1
|
Li Y, Zhang L, Zhang Q, Zhang Y, Pan S, Zhao H, Zhang L. HSPB1 suppresses oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting DPP4. Arch Biochem Biophys 2025; 768:110400. [PMID: 40132776 DOI: 10.1016/j.abb.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Atherosclerosis is the major pathological basis of cardiovascular diseases. Vascular smooth muscle cell (VSMC) dysfunction and death induced by oxidized low-density lipoprotein (oxLDL) play a key role in atherosclerosis. Ferroptosis is a novel iron-dependent lipid peroxidation regulated cell death, which is implicated in atherosclerosis. However, whether oxLDL induces VSMC ferroptosis and the specific mechanism is unclear. METHODS To determine the effects of oxLDL on VSMC ferroptosis, LDH activity, MDA and Fe2+ content, glutathione peroxidase 4 (GPX4) expression and GPX enzyme activity were assayed. The level of lipid peroxidation was detected by C11 BODIPY fluorescence staining. RT-qPCR and Western blot were used to detect the mRNA and protein expressions of heat shock protein B1 (HSPB1), dipeptidyl peptidase 4 (DPP4) and nuclear factor kappa-B (NF-κB). The siRNAs, plasmids and Val-boropro were utilized to explore the roles of HSPB1/NF-κB/DPP4 in oxLDL-induced VSMC ferroptosis. RESULTS oxLDL increased LDH activity, Fe2+ content, lipid peroxidation and MDA content in VSMCs, which were inhibited by ferroptosis inhibitors Lip-1 and DFO. Moreover, oxLDL reduced GPX4 protein expression and GPX enzyme activity, indicating that oxLDL induces VSMC ferroptosis. Notably, HSPB1 inhibited oxLDL-induced VSMC ferroptosis by reducing the accumulation of Fe2+ and lipid peroxidation and increasing GPX4 expression and activity. In addition, HSPB1 suppressed oxLDL-induced VSMC ferroptosis by inhibiting DPP4 through NF-κB. Furthermore, Val-boropro could rescue oxLDL-induced ferroptosis in VSMCs with HSPB1 knockdown by inhibiting DPP4. CONCLUSIONS This study reveals for the first time that HSPB1 suppresses oxLDL-induced VSMC ferroptosis by inhibiting DPP4 through NF-κB, providing new strategies for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Li Y, Zhou T, Liu Z, Zhu X, Wu Q, Meng C, Deng Q. Air pollution and prostate cancer: Unraveling the connection through network toxicology and machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117966. [PMID: 40022828 DOI: 10.1016/j.ecoenv.2025.117966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND In recent years, air pollution has been demonstrated to be associated with the occurrence of various diseases. This study aims to explore the potential association between air pollutants and prostate cancer (PCa) and to identify key genes that may play a critical bridging role in this process. METHODS This study utilized multiple online databases to obtain relevant target genes associated with air pollutants and PCa. Protein-protein interaction (PPI) analysis and visualization were conducted for the intersecting genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses to explore potential mechanisms. Subsequently, the best predictive model was selected through a combination of 108 machine learning algorithms. A prognostic model was constructed using the Random Survival Forest (RSF) model in conjunction with Lasso regression model, and its performance was validated in four external datasets. Finally, molecular docking analysis was conducted to investigate the interaction between key genes and air pollutants. RESULTS Seven common air pollutants (benzene, SO₂, NO, CO, NO₂, toluene, and O₃) were selected for analysis, and 48 intersecting targets related to PCa were identified. GO and KEGG functional enrichment analyses revealed that these targets are primarily involved in regulating biological processes such as apoptosis, carcinogenesis, and cell proliferation. Based on machine learning algorithm selection, the combination of RSF and Lasso regression was identified as the optimal predictive model, which highlighted five key genes associated with air pollutants and PCa. The model exhibited strong predictive performance across all four independent external datasets. Additionally, molecular docking analysis further confirmed the potential interactions between air pollutants and these core targets. CONCLUSION The findings suggest that HDAC6, CDK1, DNMT1, NOS3, and DPP4 play crucial roles in the process by which air pollutants influence PCa. The results offer new insights into the molecular mechanisms linking air pollutants and PCa, highlighting the need for greater public awareness of air pollution issues.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhou
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhiyu Liu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xinyao Zhu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qilong Wu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunyang Meng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingfu Deng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Zhong Z, Yu HF, Tong Y, Li J. Development and Validation of a Non-Invasive Prediction Model for Glioma-Associated Epilepsy: A Comparative Analysis of Nomogram and Decision Tree. Int J Gen Med 2025; 18:1111-1125. [PMID: 40026809 PMCID: PMC11872099 DOI: 10.2147/ijgm.s512814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Glioma-associated epilepsy (GAE) is a common neurological symptom in glioma patients, which can worsen the condition and increase the risk of death on the basis of primary injury. Given this, accurate prediction of GAE is crucial, and this study aims to develop and validate a GAE warning recognition prediction model. Methods We retrospectively collected MRI scan imaging data and urine samples from 566 glioma patients at the Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science from August 2016 to December 2023. Least Absolute Shrinkage and Selection Operator (LASSO) regression and multivariate logistic regression analysis are used to determine independent risk factors for GAE. The nomogram and decision tree GAE visualization prediction model were constructed based on independent risk factors. The discrimination, calibration, and clinical usefulness of GAE prediction models were evaluated through receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA), respectively. Results In the training and validation datasets, the incidence of GAE was 34.50% and 33.00%, respectively. Nomogram and decision tree were composed of five independent radiomic predictors and three differential protein molecules derived from urine. The discrimination rate of area under the curve (AUC) was 0.897 (95% CI: 0.840-0.954), slightly decreased in the validation data set, reaching 0.874 (95% CI: 8.817-0.931). The calibration curve showed a high degree of consistency between the predicted GAE probability and the actual probability. In addition, DCA analysis showed that in machine learning prediction models, decision trees have higher overall net returns within the threshold probability range. Conclusion We have introduced a machine learning prediction model for GAE detection in glioma patients based on multiomics data. This model can improve the prognosis of GAE by providing early warnings and actionable feedback and prevent or reduce pathological damage and neurobiochemical changes by implementing early interventions.
Collapse
Affiliation(s)
- Zian Zhong
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Hong-Fei Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Yanfei Tong
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Jie Li
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Chen S, Lin Y, Yang H, Li Z, Li S, Chen D, Hao W, Zhang S, Chao H, Zhang J, Wang J, Li Z, Li X, Zhan Z, Liu H. A CD26 + tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification. Nat Commun 2025; 16:749. [PMID: 39820504 PMCID: PMC11739514 DOI: 10.1038/s41467-025-56112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26+ tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26+ tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing. Additionally, CD26+ tendon stem/progenitor cells contribute to heterotopic ossification and Tenascin-C-Hippo signaling is involved in this process. Targeting Tenascin-C significantly suppresses chondrogenesis of CD26+ tendon stem/progenitor cells and subsequent heterotopic ossification. Our findings provide insights into the identification of tendon stem/progenitor cells and illustrate the essential role of CD26+ tendon stem/progenitor cells in tendon healing and heterotopic bone formation.
Collapse
Affiliation(s)
- Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, PR China
| | - Hao Yang
- Pediatric Orthopaedics, Beijing Jishuitan Hospital, Peking University, Beijing, PR China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China.
| |
Collapse
|
5
|
Wnuk M, Del Sol-Fernández S, Błoniarz D, Słaby J, Szmatoła T, Żebrowski M, Martínez-Vicente P, Litwinienko G, Moros M, Lewińska A. Design of a Magnetic Nanoplatform Based on CD26 Targeting and HSP90 Inhibition for Apoptosis and Ferroptosis-Mediated Elimination of Senescent Cells. ACS Biomater Sci Eng 2025; 11:280-297. [PMID: 39631769 PMCID: PMC11733919 DOI: 10.1021/acsbiomaterials.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems. In the present study, we have designed a nanoplatform composed of iron oxide nanoparticles functionalized with an antibody against a cell surface marker of senescent cells (CD26), and loaded with the senolytic drug HSP90 inhibitor 17-DMAG (MNP@CD26@17D). We have documented its action against oxidative stress-induced senescent human fibroblasts, WI-38 and BJ cells, and anticancer drug-induced senescent cutaneous squamous cell carcinoma A431 cells, demonstrating for the first time that CD26 is a valid marker of senescence in cancer cells. A dual response to MNP@CD26@17D stimulation in senescent cells was revealed, namely, apoptosis-based early response (2 h treatment) and ferroptosis-based late response (24 h treatment). MNP@CD26@17D-mediated ferroptosis might be executed by ferritinophagy as judged by elevated levels of the ferritinophagy marker NCOA4 and a decreased pool of ferritin. As 24 h treatment with MNP@CD26@17D did not induce hemolysis in human erythrocytes in vitro, this newly designed nanoplatform could be considered as an optimal multifunctional tool to target and eliminate senescent cells of skin origin, overcoming their apoptosis resistance.
