1
|
White S, Jackson-Davis A, Gordon K, Morris K, Dudley A, Abdallah-Ruiz A, Allgaier K, Sharpe K, Yenduri AK, Green K, Santos F. A Review of Non-thermal Interventions in Food Processing Technologies. J Food Prot 2025; 88:100508. [PMID: 40222655 DOI: 10.1016/j.jfp.2025.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Foodborne pathogens and spoilage microorganisms continue to be a concern throughout the food industry. As a result, these problematic microorganisms are the cause of foodborne outbreaks, foodborne illness, and premature spoilage-related issues. To address these, thermal technologies have been applied and have a documented history of controlling these microorganisms. Although beneficial, some of these technologies may result in adverse quality effects that can interfere with consumer acceptability. Processors of fresh produce also need technologies to mitigate pathogens with the ability to retain raw quality. In addition, thermal technologies can also result in the reduction or depletion of key nutrients. Consumers of today are health conscious and are concerned with key nutrients in food products necessary for their overall health; this reduction and depletion of nutrients could be considered unacceptable in the eyes of consumers. As a result of this, the food industry works to increase the use of nonthermal technologies to control pathogens and spoilage microorganisms in varying sections of the industry. This review paper will focus on the control of foodborne pathogens and spoilage organisms along with the effects on quality in various food products by the use of pulsed electric field, pulsed light, ultraviolet light, ozonation, cold atmospheric plasma, ultrasound, and ionizing radiation.
Collapse
Affiliation(s)
- Shecoya White
- Mississippi State University, Mississippi State, Mississippi 39762, United States.
| | - Armitra Jackson-Davis
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Kenisha Gordon
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kala Morris
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Aaron Dudley
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | | | - Katie Allgaier
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kyle Sharpe
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Ajay Kumar Yenduri
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kaylyn Green
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Fernanda Santos
- North Carolina State University, Raleigh, NC 27607, United States
| |
Collapse
|
2
|
Ceyhan T, Tomar GS, Can Karaca A. Recent advances in modification of plant-based proteins for improved encapsulation performance. Colloids Surf B Biointerfaces 2025; 253:114691. [PMID: 40273698 DOI: 10.1016/j.colsurfb.2025.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Encapsulation is a useful technique for protection, stabilization and controlling the release of bioactive compounds and food ingredients particularly sensitive to environmental factors such as heat, light and temperature. A wide variety of biopolymers can be used as wall materials in encapsulation, among which proteins are an essential group. In recent years, with the increasing interest in concepts such as plant-based nutrition and sustainability, the use of plant proteins in encapsulation has also increased. Proteins obtained from plant sources are sustainable, easily accessible, and low cost compared to animal-based counterparts; additionally, they are biodegradable, renewable, and biocompatible. However, there are some limitations regarding their functional properties such as solubility, emulsifying, gelling, and film-forming abilities. Various physical, chemical and enzymatic modification methods are used to improve the functional properties of plant proteins and to expand their use in encapsulation technologies. In this review, plant-based proteins (PBPs) and their use in encapsulation are discussed. Different modification techniques can improve the encapsulation performance of plant proteins; however, process parameters should be optimized. The most commonly studied physical, chemical, enzymatic and combined modification methods are sonication, Maillard conjugation, enzymatic hydrolysis and pH-shifting combined ultrasonication, respectively. The use of combined modification methods is a promising approach for improvement of the encapsulation performance of PBPs.
Collapse
Affiliation(s)
- Tugce Ceyhan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey; Department of Food Engineering, Faculty of Engineering, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Gizem Sevval Tomar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey.
| |
Collapse
|
3
|
Guan P, Ming Z, Liu X, Shao Y, Pan H, Ding Y, Wang X. Expression and characterization of a novel endolysin LysPFX32 as potential biological antimicrobial agent against Pseudomonas fluorescens for pork preservation. Int J Biol Macromol 2025; 294:139448. [PMID: 39756768 DOI: 10.1016/j.ijbiomac.2024.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
In this study, a novel phage endolysin LysPFX32 was successfully expressed and characterized to investigate its antibacterial activity against P. fluorescens and its biofilm. The molecular docking results identified endolysin LysPFX32 showed an effective binding to peptidoglycan fragment. The minimum inhibitory concentration of LysPFX32 (95 μg/mL) exhibited strong lytic activity against P. fluorescens after EDTA pretreatment. The permeability of cell outer and inner membrane treated with LysPFX32 was increased. Scanning electron microscope analysis revealed that the cell membrane of P. fluorescens was disrupted by LysPFX32, leading to leakage of intracellular contents. Notably, LysPFX32 effectively inhibited biofilm formation and removed mature biofilm of P. fluorescens by inhibiting exopolysaccharides and total protein. LysPFX32 displayed excellent biological safety with negligible hemolysis in mouse red blood cells and lack of cytotoxicity against NIH 3T3 cells. LysPFX32 effectively eradicated P. fluorescens in pork at 28 °C after 24 h. The texture and color difference of pork with added LysPFX32 did not exhibit significant alterations. During 8 d storage, the LysPFX32-treated group exhibited a reduction in amine production and maintained meat quality. This study highlighted the remarkable effectiveness and diverse potential applications of phage endolysin, offering a promising approach for controlling P. fluorescens contamination in food.
Collapse
Affiliation(s)
- Peng Guan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixin Ming
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China
| | - Yifeng Ding
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Choi DM, Lee SH, Kim HY. A Comparison of the Physicochemical and Storage Characteristics of Emulsified Sausages Made from Black Goat Meat and Conventional Meats. Food Sci Anim Resour 2025; 45:614-630. [PMID: 40093625 PMCID: PMC11907430 DOI: 10.5851/kosfa.2024.e118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 03/19/2025] Open
Abstract
This study evaluated the suitability of black goat meat as a raw material for meat products by comparing the physicochemical and storage characteristics of emulsified sausages from different livestock species: black goat sausage (GS), beef sausage (BS), pork sausage (PS), and chicken sausage (CS). GS and PS showed similar proximate composition, while GS and BS had comparable values for CIE L*, CIE b*, and hue angle, indicating potential consumer appeal. Water-holding capacity (WHC) and cooking yield showed no significant differences between GS, BS, and PS, highlighting black goat's ability to retain moisture. GS and CS showed significantly higher pH value than that of the other samples (p<0.05). The thiobarbituric acid reactive substance (TBARS) values, indicating lipid oxidation, were significantly lower in GS and PS (p<0.05), showing that GS resists oxidation well, with a strong correlation to fat content (r2=0.95). By the 3rd and 4th wk of storage, GS and CS had higher the volatile basic nitrogen values (p<0.05), correlating with pH (r2=0.83), while bacterial counts in GS, BS, and PS remained below 7 Log CFU/mg for up to 5 wk. GS's high WHC, cooking yield, and low TBARS values suggest good commercial potential.
Collapse
Affiliation(s)
- Da-Mi Choi
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Wang S, Zheng X, Yang Y, Zheng L, Xiao D, Ai B, Sheng Z. Emerging technologies in reducing dietary advanced glycation end products in ultra-processed foods: Formation, health risks, and innovative mitigation strategies. Compr Rev Food Sci Food Saf 2025; 24:e70130. [PMID: 39970012 DOI: 10.1111/1541-4337.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The widespread consumption of ultra-processed foods (UPFs) results from industrialization and globalization, with their elevated content of sugar, fat, salt, and additives, alongside the formation of dietary advanced glycation end products (AGEs), generating considerable health risks. These risks include an increased incidence of diabetes, cardiovascular diseases, and neurodegenerative disorders. This review explores the mechanisms of AGE formation in UPFs and evaluates emerging technologies and additives aimed at mitigating these risks. Both thermal methods (air frying, low-temperature vacuum heating, microwave heating, and infrared heating) and non-thermal techniques (high-pressure processing, pulsed electric fields, ultrasound, and cold plasma) are discussed for their potential in AGE reduction. Additionally, the review evaluates the efficacy of exogenous additives, including amino acids, polysaccharides, phenolic compounds, and nanomaterials, in inhibiting AGE formation, though results may vary depending on the specific additive and food matrix. The findings demonstrate the promise of these technologies and additives for reducing AGEs, potentially contributing to healthier food processing practices and the promotion of improved public health outcomes.
