1
|
Jehl J, Ciscato M, Vicq E, Guyon N, Dejean de la Batie G, Mondoloni S, Frangieh J, Mohayyaei M, Nguyen C, Pons S, Maskos U, Hardelin JP, Marti F, Corringer PJ, Faure P, Mourot A. The interpeduncular nucleus blunts the rewarding effect of nicotine. Neuron 2025:S0896-6273(25)00255-7. [PMID: 40262615 DOI: 10.1016/j.neuron.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/22/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Nicotine stimulates ventral tegmental area (VTA) dopaminergic neurons, producing a rewarding effect that drives tobacco consumption. The interpeduncular nucleus (IPN) is thought to become engaged at high nicotine doses to limit drug intake, but its response dynamics are unknown. We developed a chemogenetic approach using a "suicide" antagonist that selectively attaches to designer β4 nicotinic acetylcholine receptors (nAChRs) in genetically modified mice, enabling sustained and pharmacologically specific antagonism. Local infusion in the IPN revealed that nicotine, even at low doses, simultaneously activates and inhibits two distinct populations of IPN neurons, with β4-containing nAChRs mediating only the activation response. Blocking nicotine-induced IPN activation enhanced VTA responses and increased the drug's rewarding effect in a conditioned place preference paradigm. Moreover, optogenetic inhibition of IPN projections to the laterodorsal tegmental nucleus (LDTg) replicated these behavioral effects. Our findings indicate that the IPN acts as a regulatory brake on the nicotine reward circuit via the LDTg.
Collapse
Affiliation(s)
- Joachim Jehl
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Maria Ciscato
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Eléonore Vicq
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Nicolas Guyon
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Sarah Mondoloni
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Jacinthe Frangieh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Monir Mohayyaei
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Claire Nguyen
- Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Jean-Pierre Hardelin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Fabio Marti
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Philippe Faure
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France; Sorbonne Université, Inserm, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005 Paris, France.
| |
Collapse
|
2
|
Raina K, Modak K, Premkumar C, Joshi G, Palani D, Nandy K, Sivamani Y, Velayudhan SR, Thummer RP. UTF1 Expression is Important for the Generation and Maintenance of Human iPSCs. Stem Cell Rev Rep 2025; 21:859-871. [PMID: 39754619 DOI: 10.1007/s12015-024-10836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied. METHODS This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs. We employed episomal vectors for reprogramming UTF1 knockout fibroblasts into iPSCs and analyzed the effects of UTF1 depletion on cellular morphology, pluripotency, and viability through Western blotting, PCR, and flow cytometry. In addition, we integrated an shRNA that downregulated the expression of UTF1 for mechanistic studies to understand the impact of UTF1 depletion in iPSC pluripotency and differentiation. RESULTS UTF1 knockout resulted in significantly reduced reprogramming efficiency and increased spontaneous differentiation, indicating its crucial role in maintaining human iPSC identity and stability. In knockdown experiments, gradual loss of UTF1 led to change in cellular morphologies and decreased expression of core pluripotency markers OCT4 and SOX2. Interestingly, unlike complete UTF1 knockout, the gradual downregulation of UTF1 in iPSCs did not result in apoptosis, suggesting that the loss of pluripotency can occur independently of the apoptotic pathways. CONCLUSIONS UTF1 is essential for maintaining the pluripotency and viability of human iPSCs. Its depletion affects the fundamental properties of stem cells, underscoring the potential challenges in using UTF1-deficient cells for therapeutic applications. Future studies should explore the mechanistic pathways through which UTF1 controls pluripotency and differentiation, which could provide insights into improving iPSC stability for clinical applications.
Collapse
Affiliation(s)
- Khyati Raina
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kirti Modak
- Department of Hematology, Christian Medical College, Vellore, India
| | - Chitra Premkumar
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Gaurav Joshi
- Department of Hematology, Christian Medical College, Vellore, India
| | - Dhavapriya Palani
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Krittika Nandy
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Yazhini Sivamani
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Shaji R Velayudhan
- Department of Hematology, Christian Medical College, Vellore, India
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Randolph LK, Pauers MM, Martínez JC, Sibener LJ, Zrzavy MA, Sharif NA, Gonzalez TM, Ramachandran KV, Dominguez D, Hengst U. Regulation of synapse density by Pumilio RNA-binding proteins. Cell Rep 2024; 43:114747. [PMID: 39298318 PMCID: PMC11544588 DOI: 10.1016/j.celrep.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The formation, stabilization, and elimination of synapses are tightly regulated during neural development and into adulthood. Pumilio RNA-binding proteins regulate the translation and localization of many synaptic mRNAs and are developmentally downregulated in the brain. We found that simultaneous downregulation of Pumilio 1 and 2 increases both excitatory and inhibitory synapse density in primary hippocampal neurons and promotes synapse maturation. Loss of Pum1 and Pum2 in the mouse brain was associated with an increase in mRNAs involved in mitochondrial function and synaptic translation. These findings reveal a role for developmental Pumilio downregulation as a permissive step in the maturation of synapses and suggest that modulation of Pumilio levels is a cell-intrinsic mechanism by which neurons tune their capacity for synapse stabilization.
Collapse
Affiliation(s)
- Lisa K Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michaela M Pauers
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - José C Martínez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie J Sibener
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michael A Zrzavy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nyle A Sharif
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tatiana M Gonzalez
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kapil V Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel Dominguez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ulrich Hengst
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
4
|
Bie Y, Zhang J, Chen J, Zhang Y, Huang M, Zhang L, Zhou X, Qiu Y. Design of antiviral AGO2-dependent short hairpin RNAs. Virol Sin 2024; 39:645-654. [PMID: 38734183 PMCID: PMC11401469 DOI: 10.1016/j.virs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.
Collapse
Affiliation(s)
- Yuanyuan Bie
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiyao Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yumin Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Muhan Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Leike Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zhou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yang Qiu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Haemmerle MW, Scota AV, Khosravifar M, Varney MJ, Sen S, Good AL, Yang X, Wells KL, Sussel L, Rozo AV, Doliba NM, Ghanem LR, Stoffers DA. RNA-binding protein PCBP2 regulates pancreatic β cell function and adaptation to glucose. J Clin Invest 2024; 134:e172436. [PMID: 38950317 PMCID: PMC11178539 DOI: 10.1172/jci172436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/23/2024] [Indexed: 07/03/2024] Open
Abstract
Glucose plays a key role in shaping pancreatic β cell function. Thus, deciphering the mechanisms by which this nutrient stimulates β cells holds therapeutic promise for combating β cell failure in type 2 diabetes (T2D). β Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining β cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient β cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient β cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of β cells.