Collapse
Affiliation(s)
- Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Julia Słaby
- Doctoral
School, University of Rzeszow, Rejtana 16C, Rzeszow 35-959, Poland
| | - Tomasz Szmatoła
- Center of
Experimental and Innovative Medicine, University
of Agriculture in Krakow, al. Mickiewicza 24/28, Cracow 30-059, Poland
| | - Michał Żebrowski
- Faculty of
Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Pablo Martínez-Vicente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | | | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro de
Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| |
Collapse
|
6
|
Amanatidou D, Eleftheriou P, Petrou A, Geronikaki A, Lialiaris T. Τhiazolidine-4-One Derivatives with Variable Modes of Inhibitory Action Against DPP4, a Drug Target with Multiple Activities and Established Role in Diabetes Mellitus Type II. Pharmaceuticals (Basel) 2025; 18:52. [PMID: 39861115 PMCID: PMC11768251 DOI: 10.3390/ph18010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues. Despite the research, a low number of uncompetitive and non-competitive inhibitors, which could be of worth for pharmaceutical and mechanism studies, was mentioned. Methods: In the present study sixteen 3-(benzo[d]thiazol-2-yl)-2-aryl thiazolidin-4-ones were selected for evaluation, based on structural characteristics and docking analysis and were tested in vitro for DPP4 inhibitory action using H-Gly-Pro-amidomethyl coumarin substrate. Their mode of inhibition was also in vitro explored. Results: Twelve compounds exhibited IC50 values at the nM range with the best showing IC50 = 12 ± 0.5 nM, better than sitagliptin. Most compounds exhibited a competitive mode of inhibition. Inhibition modes of uncompetitive, non-competitive, and mixed type were also identified. Docking analysis was in accordance with the in vitro results, with a linear correlation of logIC50 with a Probability of Binding Factor(PF) derived using docking analysis to a specific target box and to the whole enzyme. According to the docking results, two probable sites of binding for uncompetitive inhibitors were highlighted in the wider area of the active site and in the propeller loop. Conclusions: Potent inhibitors with IC50 at the nM range and competitive, non-competitive, uncompetitive, and mixed modes of action, one better than sitagliptin, were found. Docking analysis was used to estimate probable sites and ways of binding. However, crystallographic or NMR studies are needed to elucidate the exact way of binding especially for uncompetitive and non-competitive inhibitors.
Collapse
Affiliation(s)
- Dionysia Amanatidou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.G.)
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.G.)
| | - Theodoros Lialiaris
- School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
7
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
8
|
Niazmand A, Nedaeinia R, Vatandoost N, Jafarpour S, Safabakhsh S, Kolahdouz M, Ferns GA, Salehi R. The impacts of dipeptidyl- peptidase 4 (DPP-4) inhibitors on common female malignancies: A systematic review. Gene 2024; 927:148659. [PMID: 38866262 DOI: 10.1016/j.gene.2024.148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The inhibition of dipeptidyl- peptidase 4 (DPP-4) is an essential therapy for controlling hyperglycemia in patients with type 2 diabetes (T2DM). However, the role of DPP-4 in cancer is not yet clear, with some studies suggesting that it may either promote or suppress tumors. This makes it crucial to have personalized treatment for diabetic women with cancer to effectively manage their diabetes whilst and preventing cancer mortality. To address this issue, we conducted an integrative in-silico analysis and systematic review of the literature to comprehensively examine the relationship between DPP-4 expression and the effects of its inhibitors on prevalent female malignancies. We specifically chose studies that examined the effects of DPP-4 expression and DPP-4 inhibition (DPP-4i) on prevalent cancers in women, such as breast cancer (BC), ovarian cancer (OV), cervical cancer (CC), and endometrial cancer (EC). These studies comprised those conducted both in vivo and in vitro. The review of the literature indicated that DPP-4i may worsen aggressive traits such as metastasis, Epithelial-to-mesenchymal transition (EMT), and chemotherapy resistance in BC cells. However, cohort studies on diabetic and BC patients did not confirm these findings. In vitro studies indicate that on OV, DPP-4 upregulation has been shown to prevent metastasis, while CCappears to be influenced by DPP-4 expression in terms of cell migration. sitagliptin, a pharmaceutical inhibitor of DPP-4, had a significant impact on reducing adhesion in CC cells in vitro. Overexpression of DPP-4 increased cell migration and proliferation in CC and EC cells, and hence the application of sitagliptin is expected to prevent this effect. On the other hand, the result of in-silico data confirmed that a significant correlation exists between DPP-4 expression and immune cell infiltration in breast, ovarian, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) as well as downregulated in these cancers compared to their normal tissue samples. Furthermore, a significant (p < 0.05) effect on OS of BC and CESC patients has been reported due to the elevation of DPP-4 methylation on a specific CPG Island. These findings could aid in creating specialized treatments for diabetic women with specific malignancies, but caution should be exercised when considering the patient's medical history and cancer type.
Collapse
Affiliation(s)
- Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, USA
| | - Mahsa Kolahdouz
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Vázquez-Mera S, Martelo-Vidal L, Miguéns-Suárez P, Bravo SB, Saavedra-Nieves P, Arias P, Ferreiro-Posse A, Vázquez-Lago J, Salgado FJ, González-Barcala FJ, Nieto-Fontarigo JJ. Exploring CD26 -/lo subpopulations of lymphocytes in asthma phenotype and severity: A novel CD4 + T cell subset expressing archetypical granulocyte proteins. Allergy 2024; 79:3005-3021. [PMID: 39319599 DOI: 10.1111/all.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26-/lo, CD26int and CD26hi subsets within different lymphocyte populations. METHODS The proportion of CD26-/lo, CD26int and CD26hi subsets within CD4+ effector T cells (Teff), total CD4- lymphocytes, γδ-T cells, NK cells and NKT cells was measured in peripheral blood samples from healthy (N = 30) and asthma (N = 119) donors with different phenotypes/severities by flow cytometry. We performed K-means clustering analysis and further characterised the CD4+CD26-/lo Teff cell subset by LC-MS/MS and immunofluorescence. RESULTS Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4-CD26hi cells, which negatively correlated with systemic inflammation. Eosinophilic asthma displayed a general expansion of CD26-/lo subsets. Specifically, CD4+CD26-/lo Teff expansion was confirmed in asthma, especially in atopic patients. Proteomic characterisation of this subset with a TEM/TEMRA phenotype revealed upregulated levels of innate (e.g. MPO and RNASE2) and cytoskeleton/extracellular matrix (e.g. MMP9 and ACTN1) proteins. Immunofluorescence assays confirmed the presence of atypical proteins for CD4+ T cells, and an enrichment in 'flower-like' nuclei and MMP9/RNASE2 levels in CD4+CD26-/lo Teff compared to CD4+ T lymphocytes. CONCLUSION There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4+CD26-/loTEMRA cells expressing innate proteins specific to eosinophils/neutrophils could be determinant in sustaining long-term inflammation in adult allergic asthma.
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paula Saavedra-Nieves
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Ferreiro-Posse
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Vázquez-Lago
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Javier González-Barcala
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
10
|
Sabater A, Sanchis P, Seniuk R, Pascual G, Anselmino N, Alonso DF, Cayol F, Vazquez E, Marti M, Cotignola J, Toro A, Labanca E, Bizzotto J, Gueron G. Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression. Int J Mol Sci 2024; 25:11356. [PMID: 39518911 PMCID: PMC11545501 DOI: 10.3390/ijms252111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using advanced machine learning techniques, including Random Forest and Lasso regression, applied to large-scale transcriptomic datasets. The resulting seven-gene signature (KMT5C, DPP4, TYMS, CDC25B, IRF5, MEN1, and DNMT3B) was validated across independent cohorts and patient-derived xenograft (PDX) models. This signature demonstrated strong prognostic value for progression-free, disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that exhibit this molecular signature, even when they were not histopathologically classified as NEPC. This dual prognostic and classifier capability makes the seven-gene signature a robust tool for personalized medicine, providing a valuable resource for predicting disease progression and guiding treatment strategies in PCa management.