Collapse
Affiliation(s)
- Shenwan Wang
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Gao Q, Nong X, Lang T, Liu Y, Ye S, He J. Synergistic Bactericidal Efficiency of Slightly Acidic Electrolyzed Water-High-Pressure Parallel Processing on Escherichia coli in Freshly Cut Gastrodia elata Slices. Foods 2025; 14:790. [PMID: 40077492 PMCID: PMC11898803 DOI: 10.3390/foods14050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The synergistic enhancement of bactericidal efficiencies on freshly cut Gastrodia elata slices by parallel processing using slightly acidic electrolyzed water (SAEW) and high-pressure (HP) technology was comprehensively investigated in this study. To this end, appropriate experimental conditions were determined through single-factor tests, which were ACCs (available chlorine concentrations) of 30, 38, and 49 mg/L; pressures of 100, 150, and 200 MPa; treatment times of 5, 7.5, and 10 min; and material-to-liquid ratios of 1:1, 1:3, and 1:5. Under these conditions, single and parallel bactericidal tests were conducted, and the corresponding synergistic enhancement values ΔI were calculated. Subsequently, using the lethal rate of Escherichia coli (E. coli) as the response value, we fitted multiple quadratic regression equations for SAEW, HP, and SAEW-HP with respect to ACC, pressure, pressure application time, and material-to-liquid ratio. The multiple quadratic regression equation for the synergistic enhancement term ΔI was then obtained through calculation. By analyzing this equation, the synergistic enhancement range was determined. Finally, experimental points were randomly selected within the synergistic enhancement range for validation. The results demonstrate that there was a synergistic bactericidal efficiency of the SAEW-HP parallel treatment of freshly cut G. elata slices. The synergistic enhancement range was pressure (xp) ∈ [52.18, 359.58] MPa; concentration of available chlorine (xc) ∈ [28.71, 46.27] mg/L; time (xt) ∈ [2.34, 12.38] min; and the material-to-solvent ratio (xr) ∈ ø g/mL. The validation experiments confirmed that within the respective ranges of p, c, and t, the SAEW-HP parallel treatment of freshly cut G. elata slices exhibited a '1 + 1 > 2' synergistic enhancement effect. These findings lay a theoretical foundation for the development of green bactericidal technologies for "adopting both minimum processing and dosage to achieve the optimal effect".
Collapse
Affiliation(s)
- Qing Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.G.); (X.N.); (T.L.)
| | - Xin Nong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.G.); (X.N.); (T.L.)
| | - Tuanjian Lang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.G.); (X.N.); (T.L.)
| | - Yajin Liu
- Kunming Tian Tian Xiang Shang Central Kitchen Operation Management Co., Ltd., Kunming 650220, China;
| | - Shuxin Ye
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.G.); (X.N.); (T.L.)
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.G.); (X.N.); (T.L.)
| |
Collapse
|
7
|
Rather JA, Akhter N, Punoo HA, Haddad M, Ghnamat SA, Manzoor N, Goksen G, Dar BN. Sustainable algal proteins, novel extraction techniques and applications in the bakery, dairy and pharmaceutical industries: A comprehensive review. Food Chem 2025; 465:141828. [PMID: 39577256 DOI: 10.1016/j.foodchem.2024.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
Microalgae have emerged as favorable substitutes for traditional animal-based proteins in the search for sustainable protein sources. Despite being underexplored, microalgae offer the possibility of large-scale protein production via novel extraction techniques. This review synthesizes current knowledge on microalgal proteins, shedding light on their novel extraction techniques and techno-functional properties, which are still in the early stages of exploration. Additionally, it explores the miscellaneous applications of algae proteins across various industrial sectors, including bakery, dairy, pharmaceuticals, and nutrition. By discussing the techno-functional properties of algae proteins and peptides, this review underscores their potential to revolutionize the industrial landscape while addressing sustainability challenges. As research in this field progresses, microalgae are poised to emerge as a viable and environmentally friendly protein source, offering a pathway toward a more sustainable future.
Collapse
Affiliation(s)
- Jahangir Ahmad Rather
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Najmeenah Akhter
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Hilal Ahmad Punoo
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Moawiya Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Sana'a Ali Ghnamat
- Department of Nutrition and Food Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Neelofar Manzoor
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India.
| |
Collapse
|
8
|
D’Arrigo M, Delgado-Adámez J, García-Parra JJ, Palacios I, López-Parra M, Andrés AI, Ramírez-Bernabé MR. Enhancing Shelf Life and Nutritional Quality of Lamb Burgers with Brassica By-Products: A Synergistic Approach Using High Hydrostatic Pressure. Foods 2025; 14:594. [PMID: 40002038 PMCID: PMC11853784 DOI: 10.3390/foods14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of incorporating broccoli and cauliflower by-products (leaves, stems and inflorescences) like puree ingredients and applying high hydrostatic pressure (HHP) treatment on the quality, safety, and shelf life of lamb burgers. Broccoli and cauliflower by-products were valorized like rich bioactive ingredients, especially in phenol compounds. The valorized ingredients were added to lamb burgers (5% w/w), and 120 burgers were produced for the experiment: three formulations (lamb, lamb with broccoli, and lamb with cauliflower) × four pressure treatments (untreated, 400 MPa, 500 MPa, 600 MPa) × five replicates per formulation and pressure treatment × two storage times (day 1 and day 14). The interactions between composition and pressure were also investigated. The results indicated that while Brassica by-products contributed to slight changes in moisture content and fatty acid composition, they did not independently provide strong antimicrobial effects, likely due to their high moisture content and minimal impact on pH reduction. However, combining these ingredients with HHP treatment (600 MPa for 60 s) significantly improved microbial stability. HHP treatment effectively reduced microbial counts, which were maintained during refrigerated storage, supporting its role as a valuable non-thermal intervention for enhancing meat safety. In terms of oxidative stability, the inclusion of Brassica ingredients, particularly with HHP, reduced lipid (TBA-RS ≤ 1.47 MDA mg kg-1) and protein oxidation (≤5.05 Nmol mg-1 proteins) over time, thereby enhancing product stability during storage. Sensory evaluation and affective testing revealed no significant differences in appearance, odor, taste, texture, or overall acceptability between treated and untreated samples, with high acceptance scores. This suggests that HHP treatment, in combination with Brassica by-products, can improve safety and oxidative stability without compromising the sensory quality of meat products. Overall, this study presents a sustainable and effective approach for producing high-quality and safe meat products with extended shelf life.
Collapse
Affiliation(s)
- Matilde D’Arrigo
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Jonathan Delgado-Adámez
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Jesús J. García-Parra
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Irene Palacios
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Montaña López-Parra
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Ana Isabel Andrés
- Food Technology Department, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain;
| | - María Rosario Ramírez-Bernabé
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| |
Collapse
|
9
|
Prabhu L, Skuland AV, Varela P, Rosnes JT. Fish Protein Hydrolysate as Protein Enrichment in Texture-Modified Salmon Products. Foods 2025; 14:162. [PMID: 39856829 PMCID: PMC11764784 DOI: 10.3390/foods14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon (Salmo salar) was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate. The products were packaged in oxygen-free plastic trays, heat-treated to a core temperature of 95 °C for 15 min, chilled and stored at 4 °C for 29 days and analyzed for microbiology, instrumental texture, and sensory properties. The texture analyses showed that products with fish protein hydrolysate were softer than those only with casein and whey protein, a result also confirmed by the IDDSI fork pressure test. Quantitative descriptive analysis of salmon products revealed significant differences (p < 0.05) in sensory attributes within flavour (fish flavour), and texture (softness and adhesiveness) but there was no significant change in bitterness. The shelf-life study at 4 °C showed good microbiological quality of the product, and safety after 29 days with appealing sensory and textural properties, i.e., a product at IDDSI level 5 for age care facilities and commercial production was obtained.