Collapse
Affiliation(s)
- Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea V. Scota
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mina Khosravifar
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J. Varney
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sabyasachi Sen
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin L. Good
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaodun Yang
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lori Sussel
- Department of Pediatrics and
- Department of Cell & Developmental Biology, and
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicolai M. Doliba
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology and Nutrition Division, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Chen SK, Hawley ZC, Zavodszky MI, Hana S, Ferretti D, Grubor B, Hawes M, Xu S, Hamann S, Marsh G, Cullen P, Challa R, Carlile TM, Zhang H, Lee WH, Peralta A, Clarner P, Wei C, Koszka K, Gao F, Lo SC. Efficacy and safety of a SOD1-targeting artificial miRNA delivered by AAV9 in mice are impacted by miRNA scaffold selection. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102057. [PMID: 37928442 PMCID: PMC10622307 DOI: 10.1016/j.omtn.2023.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Toxic gain-of-function mutations in superoxide dismutase 1 (SOD1) contribute to approximately 2%-3% of all amyotrophic lateral sclerosis (ALS) cases. Artificial microRNAs (amiRs) delivered by adeno-associated virus (AAV) have been proposed as a potential treatment option to silence SOD1 expression and mitigate disease progression. Primary microRNA (pri-miRNA) scaffolds are used in amiRs to shuttle a hairpin RNA into the endogenous miRNA pathway, but it is unclear whether different primary miRNA (pri-miRNA) scaffolds impact the potency and safety profile of the expressed amiR in vivo. In our process to develop an AAV amiR targeting SOD1, we performed a preclinical characterization of two pri-miRNA scaffolds, miR155 and miR30a, sharing the same guide strand sequence. We report that, while the miR155-based vector, compared with the miR30a-based vector, leads to a higher level of the amiR and more robust suppression of SOD1 in vitro and in vivo, it also presents significantly greater risks for CNS-related toxicities in vivo. Despite miR30a-based vector showing relatively lower potency, it can significantly delay the development of ALS-like phenotypes in SOD1-G93A mice and increase survival in a dose-dependent manner. These data highlight the importance of scaffold selection in the pursuit of highly efficacious and safe amiRs for RNA interference gene therapy.
Collapse
|
7
|
Rossi M, Steklov M, Huberty F, Nguyen T, Marijsse J, Jacques-Hespel C, Najm P, Lonez C, Breman E. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102038. [PMID: 37799328 PMCID: PMC10548280 DOI: 10.1016/j.omtn.2023.102038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Genome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing. Here, we describe a microRNA (miRNA)-based multiplex shRNA platform obtained by combining highly efficient miRNA scaffolds into a chimeric cluster, to deliver up to four shRNA-like sequences. Thanks to its limited size, our cassette could be deployed in a one-step process along with all the CAR components, streamlining the generation of engineered CAR T cells. The plug-and-play design of the shRNA platform allowed us to swap each shRNA-derived guide sequence without affecting the system performance. Appropriately choosing the target sequences, we were able to either achieve a functional KO, or fine-tune the expression levels of the target genes, all without the need for gene editing. Through our strategy we achieved easy, safe, efficient, and tunable modulation of multiple target genes simultaneously. This approach allows for the effective introduction of multiple functionally relevant tweaks in the transcriptome of the engineered cells, which may lead to increased performance in challenging environments, e.g., solid tumors.
Collapse
Affiliation(s)
- Matteo Rossi
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Thuy Nguyen
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Paul Najm
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | - Eytan Breman
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| |
Collapse
|
8
|
Cannell IG, Sawicka K, Pearsall I, Wild SA, Deighton L, Pearsall SM, Lerda G, Joud F, Khan S, Bruna A, Simpson KL, Mulvey CM, Nugent F, Qosaj F, Bressan D, Dive C, Caldas C, Hannon GJ. FOXC2 promotes vasculogenic mimicry and resistance to anti-angiogenic therapy. Cell Rep 2023; 42:112791. [PMID: 37499655 DOI: 10.1016/j.celrep.2023.112791] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.
Collapse
Affiliation(s)
- Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Isabella Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Lauren Deighton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah M Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Showkhin Khan
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Preclinical Modelling of Paediatric Cancer Evolution Team, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5N, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Claire M Mulvey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fiona Nugent
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology and Breast Cancer Programme, CRUK Cambridge Centre, Cambridge University Hospitals NHS and University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
9
|
Krill-Burger JM, Dempster JM, Borah AA, Paolella BR, Root DE, Golub TR, Boehm JS, Hahn WC, McFarland JM, Vazquez F, Tsherniak A. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal. Genome Biol 2023; 24:192. [PMID: 37612728 PMCID: PMC10464129 DOI: 10.1186/s13059-023-03020-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies-genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines. RESULTS We find that CRISPR screens accurately identify more gene dependencies per cell line, but the majority of each cell line's dependencies are part of a set of 1867 genes that are shared dependencies across the entire collection (pan-lethals). While RNAi knockdown of about 30% of these genes is also pan-lethal, approximately 50% have selective dependency patterns across cell lines, suggesting they could still be cancer vulnerabilities. The accuracy of the unique RNAi selectivity is supported by associations to multi-omics profiles, drug sensitivity, and other expected co-dependencies. CONCLUSIONS Incorporating RNAi data for genes that are pan-lethal knockouts facilitates the discovery of a wider range of gene targets than could be detected using the CRISPR dataset alone. This can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and reinforce the importance of partial gene suppression methods in building a cancer dependency map.
Collapse
Affiliation(s)
| | | | - Ashir A Borah
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jesse S Boehm
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Francisca Vazquez
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
10
|
Chakraborty P, Deb BK, Arige V, Musthafa T, Malik S, Yule DI, Taylor CW, Hasan G. Regulation of store-operated Ca 2+ entry by IP 3 receptors independent of their ability to release Ca 2. eLife 2023; 12:e80447. [PMID: 37466241 PMCID: PMC10406432 DOI: 10.7554/elife.80447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Loss of endoplasmic reticular (ER) Ca2+ activates store-operated Ca2+ entry (SOCE) by causing the ER localized Ca2+ sensor STIM to unfurl domains that activate Orai channels in the plasma membrane at membrane contact sites (MCS). Here, we demonstrate a novel mechanism by which the inositol 1,4,5 trisphosphate receptor (IP3R), an ER-localized IP3-gated Ca2+ channel, regulates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca2+ is attenuated by loss of IP3Rs, and restored by expression of IP3Rs even when they cannot release Ca2+, but only if the IP3Rs can bind IP3. Imaging studies demonstrate that IP3Rs enhance association of STIM1 with Orai1 in neuronal cells with empty stores; this requires an IP3-binding site, but not a pore. Convergent regulation by IP3Rs, may tune neuronal SOCE to respond selectively to receptors that generate IP3.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- SASTRA UniversityThanjavurIndia
| | - Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Thasneem Musthafa
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - David I Yule
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Colin W Taylor
- Department of Pharmacology, University of CambridgeCambridgeUnited Kingdom
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
11
|
Getzler AJ, Frederick MA, Milner JJ, Venables T, Diao H, Toma C, Nagaraja SD, Albao DS, Bélanger S, Tsuda SM, Kim J, Crotty S, Goldrath AW, Pipkin ME. Mll1 pioneers histone H3K4me3 deposition and promotes formation of CD8 + T stem cell memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524461. [PMID: 37090503 PMCID: PMC10120707 DOI: 10.1101/2023.01.18.524461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
CD8 + T cells with stem cell-like properties (T SCM ) sustain adaptive immunity to intracellular pathogens and tumors. However, the developmental origins and chromatin regulatory factors (CRFs) that establish their differentiation are unclear. Using an RNA interference screen of all CRFs we discovered the histone methylase Mll1 was required during T cell receptor (TCR) stimulation for development of a T SCM precursor state and mature memory (T MEM ) cells, but not short-lived or transitory effector cell-like states, in response to viral infections and tumors. Mll1 was essential for widespread de novo deposition of histone H3 lysine 4 trimethylation (H3K4me3) upon TCR stimulation, which accounted for 70% of all activation-induced sites in mature T MEM cells. Mll1 promoted both H3K4me3 deposition and reduced TCR-induced Pol II pausing at genes whose single-cell transcriptional dynamics explained trajectories into nascent T SCM precursor states during viral infection. Our results suggest Mll1-dependent control of Pol II elongation and H3K4me3 establishes and maintains differentiation of CD8 + T SCM cell states.
