1
|
Hao Y, Wang X, Wang K, Zhang S, Zhang L, Liu W, Liu X, Gao R, Wang S, An J. Enhanced chemodynamic porphyrin-modified magnetite nanoagents: A triple-action strategy for potent antimicrobial therapy and wound healing. J Colloid Interface Sci 2025; 687:742-755. [PMID: 39983401 DOI: 10.1016/j.jcis.2025.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
The rise of drug-resistant bacteria, including multidrug-resistant (MDR) strains, has exposed the limitations of current antibiotic treatments. Chemodynamic therapy (CDT) has emerged as a promising approach due to its ability to generate reactive oxygen species (ROS) through Fenton or Fenton-like reactions in infection microenvironments (IMEs). However, the short lifespan, limited diffusion range of ·OH, and restricted variety of ROS reduce the effect of CDT. This study developed amine porphyrins (TAPP)-functionalized Fe3O4 nanoparticles (Fe3O4@TAPP NPs) as a multifunctional antibacterial platform. The TAPP layer can not only trap bacteria through electrostatic attraction in acidic environments but also increase the localized heat upon near-infrared (660 nm) excitation, reducing the effective action distance and boosting the production rate of ·OH. Notably, TAPP was covalently bonded to Fe3O4 nanoparticles via its amine groups and the carboxylic groups on Fe3O4, preventing TAPP self-aggregation under physiological conditions, and preserving the PDT effect. Therefore, the TAPP layer on Fe3O4 nanoparticles performs three functions, resolving the three limitations simultaneously to enhance CDT in a triple-action strategy. The developed Fe3O4@TAPP NPs exhibit improved antibacterial efficiency both in vitro and in vivo. Overall, this study provides an innovative strategy to construct an antibacterial nanoplatform for synergistically enhanced CDT antibacterial treatment, exhibiting great potential for future biomedical applications.
Collapse
Affiliation(s)
- Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xingyan Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaili Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sijie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Long Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenhao Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jingang An
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Xia W, Shan J, Lutsenko V, Cheng Z, Liu Y, Xu J, Yu S, Peng Z, Yuan H, Hu W. Inactivation of antibiotic resistant bacteria by ruthenium-doped carbon dots capable of photodynamic generation of intracellular and extracellular reactive oxygen species. BIOMATERIALS ADVANCES 2025; 176:214344. [PMID: 40381386 DOI: 10.1016/j.bioadv.2025.214344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA) present a significant challenge to wound healing. This has motivated the development of novel antibiotic-free agents. In this study, ruthenium-doped carbon dots (Ru-CDs) with photodynamic antibacterial activity were synthesized to treat MRSA-infected skin wounds. The Ru-CDs were prepared via a hydrothermal method using Ru-Aphen as the nitrogen source and citric acid as the carbon source, resulting in uniform spherical nanoparticles with an average size of 2.7 ± 0.8 nm. Singlet oxygen generation was observed when the Ru-CDs were exposed to light. In vitro experiments showed concentration- and light-dependent antibacterial activity of the Ru-CDs against MRSA, with 99.9 % bacterial reduction when treated with 100 μg/mL Ru-CDs under light for 10 min. A significant level of intracellular ROS was observed, and microscopy confirmed bacterial membrane disruption. Biocompatibility tests showed no significant toxicity, and in vivo studies on rabbit wound models demonstrated effective antibacterial activity under light conditions and enhanced wound healing compared to controls. The results collectively highlight the potential of Ru-CDs as an antibiotic-free agent for treating antibiotic resistant bacterial infections through photodynamic generation of extracellular ROS and induction of intracellular ROS.
Collapse
Affiliation(s)
- Weibo Xia
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Jia Shan
- Department of Radiation Physics and Technology, Dezhou Second People's Hospital, Dezhou 253000, China
| | - Vladyslav Lutsenko
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Yu Liu
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, United States
| | - Shiqiang Yu
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China; Zhejiang Liqiang Packaging Technology Co., LTD, Wenzhou 325088, China
| | - Zheng Peng
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Hospital of Quzhou, Quzhou 32400, China.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| | - Wenfei Hu
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China.
| |
Collapse
|
3
|
Mu X, Liu K, Yang J, Liu J, Du F, Hao G, Wang P. From De Novo Conceived Small Molecules to Multifunctional Supramolecular Nanoparticles: Dual Biofilm and T3SS Intervention, Enhanced Foliar Affinity, and Effective Rice Disease Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410878. [PMID: 40145816 PMCID: PMC12120793 DOI: 10.1002/advs.202410878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Conventional antimicrobials typically exhibit suboptimal deposition on rice leaves, resulting in poor efficacy, further impaired by biofilms and Type III Secretion Systems (T3SS). Herein, this study presents a supramolecular strategy to fabricate BtP27@β-CD, a sunflower-like material engineered through host-guest recognition between de novo designed molecule BtP27 and β-cyclodextrin. BtP27@β-CD manifests enhanced foliar affinity and in vivo efficiency, demonstrating superior protective (62.67%) and curative (51.16%) activities against bacterial leaf blight at a low-dose of 200 µg mL-1 compared to commercial thiodiazole-copper (37.78%/38.13%) without compromising safety. This multifunctional material, structurally derived from dufulin, inherit progenitor's systemic and conductive properties, alongside the capacity to activate salicylic acid-mediated plant defense pathways. Moreover, it is endowed with the anticipated abilities to disorganize biofilm barriers, annihilate encased pathogens, and inhibit T3SS. This constitutes the inaugural report of a supramolecular-based biofilm/T3SS dual inhibitor. An expanded investigation into substrate and indication screening identified additional molecules that self-assemble with β-cyclodextrin to form supramolecular materials, exhibiting superior potency against other rice diseases, with protective potency ranging from 63.53% to 73.30% and curative efficacy spanning 42.18% to 60.41% at 200 µg mL-1. In brief, this work establishes a paradigm for designing guest molecules from scratch to construct supramolecular materials with tailored characteristics.
Collapse
Affiliation(s)
- Xianfu Mu
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Kongjun Liu
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyi563006China
| | - Jinghan Yang
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Juan Liu
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Fengpei Du
- Department of Applied ChemistryCollege of ScienceChina Agricultural UniversityBeijing100193China
| | - Gefei Hao
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Peiyi Wang
- State Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
4
|
Jiao L, Gao X, Xing J, Zhou Y, Liu X, Zhao A, Zhang Z. Nuclease-Mimetic Nanomaterials: From Fundamentals to Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502660. [PMID: 40304160 DOI: 10.1002/smll.202502660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Indexed: 05/02/2025]
Abstract
With the rapid development of nanozymes and nanomedicine, designing novel nanostructures directly acting on deoxyribonucleic acid (DNA) has great therapeutic potential because DNA is the carrier of genetic information and plays a vital role on life activities of the organism. Specifically, DNA cleavage is an important step in most of these DNA engineering technologies. While nucleases play crucial roles in the cell metabolism by efficient DNA cutting, the practical applications of natural nucleases suffer from some intrinsic shortcomings such as high cost and intolerance to harsh environments. In the past 20 years, great varieties of engineered nanostructures with DNA cleavage (nuclease-mimetic nanomaterials, abbreviated as nuclease mimics) have been developed rapidly and widely used in biomedical fields. In view of the significant progress of nuclease-mimetic nanomaterials, the possible DNA cleavage mechanism mediated by nuclease-mimetic nanomaterials is systematically discussed in this review, and the classification of nuclease-mimetic nanomaterials is illustrated. Their potential biomedical applications, especially in anti-biofilms and cancer treatment, are also comprehensively summarized. Finally, the current opportunities and challenges are discussed to stimulate the research of understanding and development of nuclease-mimetic nanomaterials.
