1
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
2
|
Kanipe C, Putz EJ, Palmer MV. Differential expression of vascular endothelial growth factor A (VEGFA) and M1 macrophage marker nitric oxide synthase 2 (NOS2) in lymph node granulomas of BCG-vaccinated and non-vaccinated cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2025; 151:102609. [PMID: 39862443 DOI: 10.1016/j.tube.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection. Lesions have been characterized in infected cattle, but little comparison has been done with lesions which form in BCG-vaccinates. Here, in situ hybridization examined differences in expression of M. bovis RNA, inducible nitric oxide synthase 2, and vascular endothelial growth factor A in relation to vaccination status and granuloma grade, using two different groups of cattle. Data found no differences between vaccination groups or granuloma grade in average copies of M. bovis mRNA per μm2 of total granuloma area or per μm2 of necrotic areas. Within a vaccination group high-grade granulomas had more NOS2 per cell, per μm2 and a higher percentage of cells expressing NOS2 than low-grade granulomas. Non-vaccinates had a higher percentage of cells producing NOS2 than vaccinates. Differences in NOS2 expression varied by group. Vaccination status and granuloma grade did not affect the average copies of VEGFA per cell or the percent of cells expressing RNA, however VEGFA copies per μm2 varied between groups. These findings suggest NOS2 and VEGFA are likely not mechanisms of BCG vaccination protection but may impact disease severity.
Collapse
Affiliation(s)
- C Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; Immunobiology Program, Iowa State University, Ames, IA, 50010, USA.
| | - E J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - M V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
3
|
Liu XY, Li DN, Shi K, Li JM, Zong Y, Diao NC, Zeng FL, Du R. Mycobacterium tuberculosis Rv3435c gene regulates inflammatory cytokines and is involved in lung injury and mycobacterial survival in mice. Microb Pathog 2025; 199:107247. [PMID: 39756525 DOI: 10.1016/j.micpath.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Mycobacterium tuberculosis enters the body through the respiratory tract, produces and releases virulence proteins through a variety of mechanisms, regulates the host immune mechanism through a variety of ways, and then survives in the body for a long time. These depend on virulence genes encoded by Mycobacterium tuberculosis. Previous studies found that the Rv3435c gene of Mycobacterium tuberculosis is highly conserved in pathogenic mycobacterium, but not conserved in non-pathogenic mycobacterium, which may be a potential virulence gene, and inhibit the secretion of inflammatory factors in RAW264.7 cells and inhibit cell apoptosis. Based on previous studies, the function of Rv3435c gene in mice was studied by infecting mice with recombinant strains. In vivo infection experiments showed that overexpression of Rv3435c significantly promoted the survival of Ms in the lung. Ms-pMV361-Rv3435c specifically inhibits the secretion of inflammatory cytokines, including TNF-α, IL-6, IL-1β, IL-12, and IFN-γ. Rv3435c can inhibit lung cell apoptosis and cause pathological damage to lung. Therefore, Rv3435c enhances the survival of mycobacterium in mice and promotes the pathogenicity and spread of Mycobacterium tuberculosis by inhibiting the production of cytokines.
Collapse
Affiliation(s)
- Xin-Yue Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dan-Ni Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Nai-Chao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Fan-Li Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China.
| |
Collapse
|
4
|
Fei Q, Zhang J, Chen L, Shi M, Wang Q, Xu F, Shi J, Qin Y. Modulating ferroptosis and mycobactericidal activity in lung epithelial cells via YY1/iNOS pathway. Life Sci 2024; 358:123131. [PMID: 39424267 DOI: 10.1016/j.lfs.2024.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis infection triggers various forms of host cell death, including ferroptosis in lung epithelial cells; YY1, a critical transcription factor, plays a pivotal role in regulating ferroptosis, however, the underlying mechanisms are not fully understood. METHODS To investigate Mycobacterium marinum (M.marinum) infection in lung epithelial cells A549 and H1299, we utilized flow cytometry to evaluate cell death and measure reactive oxygen species (ROS). Colony-forming unit (CFU) assays determined the intracellular bacterial load. Ferroptosis was analyzed using a specific detection kit to measure malondialdehyde (MDA) and glutathione (GSH) levels. The interaction between the transcription factor YY1 and the iNOS promoter was assessed through a dual-luciferase reporter assay. RESULTS M.marinum induced ferroptosis in lung epithelial cells through invasion. This effect is most pronounced at 8 h of infection and decreases over time but increased with a higher multiplicity of infection (MOI). YY1 knockdown decreases the expression of SLC7A11 and GPX4, attenuates cellular ferroptosis, while YY1 overexpression has the opposite phenomenon, enhancing the expression of bactericidal molecules such as iNOS and MPEG1, thereby markedly reducing the intracellular bacterial load. We identified substantial binding of YY1 to the iNOS promoter region (-655 to -1018 bp), enhancing mycobactericidal activity in YY1-overexpressing cells. CONCLUSIONS Our study demonstrates that YY1 inhibits ferroptosis induced by Mycobacterium marinum infection and reduces intracellular bacterial proliferation in lung epithelial cells. These findings provide a crucial basis for developing anti-tuberculosis therapies that target YY1 modulation, potentially offering new clinical avenues for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Qiuwen Fei
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Jian Zhang
- Affiliated Haian Hospital of Nantong University, Haian, China
| | - Liangqiong Chen
- Affiliated Haian Hospital of Nantong University, Haian, China
| | - Manqi Shi
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China.