Collapse
|
12
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
14
|
Duran AG, Schwestka M, Nazari-Shafti TZ, Neuber S, Stamm C, Gossen M. Limiting Transactivator Amounts Contribute to Transgene Mosaicism in Tet-On All-in-One Systems. ACS Synth Biol 2022; 11:2623-2635. [PMID: 35815862 DOI: 10.1021/acssynbio.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play an essential role in cell homeostasis and have been proposed as therapeutic agents. One strategy to deliver microRNAs is to genetically engineer target cells to express microRNAs of interest. However, to control dosage and timing, as well as to limit potential side-effects, microRNAs' expression should ideally be under exogenous, inducible control. Conditional expression of miRNA-based short hairpin RNAs (shRNAmirs) via gene regulatory circuits such as the Tet-system is therefore a promising strategy to control shRNAmirs' expression in research and therapy. Single vector approaches like Tet-On all-in-one designs are more compatible with potential clinical applications by providing the Tet-On system components in a single round of genetic engineering. However, all-in-one systems often come at the expense of heterogeneous and unstable expression. In this study, we aimed to understand the causes that lead to such erratic transgene expression. By using a reporter cell, we found that the degree of heterogeneity mostly correlated with reverse tetracycline transactivator (rtTA) expression levels. Moreover, the targeted integration of a potent rtTA expression cassette into a genomic safe harbor locus functionally rescued previously silenced rtTA-responsive transcription units. Overall, our results suggest that ensuring homogenous and stable rtTA expression is essential for the robust and reliable performance of future Tet-On all-in-one designs.
Collapse
Affiliation(s)
- Ana G Duran
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Christof Stamm
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, 13353 Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| |
Collapse
|
15
|
Touzdjian Pinheiro Kohlrausch Távora F, de Assis dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, Correa Molinari HB. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front Bioeng Biotechnol 2022; 10:913728. [PMID: 35837551 PMCID: PMC9274005 DOI: 10.3389/fbioe.2022.913728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karen Ofuji Osiro
- Department of Phytopathology, University of Brasília, Brasília, Brazil
- Embrapa Agroenergy, Brasília, Brazil
| | | | | | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | | | | | | | | | | |
Collapse
|
16
|
Das S, Stallon Illangeswaran RS, Ijee S, Kumar S, Velayudhan SR, Balasubramanian P. Pooled shRNA Library Screening to Identify Factors that Modulate a Drug Resistance Phenotype. J Vis Exp 2022:10.3791/63383. [PMID: 35786700 PMCID: PMC7614927 DOI: 10.3791/63383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Understanding clinically relevant driver mechanisms of acquired chemo-resistance is crucial for elucidating ways to circumvent resistance and improve survival in patients with acute myeloid leukemia (AML). A small fraction of leukemic cells that survive chemotherapy have a poised epigenetic state to tolerate chemotherapeutic insult. Further exposure to chemotherapy allows these drug persister cells to attain a fixed epigenetic state, which leads to altered gene expression, resulting in the proliferation of these drug-resistant populations and eventually relapse or refractory disease. Therefore, identifying epigenetic modulations that necessitate the survival of drug-resistant leukemic cells is critical. We detail a protocol to identify epigenetic modulators that mediate resistance to the nucleoside analog cytarabine (AraC) using pooled shRNA library screening in an acquired cytarabine-resistant AML cell line. The library consists of 5,485 shRNA constructs targeting 407 human epigenetic factors, which allows high-throughput epigenetic factor screening.
Collapse
Affiliation(s)
- Saswati Das
- Department of Clinical Haematology, Christian Medical College; Department of Biotechnology, Thiruvalluvar University
| | | | - Smitha Ijee
- Department of Biotechnology, Thiruvalluvar University; Centre for Stem Cell Research, Christian Medical College
| | - Sanjay Kumar
- Department of Biotechnology, Thiruvalluvar University; Centre for Stem Cell Research, Christian Medical College
| | - Shaji Ramachandran Velayudhan
- Department of Clinical Haematology, Christian Medical College; Department of Biotechnology, Thiruvalluvar University; Centre for Stem Cell Research, Christian Medical College;
| | - Poonkuzhali Balasubramanian
- Department of Clinical Haematology, Christian Medical College; Department of Biotechnology, Thiruvalluvar University; Centre for Stem Cell Research, Christian Medical College;
| |
Collapse
|
17
|
Zhang D, Tian J, Wang Y, Lu J. Evitar: designing anti-viral RNA therapies against future RNA viruses. Bioinformatics 2022; 38:2437-2443. [PMID: 35294970 PMCID: PMC9048652 DOI: 10.1093/bioinformatics/btac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The coronavirus disease 2019 (COVID-19) pandemic has highlighted the threat of emerging respiratory viruses and has exposed the lack of availability of off-the-shelf therapeutics against new RNA viruses. Previous research has established the potential that siRNAs and RNA-targeting CRISPR have in combating known RNA viruses. However, the feasibility and tools for designing anti-viral RNA therapeutics against future RNA viruses have not yet been established. RESULTS We develop the Emerging-Virus-Targeting RNA (Evitar) pipeline for designing anti-viral siRNAs and CRISPR Cas13a guide RNA (gRNA) sequences. Within Evitar, we develop Greedy Algorithm with Redundancy and Similarity-weighted Greedy Algorithm with Redundancy to enhance the performance. Time simulations using known coronavirus genomes deposited as early as 10 years prior to the COVID-19 outbreak show that at least three SARS-CoV-2-targeting siRNAs are among the top 30 pre-designed siRNAs. In addition, among the top 19 pre-designed gRNAs, there are three SARS-CoV-2-targeting Cas13a gRNAs that could be predicted using information from 2011. Before-the-outbreak design is also possible against the MERS-CoV virus and the 2009-H1N1 swine flu virus. Designed siRNAs are further shown to suppress SARS-CoV-2 viral sequences using in vitro reporter assays. Our results support the utility of Evitar to pre-design anti-viral siRNAs/gRNAs against future viruses. Therefore, we propose the development of a collection consisting of roughly 30 pre-designed, safety-tested and off-the-shelf siRNA/CRISPR therapeutics that could accelerate responses to future RNA virus outbreaks. AVAILABILITY AND IMPLEMENTATION Codes are available at GitHub (https://github.com/dingyaozhang/Evitar). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dingyao Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jingru Tian
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yadong Wang
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Yale Center for RNA Science and Medicine, Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Yale Center for RNA Science and Medicine, Yale Cancer Center, Yale University, New Haven, CT 06520, USA.,Yale Cooperative Center of Excellence in Hematology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Secondary structure RNA elements control the cleavage activity of DICER. Nat Commun 2022; 13:2138. [PMID: 35440644 PMCID: PMC9018771 DOI: 10.1038/s41467-022-29822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 12/05/2022] Open
Abstract
The accurate and efficient cleavage of shRNAs and pre-miRNAs by DICER is crucial for their gene-silencing activity. Here, we conduct high-throughput DICER cleavage assays for more than ~20,000 different shRNAs and show the comprehensive cleavage activities of DICER on these sequences. We discover a single-nucleotide bulge (22-bulge), which facilitates the cleavage activity of DICER on shRNAs and human pre-miRNAs. As a result, this 22-bulge enhances the gene-silencing activity of shRNAs and the accuracy of miRNA biogenesis. In addition, various single-nucleotide polymorphism-edited 22-bulges are found to govern the cleavage sites of DICER on pre-miRNAs and thereby control their functions. Finally, we identify the single cleavage of DICER and reveal its molecular mechanism. Our findings improve the understanding of the DICER cleavage mechanism, provide a foundation for the design of accurate and efficient shRNAs for gene-silencing, and indicate the function of bulges in regulating miRNA biogenesis. MicroRNA precursors are cleaved by DICER to generate mature microRNAs in the cytoplasm. Here the authors employ high-throughput analysis of DICER cleavage activity and identify RNA secondary elements in precursor miRNAs and shRNAs, including a single nucleotide bulge, which govern its cleavage efficiency and accuracy.