Collapse
Affiliation(s)
- Agustina Sabater
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Rocio Seniuk
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Gaston Pascual
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel F. Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina
| | - Federico Cayol
- Sector de Oncología Clínica, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Elba Vazquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Marcelo Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ayelen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
11
|
Abdel Fattah Tarrad N, Gamil Shaker O, Abdelkawy M, Hassan S. Association of serum and salivary dipeptidyl peptidase-4 (DPP-4) with oral cancerous and precancerous lesions; an observational diagnostic accuracy study. BMC Oral Health 2024; 24:1206. [PMID: 39390508 PMCID: PMC11468375 DOI: 10.1186/s12903-024-04939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enhancing the prognosis and treatment outcomes of oral cancer relies heavily on its early detection. This study aims to establish a connection between serum and salivary dipeptidyl peptidase-4 (DPP-4) levels and oral squamous cell carcinoma (OSCC), comparing them with oral potentially malignant lesions (OPMLs) and control subjects and validating salivary DPP-4 as a diagnostic marker for the early detection of oral cancer. METHODOLOGY Forty-five systemically healthy individuals were categorized into three groups: Group I consisted of 15 patients diagnosed with OSCC, Group II comprised 15 patients with OPMLs (including leukoplakia and oral lichen planus), and Group III included 15 participants without any oral mucosal lesions. Serum and whole unstimulated salivary samples were collected from all participants to assess DPP-4 levels using an enzyme-linked immunosorbent assay (ELISA) kit. Receiver operating characteristic (ROC) analysis was conducted to determine the area under the curve (AUC), sensitivity, specificity, and diagnostic accuracy of DPP-4. RESULTS Both serum and salivary DPP-4 levels were highest in the healthy group, followed by OPMLs, and lowest in the OSCC group, with statistically significant differences observed. ROC analysis demonstrated excellent diagnostic accuracy of salivary DPP-4 in distinguishing OSCC from healthy individuals, OPMLs from healthy individuals, and OSCC from OPMLs, with accuracies of 100%, 100%, and 96.67%, respectively. Salivary DPP-4 levels also exhibited a statistically significant correlation with OSCC grades. CONCLUSIONS DPP-4 appears to play a protective, anti-oncogenic role in maintaining oral tissue health. The remarkable diagnostic accuracy of both serum and salivary DPP-4 in discriminating between OSCC, OPMLs, and healthy controls suggests its potential utility as a well-established marker for early oral cancer diagnosis. Salivary DPP-4, being non-invasive, could serve as a convenient chair-side diagnostic tool for the early detection of OSCC. CLINICAL TRIAL REGISTRATION The study was retrospectively registered on clinicaltrial.gov with NCT06087042, date of registration (first posted date): 17/10/2023.
Collapse
Affiliation(s)
| | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Abdelkawy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Sandy Hassan
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Fayoum & Ahram-Candian Universities, Fayoum, Cairo, Egypt
| |
Collapse
|
12
|
Ali S, Fortune K, Masur J, Viscuse PV, Devitt ME, Dreicer R, Skelton WP. Impact of DPP4 Inhibition on Survival in Patients With Metastatic Renal Cell Carcinoma and Type 2 Diabetes Mellitus. Clin Genitourin Cancer 2024; 22:102173. [PMID: 39191617 DOI: 10.1016/j.clgc.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Dipeptidyl peptidase IV (DPP4) is a cell surface receptor that possesses numerous substrates implicated in tumor growth and metastasis. Prior studies have suggested an association between DPP4 inhibition and increased progression-free survival (PFS) and overall survival (OS) in colorectal and lung cancers but no benefit in breast or pancreatic cancers. However, no studies to date have explored the impact of DPP4 inhibitors (DPP4i) in patients with metastatic renal cell carcinoma (mRCC). In this study we present a first-time analysis examining the impact of DPP4i use on PFS and OS in patients with mRCC and type 2 diabetes mellitus. METHODS We performed a retrospective analysis of patients with diabetes and mRCC at the University of Virginia. The study group comprised those whose diabetic regimen included a DPP4i during mRCC treatment. The control group comprised patients whose diabetic regimen did not include a DPP4i during treatment. Cox regression analysis was utilized to determine the hazard ratios of progression and death between groups. RESULTS Fifty-nine patients were eligible for the study, with 11 in the DPP4i group and 48 in the control group. Cancer progression occurred in 81.8% of patients in the DPP4i group and 66.7% in the control group. No statistically significant differences on PFS (HR: 1.60 [95% CI, 0.75-3.43]) or OS (HR: 0.69 [95% CI, 0.28-1.70]) were found between groups. CONCLUSIONS This retrospective study explored the effect of DPP4i on outcomes in patients with mRCC and diabetes. DPP4i have been shown to have favorable effects on PFS and OS in some cancers but not in others. The results of this study suggest that DPP4i do not confer clinical benefit in patients with mRCC. Larger studies are warranted to better elucidate the effect of DPP4i in mRCC and the mechanisms underlying differential tumor response to these agents in different malignancies.
Collapse
Affiliation(s)
- Soham Ali
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Kathryn Fortune
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Jack Masur
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Paul Vincent Viscuse
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Michael Edward Devitt
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Robert Dreicer
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - William Paul Skelton
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA.
| |
Collapse
|
13
|
Sabater A, Sanchis P, Seniuk R, Pascual G, Anselmino N, Alonso D, Cayol F, Vazquez E, Marti M, Cotignola J, Toro A, Labanca E, Bizzotto J, Gueron G. Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven 7-Gene Stemness Signature that Predicts Progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.24.24314303. [PMID: 39399052 PMCID: PMC11469473 DOI: 10.1101/2024.09.24.24314303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using advanced machine learning techniques, including Random Forest and Lasso regression, applied to large-scale transcriptomic datasets. The resulting 7-gene signature (KMT5C, MEN1, TYMS, IRF5, DNMT3B, CDC25B and DPP4) was validated across independent cohorts and patient-derived xenograft (PDX) models. The signature demonstrated strong prognostic value for progression-free, disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that exhibit this molecular signature, even when they were not histopathologically classified as NEPC. This dual prognostic and classifier capability makes the 7-gene signature a robust tool for personalized medicine, providing a valuable resource for predicting disease progression and guiding treatment strategies in PCa management.
Collapse
Affiliation(s)
- Agustina Sabater
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Rocio Seniuk
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Gaston Pascual
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina
| | - Federico Cayol
- Sector de Oncología Clínica, Hospital Italiano de Buenos Aires, Buenos Aires, C1199ABB, Argentina
| | - Elba Vazquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Marcelo Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Ayelen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
14
|
Lorusso B, Nogara A, Fioretzaki R, Corradini E, Bove R, Roti G, Gherli A, Montanaro A, Monica G, Cavazzini F, Bonomini S, Graiani G, Silini EM, Gnetti L, Pilato FP, Cerasoli G, Quaini F, Lagrasta CAM. CD26 Is Differentially Expressed throughout the Life Cycle of Infantile Hemangiomas and Characterizes the Proliferative Phase. Int J Mol Sci 2024; 25:9760. [PMID: 39337249 PMCID: PMC11432178 DOI: 10.3390/ijms25189760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Infantile hemangiomas (IHs) are benign vascular neoplasms of childhood (prevalence 5-10%) due to the abnormal proliferation of endothelial cells. IHs are characterized by a peculiar natural life cycle enclosing three phases: proliferative (≤12 months), involuting (≥13 months), and involuted (up to 4-7 years). The mechanisms underlying this neoplastic disease still remain uncovered. Twenty-seven IH tissue specimens (15 proliferative and 12 involuting) were subjected to hematoxylin and eosin staining and a panel of diagnostic markers by immunohistochemistry. WT1, nestin, CD133, and CD26 were also analyzed. Moreover, CD31pos/CD26pos proliferative hemangioma-derived endothelial cells (Hem-ECs) were freshly isolated, exposed to vildagliptin (a DPP-IV/CD26 inhibitor), and tested for cell survival and proliferation by MTT assay, FACS analysis, and Western blot assay. All IHs displayed positive CD31, GLUT1, WT1, and nestin immunostaining but were negative for D2-40. Increased endothelial cell proliferation in IH samples was documented by ki67 labeling. All endothelia of proliferative IHs were positive for CD26 (100%), while only 10 expressed CD133 (66.6%). Surprisingly, seven involuting IH samples (58.3%) exhibited coexisting proliferative and involuting aspects in the same hemangiomatous lesion. Importantly, proliferative areas were characterized by CD26 immunolabeling, at variance from involuting sites that were always CD26 negative. Finally, in vitro DPP-IV pharmacological inhibition by vildagliptin significantly reduced Hem-ECs proliferation through the modulation of ki67 and induced cell cycle arrest associated with the upregulation of p21 protein expression. Taken together, our findings suggest that CD26 might represent a reliable biomarker to detect proliferative sites and unveil non-regressive IHs after a 12-month life cycle.