Collapse
Affiliation(s)
- Leena Prabhu
- Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway; (A.V.S.); (P.V.); (J.T.R.)
| | | | | | | |
Collapse
|
10
|
Li Y, Huang X, Yang Y, Mulati A, Hong J, Wang J. The Effects of Cold-Plasma Technology on the Quality Properties of Fresh-Cut Produce: A Review. Foods 2025; 14:149. [PMID: 39856816 PMCID: PMC11764547 DOI: 10.3390/foods14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
With improving economic conditions, consumer demand for fresh-cut produce is rising. The development of the fresh-cut industry has been hindered by pathogenic contamination and quality deterioration. Scientific communities have developed novel preservation technologies for fresh-cut produce. As an innovative non-thermal processing method, cold plasma effectively preserves the nutritional value and inactivates pathogens in fresh-cut produce. This review delineates the principles of cold-plasma generation and concludes with the primary factors influencing its efficacy. These factors include the specifications and parameters of the equipment utilized, the properties of the conductive gas utilized, the method of treatment, and the intrinsic properties of a sample subjected to treatment. Furthermore, this review delineates various scenarios for cold-plasma applications. This review focuses on its effects on enzymatic activities (including peroxidase, polyphenol oxidase, and pectin methylesterase), pathogenic microorganisms, and nutritional value. This review concludes with the potential application of cold-plasma technology in the processing of fresh-cut products. This study proposes advancing plasma technology in fresh-cut produce processing by (1) optimizing cold-plasma parameters for diverse fruit and vegetable varieties and (2) scaling up to facilitate industrial application.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiayi Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.L.); (X.H.); (Y.Y.); (A.M.); (J.H.)
| |
Collapse
|
11
|
Llavata B, Quiles A, Rosselló C, Cárcel JA. Enhancing ultrasonic-assisted drying of low-porosity products through pulsed electric field (PEF) pretreatment: The case of butternut squash. ULTRASONICS SONOCHEMISTRY 2025; 112:107155. [PMID: 39571497 PMCID: PMC11617303 DOI: 10.1016/j.ultsonch.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
Ultrasonic-assisted drying is an effective technique for accelerating drying processes, particularly for products with high porosity. The structural changes induced by pulsed electric field (PEF) treatment can make low-porosity products more susceptible to the effects of ultrasound during drying. This study aimed to investigate the influence of PEF treatment on the structure of low-porosity products, such as butternut squash, and to evaluate its effect on ultrasonic-assisted drying. PEF pretreatment altered the physicochemical and microstructural properties of butternut squash. Thus, the higher the energy input, the higher the cell disintegration rate, the lower the shearing force and the lower the water holding capacity. For the same energy input applied, no influence was observed from the different combinations of pulse number and electric field intensity used. The microstructural analysis also showed greater effects with increasing intensity of PEF treatments. All these changes affected the subsequent drying, increasing the drying rate of conventional drying. Moreover, PEF pretreatment enhanced the ultrasound effects when applied during drying, reducing drying time by up to 47% when moderate PEF intensity was used. Therefore, PEF pretreatment under the appropriate conditions could make ultrasound-assisted drying of low-porosity products, such as butternut squash, more feasible.
Collapse
Affiliation(s)
- B Llavata
- Analysis and Simulation of Agro-food Processes Group, Food Engineering Research Institute - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Quiles
- Research Group of Food Microstructure and Chemistry, Food Engineering Research Institute - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - C Rosselló
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain
| | - J A Cárcel
- Analysis and Simulation of Agro-food Processes Group, Food Engineering Research Institute - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
12
|
Keskin Çavdar H, Avşar S. Ultrasonic extraction of Inula viscosa: Enhancing antioxidant bioactivity and its application in sunflower oil as an antioxidant. ULTRASONICS SONOCHEMISTRY 2024; 109:106992. [PMID: 39029210 PMCID: PMC11295468 DOI: 10.1016/j.ultsonch.2024.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The objective of this study was to optimize the ultrasound-assisted extraction (UAE) of Inula viscosa, focusing on the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity and to evaluate its antioxidant effect in sunflower oil (SFO) storage. A water-ethanol binary solvent system was applied to extract bioactive components sustainably. Extraction parameters (temperature, time, ethanol concentration, and solvent-to-solid ratio) were optimized using a central composite rotatable design, achieving high accuracy (R2 > 0.974). Optimum conditions were 54 % (v/v) ethanol concentration, 60 °C, 31 min, and a 15 (mL/g) solvent-to-solid ratio resulting in a yield of 24.72 g/g (%), TPC of 489.54 mg gallic acid/g, TFC of 149.81 mg quercetin/g, and IC50 of 18.21 µg/mL. UAE outperformed Soxhlet extraction in yield, bioactive compound composition, and antioxidant capacity. Strong correlations were found between TPC, TFC, and antioxidant capacity, with TFC having a more significant impact. I. viscosa extract was found to be a potent antioxidant and delay the oxidation of SFO during accelerated storage due to peroxide value and oxidative induction time analysis. Microstructural analysis illuminated the structural changes induced by the extraction methods. In conclusion, this study not only optimized UAE of I.viscosa, showing superior efficiency and antioxidant capacity, but also demonstrated the practical application of I.viscosa in enhancing sunflower oil shelf life, thereby providing valuable insights for the field of food engineering and antioxidant research.
Collapse
Affiliation(s)
- Hasene Keskin Çavdar
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey; Phytotherapy and Medicinal-Aromatic Plants Application and Research Center, Gaziantep University, 27310 Gaziantep, Turkey.
| | - Sultan Avşar
- Department of Food Engineering, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
13
|
Lin K, Zhu YZ, Ma HW, Wu JC, Kong CN, Xiao Y, Liu HC, Zhao LL, Qin XL, Yang LF. Preparation, characterization, and application of gallic acid-mediated photodynamic chitosan-nanocellulose-based films. Int J Biol Macromol 2024; 277:134008. [PMID: 39032879 DOI: 10.1016/j.ijbiomac.2024.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
In this study, an active film composed of gallic acid (GA), chitosan (CS), and cellulose nanocrystals (CNC) was prepared using a solution casting method and synergistic photodynamic inactivation (PDI) technology. Characterization of the film showed that the CS-CNC-GA composite film had high transparency and UV-blocking ability. The addition of GA (0.2 %-1.0 %) significantly enhanced the mechanical properties, water resistance, and thermal stability of the film. The tensile strength increased up to 46.30 MPa, and the lowest water vapor permeability was 1.16 × e-12 g/(cm·s·Pa). The PDI-treated CS-CNC-GA1.0 composite film exhibited significantly enhanced antibacterial activity, with inhibition zone diameters of 31.83 mm against Staphylococcus aureus and 21.82 mm against Escherichia coli. The CS-CNC-GA composite film also showed good antioxidant activity. Additionally, the CS-CNC-GA1.0 composite film generated a large amount of singlet oxygen under UV-C light irradiation. It was found that using the CS-CNC-GA1.0 composite film for packaging and storage of oysters at 4 °C effectively delayed the increase in pH, total colony count, and lipid oxidation in oysters. In conclusion, the CS-CNC-GA composite film based on PDI technology has great potential for applications in the preservation of aquatic products.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yu-Zhang Zhu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning 530006, China
| | - Hua-Wei Ma
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jin-Cheng Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Chao-Nan Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yang Xiao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Hong-Cun Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine and Biotechnology, Guangxi Minzu University, Nanning 530006, China
| | - Li-Lan Zhao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiao-Lin Qin
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li-Fang Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
14
|
Bahmanpour H, Asefi N, Alizadeh A, Pirsa S. Assessment of the impact of cold plasma technology on physicochemical properties of corn starch flour and the associated modified corn starch incorporated into milk dessert. Heliyon 2024; 10:e37399. [PMID: 39290274 PMCID: PMC11407043 DOI: 10.1016/j.heliyon.2024.e37399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
The utilization of cold plasma can be used as an alternative method to modify the properties of starch. This research aimed to examine the use of cold plasma technology to alter the structure of corn starch and investigate how its functionality could be improved using a food model (milk dessert). Modified corn starch by plasma technology under different gas contents (dielectric-barrier discharge (DBD)) (95 % argon+5 % hydrogen (DBD1) and 90 % argon+10 % oxygen (DBD2)) was compared to the control sample of corn starch. The physicochemical characteristics of modified corn starch, DSC, XRD, SEM and FTIR tests were evaluated. The findings demonstrated that corn starch had significantly higher solubility, transparency, ash, oil absorption capacity (OAC), and resistant starch (RS) when exposed to cold plasma under the test circumstances compared to the control sample. SEM analysis confirmed that plasma affected the surface of starch granules, making the surface changes more pronounced when oxygen was added to the treatment. It was concluded that the sample should be treated with plasma containing 90 % argon and 10 % oxygen (as the best sample). The best sample (modified corn starch) was used to prepare a milk dessert as a food model, and considerable differences were found between the modified starch treated sample and control samples in terms of moisture, brix, syneresis, and organoleptic properties (p < 0.05).