Collapse
|
19
|
Wang D, Xiu J, Zhao J, Luo J. miR‐AB, a miRNA‐based shRNA viral toolkit for multicolor‐barcoded multiplex RNAi at a single‐cell level. EMBO Rep 2022; 23:e53691. [PMID: 35201651 PMCID: PMC8982575 DOI: 10.15252/embr.202153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dapeng Wang
- Department of Immunology Binzhou Medical University Shandong China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences Beijing China
| | - Jiangyue Zhao
- Department of Ophthalmology The 4th Affiliated Hospital of China Medical University Shenyang China
| | - Junli Luo
- Department of Molecular Medicine The Scripps Research Institute Jupiter FL USA
| |
Collapse
|
20
|
Hongu T, Pein M, Insua-Rodríguez J, Gutjahr E, Mattavelli G, Meier J, Decker K, Descot A, Bozza M, Harbottle R, Trumpp A, Sinn HP, Riedel A, Oskarsson T. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. NATURE CANCER 2022; 3:486-504. [PMID: 35469015 PMCID: PMC9046090 DOI: 10.1038/s43018-022-00353-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Arnaud Descot
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Heidelberg, Germany.
- Department of Molecular Oncology and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
21
|
Krivdova G, Voisin V, Schoof EM, Marhon SA, Murison A, McLeod JL, Gabra MM, Zeng AGX, Aigner S, Yee BA, Shishkin AA, Van Nostrand EL, Hermans KG, Trotman-Grant AC, Mbong N, Kennedy JA, Gan OI, Wagenblast E, De Carvalho DD, Salmena L, Minden MD, Bader GD, Yeo GW, Dick JE, Lechman ER. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Rep 2022; 38:110481. [PMID: 35263585 PMCID: PMC11185845 DOI: 10.1016/j.celrep.2022.110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Collapse
Affiliation(s)
- Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino M Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Program of Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Aaron C Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON M4N3M5, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada.
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
22
|
Furukawa A, Tanaka A, Yamaguchi S, Kosuda M, Yamana M, Nagasawa A, Kohno G, Ishihara H. Using recombinase-mediated cassette exchange to engineer MIN6 insulin-secreting cells based on a newly identified safe harbor locus. J Diabetes Investig 2021; 12:2129-2140. [PMID: 34382357 PMCID: PMC8668067 DOI: 10.1111/jdi.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/04/2022] Open
Abstract
AIMS/INTRODUCTION Recent studies have identified genomic and transcript level changes along with alterations in insulin secretion in patients with diabetes and in rodent models of diabetes. It is important to establish an efficient system for testing functional consequences of these changes. We aimed to generate such a system using insulin-secreting MIN6 cells. MATERIALS AND METHODS MIN6 cells were first engineered to have a tetracycline-regulated expression system. Then, we used the recombination-mediated cassette exchange strategy to explore the silencing-resistant site in the genome and generated a master cell line based on this site. RESULTS We identified a site 10.5 kbps upstream from the Zxdb gene as a locus that allows homogenous transgene expression from a tetracycline responsible promoter. Placing the Flip/Frt-based platform on this locus using CRISPR/Cas9 technology generated modified MIN6 cells applicable to achieving cassette exchange on the genome. Using this cell line, we generated MIN6 subclones with over- or underexpression of glucokinase. By analyzing a mixed population of these cells, we obtained an initial estimate of effects on insulin secretion within 6 weeks. Furthermore, we generated six MIN6 cell sublines simultaneously harboring genes of inducible overexpression with unknown functions in insulin secretion, and found that Cited4 and Arhgef3 overexpressions increased and decreased insulin secretion, respectively. CONCLUSIONS We engineered MIN6 cells, which can serve as a powerful tool for testing genetic alterations associated with diabetes, and studied the molecular mechanisms of insulin secretion.
Collapse
Affiliation(s)
- Asami Furukawa
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Aya Tanaka
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Suguru Yamaguchi
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Minami Kosuda
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Midori Yamana
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Akiko Nagasawa
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Genta Kohno
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic DiseasesNihon University School of MedicineItabashiJapan
| |
Collapse
|
23
|
Reusch B, Bartram MP, Dafinger C, Palacio-Escat N, Wenzel A, Fenton RA, Saez-Rodriguez J, Schermer B, Benzing T, Altmüller J, Beck BB, Rinschen MM. MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells. J Proteomics 2021; 252:104424. [PMID: 34775100 DOI: 10.1016/j.jprot.2021.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney cell cultures using proteomic and phosphoproteomic analyses. In HEK293T cells, MAGED2 knockdown induces prominent changes in protein phosphorylation rather than changes in protein abundance. MAGED2 is expressed in mouse embryonic kidneys and its expression declines during development. MAGED2 interacts with G-protein alpha subunit (GNAS), suggesting a role in G-protein coupled receptors (GPCR) signalling. In kidney collecting duct cell lines, Maged2 knockdown subtly modulated vasopressin type 2 receptor (V2R)-induced cAMP-generation kinetics, rewired phosphorylation-dependent signalling, and phosphorylation of CREB. Maged2 knockdown resulted in a large increase in aquaporin-2 abundance during long-term V2R activation. The increase in aquaporin-2 protein was mediated transcriptionally. Taken together, we link MAGED2 function to cellular signalling as a desensitizer of V2R-induced aquaporin-2 expression. SIGNIFICANCE: In most forms of Bartter Syndrome, the underlying cause of the disease is well understood. In contrast, the role of MAGED2 mutations in a newly discovered form of Bartter Syndrome (BARTS5) is unknown. In our manuscript we could show that MAGED2 modulates vasopressin-induced protein and phosphorylation patterns in kidney cells, providing a broad basis for further studies of MAGED2 function in development and disease.
Collapse
Affiliation(s)
- Björn Reusch
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Malte P Bartram
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claudia Dafinger
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nicolàs Palacio-Escat
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom
| | - Bernhard Schermer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Markus M Rinschen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
24
|
Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021; 56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
Collapse
Affiliation(s)
- Shefali Krishna
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 2021; 28:1838-1850.e10. [PMID: 34343492 DOI: 10.1016/j.stem.2021.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.
Collapse
|
26
|
Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, Diao H, Park H, Frey B, Wang G, Mosure SA, Solt LA, Kojetin DJ, Rodriguez-Palacios A, Schady DA, Weaver CT, Pipkin ME, Moore DD, Sundrud MS. CAR directs T cell adaptation to bile acids in the small intestine. Nature 2021; 593:147-151. [PMID: 33828301 DOI: 10.1038/s41586-021-03421-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Xiangsheng Huang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hongtao Wang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Courtney Hegner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Yujin Liu
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Amber Eliason
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - HaJeung Park
- X-ray Crystallography Core Facility, The Scripps Research Institute, Jupiter, FL, USA
| | - Blake Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guohui Wang
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Sarah A Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Douglas J Kojetin
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA.