| |
Collapse
|
5
|
Li J, Gao J, Gao Y, Shi C, Guo X, Huang H, Wang J, Huang X, Chen H, Huang J, Wang W, Yang H. Degarelix limits the survival of mycobacteria and granuloma formation. Microb Pathog 2024; 197:107046. [PMID: 39433139 DOI: 10.1016/j.micpath.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a serious health hazard, characterized by tuberculous granuloma formation, which may facilitate bacterial survival. At the same time, the identification of multidrug-resistant and extremely drug-resistant Mtb strains, and the progressive accumulation of mutations in biological targets of frontline antimicrobials, has made TB treatments more difficult. Therefore, new and rapid drug development for TB is warranted. Recently, drug repurposing has received considerable attention. In this study, we applied the anticancer drug degarelix to anti-TB research and found that it inhibits mycobacteria survival and pathological damage in Mycobacterium marinum-infected zebrafish and Mtb-infected mice. Supplementation of degarelix matched the bactericidal activities of rifampicin (RFP) toward M. marinum in zebrafish. Mechanistically, degarelix significantly increased interferon (IFN)-γ levels in M. marinum-infected zebrafish. Degarelix had no direct anti-mycobacterial activity in vitro but significantly reduced the survival of H37Rv in macrophages. The effect of degarelix could be reversed by 3-methyladenine (3-MA), which inhibits the class III phosphatidylinositol (PI) 3 kinase required for autophagy initiation. However, no effect on later steps in autophagy could be detected. Our findings demonstrate the potential of degarelix on limiting mycobacterial survival and granuloma formation, which may generate novel TB therapeutics.
Collapse
Affiliation(s)
- Jiaqing Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jing Gao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yaxian Gao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xinya Guo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Huimin Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haizhen Chen
- Medical Laboratory Center, Children's Hospital of Shanxi Province, Taiyuan, 030001, China
| | - Jin Huang
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, 561113, China.
| | - Wenjuan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
6
|
Wang J, Cao H, Xie Y, Xu Z, Li Y, Luo H. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother 2024; 177:117030. [PMID: 38917759 DOI: 10.1016/j.biopha.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis is a lipid peroxidation-driven and iron-dependent form of programmed cell death, which is involved in a variety of physical processes and multiple diseases. Numerous reports have demonstrated that ferroptosis is closely related to the pathophysiological processes of Mycobacterium tuberculosis (M. tuberculosis) infection and is characterized by the accumulation of excess lipid peroxides on the cell membrane. In this study, the various functions of ferroptosis, and the therapeutic strategies and diagnostic biomarkers of tuberculosis, were summarized. Notably, this review provides insights into the molecular mechanisms and functions of M. tuberculosis-induced ferroptosis, suggesting potential future therapeutic and diagnostic markers for tuberculosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Zi Xu
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China.