Collapse
Affiliation(s)
- Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Antonella Nogara
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Rodanthi Fioretzaki
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 185 37 Piraeus, Greece
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Roberta Bove
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Gregorio Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Filippo Cavazzini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Sabrina Bonomini
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Gallia Graiani
- Center of Dental Medicine, University of Parma, 43126 Parma, Italy;
| | - Enrico Maria Silini
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Letizia Gnetti
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Francesco Paolo Pilato
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Giuseppe Cerasoli
- Pediatric Surgery, Ospedale dei Bambini of Parma, University Hospital of Parma, 43126 Parma, Italy;
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| |
Collapse
|
15
|
Tanaka H, Sugawara S, Tanaka Y, Loo TM, Tachibana R, Abe A, Kamiya M, Urano Y, Takahashi A. Dipeptidylpeptidase-4-targeted activatable fluorescent probes visualize senescent cells. Cancer Sci 2024; 115:2762-2773. [PMID: 38802068 PMCID: PMC11309953 DOI: 10.1111/cas.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Senescent cells promote cancer development and progression through chronic inflammation caused by a senescence-associated secretory phenotype (SASP). Although various senotherapeutic strategies targeting senescent cells have been developed for the prevention and treatment of cancers, technology for the in vivo detection and evaluation of senescent cell accumulation has not yet been established. Here, we identified activatable fluorescent probes targeting dipeptidylpeptidase-4 (DPP4) as an effective probe for detecting senescent cells through an enzymatic activity-based screening of fluorescent probes. We also determined that these probes were highly, selectively, and rapidly activated in senescent cells during live cell imaging. Furthermore, we successfully visualized senescent cells in the organs of mice using DPP4-targeted probes. These results are expected to lead to the development of a diagnostic technology for noninvasively detecting senescent cells in vivo and could play a role in the application of DPP4 prodrugs for senotherapy.
Collapse
Affiliation(s)
- Hisamichi Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of JFCR Cancer Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Sho Sugawara
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoko Tanaka
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tze Mun Loo
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Ryo Tachibana
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Atsuki Abe
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mako Kamiya
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
- Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Takahashi
- Division of Cellular SenescenceCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Cancer Cell Communication Project, NEXT‐Ganken ProgramJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
16
|
Yang M, Yan R, Sha R, Wang X, Zhou S, Li B, Zheng Q, Cao Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin Nutr 2024; 43:1769-1780. [PMID: 38936303 DOI: 10.1016/j.clnu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER ChiCTR2300076741; https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Mingfeng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruike Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruohe Sha
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xinxin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shiting Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baifeng Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University 110122, Shenyang, Liaoning Province, PR China.
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Tuersun A, Hou G, Cheng G. Pancreatitis and Pancreatic Cancer Risk Among Patients With Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors: An Updated Meta-Analysis of Randomized Controlled Trials. Clin Ther 2024; 46:650-656. [PMID: 39084911 DOI: 10.1016/j.clinthera.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE This meta-analysis sought to assess the relationship between dipeptidyl peptidase-4 inhibitors (DPP-4) and the risk of pancreatitis and pancreatic cancer by synthesizing data from randomized, controlled trials, in light of the conflicting findings from observational studies and previous meta-analyses. METHODS Cochrane, Embase, ClinicalTrials.gov, and PubMed databases that compared the use of DPP-4 inhibitors and that reported pancreatitis and pancreatic cancer events in patients with diabetes mellitus Type 2 (T2DM) were searched using specific terms. Studies were included if they satisfied the following inclusion criteria: They were randomized trials comparing DPP-4 inhibitors use in patients with T2DM; The study's duration was longer than 24 weeks; And they reported pancreatitis and pancreatic cancer events. Stata 15 MP was used to analyze the data, and odds ratios (OR) with 95% confidence intervals (CI) were used to represent the results. FINDINGS A total of 81,737 participants with T2DM were included in the analysis. The results showed that during a mean follow-up period of 24 to 520 weeks, The use of DPP-4 inhibitors was not associated with an increased risk of pancreatitis (Peto-OR 0.97; 95% CI: 0.74, 1.27) or pancreatic cancer (Peto-OR = 0.88; 95% CI: 0.59, 1.30). IMPLICATIONS Current evidence fails to validate a significant correlation between DPP-4 therapy and pancreatitis or pancreatic cancer. However, subgroup analyses showed that sitagliptin was associated with a significant reduction in pancreatitis risk compared to the control group; furthermore, when comparing different types of control medications, a significant decrease in pancreatic cancer risk was observed among DPP-4 users compared to GLP-1 users.
Collapse
Affiliation(s)
- Adili Tuersun
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guanxin Hou
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Gang Cheng
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
19
|
Hu X, Ye Q, Lu H, Wu Z, Chen S, Zheng R. Estrogen-mediated DNMT1 and DNMT3A recruitment by EZH2 silences miR-570-3p that contributes to papillary thyroid malignancy through DPP4. Clin Epigenetics 2024; 16:81. [PMID: 38890707 PMCID: PMC11184720 DOI: 10.1186/s13148-024-01685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. Studies have indicated that estrogen can regulate the expression of miRNAs in numerous malignancies. MiR-570-3p has been shown to have a regulatory function in various cancers. However, studies of the regulatory function of miR-570-3p and a direct link between estrogen (especially estradiol E2) and miR-570-3p in PTC have not been done. METHODS Expression of miR-570-3p and its downstream target DPP4 in PTC tissues and cells was predicted using bioinformatics and validated by qRT-PCR and western blot assays. We then performed a series of gain-and-loss experiments to assess the functional significance of miR-570-3p/DPP4 axis in PTC progression in vitro and in vivo. Additionally, the methylation of the miR-570-3p promoter region was examined via bioinformatics analysis and MSP. Finally, the effects of E2 on PTC progression and the correlation between DNMT1/DNMT3A and EZH2 were predicted by bioinformatic tools and proved by luciferase reporter, ChIP, and co-IP assays. RESULTS In PTC tumor tissues and cell lines, there was a lower expression level and a higher methylation level of miR-570-3p compared to normal tissues and cell lines. DPP4 was identified as the downstream target of miR-570-3p. Overexpression of miR-570-3p reduced the proliferative, migratory, and invasive capabilities, and promoted apoptosis, while overexpression of DPP4 reversed these effects in PTC cells. It was also discovered that DNMT1 and DNMT3A increased the CpG methylation level of the miR-570-3p promoter in an EZH2-dependent manner, which led to decreased expression of miR-570-3p. Furthermore, we observed that estrogen (E2) enhanced the methylation of miR-570-3p and suppressed its expression levels, resulting in augmented tumor growth in vivo in PTC. CONCLUSION Estrogen regulates the EZH2/DNMTs/miR-570-3p/DPP4 signaling pathway to promote PTC progression.
Collapse
Affiliation(s)
- Xiarong Hu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Qingyao Ye
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - HuanQuan Lu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Zhiming Wu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Siyuan Chen
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China.
| |
Collapse
|
20
|
Hu H, Tang L, Zhao Y, Cheng J, Huang M, You Y, Zou P, Lei Q, Zhu X, Guo AY. Single-cell analysis of the survival mechanisms of fratricidal CAR-T targeting of T cell malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102225. [PMID: 38948332 PMCID: PMC11214519 DOI: 10.1016/j.omtn.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.
Collapse
Affiliation(s)
- Hui Hu
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Tang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuyan Zhao
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Lei
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Yuan Guo
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
21
|
Chan JML, Chang YC, Chan HC, Chan HC, Chang WC, Wang LF, Tsai TH, Chen YJ, Huang WC. FK228 suppress the growth of human malignant pleural mesothelioma tumor independent to epithelioid or non-epithelioid histology. Mol Med 2024; 30:73. [PMID: 38822233 PMCID: PMC11143749 DOI: 10.1186/s10020-024-00835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024] Open
Abstract
Human malignant pleural mesothelioma (hMPM) is an aggressive, rare disease with a poor prognosis. Histologically, MPM is categorized into epithelioid, biphasic, and sarcomatoid subtypes, with the epithelioid subtype generally displaying a better response to treatment. Conversely, effective therapies for the non-epithelioid subtypes are limited. This study aimed to investigate the potential role of FK228, a histone deacetylase inhibitor, in the suppression of hMPM tumor growth. We conducted a comprehensive analysis of the histological and molecular characteristics of two MPM cell lines, CRL-5820 (epithelioid) and CRL-5946 (non-epithelioid). CRL-5946 cells and non-epithelioid patient-derived xenografted mice exhibited heightened growth rates compared to those with epithelioid MPM. Both CRL-5946 cells and non-epithelioid mice displayed a poor response to cisplatin. However, FK228 markedly inhibited the growth of both epithelioid and non-epithelioid tumor cells in vitro and in vivo. Cell cycle analysis revealed FK228-induced G1/S and mitotic arrest in MPM cells. Caspase inhibitor experiments demonstrated that FK228-triggered apoptosis occurred via a caspase-dependent pathway in CRL-5946 but not in CRL-5820 cells. Additionally, a cytokine array analysis showed that FK228 reduced the release of growth factors, including platelet-derived and vascular endothelial growth factors, specifically in CRL-5946 cells. These results indicate that FK228 exhibits therapeutic potential in MPM by inducing cytotoxicity and modulating the tumor microenvironment, potentially benefiting both epithelioid and non-epithelioid subtypes.
Collapse
Affiliation(s)
- James Mei-Lin Chan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsiu-Chuan Chan
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Chang
- Pathology Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Liu-Fang Wang
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Wen-Chien Huang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
22
|
Tóth F, Moftakhar Z, Sotgia F, Lisanti MP. In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods. Cells 2024; 13:841. [PMID: 38786063 PMCID: PMC11120107 DOI: 10.3390/cells13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.