Collapse
Affiliation(s)
- Hannaneh Bahmanpour
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aynaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Wang G, Wang Y, Li S, Yi Y, Li C, Shin C. Sustainability in Global Agri-Food Supply Chains: Insights from a Comprehensive Literature Review and the ABCDE Framework. Foods 2024; 13:2914. [PMID: 39335843 PMCID: PMC11431211 DOI: 10.3390/foods13182914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The sustainability of global agricultural produce supply chains is crucial for ensuring global food security, fostering environmental protection, and advancing socio-economic development. This study integrates bibliometric analysis, knowledge mapping, and the ABCDE framework to conduct a comprehensive qualitative and quantitative analysis of 742 relevant articles from the Web of Science core database spanning January 2009 to July 2023. Initially, bibliometric analysis and knowledge mapping reveal the annual progression of research on the sustainability of global agricultural produce supply chains, the collaborative networks among research institutions and authors, and the geographic distribution of research activities worldwide, successfully pinpointing the current research focal points. Subsequently, the ABCDE framework, constructed from the quantitative findings, helps us identify and comprehend the antecedents, barriers and challenges, impacts, and driving forces affecting the sustainability of these supply chains. The study identifies globalization and technological advancement as the primary forces shaping the sustainability of agricultural produce supply chains, despite them also posing challenges such as resource constraints and environmental pressures. Moreover, the application of innovative technologies, the optimization of organizational models, and active stakeholder engagement are key to propelling supply chains toward more sustainable development, exerting a profound impact on society, the environment, and the economy. In conclusion, this study suggests future research directions. The integrated methodology presented offers new perspectives and deep insights into the complexities of sustainable global agricultural produce supply chains, demonstrating its potential to foster knowledge innovation and practical applications, providing valuable insights for academic research and policy formulation in this domain.
Collapse
Affiliation(s)
- Gaofeng Wang
- School of Management, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Wang
- School of Management, Henan University of Technology, Zhengzhou 450001, China
| | - Shuai Li
- School of Management, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Yi
- School of Management, Henan University of Technology, Zhengzhou 450001, China
| | - Chenming Li
- School of Management, Henan University of Technology, Zhengzhou 450001, China
| | - Changhoon Shin
- College of Ocean Science and Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
16
|
Liu D, Sierens J, Haydamous C, Nikiforov A, De Geyter N, De Meulenaer B. Impact of Nonthermal Plasma Treatment on the Oxidation of Lipids with Different Unsaturation Degrees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20037-20047. [PMID: 39190011 DOI: 10.1021/acs.jafc.4c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Nonthermal plasma (NTP) treatment of food presents a new technology for the industry but raises concerns about lipid oxidation due to the presence of reactive species. Considering the critical role of the degree of unsaturation in lipid oxidation, this study investigates NTP-induced oxidation across various unsaturated lipids. These lipids are six oil samples primarily containing one of the following methylesters: oleate, linoleate, linolenate, arachidonate, eicosapentaenoate, and docosahexaenoate. Samples were treated with a nonthermal surface dielectric barrier discharge. Plasma-induced effects were first examined by classical lipid oxidation indicators, such as the peroxide value and p-anisidine value. The specific volatile oxidation products, including hexanal, nonanal, trans-2-hexenal, and methyl 9-oxononanoate, were determined to further elucidate the impact of ozone-related oxidation. Monitoring the production of selected nonvolatile oxidation products, such as epoxy-, oxo-, and hydroxy fatty acid methylesters, confirmed that plasma treatment facilitated the decomposition of lipid hydroperoxide. Generally, the level of plasma-induced oxidation increased in parallel with the unsaturation degree of the studied samples, except for the quantity of individual volatile carbonyls. The long-term effect of NTP treatment was investigated by a stability test, revealing that the oxidative stability depended on the input gas of plasma treatment, the sensitivity of the treated sample, and the presence of antioxidants. Except for the focus on the NTP impact, this study offered a case study of a comprehensive investigation into lipid oxidation.
Collapse
Affiliation(s)
- Danyang Liu
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Joke Sierens
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Christelle Haydamous
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Bruno De Meulenaer
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
17
|
Szymanska I, Matys A, Rybak K, Karwacka M, Witrowa-Rajchert D, Nowacka M. Impact of Ultrasound Pre-Treatment on the Drying Kinetics and Quality of Chicken Breast-A Comparative Study of Convective and Freeze-Drying Methods. Foods 2024; 13:2850. [PMID: 39272615 PMCID: PMC11395696 DOI: 10.3390/foods13172850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Fresh meat has a limited shelf life and is prone to spoilage. Drying serves as a common method for food preservation. Non-thermal techniques such as ultrasound treatment (US) can positively affect the drying processes and alter the final product. The study aimed to evaluate the impact of US pre-treatment on the hot air (HA) and freeze-drying (FD) of chicken breast meat and the quality of the dried products. US pre-treatment had a varied impact depending on the drying method used. The contact US method extended the HA drying time (about 50%) but improved water removal during FD (about 30%) compared to the untreated samples. Both methods resulted in low water content (<8.3%) and low water activity (<0.44). While rehydration properties (RR) and hygroscopicity (H) were not significantly affected by US pre-treatment in HA drying (about 1.35% and about 1.1, respectively), FD noticed differences due to shrinkage and porosity variations (RR: 2.4-3.2%, H: 1.19-1.25). The HA-dried samples exhibited notably greater tissue shrinkage and a darker surface color than the FD meat. Ultrasonic processing holds substantial potential in creating dried meat products with tailored characteristics. Hence, meticulous consideration of processing methods and parameters is of utmost importance.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Aleksandra Matys
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Magdalena Karwacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
18
|
Yang C, Li X, Deng Y, Qiu W, Chen L, Li L, Wang AL, Feng Y, Jin Y, Tao N, Li F, Jin Y. Effects of high voltage pulsed electric field on structural properties and immune reactivity of arginine kinase in Fenneropenaeus chinensis. Food Chem 2024; 449:139304. [PMID: 38608611 DOI: 10.1016/j.foodchem.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to β-sheet and β-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.
Collapse
Affiliation(s)
- Chenyu Yang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Xiaomin Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqiang Qiu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Lanming Chen
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Ashily Liang Wang
- ADM (Shanghai) Management Co. Ltd., Room 220, 2nd Floor, Juyang Building, 1200 Pudong 17 Avenue, China (Shanghai) Pilot Free Trade Zone, Shanghai 200135, China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd., Changbai Dong Road 2099, Yanji City, Jilin 133000, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Wenhui Dong Road 48, Yangzhou City, Jiangsu 277600, China
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Feng Li
- School of Electrical Engineering, Shanghai University of Electric Power, 1851 Hucheng Ring Road, Shanghai 200090, China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China.
| |
Collapse
|
19
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
20
|
Rout S, Srivastav PP. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: Comparative study on structural, rheological and techno-functional characteristics. Food Chem 2024; 447:138914. [PMID: 38460320 DOI: 10.1016/j.foodchem.2024.138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
21
|
Wang Y, Ji M, Xing M, Bao A, Wang D, Li L, Song G, Yuan T, Gong J. Effects of ultrasound and thermal treatment on the interaction between hyaluronic acid and lactoferrin: Preparation, structures and functionalities. Int J Biol Macromol 2024; 272:132812. [PMID: 38825275 DOI: 10.1016/j.ijbiomac.2024.132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Complexes of polysaccharides and proteins have superior physicochemical and functional properties compared to single proteins or polysaccharides. In this study, lactoferrin-hyaluronic acid (LF-HA) complexes were prepared by both ultrasonic and thermal treatment. Appropriate preparation conditions, including ultrasonic and thermal treatment conditions, have been established. The complexes formed by different methods were structurally characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis, fourier transform infrared spectroscopy, and circular dichroism spectroscopy. Ultrasound formed non-covalent binding, while thermal treatment generated covalent bonding, altering the structure of LF. The LF-HA complexes showed improved heat stability, foaming stability, emulsifying activity and antioxidant capacity, but deceased foaming ability. Iron binding ability could only be improved by HA through thermal treatment. Moreover, the in vitro digestibility of LF-HA complexes decreased to below 80 % compared to LF.