| |
Collapse
|
7
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
8
|
Yu X, Yuan J, Shi L, Dai S, Yue L, Yan M. Necroptosis in bacterial infections. Front Immunol 2024; 15:1394857. [PMID: 38933265 PMCID: PMC11199740 DOI: 10.3389/fimmu.2024.1394857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
Collapse
Affiliation(s)
- Xing Yu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jin Yuan
- Clinical Laboratory, Puer Hospital of Traditional Chinese Medicine, Puer, China
| | - Linxi Shi
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shuying Dai
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Khalef L, Lydia R, Filicia K, Moussa B. Cell viability and cytotoxicity assays: Biochemical elements and cellular compartments. Cell Biochem Funct 2024; 42:e4007. [PMID: 38593323 DOI: 10.1002/cbf.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Cell viability and cytotoxicity assays play a crucial role in drug screening and evaluating the cytotoxic effects of various chemicals. The quantification of cell viability and proliferation serves as the cornerstone for numerous in vitro assays that assess cellular responses to external factors. In the last decade, several studies have developed guidelines for defining and interpreting cell viability and cytotoxicity based on morphological, biochemical, and functional perspectives. As this domain continues to experience ongoing growth, revealing new mechanisms orchestrating diverse cell cytotoxicity pathways, we suggest a revised classification for multiple assays employed in evaluating cell viability and cell death. This classification is rooted in the cellular compartment and/or biochemical element involved, with a specific focus on mechanistic and essential aspects of the process. The assays are founded on diverse cell functions, encompassing metabolic activity, enzyme activity, cell membrane permeability and integrity, adenosine 5'-triphosphate content, cell adherence, reduction equivalents, dye inclusion or exclusion, constitutive protease activity, colony formation, DNA fragmentation and nuclear splitting. These assays present straightforward, reliable, sensitive, reproducible, cost-effective, and high-throughput approaches for appraising the effects of newly formulated chemotherapeutic biomolecules on the cell survival during the drug development process.
Collapse
Affiliation(s)
- Lefsih Khalef
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Radja Lydia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Khettar Filicia
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| | - Berkoud Moussa
- Département de Biochimie et Microbiologie, Laboratoire d'Ecologie, Biotechnologie et Santé, Université Mouloud Mammeri de Tizi ouzou, Tizi Ouzou, Algeria
| |
Collapse
|
10
|
Yang Z, Wang J, Pi J, Hu D, Xu J, Zhao Y, Wang Y. Identification and Validation of Genes Related to Macrophage Polarization and Cell Death Modes Under Mycobacterium tuberculosis Infection. J Inflamm Res 2024; 17:1397-1411. [PMID: 38476473 PMCID: PMC10927374 DOI: 10.2147/jir.s448372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose To investigate the correlation between M1/M2 macrophages (M1/M2 Mφ) and cell death mode under Mycobacterium tuberculosis (Mtb) infection. Methods Raw gene expression profiles were collected from the Gene Expression Omnibus (GEO) database. Genes related to different cell death modes were collected from the KEGG, FerrDb and GSEA databases. The differentially expressed genes (DEGs) of the gene expression profiles were identified using the limma package in R. The intersection genes of M1/M2 Mφ with different cell death modes were obtained by the VennDiagram package. Hub genes were obtained by constructing the protein-protein interactions (PPI) network and Receiver Operating Characteristic (ROC) curve analysis. The expression of cell death modes marker genes and Hub genes were verified by Western Blot and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Results Bioinformatics analysis was performed to screen Hub genes of Mtb-infected M1 Mφ and different cell death modes, naming NFKB1, TNF, CFLAR, TBK1, IL6, RELA, SOCS1, AIM2; Hub genes of Mtb-infected M2 Mφ and different cell death modes, naming TNF, BIRC3, MAP1LC3C, DEPTOR, UVRAG, SOCS1. Combined with experimental validation, M1 Mφ under Mtb infection showed higher expression of death (including apoptosis, autophagy, ferroptosis, and pyroptosis) genes compared to M2 Mφ and genes such as NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2, BIRC3, DEPTOR show differential expression. Conclusion NFKB1, TNF, CFLAR, TBK1, IL6, RELA, AIM2 in Mtb-infected M1 Mφ, and TNF, BIRC3, DEPTOR in Mtb-infected M2 Mφ might be used as potential diagnostic targets for TB. At early stage of Mtb infection, apoptosis, autophagy, ferroptosis, and pyroptosis occurred more significantly in M1 Mφ than that in M2 Mφ, which may contribute to the transition of Mtb-infected Mφ from M1-dominant to M2-dominant and contribute to the immune escape mechanisms of Mtb.