Collapse
Affiliation(s)
- Lizhi Jiao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyin Gao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Jinzhu Xing
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Yuan Zhou
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Andong Zhao
- Department of Chemistry, School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| |
Collapse
|
5
|
Li X, Yang X, Wu J, Yang Z, Zhu X. A Novel Four-Channel Sensor Array with Dual Enzymes and Dual Modes for Evaluating Total Antioxidant Capacity in Foods. ACS Sens 2025; 10:2883-2894. [PMID: 40180611 DOI: 10.1021/acssensors.4c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Antioxidants are essential for preventing cellular and organ damage caused by reactive oxygen species (ROS). Consequently, the total antioxidant capacity (TAC) of food products was a critical criterion for assessing their quality. This study presented a novel dual-mode, four-channel sensor array platform for the highly sensitive detection of TAC, which employed the exceptional dual enzyme activity of mesoporous silica nanoparticles loaded with iron and nitrogen codoped carbon quantum dots (Fe,N-CQDs@MSNs) through pattern recognition methods. The dual-enzyme-like nanocatalysts exhibited: (1) Peroxidase-like activity in which Fe,N-CQDs@MSNs facilitated the activation of H2O2, yielding hydroxyl radicals (•OH); and (2) photoresponsive oxidative activity, where Fe,N-CQDs@MSNs generated •OH, superoxide anions (•O2-), and singlet oxygen (1O2) under UV light at 365 nm. These ROS oxidized 3,3',5,5'-tetramethylbenzidine (TMB) from colorless to blue, accompanied by fluorescence quenching in Fe,N-CQDs@MSNs. Upon adding four antioxidants ascorbic acid (AA), glutathione (GSH), cysteine (Cys), and dopamine (DA), the reactive intermediates were eliminated to varying degrees, leading to distinct UV and fluorescence responses as specific "fingerprints" for the sensor array. Multivariate statistical approaches, including principal component analysis (PCA) and hierarchical clustering analysis (HCA), enabled the distinct classification of the four antioxidants, achieving a detection limit of 1 μM. Additionally, the sensor array enabled the identification of varying concentrations of individual antioxidants as well as mixtures in different proportions. Finally, the proposed method was effectively employed for the quantitative determination of TAC in diverse food samples, yielding satisfactory results and demonstrating its potential for TAC detection in food products.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering Guangling College, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoqiao Yang
- College of Chemistry and Chemical Engineering Guangling College, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jun Wu
- College of Chemistry and Chemical Engineering Guangling College, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering Guangling College, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering Guangling College, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
6
|
Ren Y, Cao L, Li Z, Zhang X, Li H, Jiao R, Yu X, Liang Z, Li G, Xia X, Ling N, Zhang D, Cheng J, Ye Y. Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7. Food Chem 2025; 471:142776. [PMID: 39798364 DOI: 10.1016/j.foodchem.2025.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction. Further, the signal display element is a green nanozyme synthesized by co-doping Cu and Cl elements with lignin as precursor, which has excellent peroxidase activity and fluorescence properties. The detection limits of fluorescence, colorimetric, and photothermal modes were 6.1, 8.4, and 9.7 cfu/mL, respectively. In order to enhance the precision of cascade signal amplification and the portability of quantitative detection, we built a neural network BP model installed in a smartphone by measuring multi-component data, which provides flexible and selectable application scenarios for the on-site detection of foodborne pathogens.
Collapse
Affiliation(s)
- Yuwei Ren
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lulu Cao
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zongyang Li
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Hui Li
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyu Yu
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zhao Liang
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Ganghui Li
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Xiyang Xia
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Danfeng Zhang
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Jianghua Cheng
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Anhui Engineering Laboratory of Food Microbial Fermentation and Functional Application, Hefei 230036, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
7
|
Jiao JB, Kang Q, Cui SX, Cao JL, Lin T, Ma CJ, Xiao ZH, Du T, Wang N, Du XJ, Wang S. Target-driven functionalized DNA hydrogel capillary sensor for SARS-CoV-2 dual-mode detection. Talanta 2025; 285:127342. [PMID: 39644672 DOI: 10.1016/j.talanta.2024.127342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused secondary pandemic, which still poses a serious threat to physical health and economic development. Herein, the target-driven functionalized DNA hydrogel capillary sensor based on cascade signal amplification and carbon coated cobalt manganese modified by prussian blue and platinum nanoparticles (MnCo@C-Pt-PB NPs) has been successfully developed for dual-mode detection of SARS-CoV-2. The cascade signal amplification triggered by target RNA causes the permeability of the DNA hydrogel loaded in the capillary to be destroyed, thereby releasing the embedded MnCo@C-Pt-PB NPs as signal molecules into 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) solution under the driving of capillarity. The colorless TMB is then catalyzed to blue oxidation products (oxTMB) due to peroxidase-like activity of MnCo@C-Pt-PB NPs, and MnCo@C-Pt-PB NPs and oxTMB with photothermal properties synergistically increase the system temperature under near-infrared irradiation, which are recorded by portable devices to achieve dual-mode detection. Signals intensity are proportional to the logarithm of T-RNA concentration in a wide detection range (100 aM-100 pM), with a detection limit of 100 aM. Moreover, the reliability of the developed method in oropharyngeal swabs samples has also been validated. The signal conversion and amplification function of functionalized DNA hydrogel enhances the convenience, sensitivity and versatility of the developed method, which is promising to be applied in environmental safety, molecular diagnostic assays and disease prevention.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Xin Cui
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Duan Q, Zhang Y, Li Z, Xu Y, Xu Y, Yang D, Yang Y. Targeted elimination of cariogenic Streptococcus mutans biofilms via Cu,Fe-doped chitosan nanozyme. Int J Biol Macromol 2025; 292:139352. [PMID: 39740723 DOI: 10.1016/j.ijbiomac.2024.139352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Human dental caries is an intractable biofilm-associated disease caused by the symbiotic cariogenic bacteria, but how to target effectively eliminate cariogenic bacterial and their biofilms without affecting normal bacteria still remains great challenges. To address this issue, we reported Cu,Fe-doped chitosan-based nanozyme (i.e. CS@Cu,Fe) that exhibits well peroxidase-like activity at acidic environment of caries, and kill S. mutans and S. sanguinis without impacting the normal S. oralis. The synergistic interaction between Cu and Fe could effectively enhance the efficiency of electron transfer, promoting the production of hydroxyl radicals (·OH) and superoxide radical (·O2-) to selectively destroy the biofilm of S. mutans. Compared to curcumin and hexadecyl trimethyl ammonium bromide (CTAB) (control), the chitosan on the surface of CS@Cu,Fe not only showed the synergistic antibacterial activity, but also enabled the selectively eradication of S. mutans biofilm without affecting S. sanguinis and S. oralis biofilms. Furthermore, CS@Cu,Fe also exhibited excellent selective anti-symbiotic caries bacteria and targeted anti-biofilm properties to hybrid biofilm model of these co-existing bacteria under the same oral environment. Therefore, the CS@Cu,Fe nanozyme not only has potential for the treatment of dental biofilms, but also can offer new insights for the design of highly selective antibacterial and antibiofilm nanozyme.
Collapse
Affiliation(s)
- Qiuting Duan
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Yijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zizhuo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ya Xu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China.
| | - Dezhi Yang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
9
|
Ren Y, Bi X, He Y, Zhang L, Luo L, Li L, You T. Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants. Biosens Bioelectron 2025; 271:116999. [PMID: 39642529 DOI: 10.1016/j.bios.2024.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
10
|
Miao B, Wang D, Yu L, Meng X, Liu S, Gao M, Han J, Chen Z, Li P, Liu S. Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Microbiol Res 2025; 292:127987. [PMID: 39642765 DOI: 10.1016/j.micres.2024.127987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Bacterial biofilms are one of the most relevant drivers of chronic and recurrent infections and a significant healthcare problem. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure and low drug permeability, leading to tolerance and resistance of biofilms to antibiotics and to host responses. Within a biofilm, microbial cells show increased tolerance to both immune system defense mechanisms and antimicrobials than the same cells in the planktonic state. It is one of the key reasons for the failure of traditional clinical drug to treat infectious diseases. Currently, no drugs are available to attack bacterial biofilms in the clinical setting. The development of novel preventive and therapeutic strategies is urgently needed to allow an effective management of biofilm-associated infections. Based on the properties of nanomaterials and biocompatibility, nanotechnology had the advantages of specific targeting, intelligent delivery and low toxicity, which could realize efficient intervention and precise treatment of biofilm-associated infections. In this paper, the mechanisms of bacterial biofilm resistance to antibiotics and host response tolerance were elaborated. Meanwhile, This paper highlighted multiple strategies of biofilms eradication based on nanotechnology. Nanotechnology can interfere with biofilm formation by destroying mature biofilm, modulating biofilm heterogeneity, inhibiting bacterial metabolism, playing antimicrobial properties, activating immunity and enhancing biofilm penetration, which is an important new anti-biofilm preparation. In addition, we presented the key challenges still faced by nanotechnology in combating bacterial biofilm infections. Utilization of nanotechnology safely and effectively should be further strengthened to confirm the safety aspects of their clinical application.