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA. .,The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
27
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
28
|
Fuchs A, Riegler S, Ayatollahi Z, Cavallari N, Giono LE, Nimeth BA, Mutanwad KV, Schweighofer A, Lucyshyn D, Barta A, Petrillo E, Kalyna M. Targeting alternative splicing by RNAi: from the differential impact on splice variants to triggering artificial pre-mRNA splicing. Nucleic Acids Res 2021; 49:1133-1151. [PMID: 33406240 PMCID: PMC7826280 DOI: 10.1093/nar/gkaa1260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.
Collapse
Affiliation(s)
- Armin Fuchs
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Stefan Riegler
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Zahra Ayatollahi
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Nicola Cavallari
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Barbara A Nimeth
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Krishna V Mutanwad
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | | | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Andrea Barta
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Ezequiel Petrillo
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| |
Collapse
|
29
|
Drosopoulos WC, Deng Z, Twayana S, Kosiyatrakul ST, Vladimirova O, Lieberman PM, Schildkraut CL. TRF2 Mediates Replication Initiation within Human Telomeres to Prevent Telomere Dysfunction. Cell Rep 2020; 33:108379. [PMID: 33176153 PMCID: PMC7790361 DOI: 10.1016/j.celrep.2020.108379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
The telomeric shelterin protein telomeric repeat-binding factor 2 (TRF2) recruits origin recognition complex (ORC) proteins, the foundational building blocks of DNA replication origins, to telomeres. We seek to determine whether TRF2-recruited ORC proteins give rise to functional origins in telomere repeat tracts. We find that reduction of telomeric recruitment of ORC2 by expression of an ORC interaction-defective TRF2 mutant significantly reduces telomeric initiation events in human cells. This reduction in initiation events is accompanied by telomere repeat loss, telomere aberrations and dysfunction. We demonstrate that telomeric origins are activated by induced replication stress to provide a key rescue mechanism for completing compromised telomere replication. Importantly, our studies also indicate that the chromatin remodeler SNF2H promotes telomeric initiation events by providing access for ORC2. Collectively, our findings reveal that active recruitment of ORC by TRF2 leads to formation of functional origins, providing an important mechanism for avoiding telomere dysfunction and rescuing challenged telomere replication.
Collapse
Affiliation(s)
- William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Zhong Deng
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Shyam Twayana
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Settapong T Kosiyatrakul
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Olga Vladimirova
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Paul M Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M, Safavi M, Weisenburger S, Klein C, Vogel V, Falcone M, Insua-Rodríguez J, Reitberger M, Thiel V, Kossi SO, Muckenhuber A, Sarai K, Lee AYL, Backx E, Zarei S, Gaida MM, Rodríguez-Paredes M, Donato E, Yen HY, Eils R, Schlesner M, Pfarr N, Hackert T, Plass C, Brors B, Steiger K, Weichenhan D, Arda HE, Rooman I, Kopp JL, Strobel O, Weichert W, Sprick MR, Trumpp A. Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discov 2020; 11:638-659. [PMID: 33060108 DOI: 10.1158/2159-8290.cd-20-1202] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Elisa Espinet
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Büscher
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mariam Safavi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Weisenburger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Corinna Klein
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Vanessa Vogel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Mattia Falcone
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Manuel Reitberger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Thiel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Steffi O Kossi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | | | - Karnjit Sarai
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Y L Lee
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyne Backx
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soheila Zarei
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias M Gaida
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medical Center JGU Mainz, Mainz, Germany
| | | | - Elisa Donato
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany.,Digital Health Centre, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, University Hospital and University of Heidelberg, Heidelberg, Germany
| | | | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Thilo Hackert
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Benedikt Brors
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Dieter Weichenhan
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center of Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilse Rooman
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oliver Strobel
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,National Center of Tumor Diseases, NCT, Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Martin R Sprick
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
31
|
Haley B, Roudnicky F. Functional Genomics for Cancer Drug Target Discovery. Cancer Cell 2020; 38:31-43. [PMID: 32442401 DOI: 10.1016/j.ccell.2020.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Functional genomics describes a field of biology that uses a range of approaches for assessing gene function with high-throughput molecular, genetic, and cellular technologies. The near limitless potential for applying these concepts to study the activities of all genetic loci has completely upended how today's cancer biologists tackle drug target discovery. We provide an overview of contemporary functional genomics platforms, highlighting areas of distinction and complementarity across technologies, so as to aid in the development or interpretation of cancer-focused screening efforts.
Collapse
Affiliation(s)
- Benjamin Haley
- Molecular Biology Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland.
| |
Collapse
|
32
|
Lin A, Sheltzer JM. Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nat Rev Genet 2020; 21:671-682. [DOI: 10.1038/s41576-020-0247-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
|
33
|
Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, Decker K, Essers MAG, Sinn HP, Spaich S, Sütterlin M, Schneeweiss A, Trumpp A, Oskarsson T. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun 2020; 11:1494. [PMID: 32198421 PMCID: PMC7083860 DOI: 10.1038/s41467-020-15188-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Metastatic colonization relies on interactions between disseminated cancer cells and the microenvironment in secondary organs. Here, we show that disseminated breast cancer cells evoke phenotypic changes in lung fibroblasts, forming a supportive metastatic niche. Colonization of the lungs confers an inflammatory phenotype in metastasis-associated fibroblasts. Specifically, IL-1α and IL-1β secreted by breast cancer cells induce CXCL9 and CXCL10 production in lung fibroblasts via NF-κB signaling, fueling the growth of lung metastases. Notably, we find that the chemokine receptor CXCR3, that binds CXCL9/10, is specifically expressed in a small subset of breast cancer cells, which exhibits tumor-initiating ability when co-transplanted with fibroblasts and has high JNK signaling that drives IL-1α/β expression. Importantly, disruption of the intercellular JNK-IL-1-CXCL9/10-CXCR3 axis reduces metastatic colonization in xenograft and syngeneic mouse models. These data mechanistically demonstrate an essential role for the molecular crosstalk between breast cancer cells and their fibroblast niche in the progression of metastasis. How cancer cells engage the microenvironment to establish metastasis is poorly understood. Here, the authors show that CXCR3-expressing breast cancer cells secrete IL-1 to induce a paracrine crosstalk with fibroblasts in the lung, which involves CXCL9/10 production and results in colonization of the lung.
Collapse
Affiliation(s)
- Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena Wiedmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Saskia Spaich
- Department of Obstetrics and Gynaecology, University Medical Centre Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Marc Sütterlin
- Department of Obstetrics and Gynaecology, University Medical Centre Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Bersini S, Lytle NK, Schulte R, Huang L, Wahl GM, Hetzer MW. Nup93 regulates breast tumor growth by modulating cell proliferation and actin cytoskeleton remodeling. Life Sci Alliance 2020; 3:3/1/e201900623. [PMID: 31959624 PMCID: PMC6971368 DOI: 10.26508/lsa.201900623] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
This study highlights the role of Nup93-chromatin interactions in driving triple-negative breast cancer propagation through modulation of the actin cytoskeleton, cell migration and proliferation. Nucleoporin 93 (Nup93) expression inversely correlates with the survival of triple-negative breast cancer patients. However, our knowledge of Nup93 function in breast cancer besides its role as structural component of the nuclear pore complex is not understood. Combination of functional assays and genetic analyses suggested that chromatin interaction of Nup93 partially modulates the expression of genes associated with actin cytoskeleton remodeling and epithelial to mesenchymal transition, resulting in impaired invasion of triple-negative, claudin-low breast cancer cells. Nup93 depletion induced stress fiber formation associated with reduced cell migration/proliferation and impaired expression of mesenchymal-like genes. Silencing LIMCH1, a gene responsible for actin cytoskeleton remodeling and up-regulated upon Nup93 depletion, partially restored the invasive phenotype of cancer cells. Loss of Nup93 led to significant defects in tumor establishment/propagation in vivo, whereas patient samples revealed that high Nup93 and low LIMCH1 expression correlate with late tumor stage. Our approach identified Nup93 as contributor of triple-negative, claudin-low breast cancer cell invasion and paves the way to study the role of nuclear envelope proteins during breast cancer tumorigenesis.