Collapse
Affiliation(s)
- Zisha Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Di Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, 523713, People's Republic of China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
11
|
Quadir N, Shariq M, Sheikh JA, Singh J, Sharma N, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence 2023; 14:2180230. [PMID: 36799069 PMCID: PMC9980616 DOI: 10.1080/21505594.2023.2180230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) utilizes the multifunctionality of its protein factors to deceive the host. The unabated global incidence and prevalence of tuberculosis (TB) and the emergence of multidrug-resistant strains warrant the discovery of novel drug targets that can be exploited to manage TB. This study reports the role of M. tb AAA+ family protein MoxR1 in regulating host-pathogen interaction and immune system functions. We report that MoxR1 binds to TLR4 in macrophage cells and further reveal how this signal the release of proinflammatory cytokines. We show that MoxR1 activates the PI3K-AKT-MTOR signalling cascade by inhibiting the autophagy-regulating kinase ULK1 by potentiating its phosphorylation at serine 757, leading to its suppression. Using autophagy-activating and repressing agents such as rapamycin and bafilomycin A1 suggested that MoxR1 inhibits autophagy flux by inhibiting autophagy initiation. MoxR1 also inhibits apoptosis by suppressing the expression of MAPK JNK1/2 and cFOS, which play critical roles in apoptosis induction. Intriguingly, MoxR1 also induced robust disruption of cellular bioenergetics by metabolic reprogramming to rewire the citric acid cycle intermediates, as evidenced by the lower levels of citric acid and electron transport chain enzymes (ETC) to dampen host defence. These results point to a multifunctional role of M. tb MoxR1 in dampening host defences by inhibiting autophagy, apoptosis, and inducing metabolic reprogramming. These mechanistic insights can be utilized to devise strategies to combat TB and better understand survival tactics by intracellular pathogens.
Collapse
Affiliation(s)
- Neha Quadir
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India,Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Mohd. Shariq
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India
| | | | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Neha Sharma
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India,Department of Life Science,School of Basic Science and Research, Sharda University, Greater Noida, India,CONTACT Seyed Ehtesham Hasnain
| | - Nasreen Zafar Ehtesham
- National Institute of Pathology, ICMR, Safdarjung Hospital Campus, New Delhi, India,Nazreen Zafar Ehtesham
| |
Collapse
|
12
|
Arnett E, Pahari S, Leopold Wager CM, Hernandez E, Bonifacio JR, Lumbreras M, Renshaw C, Montoya MJ, Opferman JT, Schlesinger LS. Combination of MCL-1 and BCL-2 inhibitors is a promising approach for a host-directed therapy for tuberculosis. Biomed Pharmacother 2023; 168:115738. [PMID: 37864894 PMCID: PMC10841846 DOI: 10.1016/j.biopha.2023.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.
Collapse
Affiliation(s)
- Eusondia Arnett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Susanta Pahari
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chrissy M Leopold Wager
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elizabeth Hernandez
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jordan R Bonifacio
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Miranda Lumbreras
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Charles Renshaw
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria J Montoya
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
13
|
Cai Y, Gao W, Wang P, Zhang G, Wang X, Jiang L, Zeng J, Wang Y, Wu Z, Li Y. Comparative proteome analysis revealed the differences in response to both Mycobacterium tuberculosis and Mycobacterium bovis infection of bovine alveolar macrophages. Front Cell Infect Microbiol 2023; 13:1266884. [PMID: 38029268 PMCID: PMC10646506 DOI: 10.3389/fcimb.2023.1266884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB), attributed to the Mycobacterium tuberculosis complex, is one of the most serious zoonotic diseases worldwide. Nevertheless, the host mechanisms preferentially leveraged by Mycobacterium remain unclear. After infection, both Mycobacterium tuberculosis (MTB) and Mycobacterium bovis (MB) bacteria exhibit intimate interactions with host alveolar macrophages; however, the specific mechanisms underlying these macrophage responses remain ambiguous. In our study, we performed a comparative proteomic analysis of bovine alveolar macrophages (BAMs) infected with MTB or MB to elucidate the differential responses of BAMs to each pathogen at the protein level. Our findings revealed heightened TB infection susceptibility of BAMs that had been previously infected with MTB or MB. Moreover, we observed that both types of mycobacteria triggered significant changes in BAM energy metabolism. A variety of proteins and signalling pathways associated with autophagy and inflammation-related progression were highly activated in BAMs following MB infection. Additionally, proteins linked to energy metabolism were highly expressed in BAMs following MTB infection. In summary, we propose that BAMs may resist MTB and MB infections via different mechanisms. Our findings provide critical insights into TB pathogenesis, unveiling potential biomarkers to facilitate more effective TB treatment strategies. Additionally, our data lend support to the hypothesis that MTB may be transmitted via cross-species infection.
