1
|
Miller WD, Mishra AK, Sheedy CJ, Bond A, Gardner BM, Montell DJ, Morrissey MA. CD47 prevents Rac-mediated phagocytosis through Vav1 dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637707. [PMID: 39990418 PMCID: PMC11844498 DOI: 10.1101/2025.02.11.637707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
CD47 is expressed by viable cells to protect against phagocytosis. CD47 is recognized by SIRPα, an inhibitory receptor expressed by macrophages and other myeloid cells. Activated SIRPα recruits SHP-1 and SHP-2 phosphatases but the inhibitory signaling cascade downstream of these phosphatases is not clear. In this study, we used time lapse imaging to measure how CD47 impacts the kinetics of phagocytosis. We found that targets with IgG antibodies were primarily phagocytosed through a Rac-based reaching mechanism. Targets also containing CD47 were only phagocytosed through a less frequent Rho-based sinking mechanism. Hyperactivating Rac2 eliminated the suppressive effect of CD47, suggesting that CD47 prevents activation of Rac and reaching phagocytosis. During IgG-mediated phagocytosis, the tyrosine kinase Syk phosphorylates the GEF Vav, which then activates the GTPase Rac to drive F-actin rearrangement and target internalization. CD47 inhibited Vav1 phosphorylation without impacting Vav1 recruitment to the phagocytic synapse or Syk phosphorylation. Macrophages expressing a hyperactive Vav1 were no longer sensitive to CD47. Together this data suggests that Vav1 is a key target of the CD47 signaling pathway.
Collapse
Affiliation(s)
- Wyatt D Miller
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Abhinava K Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Connor J Sheedy
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Brooke M Gardner
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Denise J Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
2
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhou T, Hou X, Yan J, Li L, Xie Y, Bai W, Jiang W, Zou Y, Li X, Liu Z, Zhang Z, Xu B, Mao G, Wang Y, Gao S, Wang X, Zhao T, Wang H, Sun H, Zhang X, Yu J, Huang C, Liu J, Hao J. CD64 + fibroblast-targeted vilanterol and a STING agonist augment CLDN18.2 BiTEs efficacy against pancreatic cancer by reducing desmoplasia and enriching stem-like CD8 + T cells. Gut 2024; 73:1984-1998. [PMID: 39187291 DOI: 10.1136/gutjnl-2024-332371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The objective of this study is to improve the efficacy of CLDN18.2/CD3 bispecific T-cell engagers (BiTEs) as a promising immunotherapy against pancreatic ductal adenocarcinoma (PDAC). DESIGN Humanised hCD34+/hCD3e+, Trp53R172HKrasG12DPdx1-Cre (KPC), pancreas-specific Cldn18.2 knockout (KO), fibroblast-specific Fcgr1 KO and patient-derived xenograft/organoid mouse models were constructed. Flow cytometry, Masson staining, Cell Titer Glo assay, virtual drug screening, molecular docking and chromatin immunoprecipitation were conducted. RESULTS CLDN18.2 BiTEs effectively inhibited early tumour growth, but late-stage efficacy was significantly diminished. Mechanically, the Fc fragment of BiTEs interacted with CD64+ cancer-associated fibroblasts (CAFs) via activation of the SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A-α-SMA/collagen-I pathway, which enhanced desmoplasia and limited late-stage infiltration of T cells. Molecular docking analysis found that vilanterol suppressed BiTEs-induced phosphorylation of VAV2 (Y172) in CD64+ CAFs and weakened desmoplasia. Additionally, decreased cyclic guanosine-adenosine monophosphate synthase/stimulator of interferon genes (STING) activity reduced proliferation of TCF-1+PD-1+ stem-like CD8+ T cells, which limited late-stage effects of BiTEs. Finally, vilanterol and the STING agonist synergistically boosted the efficacy of BiTEs by inhibiting the activation of CD64+ CAFs and enriching proliferation of stem-like CD8+ T cells, resulting in sustained anti-tumour activity. CONCLUSION Vilanterol plus the STING agonist sensitised PDAC to CLDN18.2 BiTEs and augmented efficacy as a potential novel strategy.
Collapse
Affiliation(s)
- Tianxing Zhou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xupeng Hou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jingrui Yan
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lin Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yongjie Xie
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Weiwei Bai
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yiping Zou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xueyang Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Ziyun Liu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Bohang Xu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Guohua Mao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Song Gao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xiuchao Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongwei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongxia Sun
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jun Yu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chongbiao Huang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Jing Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Xu J, Wang J, Zhang H, Chen Y, Zhang X, Zhang Y, Xie M, Xiao J, Qiu J, Wang G. Coupled single-cell and bulk RNA-seq analysis reveals the engulfment role of endothelial cells in atherosclerosis. Genes Dis 2024; 11:101250. [PMID: 39022128 PMCID: PMC11252887 DOI: 10.1016/j.gendis.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 07/20/2024] Open
Abstract
The clearance of apoptotic cell debris, containing professional phagocytosis and non-professional phagocytosis, is essential for maintaining the homeostasis of healthy tissues. Here, we discovered that endothelial cells could engulf apoptotic cell debris in atherosclerotic plaque. Single-cell RNA sequencing (RNA-seq) has revealed a unique endothelial cell subpopulation in atherosclerosis, which was strongly associated with vascular injury-related pathways. Moreover, integrated analysis of three vascular injury-related RNA-seq datasets showed that the expression of scavenger receptor class B type 1 (SR-B1) was up-regulated and specifically enriched in the phagocytosis pathway under vascular injury circumstances. Single-cell RNA-seq and bulk RNA-seq indicate that SR-B1 was highly expressed in a unique endothelial cell subpopulation of mouse aorta and strongly associated with the reorganization of cellular adherent junctions and cytoskeleton which were necessary for phagocytosis. Furthermore, SR-B1 was strongly required for endothelial cells to engulf apoptotic cell debris in atherosclerotic plaque of both mouse and human aorta. Overall, this study demonstrated that apoptotic cell debris could be engulfed by endothelial cells through SR-B1 and associated with the reorganization of cellular adherent junctions and cytoskeleton.