Collapse
Affiliation(s)
- Simone Bersini
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Paul F. Glenn Center for Biology of Aging Research at The Salk Institute, La Jolla, CA, USA
| | - Nikki K Lytle
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Roberta Schulte
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
35
|
van Galen P, Mbong N, Kreso A, Schoof EM, Wagenblast E, Ng SWK, Krivdova G, Jin L, Nakauchi H, Dick JE. Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia. Cell Rep 2019; 25:1109-1117.e5. [PMID: 30380403 DOI: 10.1016/j.celrep.2018.10.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lifelong maintenance of the blood system requires equilibrium between clearance of damaged hematopoietic stem cells (HSCs) and long-term survival of the HSC pool. Severe perturbations of cellular homeostasis result in rapid HSC loss to maintain clonal purity. However, normal homeostatic processes can also generate lower-level stress; how HSCs survive these conditions remains unknown. Here we show that the integrated stress response (ISR) is uniquely active in HSCs and facilitates their persistence. Activating transcription factor 4 (ATF4) mediates the ISR and is highly expressed in HSCs due to scarcity of the eIF2 translation initiation complex. Amino acid deprivation results in eIF2α phosphorylation-dependent upregulation of ATF4, promoting HSC survival. Primitive acute myeloid leukemia (AML) cells also display eIF2 scarcity and ISR activity marks leukemia stem cells (LSCs) in primary AML samples. These findings identify a link between the ISR and stem cell survival in the normal and leukemic contexts.
Collapse
Affiliation(s)
- Peter van Galen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Antonia Kreso
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Erwin M Schoof
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stanley W K Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A1, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Xie SZ, Garcia-Prat L, Voisin V, Ferrari R, Gan OI, Wagenblast E, Kaufmann KB, Zeng AGX, Takayanagi SI, Patel I, Lee EK, Jargstorf J, Holmes G, Romm G, Pan K, Shoong M, Vedi A, Luberto C, Minden MD, Bader GD, Laurenti E, Dick JE. Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Cell Stem Cell 2019; 25:639-653.e7. [PMID: 31631013 PMCID: PMC6838675 DOI: 10.1016/j.stem.2019.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/09/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Cellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the sphingolipid enzyme DEGS1 regulates lineage differentiation. Inhibition of DEGS1 in hematopoietic stem and progenitor cells during the transition from quiescence to cellular activation with N-(4-hydroxyphenyl) retinamide activates coordinated stress pathways that coalesce on endoplasmic reticulum stress and autophagy programs to maintain immunophenotypic and functional HSCs. Thus, our work identifies a linkage between sphingolipid metabolism, proteostatic quality control systems, and HSC self-renewal and provides therapeutic targets for improving HSC-based cellular therapeutics.
Collapse
Affiliation(s)
- Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada.
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Robin Ferrari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Shin-Ichiro Takayanagi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada; R&D Division, Kyowa Kirin Co., Ltd., Tokyo 194-8533, Japan
| | - Ishita Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Esther K Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Joseph Jargstorf
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Gareth Holmes
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Guy Romm
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Kristele Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Michelle Shoong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada
| | - Aditi Vedi
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elisa Laurenti
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
37
|
Buchwalter A, Schulte R, Tsai H, Capitanio J, Hetzer M. Selective clearance of the inner nuclear membrane protein emerin by vesicular transport during ER stress. eLife 2019; 8:e49796. [PMID: 31599721 PMCID: PMC6802967 DOI: 10.7554/elife.49796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
The inner nuclear membrane (INM) is a subdomain of the endoplasmic reticulum (ER) that is gated by the nuclear pore complex. It is unknown whether proteins of the INM and ER are degraded through shared or distinct pathways in mammalian cells. We applied dynamic proteomics to profile protein half-lives and report that INM and ER residents turn over at similar rates, indicating that the INM's unique topology is not a barrier to turnover. Using a microscopy approach, we observed that the proteasome can degrade INM proteins in situ. However, we also uncovered evidence for selective, vesicular transport-mediated turnover of a single INM protein, emerin, that is potentiated by ER stress. Emerin is rapidly cleared from the INM by a mechanism that requires emerin's LEM domain to mediate vesicular trafficking to lysosomes. This work demonstrates that the INM can be dynamically remodeled in response to environmental inputs.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Roberta Schulte
- The Salk Institute for Biological StudiesLa JollaUnited States
| | - Hsiao Tsai
- The Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Martin Hetzer
- The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
38
|
Martínez JC, Randolph LK, Iascone DM, Pernice HF, Polleux F, Hengst U. Pum2 Shapes the Transcriptome in Developing Axons through Retention of Target mRNAs in the Cell Body. Neuron 2019; 104:931-946.e5. [PMID: 31606248 DOI: 10.1016/j.neuron.2019.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Localized protein synthesis is fundamental for neuronal development, maintenance, and function. Transcriptomes in axons and soma are distinct, but the mechanisms governing the composition of axonal transcriptomes and their developmental regulation are only partially understood. We found that the binding motif for the RNA-binding proteins Pumilio 1 and 2 (Pum1 and Pum2) is underrepresented in transcriptomes of developing axons. Introduction of Pumilio-binding elements (PBEs) into mRNAs containing a β-actin zipcode prevented axonal localization and translation. Pum2 is restricted to the soma of developing neurons, and Pum2 knockdown or blocking its binding to mRNA caused the appearance and translation of PBE-containing mRNAs in axons. Pum2-deficient neurons exhibited axonal growth and branching defects in vivo and impaired axon regeneration in vitro. These results reveal that Pum2 shapes axonal transcriptomes by preventing the transport of PBE-containing mRNAs into axons, and they identify somatic mRNAs retention as a mechanism for the temporal control of intra-axonal protein synthesis.
Collapse
Affiliation(s)
- José C Martínez
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lisa K Randolph
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Daniel Maxim Iascone
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Helena F Pernice
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Anatomy and Cell Biology, Biomedical Center, Medical Faculty, Ludwig Maximilians University, 82152 Planegg-Martinsried, Germany
| | - Franck Polleux
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Chella Krishnan K, Sabir S, Shum M, Meng Y, Acín-Pérez R, Lang JM, Floyd RR, Vergnes L, Seldin MM, Fuqua BK, Jayasekera DW, Nand SK, Anum DC, Pan C, Stiles L, Péterfy M, Reue K, Liesa M, Lusis AJ. Sex-specific metabolic functions of adipose Lipocalin-2. Mol Metab 2019; 30:30-47. [PMID: 31767179 PMCID: PMC6812340 DOI: 10.1016/j.molmet.2019.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.