Collapse
Affiliation(s)
- Yurong Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
| | - Weifeng Gao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Pu Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
| | - Gang Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
| | - Xiaoping Wang
- The Fourth People’s Hospital of Ningxia Hui Autonomous Region, Reference Lab, Yinchuan, China
| | - Lingling Jiang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Zhiwei Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Chen J, Tang F, Li H, Wu X, Yang Y, Liu Z, Huang X, Wang J, Zheng R, Wang L, Liu H, Xu J, Wang P, Liu F. Mycobacterium tuberculosis suppresses APLP2 expression to enhance its survival in macrophage. Int Immunopharmacol 2023; 124:111058. [PMID: 37844466 DOI: 10.1016/j.intimp.2023.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the most successful pathogen responsible for approximately 1.6 million deaths in 2021, employs various strategies to evade host antibacterial defenses, including mechanisms to counteract nitric oxide (NO) and certain cytokines. While Amyloid β (A4) precursor-like protein 2 (Aplp2) has been implicated in various physiological and pathological processes, its role in tuberculosis (TB) pathogenesis remains largely uncharted. This study unveils a significant reduction in Aplp2 levels in TB patients, M.tb-infected macrophages, and mice. Intriguingly, Aplp2 mutation or knockdown results in diminished macrophage-mediated killing of M.tb, accompanied by decreased inducible nitric oxide synthase (iNOS) expression and reduced cytokine production, notably interleukin-1β (Il-1β). Notably, Aplp2 mutant mice exhibit heightened susceptibility to mycobacterial infection, evident through aggravated histopathological damage and increased lung bacterial loads, in contrast to Mycobacterium bovis BCG-infected wild-type (WT) mice. Mechanistically, the cleaved product of APLP2, AICD2, generated by γ-secretase, translocates to the nucleus, where it interacts with p65, culminating in enhanced the nuclear factor κB (NF-κB) transcriptional activity. This interaction triggers the upregulation of Il-1β and iNOS expression. Collectively, our findings illuminate Aplp2's pivotal role in safeguarding against mycobacterial infections by promoting M.tb clearance through NO- or IL-1β-mediated bactericidal effects. Therefore, we unveil a novel immune evasion strategy employed by M.tb, which could potentially serve as a target for innovative TB interventions.
Collapse
Affiliation(s)
- Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fen Tang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haohao Li
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yong Yang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhonghua Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaochen Huang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jie Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ruijuan Zheng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Peng Wang
- Department of TB, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Feng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to JiaoTong University Medical School, Shanghai 200233, China.
| |
Collapse
|
15
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
16
|
Braian C, Karlsson L, Das J, Lerm M. Selected β-Glucans Act as Immune-Training Agents by Improving Anti-Mycobacterial Activity in Human Macrophages: A Pilot Study. J Innate Immun 2023; 15:751-764. [PMID: 37734337 PMCID: PMC10616672 DOI: 10.1159/000533873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Epigenetic reprogramming of innate immune cells by β-glucan in a process called trained immunity leads to an enhanced host response to a secondary infection. β-Glucans are structural components of plants, algae, fungi, and bacteria and thus recognized as non-self by human macrophages. We selected the β-glucan curdlan from Alcaligenes faecalis, WGP dispersible from Saccharomyces cerevisiae, and β-glucan-rich culture supernatant of Alternaria and investigated whether they could produce trained immunity effects leading to an increased control of virulent Mycobacterium tuberculosis. We observed a significant M. tuberculosis growth reduction in macrophages trained with curdlan and Alternaria, which also correlated with increased IL-6 and IL-1β release. WGP dispersible-trained macrophages were stratified into "non-responders" and "responders," according to their ability to control M. tuberculosis, with "responders" producing higher IL-6 levels. The addition of neutrophils to infected macrophage cultures further enhanced macrophage control of virulent M. tuberculosis, but not in a stimuli-dependent manner. Pathway enrichment analysis of DNA methylome data also highlighted hypomethylation of genes in pathways associated with signaling and cellular reorganization and motility, and "responders" to WGP training were enriched in the interferon-gamma signaling pathway. This study adds evidence that certain β-glucans show promise as immune-training agents.