Collapse
Affiliation(s)
- Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ying Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Ming Xie
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Jun Xiao
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Christodoulou A, Tsai JY, Suwankitwat N, Anderson A, Iritani BM. Hem1 inborn errors of immunity: waving goodbye to coordinated immunity in mice and humans. Front Immunol 2024; 15:1402139. [PMID: 39026677 PMCID: PMC11254771 DOI: 10.3389/fimmu.2024.1402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the NCKAP1L gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin). The polymerization and branching of F-actin is critical for creating force-generating cytoskeletal structures which drive most active cellular processes including migration, adhesion, immune synapse formation, and phagocytosis. Branched actin networks at the cell cortex have also been implicated in acting as a barrier to regulate inappropriate vesicle (e.g. cytokine) secretion and spontaneous antigen receptor crosslinking. Given the importance of the actin cytoskeleton in most or all hematopoietic cells, it is not surprising that HEM1 deficient children present with a complex clinical picture that involves overlapping features of immunodeficiency and autoimmunity. In this review, we will provide an overview of what is known about the molecular and cellular functions of HEM1 and the WRC in immune and other cells. We will describe the common clinicopathological features and immunophenotypes of HEM1 deficiency in humans and provide detailed comparative descriptions of what has been learned about Hem1 disruption using constitutive and immune cell-specific mouse knockout models. Finally, we discuss future perspectives and important areas for investigation regarding HEM1 and the WRC.
Collapse
Affiliation(s)
- Alexandra Christodoulou
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julia Y Tsai
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
- Virology Laboratory, National Institute of Animal Health, Bangkok, Thailand
| | - Andreas Anderson
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Brian M Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Lai Q, Dannenfelser R, Roussarie JP, Yao V. Disentangling associations between complex traits and cell types with seismic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592534. [PMID: 38765980 PMCID: PMC11100625 DOI: 10.1101/2024.05.04.592534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Integrating single-cell RNA sequencing (scRNA-seq) with Genome-Wide Association Studies (GWAS) can help reveal GWAS-associated cell types, furthering our understanding of the cell-type-specific biological processes underlying complex traits and disease. However, current methods have technical limitations that hinder them from making systematic, scalable, interpretable disease-cell-type associations. In order to rapidly and accurately pinpoint associations, we develop a novel framework, seismic, which characterizes cell types using a new specificity score. We compare seismic with alternative methods across over 1,000 cell type characterizations at different granularities and 28 traits, demonstrating that seismic both corroborates findings and identifies trait-relevant cell groups which are not apparent through other methodologies. Furthermore, as part of the seismic framework, the specific genes driving cell type-trait associations can easily be accessed and analyzed, enabling further biological insights. The advantages of seismic are particularly salient in neurodegenerative diseases such as Parkinson's and Alzheimer's, where disease pathology has not only cell-specific manifestations, but also brain region-specific differences. Interestingly, a case study of Alzheimer's disease reveals the importance of considering GWAS endpoints, as studies relying on clinical diagnoses consistently identify microglial associations, while GWAS with a tau biomarker endpoint reveals neuronal associations. In general, seismic is a computationally efficient, powerful, and interpretable approach for identifying associations between complex traits and cell type-specific expression.
Collapse
Affiliation(s)
- Qiliang Lai
- Department of Computer Science, Rice University
| | | | | | - Vicky Yao
- Department of Computer Science, Rice University
| |
Collapse
|
7
|
Wu C, Zhang S, Sun H, Li A, Hou F, Qi L, Liao H. STING inhibition suppresses microglia-mediated synapses engulfment and alleviates motor functional deficits after stroke. J Neuroinflammation 2024; 21:86. [PMID: 38584255 PMCID: PMC11000342 DOI: 10.1186/s12974-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.