Collapse
Affiliation(s)
- Fanni Tóth
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Wien, Vienna, Austria
| | - Zahra Moftakhar
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Federica Sotgia
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Michael P. Lisanti
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| |
Collapse
|
23
|
Sánchez-Marín D, Silva-Cázares MB, González-Del Carmen M, Campos-Parra AD. Drug repositioning in thyroid cancer: from point mutations to gene fusions. Front Oncol 2024; 14:1407511. [PMID: 38779099 PMCID: PMC11109414 DOI: 10.3389/fonc.2024.1407511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The diagnosis of thyroid cancer (TC) has increased dramatically in recent years. Papillary TC is the most frequent type and has shown a good prognosis. Conventional treatments for TC are surgery, hormonal therapy, radioactive iodine, chemotherapy, and targeted therapy. However, resistance to treatments is well documented in almost 20% of all cases. Genomic sequencing has provided valuable information to help identify variants that hinder the success of chemotherapy as well as to determine which of those represent potentially druggable targets. There is a plethora of targeted therapies for cancer, most of them directed toward point mutations; however, chromosomal rearrangements that generate fusion genes are becoming relevant in cancer but have been less explored in TC. Therefore, it is relevant to identify new potential inhibitors for genes that are recurrent in the formation of gene fusions. In this review, we focus on describing potentially druggable variants and propose both point variants and fusion genes as targets for drug repositioning in TC.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico
| | - Macrina Beatriz Silva-Cázares
- Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí, (UASL), Matehuala, San Luis Potosí, Mexico
| | | | - Alma D. Campos-Parra
- Instituto de Salud Pública, Universidad Veracruzana (UV), Xalapa, Veracruz, Mexico
| |
Collapse
|
24
|
Gong Y, Zhang C, Li H, Yu X, Li Y, Liu Z, He R. Ferroptosis-Related lncRNA to Predict the Clinical Outcomes and Molecular Characteristics of Kidney Renal Papillary Cell Carcinoma. Curr Issues Mol Biol 2024; 46:1886-1903. [PMID: 38534739 DOI: 10.3390/cimb46030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) is a highly heterogeneous type of kidney cancer, resulting in limited effective prognostic targets for KIRP patients. Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in the regulation of ferroptosis and iron metabolism, making them potential targets for the treatment and prognosis of KIRP. In this study, we constructed a ferroptosis-related lncRNA risk score model (FRM) based on the TCGA-KIRP dataset, which represents a novel subtype of KIRP not previously reported. The model demonstrated promising diagnostic accuracy and holds potential for clinical translation. We observed significant differences in metabolic activities, immune microenvironment, mutation landscape, ferroptosis sensitivity, and drug sensitivity between different risk groups. The high-risk groups exhibit significantly higher fractions of cancer-associated fibroblasts (CAFs), hematopoietic stem cells (HSC), and pericytes. Drugs (IC50) analysis provided a range of medication options based on different FRM typing. Additionally, we employed single-cell transcriptomics to further analyze the impact of immune invasion on the occurrence and development of KIRP. Overall, we have developed an accurate prognostic model based on the expression patterns of ferroptosis-related lncRNAs for KIRP. This model has the potential to contribute to the evaluation of patient prognosis, molecular characteristics, and treatment modalities, and can be further translated into clinical applications.
Collapse
Affiliation(s)
- Yubo Gong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenchen Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hao Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaojie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuejia Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
25
|
Buczyńska A, Kościuszko M, Krętowski AJ, Popławska-Kita A. Exploring the clinical utility of DPP-IV and SGLT2 inhibitors in papillary thyroid cancer: a literature review. Front Pharmacol 2024; 15:1323083. [PMID: 38292938 PMCID: PMC10824900 DOI: 10.3389/fphar.2024.1323083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
In the realm of clinical management, Papillary Thyroid Cancer (PTC) stands out as a prevalent thyroid malignancy, characterized by significant metabolic challenges, particularly in the context of carbohydrate metabolism. Recent studies have unveiled promising applications of Dipeptidyl Peptidase-IV (DPP-IV) and Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, which are conventionally employed in the treatment of type 2 diabetes mellitus (T2DM), as potential adjuncts in anticancer therapy. DPP-IV and SGLT2 inhibitors can be imply to counteract the Warburg effect in cancer, with a specific focus on PTC, owing to their potential metabolic advantages and their influence on the tumor microenvironment, achieved by imposing restrictions on glucose accessibility. Consequently, a comprehensive review has been undertaken, involving meticulous examination of the existing body of evidence pertaining to the utilization of DPP-IV and SGLT2 inhibitors in the context of PTC. The mechanisms of action inherent to these inhibitors have been thoroughly explored, drawing upon insights derived from preclinical investigations. Furthermore, this review initiates discussions concerning the implications for future research directions and the formulation of innovative therapeutic strategies for PTC. As the intricate interplay between carbohydrate metabolism, the Warburg effect, and cancer progression garners increasing attention, attaining a comprehensive understanding of the roles played by DPP-IV and SGLT2 inhibitors in PTC management may serve as the cornerstone for novel approaches aimed at enhancing patient care and broadening the spectrum of available therapeutic modalities.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
27
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
28
|
Sun S, Cai X, Shao J, Zhang G, Liu S, Wang H. Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20599-20623. [PMID: 38124567 DOI: 10.3934/mbe.2023911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The association between adhesion function and papillary thyroid carcinoma (PTC) is increasingly recognized; however, the precise role of adhesion function in the pathogenesis and prognosis of PTC remains unclear. In this study, we employed the robust rank aggregation algorithm to identify 64 stable adhesion-related differentially expressed genes (ARDGs). Subsequently, using univariate Cox regression analysis, we identified 16 prognostic ARDGs. To construct PTC survival risk scoring models, we employed Lasso Cox and multivariate + stepwise Cox regression methods. Comparative analysis of these models revealed that the Lasso Cox regression model (LPSRSM) displayed superior performance. Further analyses identified age and LPSRSM as independent prognostic factors for PTC. Notably, patients classified as low-risk by LPSRSM exhibited significantly better prognosis, as demonstrated by Kaplan-Meier survival analyses. Additionally, we investigated the potential impact of adhesion feature on energy metabolism and inflammatory responses. Furthermore, leveraging the CMAP database, we screened 10 drugs that may improve prognosis. Finally, using Lasso regression analysis, we identified four genes for a diagnostic model of lymph node metastasis and three genes for a diagnostic model of tumor. These gene models hold promise for prognosis and disease diagnosis in PTC.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Beihua University, Jilin 132013, China
| | - Xiaoni Cai
- Department of General Surgery, Shangyu People's Hospital of Shaoxing, the Second Affiliated Hospital of Zhejiang University Medical College Hospital, Shaoxing 312399, China
| | - Jinhai Shao
- Department of General Surgery, Shangyu People's Hospital of Shaoxing, the Second Affiliated Hospital of Zhejiang University Medical College Hospital, Shaoxing 312399, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun 130061, China
| | - Shan Liu
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Hongsheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Beihua University, Jilin 132013, China
| |
Collapse
|
29
|
Lagunas-Rangel FA, Liao S, Williams MJ, Trukhan V, Fredriksson R, Schiöth HB. Drosophila as a Rapid Screening Model to Evaluate the Hypoglycemic Effects of Dipeptidyl Peptidase 4 (DPP4) Inhibitors: High Evolutionary Conservation of DPP4. Biomedicines 2023; 11:3032. [PMID: 38002032 PMCID: PMC10669173 DOI: 10.3390/biomedicines11113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Sifang Liao
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| |
Collapse
|
30
|
Awad AM, Hansen K, Del Rio D, Flores D, Barghash RF, Kakkola L, Julkunen I, Awad K. Insights into COVID-19: Perspectives on Drug Remedies and Host Cell Responses. Biomolecules 2023; 13:1452. [PMID: 37892134 PMCID: PMC10604481 DOI: 10.3390/biom13101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Kamryn Hansen
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Diana Del Rio
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Derek Flores
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
31
|
Zhang L, Hu A, Wang Y, Yang Y, Liu Y, Xu L, Wang L, Cheng Z. Medication adjustment of afatinib and combination therapy with sitagliptin for alleviating afatinib-induced diarrhea in rats. Neoplasia 2023; 43:100922. [PMID: 37567055 PMCID: PMC10423691 DOI: 10.1016/j.neo.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Afatinib, as the first-line treatment for non-small cell lung cancer (NSCLC), causes severe gastrointestinal adverse reactions that greatly affect patients' quality of life and even potentially result in treatment discontinuation. Multiple dose adjustments and concomitant use of anti-diarrheal medications are commonly employed to manage diarrhea, also allowing for a recovery period between each adjustment. However, these approaches are based on empirical guidance and still have limitations. This study aims to explore reliable approaches to alleviate diarrhea by focusing on two strategies: adjusting the dosing regimen of afatinib itself and implementing combination therapy. In this study, we firstly revealed a dose-dependent relationship between afatinib-induced diarrhea and gastrointestinal epithelial damage, resulting in atrophy, reduced expression of tight junction proteins, and increased permeability. We further found that even after discontinuation of the medication, although the severity of diarrhea had improved to baseline, the tight junction proteins and permeability of the intestinal epithelium did not fully recover, and the pharmacokinetics studies showed that drug absorption significantly increased than normal. This indicated the recovery period was longer than expected and may accelerate the occurrence of subsequent episodes of diarrhea. Hence, it would be prudent to consider adjustments to the starting dose or the recovery interval. Furthermore, we initially investigated the relationship between DPP enzyme and afatinib-induced diarrhea and found a significant decrease in plasma DPP enzyme activity following afatinib-induced diarrhea. Subsequently, we conducted continuous treatment with sitagliptin and observed significant improvement in afatinib-induced diarrhea. We observed that sitagliptin can promote the production of anti-inflammatory factors, increase the expression of intestinal epithelial tight junction proteins, and improve intestinal microbiota, further validating the mechanism through the use of GLP-23-33 as GLP-2 receptor inhibitor. In conclusion, sitagliptin exhibits promising potential as a therapeutic option for managing afatinib-induced diarrhea. Taken together, our study provides valuable insights into alleviating afatinib-induced diarrhea through both afatinib medication adjustment and sitagliptin combination therapy.