Collapse
Affiliation(s)
- Beiliang Miao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dianhong Wang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Li Yu
- Graduate school of Tianjin Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangfei Meng
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shiyi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zeliang Chen
- School of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110161, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
11
|
Zhang J, Liu D, Liu B, Xiang J. Combined Detection of Serum Brain-Derived Neurotrophic Factor and Interleukin-6 for Evaluating Therapeutic Efficacy in Major Depressive Disorder. Anal Chem 2025; 97:3563-3569. [PMID: 39903675 DOI: 10.1021/acs.analchem.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The assessment of major depressive disorder (MDD) treatment efficacy typically relies on clinician-rated scales of depressive symptoms with a notable absence of predictive biomarkers. In this study, a concentration ratio of serum brain-derived neurotrophic factor (BDNF) to interleukin-6 (IL-6) was identified as a promising predictive biomarker. To overcome the significant disparity in blood levels between BDNF (ng·mL-1 range) and IL-6 (pg·mL-1 range), a dual-pathway signal amplification method involving small carbon dots (Fe-CDs and Pb-CDs) was employed. Fe-CDs exhibited a nanozyme-like behavior, effectively enhancing the signal through solution reactions, rendering it ideal for IL-6 detection at low concentrations. Meanwhile, Pb-CDs, laden with numerous signal molecules, amplified signals via the surface pathway and were suitable for BDNF detection. This dual signal output approach met the distinct sensitivity needs for quantifying IL-6 and BDNF, achieving detection limits of 0.1 pg·mL-1 and 0.02 ng·mL-1, respectively. Analysis of clinical samples showed that the concentration ratio of BDNF to IL-6 not only effectively differentiates MDD patients from healthy controls but also strongly correlates with individual treatment responses, affirming its value as a biomarker for MDD diagnosis and treatment efficacy evaluation.
Collapse
Affiliation(s)
- Jinxia Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Binghui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
12
|
Li Z, Li H, Tang Z, Tang Q, Liao C, Tang H, Wang D. Design of acidic activation-responsive charge-switchable carbon dots and validation of their antimicrobial activity. RSC Adv 2025; 15:5413-5425. [PMID: 39967894 PMCID: PMC11833602 DOI: 10.1039/d5ra00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Bacterial biofilms play a crucial role in the emergence of antibiotic resistance and the persistence of chronic infections. The challenge of effectively eradicating bacterial biofilms while ensuring minimal toxicity to normal cells persists. Carbon-based artificial nanoenzymes have attracted considerable attention as emerging nanotheranostic agents, owing to their biocompatibility, cost-effectiveness, and straightforward synthesis. In this study, we have developed a multifunctional carbon dots (CDs) system, specifically CDs functionalized with 1-(3-aminopropyl) imidazole (API), termed CDs-API. This system demonstrates acid-activated antibiofilm activity. The CDs-API were synthesized from chlorogenic acid (ChA), a bioactive compound naturally occurring in coffee, and subsequently functionalized with API to achieve charge-switchable properties under acidic conditions. This distinctive feature enables CDs-API to efficiently penetrate bacterial biofilms and selectively target the colonized bacteria. The enzyme-like activity of CDs-API effectively consumes high levels of glutathione (GSH) within the biofilm, leading to the accumulation of reactive oxygen species (ROS). Consequently, this process degrades the extracellular polymeric substance (EPS) matrix, damages bacterial DNA and protein structures, and disrupts the redox balance, ultimately leading to bacterial cell death. Experimental results demonstrated that CDs-API effectively inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAE) while promoting wound healing with minimal damage to healthy tissues. The acid-activated charge-switchable capability of CDs-API provides superior antibacterial efficacy compared to traditional antibiotics, rendering it a promising candidate for the treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hui Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qingxia Tang
- Clinical Laboratory, The People's Hospital of Rongchang District Chongqing 402460 China
| | - Chang Liao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Dan Wang
- Post-Doctoral Research Center, The People's Hospital of Rongchang District Chongqing 402460 China
| |
Collapse
|
13
|
Li D, Chen H, Zheng Y, Zhou S, Yong F, Zhang X, Wang K, Wen H, Wu J, Xue W, Huang S. Mo-doped carbon-dots nanozyme with peroxide-like activity for sensitive and selective smartphone-assisted colorimetric S 2- ion detection and antibacterial application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125274. [PMID: 39426130 DOI: 10.1016/j.saa.2024.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Sulfur ion (S2-) plays a significant and considerable role in many living organisms and ecosystems, while its abnormal content can pose a serious hazard to human health and ecological environment. Hence, it is extremely meaningful to construct a highly sensitive and selective analytical platform for S2- detection in complex microenvironment, particularly in biological systems. In this study, phosphomolybdic acid and L-Arg were utilized to prepare a new molybdenum doped carbon-dots nanozyme (Mo-CDs) with great peroxidase-like activity by one-step hydrothermal approach. In the presence of H2O2, Mo-CDs converted 3,3',5,5'-tetramethyl benzidine (TMB) into blue oxTMB, but S2- strongly reduced the blue solution to colorless and then brown, which established significant selectivity toward S2-. Mo-CDs illustrated a wide linear range (2.5 μM-900 μM) and low detection limit (LOD = 76 nM) by ultraviolet and smartphone-assisted visualized colorimetric analysis. Especially, the smartphone-assisted analysis platform successfully realized quick, portable, sensitive and visible identification of S2- with high recovery (95.7-106.7 %) and excellent specificity in water samples. More importantly, Mo-CDs was developed to antibacterial applications based on good peroxidase-like activity. This research not only constructed a new and efficient carbon-dots nanozyme and a low-cost, portable, visual analysis platform for real-time detection of S2-, but also proposed a novel design strategy and methodology for exploiting multifunctional nanozyme detection tool with great practical application.
Collapse
Affiliation(s)
- Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Sheng Zhou
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Fengyuan Yong
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Xiangbo Zhang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, China.
| |
Collapse
|
14
|
Li T, Cao B, Su T, Lin L, Wang D, Liu X, Wan H, Ji H, He Z, Chen Y, Feng L, Zhang TY. Machine Learning-Engineered Nanozyme System for Synergistic Anti-Tumor Ferroptosis/Apoptosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408750. [PMID: 39679771 DOI: 10.1002/smll.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes with multienzyme-like activity have sparked significant interest in anti-tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe-Arg-CDs@ZIF-8/HAD, FZH) is shown, which enhances synergistic anti-tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree-Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide-and-conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme-based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti-tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme-based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
Collapse
Affiliation(s)
- Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Bin Cao
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Tianhao Su
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Xinting Liu
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haoyu Wan
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai, 200444, China
| | - Tong-Yi Zhang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| |
Collapse
|
15
|
Xia W, Wu Z, Hou B, Cheng Z, Bi D, Chen L, Chen W, Yuan H, Koole LH, Qi L. Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species. Mater Today Bio 2025; 30:101428. [PMID: 39850241 PMCID: PMC11754679 DOI: 10.1016/j.mtbio.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis. N-CQDs synthesized via a facile hydrothermal approach displayed a uniform particle size of less than 10 nm, featuring a graphitic carbon structure and functional groups including -OH and -NH2. The N-CQDs demonstrated antimicrobial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus, which was both dose- and time-dependent, reducing the survival rate to below 1 %. The antimicrobial activity was confirmed by live/dead staining. In in vivo studies, the N-CQDs were more efficient in treating drug-resistant bacterial keratitis and reducing corneal damage compared to the common antibiotic levofloxacin. The N-CQDs were shown to generate intracellular and extracellular ROS, which potentially caused oxidative stress, membrane disruption, and cell death. This antimicrobial mechanism was supported by scanning and transmission electron microscopy, significant regulation of genes related to oxidative stress, and increased protein and lactate dehydrogenase leakage. This study has provided insight into the development, application, and mechanism of N-CQDs in antimicrobial applications.