Collapse
Affiliation(s)
- Chaoran Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shiwen Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ao Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Fengsheng Hou
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Long Qi
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Liao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
8
|
Yau E, Yang L, Chen Y, Umstead TM, Stanley AE, Halstead ES, Gandhi CK, Yewdell JW, Chroneos ZC. SP-R210 isoforms of Myosin18A modulate endosomal sorting and recognition of influenza A virus infection in macrophages. Microbes Infect 2024; 26:105280. [PMID: 38135024 PMCID: PMC10948314 DOI: 10.1016/j.micinf.2023.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210L and a short (S) SP-R210S isoform encoded by alternative splicing of the myosin 18A gene. We reported that disruption of SP-R210L enhances cytosolic and endosomal antiviral response pathways. Here, we report that SP-R210L antagonizes type I interferon β (IFNβ), as depletion of SP-R210L potentiates IFNβ secretion. SP-R210 antibodies enhance and attenuate IFNβ secretion in SP-R210L replete and deficient macrophages, respectively, indicating that SP-R210 isoform stoichiometry alters macrophage function intrinsically. This reciprocal response is coupled to unopposed and restricted expression of viral genes in control and SP-R210L-deficient macrophages, respectively. Human monocytic cells with sub-stoichiometric expression of SP-R210L resist IAV infection, whereas alveolar macrophages with increased abundance of SP-R210L permit viral gene expression similar to murine macrophages. Uptake and membrane binding studies show that lack of SP-R210 isoforms does not impair IAV binding and internalization. Lack of SP-R210L, however, results in macropinocytic retention of the virus that depends on both SP-R210S and interferon-inducible transmembrane protein-3 (IFITM3). Mass spectrometry and Western blot analyses indicate that SP-R210 isoforms modulate differential recruitment of the Rho-family GTPase RAC1 and guanine nucleotide exchange factors. Our study suggests that SP-R210 isoforms modulate RAC-dependent macropinosomal sorting of IAV to discrete endosomal and lysosomal compartments that either permit or prevent endolysosomal escape and inflammatory sensing of viral genomes in macrophages.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Linlin Yang
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yan Chen
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Anne E Stanley
- Mass Spectrometry Core, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - E Scott Halstead
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chintan K Gandhi
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Perinatal-Neonatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
9
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
12
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
14
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Gonzalez JC, Chakraborty S, Thulin NK, Wang TT. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes. Immunol Rev 2022; 309:64-74. [PMID: 35781671 PMCID: PMC9539944 DOI: 10.1111/imr.13109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Joseph C. Gonzalez
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA,Program in ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Saborni Chakraborty
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA
| | - Natalie K. Thulin
- Department of ImmunologyUniversity of WashingtonSeattleWashingtonUSA
| | - Taia T. Wang
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA,Program in ImmunologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
16
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
17
|
Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat Commun 2022; 13:3180. [PMID: 35676269 PMCID: PMC9178026 DOI: 10.1038/s41467-022-30778-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/07/2022] [Indexed: 11/08/2022] Open
Abstract
Formation and maintenance of neuromuscular junctions (NMJs) are essential for skeletal muscle function, allowing voluntary movements and maintenance of the muscle tone, thereby preventing atrophy. Generation of NMJs depends on the interaction of motor neurons with skeletal muscle fibers, which initiates a cascade of regulatory events that is essential for patterning of acetylcholine receptor (AChR) clusters at specific sites of the sarcolemma. Here, we show that muscle-specific miRNAs of the miR-1/206/133 family are crucial regulators of a signaling cascade comprising DOK7-CRK-RAC1, which is critical for stabilization and anchoring of postsynaptic AChRs during NMJ development and maintenance. We describe that posttranscriptional repression of CRK by miR-1/206/133 is essential for balanced activation of RAC1. Failure to adjust RAC1 activity severely compromises NMJ function, causing respiratory failure in neonates and neuromuscular symptoms in adult mice. We conclude that miR-1/206/133 serve a specific function for NMJs but are dispensable for skeletal muscle development. The miR-1/133/206 gene family codes for the most abundant microRNAs in striated muscles. Here, Klockner et al show that inactivation of all family members in skeletal muscle prevents formation of normal neuromuscular junctions due to increased expression of the adaptor protein CRK.
Collapse
|
18
|
Bharadwaj R, Kushwaha T, Ahmad A, Inampudi KK, Nozaki T. An atypical EhGEF regulates phagocytosis in Entamoeba histolytica through EhRho1. PLoS Pathog 2021; 17:e1010030. [PMID: 34807955 PMCID: PMC8648123 DOI: 10.1371/journal.ppat.1010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis, a major cause of morbidity and mortality due to parasitic diseases in developing countries. Phagocytosis is an essential mode of obtaining nutrition and has been associated with the virulence behaviour of E. histolytica. Signalling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remains to be elucidated in this parasite. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica and have described some of the molecules that play key roles in the process. Here we showed the involvement of non-Dbl Rho Guanine Nucleotide Exchange Factor, EhGEF in regulation of amoebic phagocytosis by regulating activation of EhRho1. EhGEF was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. Our observation from imaging, pull down experiments and down regulating expression of different molecules suggest that EhGEF interacts with EhRho1 and it is required during initiation of phagocytosis and phagosome formation. Also, biophysical, and computational analysis reveals that EhGEF mediates GTP exchange on EhRho1 via an unconventional pathway. In conclusion, we describe a non-Dbl EhGEF of EhRho1 which is involved in endocytic processes of E. histolytica.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail: (TN); , (S)
| |
Collapse
|
19
|