Collapse
Affiliation(s)
- Li Zhang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Anna Hu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yan Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yuxin Yang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yalan Liu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lian Xu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lei Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
32
|
Wen Y, Lin C, Hsiao C, Wang S, Huang H, Lin Y, Ho K, Chang L, Yang S, Chien M. Genetic variants of dipeptidyl peptidase IV are linked to the clinicopathologic development of prostate cancer. J Cell Mol Med 2023; 27:2507-2516. [PMID: 37533175 PMCID: PMC10468658 DOI: 10.1111/jcmm.17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
CD26/dipeptidyl peptidase IV (DPP4) is a multifunctional cell-surface glycoprotein widely found in many cell types, and a soluble form is present in body fluids. There is longstanding evidence indicating a tumour-promoting or -suppressive role of DPP4 in different cancer types. However, studies focusing on the impacts of genetic variants of DPP4 on cancers are very rare. Herein, we conducted a case-control study to evaluate whether single-nucleotide polymorphisms (SNPs) of DPP4 were associated with the risk or clinicopathologic development of prostate cancer (PCa). We genotyped four loci of DPP4 SNPs, including rs7608798 (A/G), rs3788979 (C/T), rs2268889 (T/C) and rs6741949 (G/C), using a TaqMan allelic discrimination assay in 704 PCa patients and 704 healthy controls. Our results showed that PCa patients with the DPP4 rs7608798 AG+GG genotype or rs2268889 TC+CC genotype had a higher risk of developing an advanced clinical primary tumour (cT) stage (adjusted odds ratio (AOR): 1.680, 95% confidence interval (CI): 1.062-2.659, p = 0.025; AOR: 1.693, 95% CI: 1.092-2.624, p = 0.018). Additionally, in The Cancer Genome Atlas (TCGA) database, we observed that lower DPP4 expression levels were correlated with higher Gleason scores, advanced cT and pathological stages, tumour metastasis, and shorter progression-free survival rates in PCa patients. Furthermore, overexpression of DPP4 suppressed migration/invasion of metastatic PC3 PCa cells. Our findings suggest that DPP4 levels may affect the progression of PCa, and the DPP4 rs7608798 and rs2268889 SNPs are associated with the clinicopathologic development of PCa in a Taiwanese population.
Collapse
Affiliation(s)
- Yu‐Ching Wen
- Department of Urology, School of MedicineCollege of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK), Taipei Medical UniversityTaipeiTaiwan
- Department of UrologyWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
| | - Chia‐Yen Lin
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chi‐Hao Hsiao
- Department of Urology, School of MedicineCollege of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK), Taipei Medical UniversityTaipeiTaiwan
- Department of UrologyWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
| | - Shian‐Shiang Wang
- Division of Urology, Department of SurgeryTaichung Veterans General HospitalTaichungTaiwan
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Applied ChemistryNational Chi Nan UniversityNantouTaiwan
| | - Hsiang‐Ching Huang
- Graduate Institute of Medical SciencesCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Yung‐Wei Lin
- Department of Urology, School of MedicineCollege of Medicine and TMU Research Center of Urology and Kidney (TMU‐RCUK), Taipei Medical UniversityTaipeiTaiwan
- Department of UrologyWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- International Master/PhD Program in MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Kuo‐Hao Ho
- Graduate Institute of Medical SciencesCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Lun‐Ching Chang
- Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Shun‐Fa Yang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Ming‐Hsien Chien
- International Master/PhD Program in MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Pulmonary Research Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
33
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
34
|
Gomes SF, Melo FJ, Silva R, Santiago M, Estevinho MM, Dias S, Dias CC, Magro F. Dipeptidyl peptidase 4 (DPP4) in fecal samples: validation of the extraction methodology and stability in short-term storage conditions. Clin Chem Lab Med 2023; 61:1636-1642. [PMID: 37098041 DOI: 10.1515/cclm-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVES This study assesses the clinical relevance of dipeptidyl peptidase 4 (DPP4) membrane exopeptidase as a biomarker of inflammatory bowel disease (IBD). A spike-and-recovery approach of DPP4 in fecal samples was used to compare two different methods for protein extraction, followed by a stability assessment. METHODS Fecal samples of healthy volunteers spiked with known concentrations of recombinant DPP4 were processed using a standard manual extraction protocol and the CALEX® protocol. The two methods were compared by quantification of fecal DPP4 by ELISA, followed by Bland-Altman analysis. For the stability assays DPP4 was extracted from fecal samples and stored under different conditions of temperature and time after collection. RESULTS In general, the levels of spiked DPP4 in stool samples were lower with the manual protocol than in those obtained with the CALEX® method; this trend was corroborated by Bland-Altman analysis. Nonetheless, variability was within the acceptable limits for both protocols. In the stability assessment, no statistically significant differences were found between the results obtained under the different storage conditions. CONCLUSIONS Both manual and CALEX® protocols provided equal extraction ability of DPP4 from stool samples. In addition, DPP4 provided flexibility in terms of sample storage enabling the accurate assessment of samples delivered up to a week before analysis.
Collapse
Affiliation(s)
- Sandra F Gomes
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| | - Francisco Jorge Melo
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| | - Rita Silva
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), Porto, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Sandra Dias
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), Porto, Portugal
| | - Cláudia Camila Dias
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), Porto, Portugal
- RISE - Health Research Network, Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, Porto, Portugal
- Clinical Pharmacology Unit, São João University Hospital Center, Porto, Portugal
| |
Collapse
|
35
|
El-Arabey AA, Zhang H, Abdalla M, Al-Shouli ST, Alkhalil SS, Liu Y. Metformin as a promising target for DPP4 expression: computational modeling and experimental validation. Med Oncol 2023; 40:277. [PMID: 37624423 PMCID: PMC10457412 DOI: 10.1007/s12032-023-02140-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Metformin is a regularly prescribed and low-cost generic medication. Metformin has been proposed as a target for Dipeptidyl-peptidase 4 (DPP4) expression in various clinical disorders. We provide insilco investigations on molecular docking and dynamic modeling of metformin and DPP4 potential interactions. Moreover, we conducted bioinformatic studies to highlight the clinical significance of DPP4 expression and mutation in various types of malignancies, as well as the invasion of different immune cells into the tumor microenvironment. We believe the present proposal's findings have crucial implications for understanding how metformin may confer health advantages by targeting DPP4 expression in malignancies.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, China
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, 250022, Shandong, China
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, China.