Collapse
Affiliation(s)
- Clara Braian
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden,
| | - Lovisa Karlsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics, Core Facility, Cell Biology, Faculty of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Clinical Genomics Linköping, SciLife Laboratory, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
- SciLifeLab, CBCS, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023; 26:106629. [PMID: 37091987 PMCID: PMC10082467 DOI: 10.1016/j.isci.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Health impacts of Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 co-infections are not fully understood. Both pathogens modulate host responses and induce immunopathology with extensive lung damage. With a quarter of the world's population harboring latent TB, exploring the relationship between SARS-CoV-2 infection and its effect on the transition of Mtb from latent to active form is paramount to control this pathogen. The effects of active Mtb infection on establishment and severity of COVID-19 are also unknown, despite the ability of TB to orchestrate profound long-lasting immunopathologies in the lungs. Absence of mechanistic studies and co-infection models hinder the development of effective interventions to reduce the health impacts of SARS-CoV-2 and Mtb co-infection. Here, we highlight dysregulated immune responses induced by SARS-CoV-2 and Mtb, their potential interplay, and implications for co-infection in the lungs. As both pathogens master immunomodulation, we discuss relevant converging and diverging immune-related pathways underlying SARS-CoV-2 and Mtb co-infections.
Collapse
Affiliation(s)
- Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
Wen Q, Zhang J, Zhang Z, Chen L, Liu H, Han Z, Chen Y, Wang K, Liu J, Sai N, Zhou X, Zhou C, Hu S, Ma L. Cisatracurium besylate rescues Mycobacterium Tuberculosis-infected macrophages from necroptosis and enhances the bactericidal effect of isoniazid. Int Immunopharmacol 2023; 120:110291. [PMID: 37182451 DOI: 10.1016/j.intimp.2023.110291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients. METHODS In this study, the protective drug was screened out from the FDA-approved drug library in Mycobacterium tuberculosis-infected macrophages with CCK-8 assay. The death mode regulated by the drug was identified using transcriptomic sequencing, cytomorphological observation, and in the experimental mouse Mycobacterium tuberculosis-infection model. The functional mechanism was explored using western blot, co-immunoprecipitation, and DARTS assay. The intracellular bacterial survival was detected using colony forming unit assays. RESULTS Cisatracurium besylate was identified to be highly protective for the viability of macrophages during Mycobacterium tuberculosis infection via inhibiting necroptosis. Cisatracurium besylate prevented RIPK3 to be associated with the executive molecule MLKL for forming the necroptotic complex, resulting in the inhibition of MLKL phosphorylation and pore formation on cell membrane. However, Cisatracurium besylate did not interfere with the association between RIPK3 with its upstream kinase RIPK1 or ZBP1 but regulated RIPK3 autophosphorylation. Moreover, Cisatracurium besylate significantly inhibited the expansion of intracellular Mycobacterium tuberculosis both in vitro and in vivo, which also displayed a strong auxiliary bacteriostatic effect to support the therapeutic efficacy of isoniazid and rifampicin, the first-line anti-tubercular drugs. CONCLUSION Cisatracurium besylate performs anti-Mycobacterium tuberculosis and anti-necroptotic roles, which potentiates its application to be an adjuvant drug for antituberculosis therapy to assist the battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqing Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liru Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis. Apoptosis 2023; 28:136-165. [PMID: 36258102 PMCID: PMC9579591 DOI: 10.1007/s10495-022-01778-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
PE/PPE proteins of Mycobacterium tuberculosis (Mtb) target the host organelles to dictate the outcome of infection. This study investigated the significance of PE6/Rv0335c protein's unique C-terminal in causing host mitochondrial perturbations and apoptosis. In-silico analysis revealed that similar to eukaryotic apoptotic Bcl2 proteins, Rv0335c had disordered, hydrophobic C-terminal and two BH3-like motifs in which one was located at C-terminal. Also, Rv0335c's N terminal had mitochondrial targeting sequence. Since, C-terminal of Bcl2 proteins are crucial for mitochondria targeting and apoptosis; it became relevant to evaluate the role of Rv0335c's C-terminal domain in modulating host mitochondrial functions and apoptosis. To confirm this, in-vitro experiments were conducted with Rv0335c whole protein and Rv0335c∆Cterm (C-terminal domain deleted Rv0335c) protein. Rv0335c∆Cterm caused significant reduction in mitochondrial perturbations and Caspase-mediated apoptosis of THP1 macrophages in comparison to Rv0335c. However, the deletion of C-terminal domain didn't affect Rv0335c's ability to localize to mitochondria. Nine Ca2+ binding residues were predicted within Rv0335c and four of them were at the C-terminal. In-vitro studies confirmed that Rv0335c caused significant increase in intracellular calcium influx whereas Rv0335c∆Cterm had insignificant effect on Ca2+ influx. Rv0335c has been reported to be a TLR4 agonist and, we observed a significant reduction in the expression of TLR4-HLA-DR-TNF-α in response to Rv0335c∆Cterm protein also suggesting the role of Rv0335c's C-terminal domain in host-pathogen interaction. These findings indicate the possibility of Rv0335c as a molecular mimic of eukaryotic Bcl2 proteins which equips it to cause host mitochondrial perturbations and apoptosis that may facilitate pathogen persistence.