Suter EC, Schmid EM, Harris AR, Voets E, Francica B, Fletcher DA. Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation. Cell Rep 2021; 36:109587. [PMID: 34433055 PMCID: PMC8477956 DOI: 10.1016/j.celrep.2021.109587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapies often modulate macrophage effector function by introducing either targeting antibodies that activate Fcγ receptors (FcγRs) or blocking antibodies that disrupt inhibitory SIRPα-CD47 engagement. However, how these competing signals are integrated is poorly understood, raising questions about how to effectively titrate immune responses. Here, we find that macrophage phagocytic decisions are regulated by the ratio of activating ligand to inhibitory ligand over a broad range of absolute molecular densities. Using both endogenous and chimeric receptors, we show that activating:inhibitory ligand ratios of at least 10:1 are required to promote phagocytosis of model antibody-opsonized CD47-inhibited targets and that lowering that ratio reduces FcγR phosphorylation because of inhibitory phosphatases recruited to CD47-bound SIRPα. We demonstrate that ratiometric signaling is critical for phagocytosis of tumor cells and can be modified by blocking SIRPα, indicating that balancing targeting and blocking antibodies may be important for controlling macrophage phagocytosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Emily C Suter
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Erik Voets
- Aduro Biotech Europe, Oss, the Netherlands
| | | | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
20
|
Berghoff K, Gross W, Eisentraut M, Kress H. Using blinking optical tweezers to study cell rheology during initial cell-particle contact. Biophys J 2021; 120:3527-3537. [PMID: 34181902 PMCID: PMC8391049 DOI: 10.1016/j.bpj.2021.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Phagocytosis is an important part of innate immunity and describes the engulfment of bacteria and other extracellular objects on the micrometer scale. The protrusion of the cell membrane around the bacteria during this process is driven by a reorganization of the actin cortex. The process has been studied on the molecular level to great extent during the past decades. However, a deep, fundamental understanding of the mechanics of the process is still lacking, in particular because of a lack of techniques that give access to binding dynamics below the optical resolution limit and cellular viscoelasticity at the same time. In this work, we propose a technique to characterize the mechanical properties of cells in a highly localized manner and apply it to investigate the early stages of phagocytosis. The technique can simultaneously resolve the contact region between a cell and an external object (in our application, a phagocytic target) even below the optical resolution limit. We used immunoglobulin-G-coated microparticles with a size of 2 μm as a model system and attached the particles to the macrophages with holographic optical tweezers. By switching the trap on and off, we were able to measure the rheological properties of the cells in a time-resolved manner during the first few minutes after attachment. The measured viscoelastic cellular response is consistent with power law rheology. The contact radius between particle and cell increased on a timescale of ∼30 s and converged after a few minutes. Although the binding dynamics are not affected by cytochalasin D, we observed an increase of the cellular compliance and a significant fluidization of the cortex after addition of cytochalasin D treatment. Furthermore, we report upper boundaries for the length- and timescale, at which cortical actin has been hypothesized to depolymerize during early phagocytosis.
Collapse
Affiliation(s)
- Konrad Berghoff
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | | | - Holger Kress
- Department of Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
21
|
Porro C, Pennella A, Panaro MA, Trotta T. Functional Role of Non-Muscle Myosin II in Microglia: An Updated Review. Int J Mol Sci 2021; 22:ijms22136687. [PMID: 34206505 PMCID: PMC8267657 DOI: 10.3390/ijms22136687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Myosins are a remarkable superfamily of actin-based motor proteins that use the energy derived from ATP hydrolysis to translocate actin filaments and to produce force. Myosins are abundant in different types of tissues and involved in a large variety of cellular functions. Several classes of the myosin superfamily are expressed in the nervous system; among them, non-muscle myosin II (NM II) is expressed in both neurons and non-neuronal brain cells, such as astrocytes, oligodendrocytes, endothelial cells, and microglia. In the nervous system, NM II modulates a variety of functions, such as vesicle transport, phagocytosis, cell migration, cell adhesion and morphology, secretion, transcription, and cytokinesis, as well as playing key roles during brain development, inflammation, repair, and myelination functions. In this review, we will provide a brief overview of recent emerging roles of NM II in resting and activated microglia cells, the principal regulators of immune processes in the central nervous system (CNS) in both physiological and pathological conditions. When stimulated, microglial cells react and produce a number of mediators, such as pro-inflammatory cytokines, free radicals, and nitric oxide, that enhance inflammation and contribute to neurodegenerative diseases. Inhibition of NM II could be a new therapeutic target to treat or to prevent CNS diseases.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
| | - Antonio Pennella
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (C.P.); (A.P.)
- Correspondence:
| |
Collapse
|
22
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Leyden F, Uthishtran S, Moorthi UK, York HM, Patil A, Gandhi H, Petrov EP, Bornschlögl T, Arumugam S. Rac1 activation can generate untemplated, lamellar membrane ruffles. BMC Biol 2021; 19:72. [PMID: 33849538 PMCID: PMC8042924 DOI: 10.1186/s12915-021-00997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions. RESULTS Here, capitalizing on rapid volumetric imaging capabilities of lattice light-sheet microscopy (LLSM), we describe optogenetic approaches using photoactivable Rac1 (PA-Rac1) for controlled ruffle generation. We demonstrate that PA-Rac1 activation needs to be continuous, suggesting a threshold local concentration for sustained actin polymerization leading to ruffling. We show that Rac1 activation leads to actin assembly at the dorsal surface of the cell membrane that result in sheet-like protrusion formation without any requirement of a template. Further, this approach can be used to study the complex morpho-dynamics of the protrusions or to investigate specific proteins that may be enriched in the ruffles. Deactivating PA-Rac1 leads to complex contractile processes resulting in formation of macropinosomes. Using multicolour imaging in combination with these approaches, we find that Myo1e specifically is enriched in the ruffles. CONCLUSIONS Combining LLSM and optogenetics enables superior spatial and temporal control for studying such dynamic mechanisms. Demonstrated here, the techniques implemented provide insight into the complex nature of the molecular interplay involved in dynamic actin machinery, revealing that Rac1 activation can generate untemplated, lamellar protrusions.