Collapse
Affiliation(s)
- Weibo Xia
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Zixia Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingying Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Dechuang Bi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Luya Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Leo H. Koole
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
16
|
Wang S, Wang D, Wang G, Zhang M, Sun Y, Ding J. Antibacterial carbon dots. Mater Today Bio 2025; 30:101383. [PMID: 39811607 PMCID: PMC11730274 DOI: 10.1016/j.mtbio.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Bacterial infections significantly threaten human health, leading to severe diseases and complications across multiple systems and organs. Antibiotics remain the primary treatment strategy for these infections. However, the growing resistance of bacteria to conventional antibiotics underscores the urgent need for safe and effective alternative treatments. In response, several approaches have been developed, including carbon dots (CDs), antimicrobial peptides, and antimicrobial polymers, all of which have proven effective in combating bacterial resistance. Among these, CDs stand out due to their unique advantages, including low preparation cost, stable physicochemical properties, high biocompatibility, tunable surface chemistry, strong photoluminescence, and efficient generation of reactive oxygen species. These features make CDs highly promising in antibacterial applications. This review explores the development of antibacterial CDs, focusing on their mechanisms of action-physical destroy, biochemical damage, and synergistic effects-while highlighting their potential for clinical use as antibacterial agents.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Dapeng Wang
- School of Mechanical and Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130033, PR China
| | - Guoliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Minglei Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
| | - Yirong Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| |
Collapse
|
17
|
Jiao R, Ren Y, Zhang X, Li H, Zhan Y, Zhang X, Yu X, Ling N, Ye Y. Platinum-based fluorescent nanozyme-driven "loong frolic pearls" multifunctional nanoplatform for tri-mode ultrasensitive detection and synergistic sterilization of Burkholderia gladioli. Food Chem 2025; 463:141107. [PMID: 39265402 DOI: 10.1016/j.foodchem.2024.141107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Rapid and accurate detection of Burkholderia gladioli (B. gladioli) and effective sterilization are crucial for ensuring food safety. Hence, a novel "loong frolic pearls" platform based on platinum-based fluorescent nanozymes (Pt-OCDs) and strand exchange amplification (SEA) was reported. Magnetic nanoparticles were modified on primer SEAF, while Pt-OCDs were covalently coupled with primer SEA-R. The highly efficient amplification capability of SEA permitted the accumulation of a large number of double-labeled amplicons. After magnetic adsorption, the supernatant was detected in reverse direction to collect colorimetric-fluorescence-photothermal signal values, enabling ultra-precise detection within 1 h. Furthermore, the Pt-based multifunctional nanoplatform generated abundant •OH and 1O2, which synergistically attacked B. gladioli and its biofilm, resulting in significant bactericidal efficacy within 30 min. This "triple-detection and double-sterilization" platform has been successfully applied in the field of food analysis with good recovery rates and immediate control over B. gladioli, thus demonstrating promising prospects for broad applications.
Collapse
Affiliation(s)
- Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ying Zhan
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyu Yu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China..
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China..
| |
Collapse
|
18
|
Zhang XT, Lin S, Wang XY, Guo HL, Cong YY, He X, Zhang CF, Yuan CS. Construction of a one-stop N-doped negatively charged carbon dot nanoplatform with antibacterial and anti-inflammatory dual activities for wound infection based on biocompatibility. J Colloid Interface Sci 2025; 677:1061-1074. [PMID: 39180841 DOI: 10.1016/j.jcis.2024.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The development of bacterial resistance significantly contributes to the persistence of infections. Although previous studies have highlighted the benefits of metal-doped positive carbon nanodots in managing bacterial wound infections, their mechanism of action is relatively simple and they may pose potential hazards to human cells. Therefore, it is essential to develop a one-stop carbon dot nanoplatform that offers high biocompatibility, antibacterial properties, and anti-inflammatory activities for wound infection management. This study explores the antibacterial efficacy, without detectable resistance, and wound-healing potential of nitrogen-doped (N-doped) negatively charged carbon dots (TPP-CDs). These carbon dots are synthesized using tannic acid (TA), polyethylene polyamine, and polyethylene glycol (PEG) as precursors, with a focus on their biocompatibility. Numerous systematic studies have shown that TPP-CDs can effectively destroy bacterial biofilms and deoxyribonucleic acid (DNA), while also inducing oxidative stress, leading to a potent antimicrobial effect. TPP-CDs also demonstrate the ability to scavenge excess free radicals, promote cellular proliferation, and inhibit inflammatory factors, all of which contribute to improved wound healing. TPP-CDs also demonstrate favorable cell imaging capabilities. These findings suggest that N-doped negatively charged TPP-CDs hold significant potential for treating bacterial infections and offer practical insights for their application in the medical field.
Collapse
Affiliation(s)
- Xiao-Tong Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yan Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Ling Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Cong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Li H, Ren Y, Zhan Y, Yu X, Zhang X, Zhu C, Ye Y. "Four - in - one" platform based on multifunctional nanozyme for ultra - accurate detection and on - demand disinfection of Listeria monocytogenes. Food Chem 2025; 462:140776. [PMID: 39241687 DOI: 10.1016/j.foodchem.2024.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
Abstract
The inability to integrate detection and disinfection hindered building a unified pathogen monitoring platform, risking secondary contamination. Herein, a novel "four - in - one" platform for monitoring foodborne Listeria monocytogenes (L. monocytogenes) was presented. The magnetic daptomycin - functionalized Fe3O4 (Dap/Fe3O4) could selectively bind to L. monocytogenes, enhancing detection accuracy. The separated bacteria were captured by aptamers - functionalized Fe - doped - silica nanoparticles (Apt/Fe@SiNPs) for tri - mode detection. Besides fluorescence, the Apt/Fe@SiNPs converted 3,3',5,5' - tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) via peroxidase activity, allowing colorimetric and subsequent photothermal detection upon irradiation, as low as 2.06 CFU/mL. Magnetic - induced aggregation of Apt/Fe@SiNPs generated toxic hydroxyl radicals around L. monocytogenes, achieving ∼99.6% disinfection. Furthermore, the biofilm of L. monocytogenes was effectively inhibited by the action of hydroxyl radicals. The platform might offer a promising prospect to control L. monocytogenes in food industries.
Collapse
Affiliation(s)
- Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ying Zhan
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyu Yu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changqing Zhu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
20
|
Wu C, Dai M, Qin X, Liu G, Zhang H. Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite. Mikrochim Acta 2024; 192:23. [PMID: 39708207 DOI: 10.1007/s00604-024-06879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe3+ and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au3+-Zn2+ exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with Km of 0.21 mM and Vmax of 1.74 × 10-6 M·s-1 toward 3,3',5,5'-tetramethylbenzidine (TMB). Due to its excellent catalytic activity and nitrite mediated diazotization of oxTMB, a ratiometric colorimetric method for nitrite detection was established and validated with wide linear range (2.0-400.0 μM), low LOD (0.12 μM), high accuracy (recovery of 95.11-102.14%), and good selectivity. This method was then utilized to determine the nitrite content in sausages and tap water. This study provided a new idea for developing efficient nanozymes and offered an accurate approach for nitrite determination.
Collapse
Affiliation(s)
- Cunhui Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Mengzhen Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
| |
Collapse
|
21
|
Liu Z, Ji L, Li Y, Cao X, Shao X, Xia J, Wang Z. Colorimetric aptasensor based on self-screened aptamers and cascaded catalytic reaction for the detection of quarantine plant bacteria. Talanta 2024; 279:126655. [PMID: 39098241 DOI: 10.1016/j.talanta.2024.126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Quarantine plant bacteria (QPB) are significant component of invasive alien species that result in substantial economic losses and serious environmental damage. Herein, a colorimetric aptasensor has been proposed based on the sandwich structure and the cascaded catalytic strategy for on-site detecting Xanthomonas hyacinthi, a type of QPB, in natural environments. The self-screened aptamer obtained through SELEX can bind to specific sites on the surface of viable organism with high affinity and specificity, which guarantees the selectivity of aptasensor. As an important part of the aptasensor, MIL-88-NH2(Fe) not only acts as a multifunctional carrier for both aptamers and glucose oxidase, but also catalyzes enzyme-like reaction because of specific surface area, amino and peroxidase-like activity. The present of Xanthomonas hyacinthi can trigger the formation of a sandwich structure and the occurrence of cascade catalytic reaction, enabling the detection with UV-Vis spectra and naked eyes. The proposed aptasensor presents a low detection limit of 2 cfu/mL and a wide linear range of 10 -107 cfu/mL. Compared to traditional detection methods for QPB, the reasonable design, high selectivity and convenience significantly improve the detection efficiency and contribute to environmental protection.
Collapse
Affiliation(s)
- Zhichao Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China; Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Lei Ji
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Yan Li
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Xiuling Shao
- Technical Center of Qingdao Customs District, Qingdao, 266000, PR China.
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
22
|
Qin Y, Zhong X, Liang C, Liang Z, Nong Y, Deng L, Guo Y, Li J, Zhang M, Tang S, Wei L, Yang Y, Liang Y, Wu J, Lam YM, Su Z. Nanozyme-based colorimetric sensor arrays coupling with smartphone for discrimination and "segmentation-extraction-regression" deep learning assisted quantification of flavonoids. Biosens Bioelectron 2024; 263:116604. [PMID: 39094293 DOI: 10.1016/j.bios.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.