Collapse
Affiliation(s)
- Yushi Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Miao Ji
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Mengjiao Xing
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Anxiu Bao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
22
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
23
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
24
|
Liu Y, Deng J, Zhao T, Yang X, Zhang J, Yang H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr Res Food Sci 2024; 8:100715. [PMID: 38511155 PMCID: PMC10951518 DOI: 10.1016/j.crfs.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Plant polyphenols play an essential role in human health. The bioactivity of polyphenols depends not only on their content but also on their bioavailability in food. The processing techniques, especially non-thermal processing, improve the retention and bioavailability of polyphenolic substances. However, there are limited studies summarizing the relationship between non-thermal processing, the bioavailability of polyphenols, and potential mechanisms. This review aims to summarize the effects of non-thermal processing techniques on the content and bioavailability of polyphenols in fruits and vegetables. Importantly, the disruption of cell walls and membranes, the inhibition of enzyme activities, free radical reactions, plant stress responses, and interactions of polyphenols with the food matrix caused by non-thermal processing are described. This study aims to enhance understanding of the significance of non-thermal processing technology in preserving the nutritional properties of dietary polyphenols in plant-based foods. It also offers theoretical support for the contribution of non-thermal processing technology in improving food nutrition.
Collapse
Affiliation(s)
- Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
25
|
Li B, Zhong M, Sun Y, Liang Q, Shen L, Qayum A, Rashid A, Rehman A, Ma H, Ren X. Recent advancements in the utilization of ultrasonic technology for the curing of processed meat products: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2024; 103:106796. [PMID: 38350241 PMCID: PMC10876906 DOI: 10.1016/j.ultsonch.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Curation meat products involves multiple stages, including pre-curing processing (thawing, cleaning, and cutting), curing itself, and post-curing processing (freezing, and packaging). Ultrasound are nonthermal processing technology widely used in food industry. This technology is preferred because it reduces the damages caused by traditional processing techniques on food, while simultaneously improving the nutritional properties and processing characteristics of food. The utilization of ultrasonic-assisted curing technology has attracted significant attention within the realm of meat product curing, encouraging extensive research efforts. In terms of curing meat products, ultrasonic-assisted curing technology has been widely studied due to its advantages of accelerating the curing speed, reducing nutrient loss, and improving the tenderness of cured meats. Therefore, this article aims to comprehensively review the application and mechanism of ultrasound technology in various stages of meat product curing. Furthermore, it also elaborates the effects of ultrasonic-assisted curing on the tenderness, water retention, and flavor substances of the meat products during the curing process. Besides, the implication of the ultrasound in the processing of meat curation plays a potent role together with other technologies or methods. The use of ultrasound technology in the process of meat curation was analyzed, which might be a theoretical insight for the industrialization prospects of the meat product.
Collapse
Affiliation(s)
- Biao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
26
|
Liu T, Zheng J, Du J, He G. Food Processing and Nutrition Strategies for Improving the Health of Elderly People with Dysphagia: A Review of Recent Developments. Foods 2024; 13:215. [PMID: 38254516 PMCID: PMC10814519 DOI: 10.3390/foods13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Dysphagia, or swallowing difficulty, is a common morbidity affecting 10% to 33% of the elderly population. Individuals with dysphagia can experience appetite, reduction, weight loss, and malnutrition as well as even aspiration, dehydration, and long-term healthcare issues. However, current therapies to treat dysphagia can routinely cause discomfort and pain to patients. To prevent these risks, a non-traumatic and effective treatment of diet modification for safe chewing and swallowing is urgently needed for the elderly. This review mainly summarizes the chewing and swallowing changes in the elderly, as well as important risk factors and potential consequences of dysphagia. In addition, three texture-modified food processing strategies to prepare special foods for the aged, as well as the current statuses and future trends of such foods, are discussed. Nonthermal food technologies, gelation, and 3D printing techniques have been developed to prepare soft, moist, and palatable texture-modified foods for chewing and swallowing safety in elderly individuals. In addition, flavor enhancement and nutrition enrichment are also considered to compensate for the loss of sensory experience and nutrients. Given the trend of population aging, multidisciplinary cooperation for dysphagia management should be a top priority.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Jianheng Zheng
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Gengsheng He
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| |
Collapse
|
27
|
Mahmood N, Muhoza B, Kothakot A, Munir Z, Huang Y, Zhang Y, Pandiselvam R, Iqbal S, Zhang S, Li Y. Application of emerging thermal and nonthermal technologies for improving textural properties of food grains: A critical review. Compr Rev Food Sci Food Saf 2024; 23:e13286. [PMID: 38284581 DOI: 10.1111/1541-4337.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Emerging nonthermal and thermal food processing technologies are a better alternative to conventional thermal processing techniques because they offer high-quality, minimally processed food. Texture is important in the food industry because it encompasses several product attributes and plays a vital role in consumer acceptance. Therefore, it is imperative to analyze the extent to which these technologies influence the textural attributes of food grains. Physical forces produced by cavitation are attributed to ultrasound treatment-induced changes in the conformational and structural properties of food proteins. Pulsed electric field treatment causes polarization of starch granules, damaging the dense outer layer of starch granules and decreasing the mechanical strength of starch. Prolonged radio frequency heating results in the denaturation of proteins and gelatinization of starch, thus reducing binding tendency during cooking. Microwave energy induces rapid removal of water from the product surface, resulting in lower bulk density, low shrinkage, and a porous structure. However, evaluating the influence of these techniques on food grain texture is difficult owing to differences in their primary operation mode, operating conditions, and equipment design. To maximize the advantages of nonthermal and thermal technologies, in-depth research should be conducted on their effects on the textural properties of different food grains while ensuring the selection of appropriate operating conditions for each food grain type. This article summarizes all recent developments in these emerging processing technologies for food grains, discusses their potential applications and drawbacks, and presents prospects for future developments in food texture enhancement.
Collapse
Affiliation(s)
- Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Anjineyulu Kothakot
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Zeeshan Munir
- Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Sohail Iqbal
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
Zhang X, Li Z, Zheng X, Wen W, Wang X. Characteristics of Quinoa Protein Isolate Treated by Pulsed Electric Field. Foods 2024; 13:148. [PMID: 38201176 PMCID: PMC10778849 DOI: 10.3390/foods13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to investigate the impact of a pulsed electric field (PEF) on the structural and functional properties of quinoa protein isolate (QPI). The findings revealed a significant alteration in the secondary structure of QPI following PEF treatment, converting the random coil into the β-sheet, resulting in an improvement in structure orderliness and an enhancement of thermal stability. The PEF treatment led to a reduction in particle size, induced structural unfolding, and increased the surface hydrophobicity, resulting in a statistically significant enhancement in the solubility, foaming, and emulsifying properties of QPI (p < 0.05). Specifically, PEF treatment at 7.5 kV/cm for 30 pulses was identified as the optimal condition for modifying QPI. This study provides a basis for the precision and range of application of pulsed electric field treatment and offers the possibility of improving the physical and chemical properties of quinoa protein.
Collapse
Affiliation(s)
- Xinyue Zhang
- Food Science and Engineering College, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong 030801, China; (X.Z.); (Z.L.); (X.Z.); (W.W.)
| | - Zhanrong Li
- Food Science and Engineering College, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong 030801, China; (X.Z.); (Z.L.); (X.Z.); (W.W.)
| | - Xiaojiao Zheng
- Food Science and Engineering College, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong 030801, China; (X.Z.); (Z.L.); (X.Z.); (W.W.)
| | - Wenjun Wen
- Food Science and Engineering College, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong 030801, China; (X.Z.); (Z.L.); (X.Z.); (W.W.)
- Houji Laboratory in Shanxi Province, No. 81 Longcheng Street, Xiaodian District, Taiyuan 030031, China
| | - Xiaowen Wang
- Food Science and Engineering College, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong 030801, China; (X.Z.); (Z.L.); (X.Z.); (W.W.)