Collapse
Affiliation(s)
- F Leyden
- Single Molecule Science, University of New South Wales, Sydney, Australia
| | - S Uthishtran
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - U K Moorthi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - H M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - A Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - H Gandhi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - E P Petrov
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587, Berlin, Germany
| | - T Bornschlögl
- L'Oréal Research & Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Arumugam
- Single Molecule Science, University of New South Wales, Sydney, Australia.
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia.
| |
Collapse
|
24
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
25
|
Tertrais M, Bigot C, Martin E, Poincloux R, Labrousse A, Maridonneau-Parini I. Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. Eur J Cell Biol 2021; 100:151161. [PMID: 33836409 DOI: 10.1016/j.ejcb.2021.151161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.
Collapse
Affiliation(s)
- Margot Tertrais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Bigot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
26
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
28
|
Zhong H, Lin H, Pang Q, Zhuang J, Liu X, Li X, Liu J, Tang J. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm Res 2021; 70:193-203. [PMID: 33474594 PMCID: PMC7817350 DOI: 10.1007/s00011-021-01437-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Intracellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein belonging to the immunoglobulin superfamily, plays a critical role in mediating cell-cell interaction and outside-in cell signaling during the immune response. ICAM-1 is expressed on the cell surface of several cell types including endothelial cells, epithelial cells, leucocytes, fibroblasts, and neutrophils. Despite ICAM-1 has been detected on macrophage, little is known about the function and mechanism of macrophage ICAM-1. METHODS To investigate the role of lipopolysaccharide (LPS) in ICAM-1 regulation, both the protein and cell surface expression of ICAM-1 were measured. The phagocytosis of macrophage was evaluated by flow cytometry and Confocal microscopy. Small interfering RNA and neutralizing antibody of ICAM-1 were used to assess the effect of ICAM-1 on macrophage phagocytosis. TLR4 gene knockout mouse and cytoplasmic and mitochondrial ROS scavenger were used for the regulation of ICAM-1 expression. ROS was determined using flow cytometry. RESULTS In this study, we reported that macrophage can be stimulated to increase both the protein and cell surface expression of ICAM-1 by LPS. Macrophage ICAM-1 expression was correlated with enhanced macrophage phagocytosis. We found that using ICAM-1 neutralizing antibody or ICAM-1 silencing to attenuate the function or expression of ICAM-1 could decrease LPS-induced macrophage phagocytosis. Furthermore, we found that knocking out of TLR4 led to inhibited cytoplasmic and mitochondrial ROS production, which in turn, attenuated ICAM-1 expression at both the protein and cell surface levels. CONCLUSION This study demonstrates that the mechanism of ICAM-1-mediated macrophage phagocytosis is depending on TLR4-mediated ROS production and provides significant light on macrophage ICAM-1 in endotoxemia.
Collapse
Affiliation(s)
- Hanhui Zhong
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Lin
- Health Management Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiongni Pang
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Jinling Zhuang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xiaolian Li
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Tang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
29
|
Walbaum S, Ambrosy B, Schütz P, Bachg AC, Horsthemke M, Leusen JHW, Mócsai A, Hanley PJ. Complement receptor 3 mediates both sinking phagocytosis and phagocytic cup formation via distinct mechanisms. J Biol Chem 2021; 296:100256. [PMID: 33839682 PMCID: PMC7948798 DOI: 10.1016/j.jbc.2021.100256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
A long-standing hypothesis is that complement receptors (CRs), especially CR3, mediate sinking phagocytosis, but evidence is lacking. Alternatively, CRs have been reported to induce membrane ruffles or phagocytic cups, akin to those induced by Fcγ receptors (FcγRs), but the details of these events are unclear. Here we used real-time 3D imaging and KO mouse models to clarify how particles (human red blood cells) are internalized by resident peritoneal F4/80+ cells (macrophages) via CRs and/or FcγRs. We first show that FcγRs mediate highly efficient, rapid (2-3 min) phagocytic cup formation, which is completely abolished by deletion or mutation of the FcR γ chain or conditional deletion of the signal transducer Syk. FcγR-mediated phagocytic cups robustly arise from any point of cell-particle contact, including filopodia. In the absence of CR3, FcγR-mediated phagocytic cups exhibit delayed closure and become aberrantly elongated. Independent of FcγRs, CR3 mediates sporadic ingestion of complement-opsonized particles by rapid phagocytic cup-like structures, typically emanating from membrane ruffles and largely prevented by deletion of the immunoreceptor tyrosine-based activation motif (ITAM) adaptors FcR γ chain and DAP12 or Syk. Deletion of ITAM adaptors or Syk clearly revealed that there is a slow (10-25 min) sinking mode of phagocytosis via a restricted orifice. In summary, we show that (1) CR3 indeed mediates a slow sinking mode of phagocytosis, which is accentuated by deletion of ITAM adaptors or Syk, (2) CR3 induces phagocytic cup-like structures, driven by ITAM adaptors and Syk, and (3) CR3 is involved in forming and closing FcγR-mediated phagocytic cups.