Collapse
Affiliation(s)
- Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinfeng Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Meiling Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Siqi Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Liuyan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore; Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798, Singapore.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
23
|
Ren T, Lu Y, Liu P, Hu X, Wang W, Wang S, Liu X, Tang Y. Sensitive and specific detection of Listeria monocytogenes in food samples using imprinted upconversion fluorescence probe prepared by emulsion polymerization method. Food Chem X 2024; 23:101618. [PMID: 39071930 PMCID: PMC11279690 DOI: 10.1016/j.fochx.2024.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen with high morbidity and mortality rates, necessitating rapid detection methods. Current techniques, while reliable, are labor-intensive and not amenable to on-site testing. We report the design and synthesis of a novel imprinted upconversion fluorescence probe through Pickering emulsion polymerization for the specific detection of L. monocytogenes. The probe employs trimethylolpropane trimethacrylate and divinylbenzene as cross-linkers, acryloyl-modified chitosan as a functional monomer, and the bacterium itself as the template. The developed probe demonstrated high specificity and sensitivity in detecting L. monocytogenes, with a limit of detection of 72 CFU/mL. It effectively identified the pathogen in contaminated salmon and chicken samples, with minimal background interference. The integration of molecular imprinting and upconversion fluorescence materials presents a potent and reliable approach for the rapid and specific detection of L. monocytogenes, offering considerable potential for on-site food safety testing.
Collapse
Affiliation(s)
- Taotao Ren
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
- College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Yiwei Lu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Peng Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
24
|
Zhou L, Duan X, Dai J, Ma Y, Yang Q, Hou X. A covalent-organic framework-based platform for simultaneous smartphone detection and degradation of aflatoxin B1. Talanta 2024; 278:126505. [PMID: 38968658 DOI: 10.1016/j.talanta.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
This study developed a smartphone-based biosensor that could simultaneously detect and degrade aflatoxin B1 (AFB1). A donor-acceptor covalent organic framework (COF) was bound onto the surface of stainless-steel mesh (SSM) via the in-situ synthesis, which was used to immobilize the aptamer (Apt) to specifically capture AFB1 and was also as a photocatalyst to degrade AFB1. Au@Ir nanospheres were synthesized, which exhibited better peroxidase catalytic activity (Km=5.36 × 10-6 M, Vmax=3.48 × 10-7 Ms-1, Kcat=1.00 × 107 s-1) than Ir@Au nanospheres, so Au@Ir nanospheres were linked with Apt2 to be utilized as the signal probe. The density functional theory calculation also described that Au@Ir nanospheres possessed the lower energy barriers to decompose H2O2 than Ir@Au nanospheres. Coupled with the "Color Picker" application in the smartphone, the established "sandwich-structure" colorimetric method exhibited a linear range of 0.5-200 μg L-1 and a detection limit of 0.045 μg L-1. The photocatalytic capacity of SSM/COF towards AFB1 was investigated and the degradation rate researched 81.14 % within 120 min under the xenon lamp irradiation, and the degradation products were validated by ESI-MS. It was applied for the detection of AFB1 in peanuts, corn, and wheat samples. Recoveries were ranging from 77.90 % to 112.5 %, and the matrix effect was 75.10-111.6 %. Therefore, the smartphone-based biosensor provided a simple, fast, and sensitive platform for the detection of AFB1, and meanwhile could realize the efficient degradation of AFB1.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xueting Duan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiayin Dai
- University College London, Division of Biosciences, London, England, United Kingdom
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
25
|
Xu C, Xie J, Yu L, Shu B, Liu X, Chen S, Li Q, Qi S, Zhao S. Sensitive colorimetric detection of Vibrio vulnificus based on target-induced shielding against the peroxidase-mimicking activity of CeO 2@PtRu nanozyme. Food Chem 2024; 454:139757. [PMID: 38805924 DOI: 10.1016/j.foodchem.2024.139757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Vibrio vulnificus infection caused by contaminated aquatic products and seawater can lead to severe disease and high mortality. The development of a rapid and sensitive detection method for Vibrio vulnificus is vital to effectively prevent infection in advance. In this study, CeO2@PtRu with high peroxidase activity was used to construct a colorimetric immunoassay for Vibrio vulnificus detection by conjugating polyclonal antibodies via the biotin-streptavidin system. The developed colorimetric biosensor for Vibrio vulnificus demonstrated rapid operability and good sensitivity with a detection range from 104 CFU/mL to 109 CFU/mL, and the limit of detection (LOD) is 193 CFU/mL. Moreover, the colorimetric biosensor showed excellent specificity and good recoveries from 98.70% to 102.10% with RSD < 7.45% for spiked real samples. This novel CeO2@PtRu-based colorimetric biosensor has great application potential for the sensitive detection of Vibrio vulnificus in seafood.
Collapse
Affiliation(s)
- Chenjing Xu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jinpo Xie
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lian Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Bin Shu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaogang Liu
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Siping Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Shaohai Qi
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
26
|
Zhao K, Zhao Y, Wang Y, Han B, Lian M. Progress in antibacterial applications of nanozymes. Front Chem 2024; 12:1478273. [PMID: 39376729 PMCID: PMC11456495 DOI: 10.3389/fchem.2024.1478273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial infections are a growing problem, and antibiotic drugs can be widely used to fight bacterial infections. However, the overuse of antibiotics and the evolution of bacteria have led to the emergence of drug-resistant bacteria, severely reducing the effectiveness of treatment. Therefore, it is very important to develop new effective antibacterial strategies to fight multi-drug resistant bacteria. Nanozyme is a kind of enzyme-like catalytic nanomaterials with unique physical and chemical properties, high stability, structural diversity, adjustable catalytic activity, low cost, easy storage and so on. In addition, nanozymes also have excellent broad-spectrum antibacterial properties and good biocompatibility, showing broad application prospects in the field of antibacterial. In this paper, we reviewed the research progress of antibacterial application of nanozymes. At first, the antibacterial mechanism of nanozymes was summarized, and then the application of nanozymes in antibacterial was introduced. Finally, the challenges of the application of antibacterial nanozymes were discussed, and the development prospect of antibacterial nanozymes was clarified.
Collapse
Affiliation(s)
- Keyuan Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Yuwei Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin, China
| | - Bo Han
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
27
|
Liu W, Wang K, Liu P, Jiang W, Feng Y, Hu Y, Zheng M, Zhou Y, Xiao Y, Liu Y. Tb 3+ assisted dithioerythritol stabilized copper nanocluster with AIE behavior for ratiometric fluorescent determination of fluoroquinolones. Anal Chim Acta 2024; 1316:342842. [PMID: 38969406 DOI: 10.1016/j.aca.2024.342842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Fluoroquinolones (FQs) are widely used in livestock and poultry industry because of their satisfactory effects in preventing and treating bacterial infection. However, due to irrational use and poor biodegradability, FQs can easily remain in food animals and further enter the human body through the food chain. Therefore, accurate and sensitive detection of FQs residues in animal-origin food is significant. The traditional methods commonly used for FQs detection have some limitations. Ratiometric fluorescence detection technology has the advantages of fast, sensitive, self-correcting, and easy visualization. However, the reports on the use of ratiometric fluorescence probes for FQs detection are limited. RESULTS In this work, a novel probe was proposed for ratiometric fluorescent analysis of FQs. In this probe, the fluorescence of dithioerythritol stabilized copper nanoclusters (DTE-Cu NCs) was significantly enhanced due to the Tb3+ triggered aggregation-induced emission effect. FQs bound Tb3+ in Tb3+/DTE-Cu NCs through carboxyl and carbonyl groups, so that Tb3+ was effectively sensitized to emit green fluorescence. However, the red fluorescence of DTE-Cu NCs was not interfered. The fluorescence of the probe transformed from red to green with the increase of FQs concentration. Using norfloxacin (NOR), difloxacin (DIF), and enrofloxacin (ENR) as FQs simulants, this probe showed a sensitive linear response ranged from 0.025 to 22.5 μM, with the limits of detection of 9.6 nM, 9.3 nM, and 7.7 nM. The application potential for FQs detection was verified via a standard addition assay of egg samples with the recovery rate of 90.4 %-114.7 %. SIGNIFICANT The fluorescence probe based on Tb3+/DTE-Cu NCs is expected to realize the ratiometric fluorescence sensitive detection of FQs. The establishment of this simple, effective, and rapid detection platform opens up a new way for the detection of FQs residues in animal-origin foods, and also provides a new idea for the design of rapid detection platforms for other hazard factors.