- Houji Laboratory in Shanxi Province, No. 81 Longcheng Street, Xiaodian District, Taiyuan 030031, China
| |
Collapse
|
29
|
Gutiérrez ÁL, Rico D, Ronda F, Caballero PA, Martín-Diana AB. The Application of High-Hydrostatic-Pressure Processing to Improve the Quality of Baked Products: A Review. Foods 2023; 13:130. [PMID: 38201159 PMCID: PMC10778925 DOI: 10.3390/foods13010130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The current trend in the food industry is towards "clean label" products with high sensory and nutritional quality. However, the inclusion of nutrient-rich ingredients in recipes often leads to sensory deficiencies in baked goods. To meet these requirements, physically modified flours are receiving more and more attention from bakery product developers. There are various findings in the literature on high hydrostatic pressure (HHP) technology, which can be used to modify various matrices so that they can be used as ingredients in the baking industry. HHP treatments can change the functionality of starches and proteins due to cold gelatinization and protein unfolding. As a result, the resulting ingredients are more suitable for nutrient-rich bakery formulations. This review describes the information available in the literature on HHP treatment conditions for ingredients used in the production of bakery products and analyses the changes in the techno-functional properties of these matrices, in particular their ability to act as structuring agents. The impact of HHP-treated ingredients on the quality of dough and bakery products and the effects on some nutritional properties of the treated matrices have been also analysed. The findings presented in this paper could be of particular interest to the bakery industry as they could be very useful in promoting the industrial application of HHP technology.
Collapse
Affiliation(s)
- Ángel L. Gutiérrez
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| | - Felicidad Ronda
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| |
Collapse
|
30
|
Akal C. Using dietary fiber as stabilizer in dairy products: β-glucan and inulin-type fructans. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2945-2954. [PMID: 37786597 PMCID: PMC10542075 DOI: 10.1007/s13197-022-05651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
β-glucan and inulin-type fructans, considering their beneficial effects on health, are the favorite dietary fibers in recent years. This review firstly gives information on the health-promoting effects of these two fibers, and then, using them in dairy products. They can be used in different dairy products, depending on their properties. However, their effect levels and forms may be different. Especially in probiotic products, these fibers can be used as a multi-functional additive because of their satisfactory stability in dairy products. The stabilizer effect can change in dairy products (e.g., ice cream, beverage) with variable composition/formulation. β-glucan and inulin-type fructans develop textural or rheological properties of dairy products that have relatively more standard composition (such as yogurt, cheese), at varying degrees depending on the proportion. Since the additives used to increase the stability of foods or to extend their shelf life are compounds that are beneficial for health, their usage areas should be increased, and their different potential effects should be known. For this reason, in this review, current information about health effects and usage areas of these components discussed in detail. Consequently, the texture improver effect of these two dietary fibers on dairy products is crucial and has no effect (positive/negative) on physicochemical or flavor properties. Although individual studies have reported a reduction in the amount of acetaldehyde in yogurt or effects that may cause undesirable functional properties in mozzarella cheese, most studies have proven that fiber addition does not have an adverse effect on the properties other than texture.
Collapse
Affiliation(s)
- Ceren Akal
- Faculty of Agriculture, Department of Dairy Technology, Ankara University, 06110 Ankara, Turkey
| |
Collapse
|
31
|
Li G, Zuo X, Luo X, Chen Z, Cao W, Lin H, Qin X, Wu L, Zheng H. Functional, physicochemical, and structural properties of the hydrolysates derived from the abalone ( Haliotis discus subsp hannai Ino) foot muscle proteins. Food Chem X 2023; 19:100841. [PMID: 37680759 PMCID: PMC10481181 DOI: 10.1016/j.fochx.2023.100841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
This study was conducted to investigate functional, physicochemical, and structural properties of abalone foot muscle proteins (AFPs) and their hydrolysates (HAFPs) obtained using animal protease (HA), papain (HPP), and Protamex® (HP) at different time points. The HA-hydrolysate obtained after 0.5 h of treatment demonstrated the highest solubility at pH 7.0 (84.19%); the HPP-hydrolysate at 4 h exhibited the highest degree of hydrolysis (11.4%); the HPP-hydrolysate at 0.5 h had the highest oil holding capacity (2.62 g/g) and emulsion stability index (39.73 min), and the HP-hydrolysate at 4 h had the highest emulsifying activity index (93.23 m2/g) and foaming stability (91.45%); Regarding the physicochemical properties, the HPP-hydrolysates revealed the largest particle size, higher absolute zeta potential, and superior interfacial activity. Structural characterization demonstrated the enzymolysis-based changes in the composition and the secondary structure of the AFPs. These results provide practical support for the theoretical basis of the use of AFPs as a source of nutritive proteins in the food industry.
Collapse
Affiliation(s)
- Guiyan Li
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang Zuo
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinlin Luo
- College of Food Science and Engineering, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Zhongqin Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Huina Zheng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
32
|
Et-tazy L, Lamiri A, Satia L, Essahli M, Krimi Bencheqroun S. In Vitro Antioxidant and Antifungal Activities of Four Essential Oils and Their Major Compounds against Post-Harvest Fungi Associated with Chickpea in Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:3587. [PMID: 37896050 PMCID: PMC10610340 DOI: 10.3390/plants12203587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/29/2023]
Abstract
The antifungal and antioxidant properties of essential oils (EOs) derived from four plants were assessed in vitro: Rosmarinus officinalis, Myrtus communis, Origanum compactum, and Eugenia aromatica. These plants are renowned for their diverse biological activities. Antioxidant activities were evaluated using DPPH, ABTS, and TAC tests. Antifungal activity was tested against four postharvest pathogens associated with chickpea in storage: Fusarium culmorum, Rhizopus oryzae, Penicillium italicum, and Aspergillus niger, using the broth microdilution technique. Additionally, the efficacy of several major compounds against fungi found in the EOs 1,8-cineole, carvacrol, and eugenol was evaluated. Furthermore, this study explored the potential synergy of combining eugenol and carvacrol in various ratios. Based on the results, E. aromatica EO exhibited the highest antioxidant activity, as evidenced by its lowest IC50 values for a DPPH of 0.006 mg/mL. This EO also demonstrated the best antifungal activity, with MIC values ranging from 0.098 to 0.13 μL/mL. The high concentration of eugenol in this oil was identified as a contributing factor to its potent antifungal effects. The individual application of eugenol displayed significant antifungal efficacy, which was further enhanced by incorporating carvacrol at a 1:3 ratio. This synergistic combination presents promising potential for the development of specific formulations aimed at optimizing grain protection during storage.
Collapse
Affiliation(s)
- Lamyae Et-tazy
- Applied Chemistry and Environment Laboratory, Faculty of Sciences and Techniques, University Hassan First, BP. 577, Settat 26000, Morocco; (L.E.-t.); (A.L.); (M.E.)
- Plant Protection Laboratory, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP. 415 Rabat Principal, Rabat 10090, Morocco;
| | - Abdeslam Lamiri
- Applied Chemistry and Environment Laboratory, Faculty of Sciences and Techniques, University Hassan First, BP. 577, Settat 26000, Morocco; (L.E.-t.); (A.L.); (M.E.)
| | - Laila Satia
- Plant Protection Laboratory, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP. 415 Rabat Principal, Rabat 10090, Morocco;
| | - Mohamed Essahli
- Applied Chemistry and Environment Laboratory, Faculty of Sciences and Techniques, University Hassan First, BP. 577, Settat 26000, Morocco; (L.E.-t.); (A.L.); (M.E.)
| | - Sanae Krimi Bencheqroun
- Plant Protection Laboratory, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP. 415 Rabat Principal, Rabat 10090, Morocco;
| |
Collapse
|
33
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Huang J, Chen X, Su D, Chen L, Chen C, Jin B. Molecular mechanisms affecting the stability of high internal phase emulsions of zein-soy isoflavone complexes fabricated with ultrasound-assisted dynamic high-pressure microfluidization. Food Res Int 2023; 170:113051. [PMID: 37316032 DOI: 10.1016/j.foodres.2023.113051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
In this study, zein-soy isoflavone complex (ZSI) emulsifiers were fabricated using ultrasound-assisted dynamic high-pressure micro fluidization to stabilise highinternal phase pickering emulsions. Ultrasound-assisted dynamic high-pressure micro-fluidization enhanced surface hydrophobicity, zeta potential, and soy isoflavone binding capacity, while it decreased particle size, especially during ultrasound and subsequent microfluidization. The treated ZSI could produce small droplet clusters and gel-like structures, with excellent viscoelasticity, thixotropy and creaming stability owing to their neutral contact angles. Ultrasound and subsequent micro fluidization treatment of the ZSI complexes were highly effective in preventing droplet flocculation and coalescence after long-term storage or centrifugation due to their higher surface load, thicker multi-layer interfacial structure, and stronger electronic repulsion between the oil droplets. This study provides insights and extends our current knowledge of how non-thermal technology affects the interfacial distribution of plant based particles and the physical stability of emulsions.