Collapse
Affiliation(s)
| | - Simon Sabir
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Michaël Shum
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Rebeca Acín-Pérez
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Jennifer M Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Raquel R Floyd
- Department of Biology, University of California, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Marcus M Seldin
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Brie K Fuqua
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Dulshan W Jayasekera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Sereena K Nand
- Department of Biology, University of California, Los Angeles, CA, USA
| | - Diana C Anum
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA
| | - Miklós Péterfy
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA; Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Zyner KG, Mulhearn DS, Adhikari S, Martínez Cuesta S, Di Antonio M, Erard N, Hannon GJ, Tannahill D, Balasubramanian S. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8:e46793. [PMID: 31287417 PMCID: PMC6615864 DOI: 10.7554/elife.46793] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Darcie S Mulhearn
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Santosh Adhikari
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Marco Di Antonio
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicolas Erard
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - David Tannahill
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Shankar Balasubramanian
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
- School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
41
|
Good AL, Cannon CE, Haemmerle MW, Yang J, Stanescu DE, Doliba NM, Birnbaum MJ, Stoffers DA. JUND regulates pancreatic β cell survival during metabolic stress. Mol Metab 2019; 25:95-106. [PMID: 31023625 PMCID: PMC6600134 DOI: 10.1016/j.molmet.2019.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In type 2 diabetes (T2D), oxidative stress contributes to the dysfunction and loss of pancreatic β cells. A highly conserved feature of the cellular response to stress is the regulation of mRNA translation; however, the genes regulated at the level of translation are often overlooked due to the convenience of RNA sequencing technologies. Our goal is to investigate translational regulation in β cells as a means to uncover novel factors and pathways pertinent to cellular adaptation and survival during T2D-associated conditions. METHODS Translating ribosome affinity purification (TRAP) followed by RNA-seq or RT-qPCR was used to identify changes in the ribosome occupancy of mRNAs in Min6 cells. Gene depletion studies used lentiviral delivery of shRNAs to primary mouse islets or CRISPR-Cas9 to Min6 cells. Oxidative stress and apoptosis were measured in primary islets using cell-permeable dyes with fluorescence readouts of oxidation and activated cleaved caspase-3 and-7, respectively. Gene expression was assessed by RNA-seq, RT-qPCR, and western blot. ChIP-qPCR was used to determine chromatin enrichment. RESULTS TRAP-seq in a PDX1-deficiency model of β cell dysfunction uncovered a cohort of genes regulated at the level of mRNA translation, including the transcription factor JUND. Using a panel of diabetes-associated stressors, JUND was found to be upregulated in mouse islets cultured with high concentrations of glucose and free fatty acid, but not after treatment with hydrogen peroxide or thapsigargin. This induction of JUND could be attributed to increased mRNA translation. JUND was also upregulated in islets from diabetic db/db mice and in human islets treated with high glucose and free fatty acid. Depletion of JUND in primary islets reduced oxidative stress and apoptosis in β cells during metabolic stress. Transcriptome assessment identified a cohort of genes, including pro-oxidant and pro-inflammatory genes, regulated by JUND that are commonly dysregulated in models of β cell dysfunction, consistent with a maladaptive role for JUND in islets. CONCLUSIONS A translation-centric approach uncovered JUND as a stress-responsive factor in β cells that contributes to redox imbalance and apoptosis during pathophysiologically relevant stress.
Collapse
Affiliation(s)
- Austin L Good
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey E Cannon
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juxiang Yang
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicolai M Doliba
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Morris J Birnbaum
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism and the Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Delás MJ, Jackson BT, Kovacevic T, Vangelisti S, Munera Maravilla E, Wild SA, Stork EM, Erard N, Knott SRV, Hannon GJ. lncRNA Spehd Regulates Hematopoietic Stem and Progenitor Cells and Is Required for Multilineage Differentiation. Cell Rep 2019; 27:719-729.e6. [PMID: 30995471 PMCID: PMC6484780 DOI: 10.1016/j.celrep.2019.03.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) show patterns of tissue- and cell type-specific expression that are very similar to those of protein coding genes and consequently have the potential to control stem and progenitor cell fate decisions along a differentiation trajectory. To understand the roles that lncRNAs may play in hematopoiesis, we selected a subset of mouse lncRNAs with potentially relevant expression patterns and refined our candidate list using evidence of conserved expression in human blood lineages. For each candidate, we assessed its possible role in hematopoietic differentiation in vivo using competitive transplantation. Our studies identified two lncRNAs that were required for hematopoiesis. One of these, Spehd, showed defective multilineage differentiation, and its silencing yielded common myeloid progenitors that are deficient in their oxidative phosphorylation pathway. This effort not only suggests that lncRNAs can contribute to differentiation decisions during hematopoiesis but also provides a path toward the identification of functional lncRNAs in other differentiation hierarchies.
Collapse
Affiliation(s)
- M Joaquina Delás
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Benjamin T Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Tatjana Kovacevic
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Silvia Vangelisti
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ester Munera Maravilla
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Eva Maria Stork
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Nicolas Erard
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Simon R V Knott
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; New York Genome Center, New York, NY 10013, USA.
| |
Collapse
|
43
|
Guzova JA, Primiano MJ, Jiao A, Stock J, Lee C, Winkler AR, Hall JP. Optimized protocols for studying the NLRP3 inflammasome and assessment of potential targets of CP-453,773 in undifferentiated THP1 cells. J Immunol Methods 2019; 467:19-28. [DOI: 10.1016/j.jim.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023]
|
44
|
Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR-Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19:12. [PMID: 30636933 PMCID: PMC6325665 DOI: 10.1186/s12935-019-0726-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genome editing allows for the precise manipulation of DNA sequences in a cell making this technology essential for understanding gene function. CRISPR/Cas9 is a targeted genome-editing platform derived from bacterial adaptive immune system and has been repurposed into a genome-editing tool. The RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, making this technology easier, more efficient, scalable and an indispensable tool in biological research. This technology has helped genetically engineer animal models to understand disease mechanisms and elucidate molecular details that can be exploited for improved therapeutic outcomes. In this review, we describe the CRISPR-Cas9 gene-editing mechanism, CRISPR-screening methods, therapeutic targeting of CRISPR in animal models and in cancer immunotherapy. We also discuss the ongoing clinical trials using this tool, limitations of this tool that might impede the clinical applicability of CRISPR-Cas9 and future directions for developing effective CRISPR-Cas9 delivery systems that may improve cancer therapeutics.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | |
Collapse
|
45
|
Toyama BH, Arrojo E Drigo R, Lev-Ram V, Ramachandra R, Deerinck TJ, Lechene C, Ellisman MH, Hetzer MW. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J Cell Biol 2018; 218:433-444. [PMID: 30552100 PMCID: PMC6363465 DOI: 10.1083/jcb.201809123] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
Toyama et al. monitor the replacement of long-lived components of nuclear pore complexes (NPCs) and nucleosomes in postmitotic cells. They describe age mosaicism at the level of chromatin organization and find that NPCs are maintained by piecemeal replacement in postmitotic nondividing cells but by entire complex replacement in an ESCRT-dependent manner in nondividing, starved quiescent cells. Many adult tissues contain postmitotic cells as old as the host organism. The only organelle that does not turn over in these cells is the nucleus, and its maintenance represents a formidable challenge, as it harbors regulatory proteins that persist throughout adulthood. Here we developed strategies to visualize two classes of such long-lived proteins, histones and nucleoporins, to understand the function of protein longevity in nuclear maintenance. Genome-wide mapping of histones revealed specific enrichment of long-lived variants at silent gene loci. Interestingly, nuclear pores are maintained by piecemeal replacement of subunits, resulting in mosaic complexes composed of polypeptides with vastly different ages. In contrast, nondividing quiescent cells remove old nuclear pores in an ESCRT-dependent manner. Our findings reveal distinct molecular strategies of nuclear maintenance, linking lifelong protein persistence to gene regulation and nuclear integrity.