Collapse
Affiliation(s)
- Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Wanqi Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Feng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
28
|
Wu G, Qiu H, Du C, Zheng Z, Liu Q, Wang Z, Luo P, Shen Y. Intelligent onsite dual-modal assay based on oxidase-like fluorescence carbon dots-driven competitive effect for ethyl carbamate detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134707. [PMID: 38810578 DOI: 10.1016/j.jhazmat.2024.134707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Intelligent onsite accurate monitoring ethyl carbamate (EC, a group 2 A carcinogen) in environment is of great significance to safeguard environmental health and public safety. Herein, we reported an intelligent dual-modal point-of-care (POC) assay based on the bimetallic Mn and Ce co-doped oxidase-like fluorescence carbon dots (Ce&MnCDs) nanozyme-driven competitive effect. In brief, the oxidase-like activity of Ce&MnCDs was inhibited by thiocholine (TCh, originating from the hydrolysis of acetylcholinesterase (AChE) to acetylthiocholine (ATCh)), preventing the oxidation of o-phenylenediamine (OPD) to 2,3-diaminophenothiazine (DAP). However, with the aid of Br2 + NaOH, EC inactivated AChE to prevent TCh generation for re-launching the oxidase-like activity of Ce&MnCDs to trigger the oxidation of OPD into DAP, thereby outputting an EC concentration-dependent ratiometric fluorescence and colorimetric readouts by employing Ce&MnCDs and OPD as the optical signal reporters. Interestingly, these dual-modal optical signals could be transduced into the gray values that was linearly proportional to the residual levels of EC on a smartphone-based portable platform, with a detection limit down to 1.66 μg/mL, qualifying the requirements of analysis of EC residues in real samples. This opened up a new avenue for onsite assessment of the risk of residues of EC, safeguarding environmental health and public safety.
Collapse
Affiliation(s)
- Guojian Wu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Huimin Qiu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Chenxing Du
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Qing Liu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Zifei Wang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Pengjie Luo
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
29
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
30
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
31
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
32
|
Gao X, Chen H, Qiu H, Zhang Y, Cheng J, Shen Y. Portable hydrogel kit driven by bimetallic carbon dots nanozyme for H 2O 2-self-supplying dual-modal monitoring of atmospheric CH 3SH. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133871. [PMID: 38428301 DOI: 10.1016/j.jhazmat.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Due to the typical volatility of gaseous pollutant methyl mercaptan (CH3SH), the development of a facile, reliable, and accurate onsite environmental surveillance of highly toxic CH3SH faces many challenges, but it is critical to environmental atmosphere assessment and safeguarding public health. Here, we prepared a novel bimetallic carbon dots (Fe&Cu@CDs) nanozyme with high peroxidase-mimicking activity to design a portable hydrogel kit for onsite visual H2O2-self-supplying enzymatic cascade catalytic colorimetric and photothermal signal synergistic amplification dual-modal monitoring of CH3SH in atmospheric environment. Assisted by alcohol oxidase (AOX), CH3SH could be specifically converted into H2O2 for oxidizing chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by Fe&Cu@CDs to produce dark blue ox-TMB with absorption at 652 nm and photothermal characters. Consequently, a CH3SH concentration-dependent change both in naked-eye color and photothermal effect-triggered temperature were observed. By hybridizing AOX-assisted Fe&Cu@CDs + TMB with agarose, a H2O2-self-supplying colorimetric and photothermal signal synergistic amplification sensory hydrogel kit integrated with Color Picker APP-installed smartphone and 660 nm laser-equipped handheld thermal imager for CH3SH was proposed with acceptable results in atmospheric environment around wastepile (e.g., solid waste and food waste piles), which exhibited great potentials to further develop commercial onsite monitoring platforms in warning-early abnormal atmospheric CH3SH for safeguarding environmental health.
Collapse
Affiliation(s)
- Xiang Gao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huimin Qiu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
33
|
Kong J, Zhou F. Preparation and Application of Carbon Dots Nanozymes. Antioxidants (Basel) 2024; 13:535. [PMID: 38790640 PMCID: PMC11117996 DOI: 10.3390/antiox13050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Carbon dot (CD) nanozymes have enzyme-like activity. Compared with natural enzymes, CD nanozymes offer several advantages, including simple preparation, easy preservation, good stability and recycling, which has made them a popular research topic in various fields. In recent years, researchers have prepared a variety of CD nanozymes for biosensing detection, medicine and tumor therapy, and many of them are based on oxidative stress regulation and reactive oxygen species clearance. Particularly to expand their potential applications, elemental doping has been utilized to enhance the catalytic capabilities and other properties of CD nanozymes. This review discusses the prevalent techniques utilized in the synthesis of CD nanozymes and presents the diverse applications of CD nanozymes based on their doping characteristics. Finally, the challenges encountered in the current utilization of CD nanozymes are presented. The latest research progress of synthesis, application and the challenges outlined in the review can help and encourage the researchers for the future research on preparation, application and other related researches of CD nanozymes.
Collapse
|
34
|
Zhang J, Guo H, Liu M, Tang K, Li S, Fang Q, Du H, Zhou X, Lin X, Yang Y, Huang B, Yang D. Recent design strategies for boosting chemodynamic therapy of bacterial infections. EXPLORATION (BEIJING, CHINA) 2024; 4:20230087. [PMID: 38855616 PMCID: PMC11022619 DOI: 10.1002/exp.20230087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 06/11/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant threat to people's lives and health as bacterial infections continue to persist. Currently, antibiotic therapy remains the primary approach for tackling bacterial infections. However, the escalating rates of drug resistance coupled with the lag in the development of novel drugs have led to diminishing effectiveness of conventional treatments. Therefore, the development of nonantibiotic-dependent therapeutic strategies has become imperative to impede the rise of bacterial resistance. The emergence of chemodynamic therapy (CDT) has opened up a new possibility due to the CDT can convert H2O2 into •OH via Fenton/Fenton-like reaction for drug-resistant bacterial treatment. However, the efficacy of CDT is limited by a variety of practical factors. To overcome this limitation, the sterilization efficiency of CDT can be enhanced by introducing the therapeutics with inherent antimicrobial capability. In addition, researchers have explored CDT-based combined therapies to augment its antimicrobial effects and mitigate its potential toxic side effects toward normal tissues. This review examines the research progress of CDT in the antimicrobial field, explores various strategies to enhance CDT efficacy and presents the synergistic effects of CDT in combination with other modalities. And last, the current challenges faced by CDT and the future research directions are discussed.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Haiyang Guo
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Ming Liu
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Kaiyuan Tang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Shengke Li
- Macao Centre for Research and Development in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau SARChina
| | - Qiang Fang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Hengda Du
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic MedicineBengbu Medical CollegeBengbuChina
| | - Xin Lin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of OptometryOphthalmology and Vision ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech)NanjingChina
| |
Collapse
|
35
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
36
|
Cui T, Wu Y, Wang Z, Ban Q, Cheng J. Construction and properties of a carbon dots-decorated gelatin-dialdehyde starch hydrogel with pH response release and antibacterial activity. Int J Biol Macromol 2024; 254:127929. [PMID: 37972844 DOI: 10.1016/j.ijbiomac.2023.127929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
An antibacterial carbon dot hydrogel (GDSS-PCD) was constructed based on gelatin, dialdehyde starch (DS) and carbon dots (S-PCDs). The formation mechanism of GDSS-PCD hydrogels was attributed to the synergistic cross-linking of hydrogen bonds and dynamic covalent bonds. With increasing S-PCD content, the mechanical and rheological properties of GDSS-PCD hydrogels can be improved, and the micropore size becomes denser. GDSS-PCD hydrogels had pH-dependent swelling and degradation behavior, with a high swelling rate under acidic conditions and relatively low swelling under neutral and alkaline conditions. The cumulative release of S-PCDs from the same hydrogel in an acidic environment was higher than that in an alkaline environment, indicating that the GDSS-PCD hydrogel had a pH-dependent controlled release ability. The release behavior of S-PCDs conformed to the first-order kinetic release model (R2 > 0.95), and the release mechanism was related to Fickian diffusion. The synergistic antibacterial mechanism of GDSS-PCD hydrogels against Staphylococcus aureus suggested that bacterial metabolism leads to an acidic culture environment, which releases S-PCDs and destroys the bacterial cell membrane for antibacterial purposes. In GDSS-PCD hydrogels, S-PCDs play the main antibacterial role, and the hydrogel plays a synergistic role in trapping bacteria. Carbon dot hydrogels are promising materials to fulfil the functions of antibacterial and controlled release in the food and biomedical fields.
