taken for analysis on a daily basis. Extract, pH, total acidity, pigments, and color were measured. In addition, microbiological tests were also carried out. The juices from the fifth day of fermentation was also spray dried, to obtain fermented beetroot powder. Juices from 3–5th day were characterized by a high content of LAB and betanin, had also a low pH, which proves that the lactic fermentation is working properly. The exception was the juice from spontaneous fermentation. According to the observations, the fermentation process did not run properly, and further analysis is needed. The powders were stable; however, results obtained from the pigment content and the LAB content are not satisfactory and require further analysis.
Collapse
|
45
|
Influence of using scarlet runner bean flour on the production and physicochemical, textural, and sensorial properties of vegan cakes: WASPAS-SWARA techniques. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Shao Y, Kang Q, Zhu J, Zhao C, Hao L, Huang J, Lu J, Jia S, Yi J. Antioxidant properties and digestion behaviors of polysaccharides from Chinese yam fermented by Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
CARNEIRO MDS, RAMOS GLDPA, SILVA MC, WALTER EHM. Processing of soy beverages obtained from the grain, flour and powder extract and fermented by probiotics. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.79322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Sampaio KB, de Albuquerque TMR, Rodrigues NPA, de Oliveira MEG, de Souza EL. Selection of Lactic Acid Bacteria with In Vitro Probiotic-Related Characteristics from the Cactus Pilosocereus gounellei (A. Weber ex. K. Schum.) Bly. ex Rowl. Foods 2021; 10:2960. [PMID: 34945509 PMCID: PMC8700760 DOI: 10.3390/foods10122960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Pilosocereus gounellei (A. Weber ex. K. Schum.) Bly. ex Rowl., popularly known as xique-xique, is a cactus from the Caatinga biome, which is rich in bioactive compounds but has not been previously studied as a source of lactic acid bacteria (LAB) with probiotic aptitudes. This study aimed to identify, characterize, and select LAB isolates with in vitro probiotic-related characteristics from xique-xique cladodes and fruit. Isolates with the most promising probiotic-related characteristics were evaluated regarding their in vitro technological properties and capability of surviving in chestnut milk, whey protein drink, and mate tea with mint during 21 days of refrigeration storage. Seventeen recovered isolates had typical characteristics of LAB. Six out of these seventeen LAB isolates passed the safety tests and were included in experiments to evaluate the in vitro probiotic-related characteristics. Based on the results of a principal component analysis, the isolates 69, 82, 98, and 108 had the best performances in experiments to evaluate the probiotic-related characteristics. In addition to showing good technological properties, the four selected LAB isolates had high viable counts (>7.3 log cfu/mL) and high sizes of physiologically active cell subpopulations in chestnut milk, whey protein drink, and mate tea during refrigeration storage. These four isolates were identified by 16S-rRNA sequencing as being Lacticaseibacillus paracasei or Lacticaseibacillus casei. The results indicate xique-xique as a source of potentially probiotic LAB isolates.
Collapse
Affiliation(s)
- Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil; (K.B.S.); (T.M.R.d.A.); (N.P.A.R.)
| | - Thatyane Mariano Rodrigues de Albuquerque
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil; (K.B.S.); (T.M.R.d.A.); (N.P.A.R.)
| | - Noádia Priscila Araújo Rodrigues
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil; (K.B.S.); (T.M.R.d.A.); (N.P.A.R.)
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil;
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil; (K.B.S.); (T.M.R.d.A.); (N.P.A.R.)
| |
Collapse
|
50
|
Fonseca HC, Melo DDS, Ramos CL, Dias DR, Schwan RF. Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei subsp. paracasei LBC-81 metabolism during the single and mixed fermentation of tropical fruit juices. Braz J Microbiol 2021; 52:2307-2317. [PMID: 34626345 DOI: 10.1007/s42770-021-00628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Fruit juices have shown promising results as new probiotic carriers. This study aimed to evaluate acerola, jelly palm, and passion fruit juices as substrates for fermentation using Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei LBC-81 in single and mixed cultures. First, the juices were evaluated as substrate and selected based on bacterial growth performance during fermentation. Afterward, the impact of fermentation on sugars, organic acids, and bioactive compounds was also appraised. Phytochemical modification of three different juices fermented by lactic acid bacteria at 37 °C/24 h was evaluated. After 18 h of fermentation, passion fruit juice showed higher cell viable counts of single and mixed L. plantarum CCMA 0743 culture, above 9.00 Log CFU/mL, and pH between 4.07 and 4.10. Sugars consumption and organic acid production were influenced by juice composition and culture used. The mixed culture reduced the total sugars in the passion fruit juice by approximately 53.0% (8.51 g/L). Lactic acid was the main product of the sugars fermentation, with higher concentrations detected in passion fruit juice (8.39-11.23 g/L). Bioactive compounds were analyzed on the selected substrate. The fermentative process reduced antioxidant activity and carotenoid content. However, single L. plantarum CCMA 0743 culture increased the yellow flavonoid content of passion fruit juice by approximately 3.0 µg/mL. L. plantarum CCMA 0743 showed high and suitable cell, viable counts, to claimed probiotic products, increasing bioactive compounds in passion fruit juice. Therefore, this strain and passion fruit substrate showed attractive potential to produce alternative and functional fermented fruit beverages.
Collapse
Affiliation(s)
- Hugo Calixto Fonseca
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Dirceu de Sousa Melo
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Cíntia Lacerda Ramos
- Department of Basic Science, Federal University of Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|