Collapse
Affiliation(s)
- Stefan Walbaum
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Benjamin Ambrosy
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Paula Schütz
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhems-Universität Münster, Münster, Germany; Department of Physiology, Pathophysiology and Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
30
|
Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, Gan Y, Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153336. [PMID: 32949888 PMCID: PMC7474845 DOI: 10.1016/j.phymed.2020.153336] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The traditional Chinese Medicine (TCM) herbal formula Lian Hua Qing Wen (LHQW) improves the results of COVID-19 treatment. Three very recent studies analyzed with network pharmacology some working mechanisms of LHQW. However, we used more techniques and also included Angiotensin converting enzyme 2 (ACE2) (a SARS-CoV receptor, possibly the viral entry point in alveolar lung cells) and the immune system, as cytokine storm is essential in the late phase. PURPOSE Extensive detailed Network Pharmacology analysis of the LHQW- treatment mechanism in COVID-19. METHODS TCM-herb-meridian and protein interaction network (PIN) of LHQW, based on LHQW herbs meridian information and the protein-protein interaction (PPI) information of the LHQW-component targets. Hub and topological property analyses to obtain crucial targets and construct the crucial LHQW-PIN. Functional modules determination using MCODE, GO and KEGG pathway analysis of biological processes and pathway enrichment. Intersection calculations between the LHQW-proteins and ACE2 co-expression-proteins. RESULTS LHQW herbs have relationships to Stomach-, Heart-, Liver- and Spleen-systems, but most (10 of the 13 herbs) to the Lung system, indicating specific effects in lung diseases. The crucial LHQW PIN has the scale-free property, contains 2,480 targets, 160,266 PPIs and thirty functional modules. Six modules are enriched in leukocyte-mediated immunity, the interferon-gamma-mediated signaling pathway, immune response regulating signaling pathway, interleukin 23 mediated signaling pathway and Fc gamma receptor-mediated phagocytosis (GO analysis). These 6 are also enriched in cancer, immune system-, and viral infection diseases (KEGG). LHQW shared 189 proteins with ACE2 co-expression proteins. CONCLUSIONS Detailed network analysis shows, that LHQW herbal TCM treatment modulates the inflammatory process, exerts antiviral effects and repairs lung injury. Moreover, it also relieves the "cytokine storm" and improves ACE2-expression-disorder-caused symptoms. These innovative findings give a rational pharmacological basis and support for treating COVID-19 and possibly other diseases with LHQW.
Collapse
Affiliation(s)
- Shichao Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Jan P Baak
- Stavanger University Hospital, 4068 Stavanger, Norway; Dr. Med Jan Baak AS, 4056 Tananger, Norway.
| | - Shuang Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Wenke Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Hong Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Huan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Yanxiong Gan
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China; China Pharmaceutical University, Nanjing 210009, China.
| | - Chuanbiao Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China.
| |
Collapse
|
31
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
33
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Vav1 mutations: What makes them oncogenic? Cell Signal 2020; 65:109438. [DOI: 10.1016/j.cellsig.2019.109438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
|
35
|
Freeman SA, Grinstein S. Phagocytosis: Mechanosensing, Traction Forces, and a Molecular Clutch. Curr Biol 2020; 30:R24-R26. [DOI: 10.1016/j.cub.2019.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Zhang S, Zhang W, Zeng X, Zhao W, Wang Z, Dong X, Jia Y, Shen J, Chen R, Lin X. Inhibition of Rac1 activity alleviates PM2.5-induced pulmonary inflammation via the AKT signaling pathway. Toxicol Lett 2019; 310:61-69. [DOI: 10.1016/j.toxlet.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
37
|
Hasan S, Rahman WU, Sebo P, Osicka R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins (Basel) 2019; 11:toxins11060362. [PMID: 31226835 PMCID: PMC6628411 DOI: 10.3390/toxins11060362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Myeloid phagocytes have evolved to rapidly recognize invading pathogens and clear them through opsonophagocytic killing. The adenylate cyclase toxin (CyaA) of Bordetella pertussis and the edema toxin (ET) of Bacillus anthracis are both calmodulin-activated toxins with adenylyl cyclase activity that invade host cells and massively increase the cellular concentrations of a key second messenger molecule, 3',5'-cyclic adenosine monophosphate (cAMP). However, the two toxins differ in the kinetics and mode of cell entry and generate different cAMP concentration gradients within the cell. While CyaA rapidly penetrates cells directly across their plasma membrane, the cellular entry of ET depends on receptor-mediated endocytosis and translocation of the enzymatic subunit across the endosomal membrane. We show that CyaA-generated membrane-proximal cAMP gradient strongly inhibits the activation and phosphorylation of Syk, Vav, and Pyk2, thus inhibiting opsonophagocytosis. By contrast, at similar overall cellular cAMP levels, the ET-generated perinuclear cAMP gradient poorly inhibits the activation and phosphorylation of these signaling proteins. Hence, differences in spatiotemporal distribution of cAMP produced by the two adenylyl cyclase toxins differentially affect the opsonophagocytic signaling in myeloid phagocytes.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Waheed Ur Rahman
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
38
|
Naik U, Nguyen QPH, Harrison RE. Binding and uptake of single and dual-opsonized targets by macrophages. J Cell Biochem 2019; 121:183-199. [PMID: 31172552 DOI: 10.1002/jcb.29043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.
Collapse
Affiliation(s)
- Urja Naik
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Quynh Phuong Hai Nguyen
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rene E Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Cenabis Bene: Treg Cells Invite Macrophages to Dine. Immunity 2019; 49:579-582. [PMID: 30332622 DOI: 10.1016/j.immuni.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resolution of the immune response requires a coordinated effort to dampen inflammatory mediators and remove dying cells and debris. In this issue of Immunity, Proto et al. (2018) describe a circuit by which regulatory T cells enhance macrophage consumption of apoptotic cells during resolution.