Collapse
Affiliation(s)
- Tianqi Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaohua Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Cui T, Fan Y, Liu Y, Fan X, Sun Y, Cheng G, Cheng J. Antibacterial Activity and Mechanism of Self-Assembly Spermidine-Capped Carbon Dots against Staphylococcus aureus. Foods 2023; 13:67. [PMID: 38201095 PMCID: PMC10778379 DOI: 10.3390/foods13010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This paper investigated the antibacterial mechanism of spermidine-capped carbon dots (S-PCDs) against Staphylococcus aureus. The results showed that there were a large number of amino groups on the surface of S-PCDs and they had a high positive charge (+47.06 mV), which could be adsorbed on the negatively charged bacterial surface through electrostatic interaction and changed the permeability of the bacterial cell membrane. The extracellular protein and nucleic acid contents of S. aureus treated with S-PCDs were 5.4 and 1.2 times higher than those of the control group, respectively. The surface folds and defects of the bacterial cell membrane, and the leakage of cell contents were observed using SEM and TEM. The expression of metabolic oxidation regulatory genes dmpI, narJ and narK was upregulated and the intracellular ROS generation was induced, causing bacterial oxidative stress and eventually bacterial death. S-PCDs can effectively inhibit biofilm formation and had low cytotoxicity. The S-PCD treatment successfully inhibited microbial reproduction when pasteurized milk was stored at 25 °C and 4 °C. These results provide important insights into the antimicrobial mechanism of S-PCDs and lay the foundation for their application in the food field as a potentially novel bacteriostatic nanomaterial.
Collapse
Affiliation(s)
- Tianqi Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Cui T, Fan Y, Liu Y, Ding Y, Li X, Cheng G, Cheng J. Synthesizing Carbon Quantum Dots via Hydrothermal Reaction to Produce Efficient Antibacterial and Antibiofilm Nanomaterials. Foods 2023; 13:58. [PMID: 38201086 PMCID: PMC10778214 DOI: 10.3390/foods13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to synthesize antibacterial carbon quantum dots (SP-CDs) from polyethyleneimine and spermidine via hydrothermal reaction. It was revealed that SP-CDs, with small size (7.18 nm) and high positive charge (+31.15 mV), had good fluorescence properties and lots of amino groups on their surfaces. The inhibition effect of SP-CDs on Staphylococcus aureus was better than that towards Escherichia coli, and the SP-CDs also had an inhibitory effect on multi-drug-resistant E. coli. The mechanism of SP-CDs shows that the SP-CDs were adsorbed on the surface of the negatively charged cell membrane through electrostatic interaction. SP-CDs can cause changes in membrane permeability, resulting in a shift of the cell membrane from order to disorder and the decomposition of chemical components, followed by the leakage of cell contents, resulting in bacterial death. SP-CDs can also significantly inhibit biofilm formation, destroy mature biofilms and reduce the number of living cells. Moreover, SP-CDs had negligible antimicrobial resistance even after 18 generations of treatment. This study proves that SP-CDs effectively inhibit the proliferation of foodborne pathogens, providing new feasibility for the application of carbon-based nanomaterials in the food industry.
Collapse
Affiliation(s)
- Tianqi Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
39
|
Li X, Ma Z, Wu C, Zhang M, Wang Y, Zheng G, Zhu M, Li G, Fu F, Hao X. Injectable Self-Harden Antibiofilm Bioceramic Cement for Minimally Invasive Surgery. ACS Biomater Sci Eng 2023; 9:6225-6240. [PMID: 37906514 DOI: 10.1021/acsbiomaterials.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is an urgent demand for antibacterial bone grafts in clinics. Worryingly, the misuse and overuse of antibiotics accelerate the emergence of drug-resistant bacteria. Therefore, this study prepared a novel injectable bioceramic cement without antibiotics (FS-BCS), which showed good antibacterial properties by loading iron and strontium onto a matrix composed of brushite and calcium sulfate. The setting time, injectability, microstructure, antibacterial properties, anti-biofilm properties, and cytocompatibility of the novel bioceramic cement were evaluated thoroughly. The results showed that the material was highly injectable and antiwashout. The antibacterial tests revealed that FS-BCS inhibited the growth of 99.9% E. coli and S. aureus separately in the broth due to the synergistic effect of strontium and iron. Simultaneously, crystal violet and fluorescent staining tests revealed that the material could significantly inhibit the formation of E. coli and S. aureus biofilms. In addition, the co-incorporation of iron and strontium promoted the proliferation and migration of osteoblasts. Therefore, FS-BCS has good application potential in antibiotic-free anti-infection bone grafting using minimally invasive surgery.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Zexu Ma
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Congping Wu
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China
| | - Mei Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Yitong Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangxun Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Mengxin Zhu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| |
Collapse
|
40
|
Liu X, Zhao Y, Xu Y, Liu C. Synthesis of γ-Cyclodextrin-Reduced Fe(III) Nanoparticles with Peroxidase-like Catalytic Activity for Bacteriostasis of Food. NANO LETTERS 2023; 23:9995-10003. [PMID: 37857332 DOI: 10.1021/acs.nanolett.3c03103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Foodborne pathogens are a primary cause of human foodborne illness, making it imperative to explore novel antibacterial strategies for their control. In this study, Fe-γ-CD was successfully synthesized as a food antibacterial agent for use in milk and orange juice. The Fe-γ-CD consists of 6/11 Fe(II) and 5/11 Fe(III), which catalyze a Fenton-like catalytic reaction with H2O2 to generate •OH. Consequently, Fe-γ-CD exhibits exceptional peroxidase-like activity and broad-spectrum antibacterial efficacy. Fe-γ-CD not only disrupts the wall structure of ESBL-E. coli but also induces protein leakage and genetic destruction, ultimately leading to its death. Furthermore, Fe-γ-CD inhibits biofilm formation by MRSA and eradicates mature biofilms, resulting in MRSA's demise. Importantly, Fe-γ-CD demonstrates negligible cytotoxicity toward normal mammalian cells, making it an ideal candidate for application as an antibacterial agent in foodstuffs. These findings highlight that Fe-γ-CD is an effective tool for combating the spread of foodborne pathogens and food safety.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuhan Zhao
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuanhong Xu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Chengzhen Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| |
Collapse
|
41
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
42
|
Zhu H, Peng N, Liang X, Yang S, Cai S, Chen Z, Yang Y, Wang J, Wang Y. Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials. Biomed Mater 2023; 18:062002. [PMID: 37722396 DOI: 10.1088/1748-605x/acfada] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Antibiotics play an important role in the treatment of diseases, but bacterial resistance caused by their widespread and unreasonable use has become an urgent problem in clinical treatment. With the rapid advancement of nanoscience and nanotechnology, the development of nanomedicine has been transformed into a new approach to the problem of bacterial resistance. As a new type of carbon-based nanomaterial, carbon dots (CDs) have attracted the interest of antibacterial researchers due to their ease of preparation, amphiphilicity, facile surface functionalization, and excellent optical properties, among other properties. This article reviewed the synthesis methods and properties of various CDs and their composites in order to highlight the advancements in the field of CDs-based antibacterial agents. Then we focused on the relationship between the principal properties of CDs and the antibacterial mechanism, including the following: (1) the physical damage caused by the small size, amphiphilicity, and surface charge of CDs. (2) Photogenerated electron transfer characteristics of CDs that produce reactive oxygen species (ROS) in themselves or in other compounds. The ability of ROS to oxidize can lead to the lipid peroxidation of cell membranes, as well as damage proteins and DNA. (3) The nano-enzyme properties of CDs can catalyze reactions that generate ROS. (4) Synergistic antibacterial effect of CDs and antibiotics or other nanocomposites. Finally, we look forward to the challenges that CDs-based nanocomposites face in practical antibacterial applications and propose corresponding solutions to further expand the application potential of nanomaterials in the treatment of infectious diseases, particularly drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Song Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Shenghao Cai
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zifan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
43
|
Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-Mediated Photodynamic Inactivation Mechanism for Ablation of Bacteria and Biofilms in Water Augmented by Potassium Iodide under Blue Light Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13672-13687. [PMID: 37671932 DOI: 10.1021/acs.jafc.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