Collapse
Affiliation(s)
- Junrong Huang
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Xutao Chen
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Danxia Su
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Linlin Chen
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Caidi Chen
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Bei Jin
- School of Food & Science Engineering, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
35
|
Ferdaus MJ, Chukwu-Munsen E, Foguel A, da Silva RC. Taro Roots: An Underexploited Root Crop. Nutrients 2023; 15:3337. [PMID: 37571276 PMCID: PMC10421445 DOI: 10.3390/nu15153337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Taro (Colocasia esculenta) is a root crop that remains largely underutilized and undervalued despite its abundance and affordability. In comparison to other root vegetables, such as potatoes, yams, carrots, and cassava, taro stands out as a plentiful and low-cost option. As global hunger increases, particularly in Africa, it becomes essential to address food insecurity by maximizing the potential of existing food resources, including taro, and developing improved food products derived from it. Taro possesses a wealth of carbohydrates, dietary fiber, vitamins, and minerals, thereby making it a valuable nutritional source. Additionally, while not a significant protein source, taro exhibits higher protein content than many other root crops. Consequently, utilizing taro to create food products, such as plant-based milk alternatives, frozen desserts, and yogurt substitutes, could play a crucial role in raising awareness and increasing taro production. Unfortunately, taro has been stigmatized in various cultures, which has led to its neglect as a food crop. Therefore, this review aims to highlight the substantial potential of taro as an economical source of dietary energy by exploring the rich fiber, potassium, vitamin C, protein, and other micronutrient content of taro, and providing a foundation for the formulation of novel food products. Furthermore, this paper assesses the nutritional benefits of taro, its current utilization, and its antinutritional properties. It emphasizes the need for further research to explore the various applications of taro and improve on-farm processing conditions for industrial purposes.
Collapse
Affiliation(s)
- Md. Jannatul Ferdaus
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ezzine Chukwu-Munsen
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Roberta Claro da Silva
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
36
|
Magallanes-Cruz PA, Duque-Buitrago LF, Del Rocío Martínez-Ruiz N. Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Res Int 2023; 169:112875. [PMID: 37254325 DOI: 10.1016/j.foodres.2023.112875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Seeds represent a potential source of starch, containing at least 60-70% of total starch, however many of them are treated as waste and are usually discarded. The review aim was to analyze the characteristics, functional properties, and potential applications of native and modified starches from underutilized seeds such as Sorghum bicolor L. Moench (WSS), Chenopodium quinoa, Wild. (QSS), Mangifera indica L. (MSS), Persea americana Mill. (ASS), Pouteria campechiana (Kunth) Baehni (PCSS), and Brosimum alicastrum Sw. (RSS). A systematic review of scientific literature was carried out from 2014 to date. Starch from seeds had yields above 30%. ASS had the higher amylose content and ASS and RSS showed the highest values in water absorption capacity and swelling power, contrary to MSS and PCSS while higher thermal resistance, paste stability, and a lower tendency to retrograde were observed in MSS and RSS. Functional properties such as water solubility, swelling power, thermal stability, low retrogradation tendency, and emulsion stability were increased in RSS, WSS, QSS, and MSS with chemical modifications (Oxidation, Oxidation-Crosslinking, OSA, DDSA, and NSA) and physical methods (HMT and dry-heat). Digestibility in vitro showed that WSS and QSS presented high SDS fraction, while ASS, MSS, PCSS, and HMT-QSS presented the highest RS content. Native or modified underutilized seed starches represent an alternative and sustainable source of non-conventional starch with potential applications in the food industry and for the development of healthy foods or for special nutritional requirements.
Collapse
Affiliation(s)
- Perla A Magallanes-Cruz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| | - Luisa F Duque-Buitrago
- Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, C. P. 07738 Ciudad de México, Mexico.
| | - Nina Del Rocío Martínez-Ruiz
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, C.P. 32310 Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
37
|
Xu J, Sun Q, Dong X, Gao J, Wang Z, Liu S. Insight into the microorganisms, quality, and protein structure of golden pompano ( Trachinotus ovatus) treated with cold plasma at different voltages. Food Chem X 2023; 18:100695. [PMID: 37234402 PMCID: PMC10206424 DOI: 10.1016/j.fochx.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cold plasma (CP) is a non-thermal novel technology for the processing of heat-sensitive food products, but there is concern regarding its impact on food quality. Voltage is one of the most direct factors affecting the bacteriostatic effect of CP. Golden pompano (Trachinotus ovatus) was treated with CP at different voltages (10, 20, and 30 kV). The total viable count decreased as the CP voltage increased, reaching a maximum reduction of 1.54 lg CFU/g on golden pompano treated at 30 kV. No effects on water-holding capacity, pH, total volatile base nitrogen, and T2b relaxation time were observed, indicating that all CP treatments retained the freshness and bound water of the samples. However, as the CP voltage increased, peroxide value and thiobarbituric acid-reactive substances of golden pompano gradually increased, the protein tertiary structure unfolded, and α-helices converted to β-sheets, indicating inevitable lipid and protein oxidation caused by excessive CP voltage. Therefore, a suitable voltage of CP should be selected to inhibits the growth of microorganisms, which avoids deterioration of sea-foods quality.
Collapse
Affiliation(s)
- Jie Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
38
|
Shekhar S, Prakash P, Singha P, Prasad K, Singh SK. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm. Foods 2023; 12:foods12091925. [PMID: 37174462 PMCID: PMC10178505 DOI: 10.3390/foods12091925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
This study explains the effect of ultrasound on the extraction of the bioactive compounds from garlic (Allium sativum L.) leaf powder. The experiment was carried out by varying the ultrasound amplitude (30-60%), treatment time (5-15 min), and ethanol concentration (40-60%) required to obtain the maximum extraction yield of total phenol content (TPC), total flavonoid content (TFC), and antioxidant activity. Rotatable central composite design (RCCD) provided experimental parameter combinations in the ultrasound-assisted extraction (UAE) of garlic leaf powder. The values of extraction yield, TPC, TFC, and antioxidant activity for the optimized condition of RSM were obtained at 53% amplitude, 13 min of treatment time, and 50% ethanol concentration. The values of the target compounds predicted at this optimized condition from RSM were 32.2% extraction yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity. The ANN-GA optimized condition for the leaf extracts was obtained at 60% amplitude, 13 min treatment time, and 53% ethanol concentration. The predicted values of optimized condition obtained by ANN-GA were recorded as 32.1738% extraction yield and 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for TPC, TFC, and antioxidant activity, respectively. The matured leaves of garlic, if not harvested during its cultivation, often go waste despite being rich in antioxidants and phenolic compounds. With the increased demand for the production of value-added products, the extraction of the bioactive compounds from garlic leaves can resolve waste management and potential health issues without affecting the crop yield through the process for high-end use in value addition.
Collapse
Affiliation(s)
- Shubhra Shekhar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Prem Prakash
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kamlesh Prasad
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
39
|
Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res Int 2023; 167:112663. [PMID: 37087253 DOI: 10.1016/j.foodres.2023.112663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.