Collapse
|
40
|
Type VI collagen promotes lung epithelial cell spreading and wound-closure. PLoS One 2018; 13:e0209095. [PMID: 30550606 PMCID: PMC6294368 DOI: 10.1371/journal.pone.0209095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Basement membrane (BM) is an essential part of the extracellular matrix (ECM) that plays a crucial role in mechanical support and signaling to epithelial cells during lung development, homeostasis and repair. Abnormal composition and remodeling of the lung ECM have been associated with developmental abnormalities observed in multiple pediatric and adult respiratory diseases. Collagen VI (COL6) is a well-studied muscle BM component, but its role in the lung and its effect on pulmonary epithelium is largely undetermined. We report the presence of COLVI immediately subjacent to human airway and alveolar epithelium in the pediatric lung, in a location where it is likely to interact with epithelial cells. In vitro, both primary human lung epithelial cells and human lung epithelial cell lines displayed an increased rate of “wound healing” in response to a scratch injury when plated on COL6 as compared to other matrices. For the 16HBE cell line, wounds remained >5-fold larger for cells on COL1 (p<0.001) and >6-fold larger on matrigel (p<0.001), a prototypical basement membrane, when compared to COL6 (>96% closure at 10 hr). The effect of COL6 upon lung epithelial cell phenotype was associated with an increase in cell spreading. Three hours after initial plating, 16HBE cells showed >7-fold less spreading on matrigel (p<0.01), and >4-fold less spreading on COL1 (p<0.01) when compared to COL6. Importantly, the addition of COL6 to other matrices also enhanced cell spreading. Similar responses were observed for primary cells. Inhibitor studies indicated both integrin β1 activity and activation of multiple signaling pathways was required for enhanced spreading on all matrices, with the PI3K/AKT pathway (PI3K, CDC42, RAC1) showing both significant and specific effects for spreading on COL6. Genetic gain-of-function experiments demonstrated enhanced PI3K/AKT pathway activity was sufficient to confer equivalent cell spreading on other matrices as compared to COL6. We conclude that COL6 has significant and specific effects upon human lung epithelial cell-autonomous functions.
Collapse
|
41
|
Shi H, Liu C, Tan H, Li Y, Nguyen TLM, Dhungana Y, Guy C, Vogel P, Neale G, Rankin S, Feng Y, Peng J, Tao W, Chi H. Hippo Kinases Mst1 and Mst2 Sense and Amplify IL-2R-STAT5 Signaling in Regulatory T Cells to Establish Stable Regulatory Activity. Immunity 2018; 49:899-914.e6. [PMID: 30413360 DOI: 10.1016/j.immuni.2018.10.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 07/10/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
Interleukin-2 (IL-2) and downstream transcription factor STAT5 are important for maintaining regulatory T (Treg) cell homeostasis and function. Treg cells can respond to low IL-2 levels, but the mechanisms of STAT5 activation during partial IL-2 deficiency remain uncertain. We identified the serine-threonine kinase Mst1 as a signal-dependent amplifier of IL-2-STAT5 activity in Treg cells. High Mst1 and Mst2 (Mst1-Mst2) activity in Treg cells was crucial to prevent tumor resistance and autoimmunity. Mechanistically, Mst1-Mst2 sensed IL-2 signals to promote the STAT5 activation necessary for Treg cell homeostasis and lineage stability and to maintain the highly suppressive phosphorylated-STAT5+ Treg cell subpopulation. Unbiased quantitative proteomics revealed association of Mst1 with the cytoskeletal DOCK8-LRCHs module. Mst1 deficiency limited Treg cell migration and access to IL-2 and activity of the small GTPase Rac, which mediated downstream STAT5 activation. Collectively, IL-2-STAT5 signaling depends upon Mst1-Mst2 functions to maintain a stable Treg cell pool and immune tolerance.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Chaohong Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Haiyan Tan
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, US; Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Yuxin Li
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, US; Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Thanh-Long M Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Junmin Peng
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, US; Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, US
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China; Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200433, China.
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, US.
| |
Collapse
|
42
|
Mylvaganam SM, Grinstein S, Freeman SA. Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Semin Immunopathol 2018; 40:605-615. [DOI: 10.1007/s00281-018-0705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
|
43
|
Lillico DME, Pemberton JG, Stafford JL. Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Front Immunol 2018; 9:1144. [PMID: 30002653 PMCID: PMC6032007 DOI: 10.3389/fimmu.2018.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis evolved from a fundamental nutrient acquisition mechanism in primitive unicellular amoeboids, into a dynamic and complex component of innate immunity in multicellular organisms. To better understand the cellular mechanisms contributing to phagocytic processes across vertebrates, our research has focused on characterizing the involvement of innate immune proteins originally identified in channel catfish (Ictalurus punctatus) called leukocyte immune-type receptors (IpLITRs). These unique teleost proteins share basic structural as well as distant phylogenetic relationships with several immunoregulatory proteins within the mammalian immunoglobulin superfamily. In the present study, we use a combination of live-cell confocal imaging and high-resolution scanning electron microscopy to further examine the classical immunoreceptor tyrosine-based activation motif (ITAM)-dependent phagocytic pathway mediated by the chimeric construct IpLITR 2.6b/IpFcRγ-L and the functionally diverse immunoreceptor tyrosine-based inhibitory motif-containing receptor IpLITR 1.1b. Results demonstrate that IpLITR 1.1b-expressing cells can uniquely generate actin-dense filopodia-like protrusions during the early stages of extracellular target interactions. In addition, we observed that these structures retract after contacting extracellular targets to secure captured microspheres on the cell surface. This activity was often followed by the generation of robust secondary waves of actin polymerization leading to the formation of stabilized phagocytic cups. At depressed temperatures of 27°C, IpLITR 2.6b/IpFcRγ-L-mediated phagocytosis was completely blocked, whereas IpLITR 1.1b-expressing cells continued to generate dynamic actin-dense filopodia at this lower temperature. Overall, these results provide new support for the hypothesis that IpLITR 1.1b, but not IpLITR 2.6b/IpFcRγ-L, directly triggers filopodia formation when expressed in representative myeloid cells. This also offers new information regarding the directed ability of immunoregulatory receptor-types to initiate dynamic membrane structures and provides insights into an alternative ITAM-independent target capture pathway that is functionally distinct from the classical phagocytic pathways.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Ropivacaine inhibits the migration of esophageal cancer cells via sodium-channel-independent but prenylation-dependent inhibition of Rac1/JNK/paxillin/FAK. Biochem Biophys Res Commun 2018; 501:1074-1079. [DOI: 10.1016/j.bbrc.2018.05.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
|
45
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
46
|
Richards DM, Endres RG. How cells engulf: a review of theoretical approaches to phagocytosis. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:126601. [PMID: 28824015 DOI: 10.1088/1361-6633/aa8730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.