While photodynamic inactivation (PDI) has emerged as a novel sterilization strategy for drinking water treatment that recently attracted tremendous attention, its efficiency needs to be further improved. In this study, we aimed to clarify the ultraefficient mechanism by which potassium iodide (KI) potentiates octyl gallate (OG)-mediated PDI against bacteria and biofilms in water. When OG (0.15 mM) and bacteria were exposed to blue light (BL, 420 nm, 210 mW/cm2), complete sterilization (>7.5 Log cfu/mL of killing) was achieved by the addition of KI (250 mM) within only 5 min (63.9 J/cm2). In addition, at lower doses of OG (0.1 mM) with KI (100 mM), the biofilm was completely eradicated within 10 min (127.8 J/cm2). The KI-potentiated mechanism involves in situ rapid photogeneration of a multitude of reactive oxygen species, especially hydroxyl radicals (•OH), reactive iodine species, and new photocytocidal substances (quinone) by multiple photochemical pathways, which led to the destruction of cell membranes and membrane proteins, the cleavage of genomic DNA and extracellular DNA within biofilms, and the degradation of QS signaling molecules. This multitarget synergistic strategy provided new insights into the development of an environmentally friendly, safe, and ultraefficient photodynamic drinking water sterilization technology.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yi-Ran Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102 Taiwan, China
| | - Shao-Ting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ze-Yu Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| |
Collapse
|
44
|
Shen Y, Nie C, Pan T, Zhang W, Yang H, Ye Y, Wang X. A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy. Acta Biomater 2023; 168:580-592. [PMID: 37451659 DOI: 10.1016/j.actbio.2023.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Healing bacterial chronic wounds caused by hyperglycemia is of great significance to protect the physical and mental health of diabetic patients. In this context, emerging chemodynamic therapy (CDT) and photothermal therapy (PTT) with broad antibacterial spectra and high spatiotemporal controllability have flourished. However, CDT was challenged by the near-neutral pH and inadequate H2O2 surrounding the chronic wound site, while PTT showed overheating-triggered side effects (e.g., damaging the normal tissue) and poor effects on thermotolerant bacterial biofilms. Therefore, we engineered an all-in-one glucose-responsive photothermal nanozyme, GOX/MPDA/Fe@CDs, consisting of glucose oxidase (GOX), Fe-doped carbon dots (Fe@CDs), and mesoporous polydopamine (MPDA), to efficiently treat chronic diabetic wound bacterial infections and eradicate biofilms without impacting the surrounding normal tissues. Specifically, GOX/MPDA/Fe@CDs produced a local temperature (∼ 45.0°C) to enhance the permeability of the pathogenic bacterium and its biofilm upon near-infrared (NIR) 808 nm laser irradiation, which was seized to initiate endogenous high blood glucose to activate the catalytic activity of GOX on the GOX/MPDA/Fe@CD surface to achieve the simultaneous self-supplying of H2O2 and H+, cascade catalyzing •OH production via a subsequent peroxidase-mimetic activity-induced Fenton/Fenton-like reaction. As such, the in vivo diabetic wound infected with methicillin-resistant Staphylococcus aureus was effectively healed after 12.0 days of treatment. This work was expected to provide an innovative approach to the clinical treatment of bacterially infected diabetic chronic wounds. STATEMENT OF SIGNIFICANCE: An all-in-one glucose-responsive photothermal nanozyme GOX/MPDA/Fe@CDs was constructed. Cascade nanozyme GOX/MPDA/Fe@CDs self-supply H2O2 and H+ to break H2O2 and pH limits to fight bacterial infections. Synergistic chemotherapy and photothermal therapy with nanozyme GOX/MPDA/Fe@CDs accelerates healing of biofilm-infected diabetic wounds.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Chao Nie
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Ting Pan
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Anhui Medical University, Hefei 230032, China.
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
45
|
Zhao WB, Liu KK, Wang Y, Li FK, Guo R, Song SY, Shan CX. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv Healthc Mater 2023; 12:e2300324. [PMID: 37178318 DOI: 10.1002/adhm.202300324] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
46
|
Ma T, Huang K, Cheng N. Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control. Int J Mol Sci 2023; 24:13342. [PMID: 37686145 PMCID: PMC10487713 DOI: 10.3390/ijms241713342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.
Collapse
Affiliation(s)
- Tianyi Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
47
|
Zhao Y, Wang X, Qi R, Yuan H. Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics. Polymers (Basel) 2023; 15:3305. [PMID: 37571202 PMCID: PMC10422483 DOI: 10.3390/polym15153305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Hydrogels have a three-dimensional network structure and high-water content, are similar in structure to the extracellular matrix, and are often used as wound dressings. Natural polymers have excellent biocompatibility and biodegradability and are commonly utilized to prepare hydrogels. Natural-polymer-based hydrogels can have excellent antibacterial and bioactive properties by loading antibacterial agents or being combined with therapeutics such as phototherapy, which has great advantages in the field of treatment of microbial infections. In the published reviews of hydrogels used in the treatment of infectious wounds, the common classification criteria of hydrogels include function, source of antibacterial properties, type of antibacterial agent, etc. However, there are few reviews on the classification of hydrogels based on raw materials, and the description of natural-polymer-based hydrogels is not comprehensive and detailed. In this paper, based on the principle of material classification, the characteristics of seven types of natural polymers that can be used to prepare hydrogels are discussed, respectively, and the application of natural-polymer-based hydrogels in the treatment of infectious wounds is described in detail. Finally, the research status, limitations, and prospects of natural-polymer-based hydrogels are briefly discussed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
48
|
Jia C, Wu FG. Antibacterial Chemodynamic Therapy: Materials and Strategies. BME FRONTIERS 2023; 4:0021. [PMID: 37849674 PMCID: PMC10351393 DOI: 10.34133/bmef.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 10/19/2023] Open
Abstract
The wide and frequent use of antibiotics in the treatment of bacterial infection can cause the occurrence of multidrug-resistant bacteria, which becomes a serious health threat. Therefore, it is necessary to develop antibiotic-independent treatment modalities. Chemodynamic therapy (CDT) is defined as the approach employing Fenton and/or Fenton-like reactions for generating hydroxyl radical (•OH) that can kill target cells. Recently, CDT has been successfully employed for antibacterial applications. Apart from the common Fe-mediated CDT strategy, antibacterial CDT strategies mediated by other metal elements such as copper, manganese, cobalt, molybdenum, platinum, tungsten, nickel, silver, ruthenium, and zinc have also been proposed. Furthermore, different types of materials like nanomaterials and hydrogels can be adopted for constructing CDT-involved antibacterial platforms. Besides, CDT can introduce some toxic metal elements and then achieve synergistic antibacterial effects together with reactive oxygen species. Finally, CDT can be combined with other therapies such as starvation therapy, phototherapy, and sonodynamic therapy for achieving improved antibacterial performance. This review first summarizes the advancements in antibacterial CDT and then discusses the present limitations and future research directions in this field, hoping to promote the development of more effective materials and strategies for achieving potentiated CDT.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
49
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
50
|
Yang M, Yao J, Su B, Xin N, Zhou T, Zeng M, Wu C, Wei D, Sun J, Fan H. "Three-in-one" platform based on Fe-CDs nanozyme for dual-mode/dual-target detection and NIR-assisted bacterial killing. J Mater Chem B 2023. [PMID: 37318801 DOI: 10.1039/d3tb00515a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As nanozymes, carbon dots (CDs) have attracted increasing attention due to their remarkable properties. Besides general enzyme activity, their photoluminescence and photothermal properties have been explored rarely, whereas their synergistic effects might produce CDs-based nanozymes of high performance. Here, iron-doped CDs (Fe-CDs) with tunable fluorescence and enhanced peroxidase-like activity were designed to develop a novel "three-in-one" multifunctional platform to provide dual-mode/dual-target detection and near infrared (NIR)-assisted antibacterial ability. This proposed strategy for a H2O2 test exhibited a wide linear relationship with a low limit of detection (LOD) of 0.16 μM (colorimetric) and 0.14 μM (ratiometric fluorescent). Furthermore, due to the nature of cholesterol being oxidized to H2O2 by cholesterol oxidase, sensitive and selective detection of cholesterol was realized, and the LOD was 0.42 μM (colorimetric) and 0.27 μM (ratiometric fluorescent), surpassing that reported previously. This result suggested that Fe-CDs could be used for dual-mode quantification of large family of H2O2-producing metabolites, thereby paving the way for developing multi-mode sensing strategies based on nanozymes. Moreover, this platform showed synergistic effects for antibacterial application, indicating great prospects for bacterial killing as well as wound disinfection and healing. Hence, this platform could contribute to the construction of multifunctional CDs with high performance.
Collapse
Affiliation(s)
- Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, P. R. China
| | - Jun Yao
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, P. R. China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, P. R. China.
| |
Collapse
|