Collapse
Affiliation(s)
- Brandon H Toyama
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Claude Lechene
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA.,Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
46
|
Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, Bružas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JTH, Egeblad M. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361:eaao4227. [PMID: 30262472 PMCID: PMC6777850 DOI: 10.1126/science.aao4227] [Citation(s) in RCA: 976] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells from a primary tumor can disseminate to other tissues, remaining dormant and clinically undetectable for many years. Little is known about the cues that cause these dormant cells to awaken, resume proliferating, and develop into metastases. Studying mouse models, we found that sustained lung inflammation caused by tobacco smoke exposure or nasal instillation of lipopolysaccharide converted disseminated, dormant cancer cells to aggressively growing metastases. Sustained inflammation induced the formation of neutrophil extracellular traps (NETs), and these were required for awakening dormant cancer. Mechanistic analysis revealed that two NET-associated proteases, neutrophil elastase and matrix metalloproteinase 9, sequentially cleaved laminin. The proteolytically remodeled laminin induced proliferation of dormant cancer cells by activating integrin α3β1 signaling. Antibodies against NET-remodeled laminin prevented awakening of dormant cells. Therapies aimed at preventing dormant cell awakening could potentially prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Jean Albrengues
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mario A Shields
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chun Gwon Park
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Morgan E Poindexter
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Dale L Uyeminami
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Victoria Küttner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Emilis Bružas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Laura Maiorino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | - Ellese M Carmona
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas T Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Johannes T-H Yeh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
47
|
A Druggable Genome Screen Identifies Modifiers of α-Synuclein Levels via a Tiered Cross-Species Validation Approach. J Neurosci 2018; 38:9286-9301. [PMID: 30249792 DOI: 10.1523/jneurosci.0254-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.
Collapse
|
48
|
Yan Y, Acevedo M, Mignacca L, Desjardins P, Scott N, Imane R, Quenneville J, Robitaille J, Feghaly A, Gagnon E, Ferbeyre G, Major F. The sequence features that define efficient and specific hAGO2-dependent miRNA silencing guides. Nucleic Acids Res 2018; 46:8181-8196. [PMID: 30239883 PMCID: PMC6144789 DOI: 10.1093/nar/gky546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs (miRNAs) are ribonucleic acids (RNAs) of ∼21 nucleotides that interfere with the translation of messenger RNAs (mRNAs) and play significant roles in development and diseases. In bilaterian animals, the specificity of miRNA targeting is determined by sequence complementarity involving the seed. However, the role of the remaining nucleotides (non-seed) is only vaguely defined, impacting negatively on our ability to efficiently use miRNAs exogenously to control gene expression. Here, using reporter assays, we deciphered the role of the base pairs formed between the non-seed region and target mRNA. We used molecular modeling to reveal that this mechanism corresponds to the formation of base pairs mediated by ordered motions of the miRNA-induced silencing complex. Subsequently, we developed an algorithm based on this distinctive recognition to predict from sequence the levels of mRNA downregulation with high accuracy (r2 > 0.5, P-value < 10-12). Overall, our discovery improves the design of miRNA-guide sequences used to simultaneously downregulate the expression of multiple predetermined target genes.
Collapse
Affiliation(s)
- Yifei Yan
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mariana Acevedo
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lian Mignacca
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Philippe Desjardins
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Nicolas Scott
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Roqaya Imane
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jordan Quenneville
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Robitaille
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Albert Feghaly
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Etienne Gagnon
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
49
|
Sirka OK, Shamir ER, Ewald AJ. Myoepithelial cells are a dynamic barrier to epithelial dissemination. J Cell Biol 2018; 217:3368-3381. [PMID: 30061105 PMCID: PMC6168248 DOI: 10.1083/jcb.201802144] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Myoepithelial cells function collectively as a dynamic barrier to the invasion and dissemination of Twist1+ luminal epithelial cells and both luminal and basal phenotype breast cancer cells. Barrier function depends on myoepithelial abundance and both smooth muscle contractility and intercellular adhesion within the myoepithelium. The mammary epithelium is composed of an inner luminal and surrounding myoepithelial cell layer. The presence of cancer cells beyond the myoepithelium defines invasive breast cancer, yet the role of the myoepithelium during invasion remains unclear. We developed a 3D organotypic culture assay to model this process through lineage-specific expression of the prometastatic transcription factor Twist1. We sought to distinguish the functional role of the myoepithelium in regulating invasion and local dissemination. Myoepithelial-specific Twist1 expression induced cell-autonomous myoepithelial cell escape. Remarkably, luminal-specific Twist1 expression was rarely sufficient for escape. Time-lapse microscopy revealed that myoepithelial cells collectively restrain and reinternalize invading Twist1+ luminal cells. Barrier function correlated with myoepithelial abundance and required the expression of α-smooth muscle actin and P-cadherin. We next demonstrated that myoepithelial cells can restrain and recapture invasive cancer cells. Our data establish the concept of the myoepithelium as a dynamic barrier to luminal dissemination and implicate both smooth muscle contractility and intercellular adhesion in barrier function.
Collapse
Affiliation(s)
- Orit Katarina Sirka
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eliah R Shamir
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew J Ewald
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
50
|
CK1α and IRF4 are essential and independent effectors of immunomodulatory drugs in primary effusion lymphoma. Blood 2018; 132:577-586. [PMID: 29954751 DOI: 10.1182/blood-2018-01-828418] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive cancer with few treatment options. The immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide have recently been shown to kill PEL cell lines, and lenalidomide is in clinical trials against PEL. IMiDs bind to the CRL4CRBN E3 ubiquitin ligase complex, leading to the acquisition of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3), casein kinase 1 α (CK1α), and zinc finger protein 91 (ZFP91) as neosubstrates. IMiDs are effective against multiple myeloma because of degradation of IKZF1 and IKZF3 and the consequent loss of interferon regulatory factor 4 (IRF4) and MYC expression. Lenalidomide is also effective in chromosome 5q deletion-associated myelodysplastic syndrome as a result of degradation of CK1α. An essential IKZF1-IRF4-MYC axis has recently been proposed to underlie the toxicity of IMiDs in PEL. Here, we further investigate IMiD effectors in PEL cell lines, based on genome-wide CRISPR/Cas9 screens for essential human genes. These screens and extensive validation experiments show that, of the 4 neosubstrates, only CK1α is essential for the survival of PEL cell lines. In contrast, IKZF1 and IKZF3 are dispensable, individually or in combination. IRF4 was critical in all 8 PEL cell lines tested, and surprisingly, IMiDs triggered downregulation of IRF4 expression independently of both IKZF1 and IKZF3. Reexpression of CK1α and/or IRF4 partially rescued PEL cell lines from IMiD-mediated toxicity. In conclusion, IMiD toxicity in PEL cell lines is independent of IKZF1 and IKZF3 but proceeds through degradation of the neosubstrate CK1α and downregulation of IRF4.
Collapse
|