| |
Collapse
|
36
|
Popławski P, Zarychta-Wiśniewska W, Burdzińska A, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Rybicka B, Białas A, Kossowska H, Iwanicka-Nowicka R, Koblowska M, Pączek L, Piekiełko-Witkowska A. Renal cancer secretome induces migration of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:200. [PMID: 37563650 PMCID: PMC10413545 DOI: 10.1186/s13287-023-03430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Advanced renal cell carcinoma (RCC) is therapeutically challenging. RCC progression is facilitated by mesenchymal stem/stromal cells (MSCs) that exert remarkable tumor tropism. The specific mechanisms mediating MSCs' migration to RCC remain unknown. Here, we aimed to comprehensively analyze RCC secretome to identify MSCs attractants. METHODS Conditioned media (CM) were collected from five RCC-derived cell lines (Caki-1, 786-O, A498, KIJ265T and KIJ308T) and non-tumorous control cell line (RPTEC/TERT1) and analyzed using cytokine arrays targeting 274 cytokines in addition to global CM proteomics. MSCs were isolated from bone marrow of patients undergoing standard orthopedic surgeries. RCC CM and the selected recombinant cytokines were used to analyze their influence on MSCs migration and microarray-targeted gene expression. The expression of genes encoding cytokines was evaluated in 100 matched-paired control-RCC tumor samples. RESULTS When compared with normal cells, CM from advanced RCC cell lines (Caki-1 and KIJ265T) were the strongest stimulators of MSCs migration. Targeted analysis of 274 cytokines and global proteomics of RCC CM revealed decreased DPP4 and EGF, as well as increased AREG, FN1 and MMP1, with consistently altered gene expression in RCC cell lines and tumors. AREG and FN1 stimulated, while DPP4 attenuated MSCs migration. RCC CM induced MSCs' transcriptional reprogramming, stimulating the expression of CD44, PTX3 and RAB27B. RCC cells secreted hyaluronic acid (HA), a CD44 ligand mediating MSCs' homing to the kidney. AREG emerged as an upregulator of MSCs' transcription. CONCLUSIONS Advanced RCC cells secrete AREG, FN1 and HA to induce MSCs migration, while DPP4 loss prevents its inhibitory effect on MSCs homing. RCC secretome induces MSCs' transcriptional reprograming to facilitate their migration. The identified components of RCC secretome represent potential therapeutic targets.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Anna Burdzińska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alex Białas
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Helena Kossowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
37
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
38
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
39
|
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun 2023; 14:183. [PMID: 36635273 PMCID: PMC9837080 DOI: 10.1038/s41467-023-35793-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.
Collapse
Affiliation(s)
- Julia M Houthuijzen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamara Filipovic
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chiara S Brambillasca
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank van Diepen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mirjam C Boelens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Azizidoost S, Ghaedrahmati F, Sheykhi-Sabzehpoush M, Uddin S, Ghafourian M, Mousavi Salehi A, Keivan M, Cheraghzadeh M, Nazeri Z, Farzaneh M, Khoshnam SE. The role of LncRNA MCM3AP-AS1 in human cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:33-47. [PMID: 36002764 DOI: 10.1007/s12094-022-02904-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNA) play pivotal roles in every level of gene and genome regulation. MCM3AP-AS1 is a lncRNA that has an oncogenic role in several kinds of cancers. Aberrant expression of MCM3AP-AS1 has been reported to be involved in the progression of diverse malignancies, including colorectal, cervical, prostate, lymphoma, lung, ovary, liver, bone, and breast cancers. It is generally believed that MCM3AP-AS1 expression is associated with cancer cell growth, proliferation, angiogenesis, and metastasis. MCM3AP-AS1 by targeting various signaling pathways and microRNAs (miRNAs) presents an important role in cancer pathogenesis. MCM3AP-AS1 as a competitive endogenous RNA has the ability to sponge miRNA, inhibit their expressions, and bind to different target mRNAs related to cancer development. Therefore, MCM3AP-AS1 by targeting several signaling pathways, including the FOX family, Wnt, EGF, and VEGF can be a potent target for cancer prediction and diagnosis. In this review, we will summarize the role of MCM3AP-AS1 in various human cancers.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
41
|
Eitah HE, Attia HN, Soliman AAF, Gamal El Din AA, Mahmoud K, Sayed RH, Maklad YA, El-Sahar AE. Vitamin D ameliorates diethylnitrosamine-induced liver preneoplasia: A pivotal role of CYP3A4/CYP2E1 via DPP-4 enzyme inhibition. Toxicol Appl Pharmacol 2023; 458:116324. [PMID: 36442531 DOI: 10.1016/j.taap.2022.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Growing evidence has indicated that vitamin D (Vit D) regulates cell proliferation and differentiation in cancer cells. Accordingly, the present study was conducted to investigate the possible beneficial effects of Vit D on diethylnitrosamine (DEN)-induced liver preneoplasia. The effect of Vit D on HepG2 cells was investigated using MTT assay. Additionally, liver preneoplasia was induced in Swiss male albino mice by giving overnight fasted animals 5 consecutive doses of DEN (75 mg/kg/week). Oral treatment with Vit D (200 IU/kg/day) was initiated either 2 weeks before DEN (first protocol) or 1 week after the first dose of DEN injection (second protocol). At the end of the experiment, tissue levels of GGT, DPP-4, TNF-α, IL-6, CYP2E1, and CYP3A4 were also estimated. Moreover, the histopathological study of liver tissue and immunohistochemical detection of GST-P, PCNA, and NF-κB were performed. Vit D exerted a significant cytotoxic effect on HepG2 cells via significantly increasing BAX, p53, and BAX/Bcl2 ratio, and significantly decreasing Bcl2 mRNA expression. In both in vivo protocols, Vit D was capable of normalizing relative liver weight, PCNA, altered hepatocellular foci, and ductular proliferation. Moreover, Vit D significantly reduced the DEN-induced elevation of AST, ALT, ALP, GGT, DDP-4, TNF-α, IL-6, CYP2E1, liver DNA damage, GST-P, NF-κB, nuclear hyperchromasia/pleomorphism, cholestasis, and inflammatory cell aggregates, but significantly increased CYP3A4 content. In conculsion, current results reflect the potential impact of Vit D in the management of early stages of liver cancer.
Collapse
Affiliation(s)
- Hebatollah E Eitah
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Hanan Naeim Attia
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A F Soliman
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Rabab H Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yousreya A Maklad
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, National Research Centre, Dokki, Giza, Egypt
| | - Ayman E El-Sahar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| |
Collapse
|
42
|
Hui Y, Xu Z, Li J, Kuang L, Zhong Y, Tang Y, Wei J, Zhou H, Zheng T. Nonenzymatic function of DPP4 promotes diabetes-associated cognitive dysfunction through IGF-2R/PKA/SP1/ERp29/IP3R2 pathway-mediated impairment of Treg function and M1 microglia polarization. Metabolism 2023; 138:155340. [PMID: 36302455 DOI: 10.1016/j.metabol.2022.155340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown. METHODS We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice. RESULTS We report that DPP4 binds to IGF2-R on Treg cell surface and activates PKA/SP1 signaling, which upregulate ERp29 expression and promote its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting mitochondria-associated ER membrane formation and mitochondria calcium overload in Tregs. This, in turn, impairs Tregs function and polarizes microglia toward a pro-inflammatory phenotype in the hippocampus and finally leads to neuroinflammation and cognitive impairment in type 2 diabetes. Importantly, inhibiting DPP4 enzymatic activity in type 2 diabetic patients or mutating DPP4 enzymatic active site in db/db mice did not reverse these changes. However, IGF-2R knockdown or blockade ameliorated these effects both in vivo and in vitro. CONCLUSION These findings highlight the nonenzymatic role of DPP4 in impairing Tregs function, which may facilitate the design of novel immunotherapies for diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Junjie Wei
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Huimin Zhou
- Department of General Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China.
| |
Collapse
|
43
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
44
|
He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, Cui R, Hou P, Zhang X, Ji M. Dipeptidyl Peptidase-4 Stabilizes Integrin α4β1 Complex to Promote Thyroid Cancer Cell Metastasis by Activating Transforming Growth Factor-Beta Signaling Pathway. Thyroid 2022; 32:1411-1422. [PMID: 36166219 DOI: 10.1089/thy.2022.0317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Metastatic disease is a major cause of thyroid cancer-related death. However, the mechanisms responsible for thyroid cancer metastasis are unclear. Dipeptidyl peptidase-4 (DPP4) is a multifunctional cell surface glycoprotein that has been reported to be a negative prognostic factor in thyroid cancer. We explored the molecular mechanism of the role of DPP4 in thyroid cancer cell metastasis. Methods: The effects of DPP4 on thyroid cancer cell migration/invasion in vitro were assessed by transwell assays. A lung metastatic mouse model was also established to determine the effect of DPP4 on tumor metastasis in vivo. DPP4 inhibitor sitagliptin was used to test its effect on thyroid cancer cell metastasis. The mechanism of which DPP4 promotes thyroid cancer cell metastasis was explored by a series of molecular and biochemical experiments. Results: We observed that DPP4 was significantly upregulated in papillary thyroid cancers compared with control subjects, and its expression was positively associated with lymph node metastasis and BRAFV600E mutation. Functional studies showed that DPP4 knockdown significantly inhibited metastatic potential of thyroid cancer cells, and vice versa. However, DPP4 inhibitor sitagliptin did not affect the metastatic ability of thyroid cancer cells, indicating that the promoting effect of DPP4 on tumor metastasis was independent of its enzymatic activity. Mechanistically, DPP4 interacted with the α4 and β1 integrin subunits, and stabilized the formation of integrin α4β1 complex. DPP4-mediated integrin signal activation promoted the nuclear localization of c-Jun through the FAK/AKT pathway, thereby inducing the transcription of transforming growth factor-beta 1 (TGFB1 coding for protein TGF-β1). TGF-β1 then facilitated tumor metastasis by inducing the epithelial-mesenchymal transition. Conclusions: DPP4 promotes thyroid cancer cell metastasis through the integrins/FAK/AKT/c-Jun/TGF-β1 signaling axis. These findings may have implications for an alternative therapeutic strategy for thyroid cancer.