Collapse
|
40
|
Lei X, Yu J, Hu Y, Bai J, Feng S, Ren Y. Comparative investigation of the effects of electron beam and X-ray irradiation on potato starch: Structure and functional properties. Int J Biol Macromol 2023; 236:123909. [PMID: 36871691 DOI: 10.1016/j.ijbiomac.2023.123909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Electron beam (particle radiation) and X-ray (electromagnetic radiation) without radioisotope in the application of material modification have received increasing attention in the last decade. To clarify the effect of electron beam and X-ray on the morphology, crystalline structure and functional properties of starch, potato starch was irradiated using electron beam and X-ray at 2, 5, 10, 20 and 30 kGy, respectively. Electron beam and X-ray treatment increased the amylose content of starch. The surface morphology of starch did not change at lower doses (< 5 kGy), but starch granules were aggregated with the increase of doses. All treatments decreased crystallinity, viscosity and swelling power but increased solubility and stability properties. The effects of electron beam and X-ray on the starch had a similar trend. Unlike X-ray, electron beam destructed the crystallinity of starch to a lesser extent, thereby increasing thermal stability and freeze-thaw stability. Furthermore, X-ray irradiation at higher doses (> 10 kGy) resulted in outstanding anti-retrogradation properties of starch compared with electron beam treatment. Thus, particle and electromagnetic irradiation displayed an excellent ability to modify starch with respective specific characteristics, which expands the potential application of these irradiations in the starch industry.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, PR China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, PR China
| | - Shuo Feng
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
41
|
Chen X, Chu X, Li X, Cao F, Guo Q, Wang J. Non-thermal plasma modulation of the interaction between whey protein isolate and ginsenoside Rg 1 to improve the rheological and oxidative properties of emulsion. Food Res Int 2023; 165:112548. [PMID: 36869457 DOI: 10.1016/j.foodres.2023.112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Molecular interaction forces regulate the interfacial properties of oil-in-water emulsion and play a key role in the rheology and stability of the emulsion in the food industry. In this study, the effects of non-thermal plasma (NTP) treatment on the structural and functional properties of whey protein isolate (WPI) and its binding interaction with ginsenoside Rg1 (GR1) were investigated. The results based on surface hydrophobicity, infrared spectroscopy and fluorescence spectroscopy test showed that the NTP treatment induced the unfolding of the structure of WPI and promoted the binding affinity between WPI and GR1. By comparing with untreated WPI (an α-helix content of 19.63 % and a β-sheet content of 31.66 %), there was a greater decrease in α-helix content and an increase in β-sheet content of WPI in N20-WPI (α-helix = 9.63 %, β-sheet = 39.63 %) and N20-WPI-GR1 (α-helix = 4.98 %, β-sheet = 48.66 %) groups. Importantly, the NTP treatment increased the interfacial adsorption and antioxidant capacity of the WPI-GR1 complexes, which contributed to the improvement of the rheological properties and oxidation stability of the emulsion. As a result, the NTP treatment could markedly improve the rheological and antioxidative properties of the WPI-GR1 complexes and the NTP-treated WPI-GR1 emulsions was more stable than that untreated. The present research indicated that NTP-treated formation of protein-saponin complexes could enhance the functional properties of the proteins, thus expanding their application as functional ingradients in nutritionally fortified food.
Collapse
Affiliation(s)
- Xianqiang Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Chu
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
42
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
44
|
Pandey VK, Dar AH, Rohilla S, Mahanta CL, Shams R, Khan SA, Singh R. Recent Insights on the Role of Various Food Processing Operations Towards the Development of Sustainable Food Systems. CIRCULAR ECONOMY AND SUSTAINABILITY 2023; 3:1-24. [PMID: 36620426 PMCID: PMC9811882 DOI: 10.1007/s43615-022-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Chronic hunger and malnutrition will eventually result from the population's rapid growth. It is unlikely to succeed in tackling the rising challenges of delivering sustainable food for all people unless high attention is paid on the function of food processing to ensure the supply of stable food. It is impossible to overstate the importance of developing food processing and preservation technologies that can reduce food losses and wastage during surplus seasons. Therefore, sustainable food systems must be developed to provide healthy diets without damaging our world and its resources. The goal is to use various perspectives to confirm why food processing is crucial to future food supply. It is important to show the appropriate utilization of sustainability factors and effect assessments to construct for feeding the globe while staying within planetary limits. There has never been a better time to assure a plentiful food supply to feed the people than right now, when the population is expanding at a worrying rate. The sustainable food project seeks to move the food systems in a long-term, more equitable direction. Food processing, or the conversion of raw materials into functional, edible, and consumer acceptable food, is a critical link in the food value chain between consumption and production. This review looked at various existing and emerging food processing followed by preservation techniques. Food systems must also attempt to reduce food waste and losses, as well as the current and future impacts on the environment and society, to be sustainable.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Shubham Rohilla
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| |
Collapse
|
45
|
Evaluating the influence of cold plasma bubbling on protein structure and allergenicity in sesame milk. Allergol Immunopathol (Madr) 2023; 51:1-13. [PMID: 36924386 DOI: 10.15586/aei.v51isp1.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds. OBJECTIVE The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min). RESULTS The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes. CONCLUSION These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk. However, increase in binding at 30-min bubbling is to be studied to facilitate further reduction of the binding capacity of IgE antibodies.
Collapse
|
46
|
PENG J, LIU C, XING S, BAI K, LIU F. The application of electrostatic field technology for the preservation of perishable foods. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiakun PENG
- China Agricultural University, China; China Agricultural University, China
| | - Chune LIU
- China Agricultural University, China
| | | | - Kaikai BAI
- China Agricultural University, China; China Agricultural University, China
| | - Feng LIU
- China Agricultural University, China
| |
Collapse
|
47
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Hassoun A, Prieto MA, Carpena M, Bouzembrak Y, Marvin HJ, Pallarés N, Barba FJ, Punia Bangar S, Chaudhary V, Ibrahim S, Bono G. Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Res Int 2022; 162:112068. [DOI: 10.1016/j.foodres.2022.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
49
|
Gu S, Zhu Q, Zhou Y, Wan J, Liu L, Zhou Y, Chen D, Huang Y, Chen L, Zhong X. Effect of Ultrasound Combined with Glycerol-Mediated Low-Sodium Curing on the Quality and Protein Structure of Pork Tenderloin. Foods 2022; 11:3798. [PMID: 36496606 PMCID: PMC9737799 DOI: 10.3390/foods11233798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Considering the hazards of high salt intake and the current status of research on low-sodium meat products, this study was to analyze the effect of ultrasound combined with glycerol-mediated low-sodium salt curing on the quality of pork tenderloin by analyzing the salt content, water activity (aw), cooking loss, and texture. The results of scanning electron microscope (SEM) analysis, Raman spectroscopy, ultraviolet fluorescence, and surface hydrophobicity were proposed to reveal the mechanism of the effect of combined ultrasound and glycerol-mediated low sodium salt curing on the quality characteristics of pork tenderloin. The results showed that the co-mediated curing could reduce salt content, aw, and cooking loss (p < 0.05), improve texture and enhance product quality. Compared with the control group, the co-mediated curing increased the solubility of the myofibrillar protein, improved the surface hydrophobicity of the protein, increased the content of reactive sulfhydryl groups (p < 0.05), and changed the protein structure. The SEM results showed that the products treated using a co-mediated curing process had a more detailed and uniform pore distribution. These findings provide new insights into the quality of ultrasonic-treated and glycerol-mediated low-salt cured meat products.
Collapse
Affiliation(s)
- Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Dan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yanpei Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Xiaolin Zhong
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| |
Collapse
|
50
|
Barbhuiya RI, Tinoco NN, Ramalingam S, Elsayed A, Subramanian J, Routray W, Singh A. A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:4477-4499. [PMID: 36343386 DOI: 10.1080/10408398.2022.2142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fruits and vegetables are an integral part of our diet attributed to their appealing taste, flavor, and health-promoting characteristics. However, due to their high-water activity, they are susceptible to microbial spoilage and diseases at any step in the food supply chain, from pre-harvest treatment to post-harvest storage and transportation. As a result, food researchers and engineers are developing innovative technologies that can be used to reduce the loss of fruits and vegetables on-farm and during postharvest processing. The purpose of this study was to gather and discuss the scientific data on the disease-suppressive activity of nanoparticles against plant pathogens. The progress and limitations of innovative approaches for improving nanoparticles' efficiency and dependability have been studied to develop effective substitutes for synthetic chemical fungicides and pesticides, in managing disease in fruits and vegetables. The findings of this study strongly suggests that nanotechnology has the required ability for disease suppression in fruits and vegetables. Applications of specific nanoparticles under specified conditions can enhance nutrition delivery to plants, provide better antibacterial and disease suppression activity. Nanoparticles can also lessen the quantity of agrichemicals/metals released into the environment as compared to standard formulations, which is one of the most impressive advances.
Collapse
Affiliation(s)
| | | | | | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|