Collapse
Affiliation(s)
- David M Richards
- Centre for Biomedical Modelling and Analysis, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom. Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
47
|
Niit M, Arulanandam R, Cass J, Geletu M, Hoskin V, Côté G, Gunning P, Elliott B, Raptis L. Regulation of HC11 mouse breast epithelial cell differentiation by the E-cadherin/Rac axis. Exp Cell Res 2017; 361:112-125. [PMID: 29031557 DOI: 10.1016/j.yexcr.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
It was previously demonstrated that differentiation of some established breast epithelial cell lines requires confluence and stimulation with hydrocortisone, insulin and prolactin inducers. We and others previously demonstrated that E-cadherin engagement, which is favored under conditions of confluence, increases the levels and activity of the Rac small GTPase. To investigate the functional relationship between the transforming ability of Rac and its role as an integral component of the differentiative E-cadherin signaling pathway, we introduced a mutationally activated form of Rac, RacV12, into the mouse breast epithelium-derived cell line, HC11. Our results demonstrate that the strength of the Rac signal is key for the outcome of the differentiation process; cRac1 is critically required for differentiation, and at low levels, mutationally activated RacV12 is able to increase differentiation, presumably reinforcing the E-cadherin/Rac differentiative signal. However, high RacV12 expression blocked differentiation concomitant with E-cadherin downregulation, while inducing neoplastic transformation. Therefore, the intensity of the Rac signal is a central determinant in the balance between cell proliferation vs differentiation, two fundamentally opposed processes, a finding which could also have important therapeutic implications.
Collapse
Affiliation(s)
- Maximilian Niit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6
| | - Jamaica Cass
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Mulu Geletu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Victoria Hoskin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Graham Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Bruce Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6.
| |
Collapse
|
48
|
Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev Cell 2017; 42:498-513.e6. [PMID: 28867487 DOI: 10.1016/j.devcel.2017.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2-/-) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2-/- macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/β2 integrin localization are compromised in Arpc2-/- cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2-/- monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility.
Collapse
Affiliation(s)
- Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Craig
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P Ting
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Transcriptome profiling of monocytes from XLA patients revealed the innate immune function dysregulation due to the BTK gene expression deficiency. Sci Rep 2017; 7:6836. [PMID: 28754963 PMCID: PMC5533715 DOI: 10.1038/s41598-017-06342-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is a rare genetic disorder, caused by mutations in BTK (Bruton’s Tyrosine Kinase) gene. Deep high-throughput RNA sequencing (RNA-Seq) approach was utilized to explore the possible differences in transcriptome profiles of primary monocytes in XLA patients compared with healthy subjects. Our analysis revealed the differences in expression of 1,827 protein-coding genes, 95 annotated long non-coding RNAs (lncRNAs) and 20 novel lincRNAs between XLA patients and healthy subjects. GO and KEGG pathway analysis of differentially expressed (DE) protein-coding genes showed downregulation of several innate immune-related genes and upregulation of oxidative phosphorylation and apoptosis-related genes in XLA patients compared to the healthy subjects. Moreover, the functional prediction analysis of DE lncRNAs revealed their potential role in regulating the monocytes cell cycle and apoptosis in XLA patients. Our results suggested that BTK mutations may contribute to the dysregulation of innate immune system and increase susceptibility to apoptosis in monocytes of XLA patients. This study provides significant finding on the regulation of BTK gene in monocytes and the potential for development of innovative biomarkers and therapeutic monitoring strategies to increase the quality of life in XLA patients.
Collapse
|
50
|
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 2017; 273:156-79. [PMID: 27558334 DOI: 10.1111/imr.12439] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis, the regulated uptake of large particles (>0.5 μm in diameter), is essential for tissue homeostasis and is also an early, critical component of the innate immune response. Phagocytosis can be conceptually divided into three stages: phagosome, formation, maturation, and resolution. Each of these involves multiple reactions that require exquisite spatial and temporal orchestration. The molecular events underlying these stages are being unraveled and the current state of knowledge is briefly summarized in this article.
Collapse
Affiliation(s)
- Roni Levin
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|