Collapse
Affiliation(s)
- Qingyuan He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | - Hongxin Cao
- Department of Endocrinology, Xi'an, P.R. China
| | - Yuelei Zhao
- Department of Endocrinology, Xi'an, P.R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | - Na Wang
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, P.R. China
| | - Wenyuan Li
- Department of Cardiovascular Medicine, Xi'an, P.R. China
| | | | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, P.R. China
- Department of Endocrinology, Xi'an, P.R. China
| | | | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
45
|
Heumos S, Dehn S, Bräutigam K, Codrea MC, Schürch CM, Lauer UM, Nahnsen S, Schindler M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int 2022; 22:311. [PMID: 36221114 PMCID: PMC9555072 DOI: 10.1186/s12935-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Dehn
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius C Codrea
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
46
|
Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A, Nguyen J, Castro P, Ittmann MM, Rahmatpanah F. Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers (Basel) 2022; 14:cancers14194923. [PMID: 36230846 PMCID: PMC9562240 DOI: 10.3390/cancers14194923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a crucial role in both the development and progression of prostate cancer. Furthermore, identifying protein and gene expression differences between different regions is valuable for treatment development. We applied Digital Spatial Profiling multiplex analysis to formalin-fixed paraffin embedded prostatectomy tissue blocks to investigate protein and transcriptome differences between tumor, tumor-adjacent stroma (TAS), CD45+ tumor, and CD45+ TAS tissue. Differential expression of an immunology/oncology protein panel (n = 58) was measured. OX40L and CTLA4 were expressed at higher levels while 22 other proteins, including CD11c, were expressed at lower levels (FDR < 0.2 and p-value < 0.05) in TAS as compared to tumor epithelia. A tissue microarray analysis of 97 patients with 1547 cores found positive correlations between high expression of CD11c and increased time to recurrence in tumor and TAS, and inverse relationships for CTLA4 and OX40L, where higher expression in tumor correlated with lower time to recurrence, but higher time to recurrence in TAS. Spatial transcriptomic analysis using a Cancer Transcriptome Atlas panel (n = 1825 genes) identified 162 genes downregulated and 69 upregulated in TAS versus tumor, 26 downregulated and 6 upregulated in CD45+ TAS versus CD45+ tumor. We utilized CIBERSORTx to estimate the relative immune cell fractions using CD45+ gene expression and found higher average fractions for memory B, naïve B, and T cells in TAS. In summary, the combination of protein expression differences, immune cell fractions, and correlations of protein expression with time to recurrence suggest that closely examining the tumor microenvironment provides valuable data that can improve prognostication and treatment techniques.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Robert Bilodeau
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Michael McClelland
- Department of Molecular and Microbiology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Patricia Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
47
|
Yin H, Lin M, Liang S, Wei M, Huang C, Qin F, Nong J, Zeng X, Nong C, Qin H. Ferroptosis-related gene signature predicts prognosis in kidney renal papillary cell carcinoma. Front Oncol 2022; 12:988867. [PMID: 36276091 PMCID: PMC9582751 DOI: 10.3389/fonc.2022.988867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Ferroptosis, an iron-dependent form of selective cell death, is involved in the development of many cancers. However, the role of ferroptosis-related genes (FRGs) in kidney renal papillary cell carcinoma (KIRP) is unclear. In this study, we examined the mRNA expression profiles and clinical data of patients with KIRP from the TCGA cohort. Consequently, 41 differentially-expressed FRGs were screened using the limma package, and 17 prognostic-related FRGs were identified by survival analysis and univariate Cox regression analyses. Thereafter, a ferroptosis-related gene prognostic index (FRGPI) was constructed based on five FRGs (AKR1C3, SAT1, FANCD2, HSBP1 and SQLE), using lasso Cox and multivariate Cox regression analyses. KIRP patients with high FRGPI scores displayed worse outcomes. Furthermore, the FRGPI was shown to be a reliable independent prognostic factor in both the training and testing cohorts. Comprehensive analysis also showed that the FRGPI can distinguish gene mutation, functional enrichment of immune cells and molecular function-related pathways. Interestingly, low FRGPI score could be more benefit from immune checkpoint inhibitors (ICIs) therapy. Then, the two hub prognostic genes (AKR1C3 and FANCD2) as a risk gene for KIRP were identified based on the FRGPI module, and the expression profiles of these two genes were validated using human KIRP cells, besides, we furthermore discovered that Fancd2 is significantly up-regulated in most cancers and is associated with prognosis. In conclusion, these findings showed that FRGPI can accurately predict the prognosis of patients with KIRP, suggesting that this risk model is a promising prognostic biomarker for these patients. Moreover, targeting ferroptosis (FANCD2) could be a potential therapeutic alternative for various cancers.
Collapse
Affiliation(s)
- Haiying Yin
- School of Nursing, Youjiang Medical University for Nationalities, Baise, China
| | - Mei Lin
- Department of Neonatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shaoying Liang
- School of Nursing, NingBo College of Health Sciences, Ningbo, China
| | - Meijuan Wei
- Department of Radiation Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Cuiting Huang
- Department of Renal Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fengfei Qin
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiejin Nong
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xianchang Zeng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Houji Qin, ; Caimei Nong, ; Xianchang Zeng,
| | - Caimei Nong
- Nursing Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Houji Qin, ; Caimei Nong, ; Xianchang Zeng,
| | - Houji Qin
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Houji Qin, ; Caimei Nong, ; Xianchang Zeng,
| |
Collapse
|
48
|
Chen SY, Kong XQ, Zhang KF, Luo S, Wang F, Zhang JJ. DPP4 as a Potential Candidate in Cardiovascular Disease. J Inflamm Res 2022; 15:5457-5469. [PMID: 36147690 PMCID: PMC9488155 DOI: 10.2147/jir.s380285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of cardiovascular disease has become a global health concern. The occurrence of cardiovascular disease is the result of long-term interaction of many risk factors, one of which is diabetes. As a novel anti-diabetic drug, DPP4 inhibitor has been proven to be cardiovascular safe in five recently completed cardiovascular outcome trials. Accumulating studies suggest that DPP4 inhibitor has potential benefits in a variety of cardiovascular diseases, including hypertension, calcified aortic valve disease, coronary atherosclerosis, and heart failure. On the one hand, in addition to improving blood glucose control, DPP4 inhibitor is involved in controlling cardiovascular risk factors. On the other hand, DPP4 inhibitor directly regulates the occurrence and progression of cardiovascular diseases through a variety of mechanisms. In this review, we summarize the recent advances of DPP4 in cardiovascular disease, aiming to discuss DPP4 inhibitor as a potential option for cardiovascular therapy.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| | - Ke-Fan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| |
Collapse
|
49
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
50
|
Zhang J, Pan T, Zhou W, Zhang Y, Xu G, Xu Q, Li S, Gao Y, Wang Z, Xu J, Li Y. Long noncoding RNA LINC01132 enhances immunosuppression and therapy resistance via NRF1/DPP4 axis in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:270. [PMID: 36071454 PMCID: PMC9454129 DOI: 10.1186/s13046-022-02478-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in various types of cancer. Current developments in transcriptome analyses unveiled the existence of lncRNAs; however, their functional characterization remains a challenge. Methods A bioinformatics screen was performed by integration of multiple omics data in hepatocellular carcinoma (HCC) prioritizing a novel oncogenic lncRNA, LINC01132. Expression of LINC01132 in HCC and control tissues was validated by qRT-PCR. Cell viability and migration activity was examined by MTT and transwell assays. Finally, our results were confirmed in vivo mouse model and ex vivo patient derived tumor xenograft experiments to determine the mechanism of action and explore LINC01132-targeted immunotherapy. Results Systematic investigation of lncRNAs genome-wide expression patterns revealed LINC01132 as an oncogene in HCC. LINC01132 is significantly overexpressed in tumor and associated with poor overall survival of HCC patients, which is mainly driven by copy number amplification. Functionally, LINC01132 overexpression promoted cell growth, proliferation, invasion and metastasis in vitro and in vivo. Mechanistically, LINC01132 acts as an oncogenic driver by physically interacting with NRF and enhancing the expression of DPP4. Notably, LINC01132 silencing triggers CD8+ T cells infiltration, and LINC01132 knockdown combined with anti-PDL1 treatment improves antitumor immunity, which may prove a new combination therapy in HCC. Conclusions LINC01132 functions as an oncogenic driver that induces HCC development via the NRF1/DPP4 axis. Silencing LINC01132 may enhance the efficacy of anti-PDL1 immunotherapy in HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02478-z.
Collapse
|