Collapse
|
20
|
Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12112676. [PMID: 36359526 PMCID: PMC9689268 DOI: 10.3390/diagnostics12112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Helminth infections are among the neglected tropical diseases affecting billions of people globally, predominantly in developing countries. Helminths’ effects are augmented by coincident tuberculosis disease, which infects a third of the world’s population. The role of helminth infections on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature focusing on host immune response profiles during single-helminth, T.B. and dual infections. It also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected patients since the research data are limited and contradictory. Helminths overlap geographically with T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune responses. However, these effects are helminth species-dependent, where some parasites have no impact on the immune responses to concurrent T.B. The implications for the complex immunological interactions that occur during coinfection are highlighted to inform government treatment policies and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.
Collapse
|
21
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
22
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
23
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
24
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
25
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
26
|
Bar-Oz M, Meir M, Barkan D. Virulence-Associated Secretion in Mycobacterium abscessus. Front Immunol 2022; 13:938895. [PMID: 35880173 PMCID: PMC9308005 DOI: 10.3389/fimmu.2022.938895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are a heterogeneous group of originally environmental organi3sms, increasingly recognized as pathogens with rising prevalence worldwide. Knowledge of NTM’s mechanisms of virulence is lacking, as molecular research of these bacteria is challenging, sometimes more than that of M. tuberculosis (Mtb), and far less resources are allocated to their investigation. While some of the virulence mechanisms are common to several mycobacteria including Mtb, others NTM species-specific. Among NTMs, Mycobacterium abscessus (Mabs) causes some of the most severe and difficult to treat infections, especially chronic pulmonary infections. Mabs survives and proliferates intracellularly by circumventing host defenses, using multiple mechanisms, many of which remain poorly characterized. Some of these immune-evasion mechanisms are also found in Mtb, including phagosome pore formation, inhibition of phagosome maturation, cytokine response interference and apoptosis delay. While much is known of the role of Mtb-secreted effector molecules in mediating the manipulation of the host response, far less is known of the secreted effector molecules in Mabs. In this review, we briefly summarize the knowledge of secreted effectors in Mtb (such as ESX secretion, SecA2, TAT and others), and draw the parallel pathways in Mabs. We also describe pathways that are unique to Mabs, differentiating it from Mtb. This review will assist researchers interested in virulence-associated secretion in Mabs by providing the knowledge base and framework for their studies.
Collapse
Affiliation(s)
- Michal Bar-Oz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Meir
- The Ruth Rappaport Children’s Hospital, Rambam Medical Center, Haifa, Israel
| | - Daniel Barkan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Daniel Barkan,
| |
Collapse
|
27
|
Mycobacterium tuberculosis and Pulmonary Rehabilitation: From Novel Pharmacotherapeutic Approaches to Management of Post-Tuberculosis Sequelae. J Pers Med 2022; 12:jpm12040569. [PMID: 35455684 PMCID: PMC9027178 DOI: 10.3390/jpm12040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is still a worldwide public health burden, as more than 1.3 million deaths are expected to be reported in 2021. Even though almost 20 million patients have completed specific anti-TB treatment and survived in 2020, little information is known regarding their pulmonary sequelae, quality of life, and their need to follow rehabilitation services as researchers shifted towards proper diagnosis and treatment rather than analyzing post-disease development. Understanding the underlying immunologic and pathogenic mechanisms during mycobacterial infection, which have been incompletely elucidated until now, and the development of novel anti-TB agents could lead to the proper application of rehabilitation care, as TB sequelae result from interaction between the host and Mycobacterium tuberculosis. This review addresses the importance of host immune responses in TB and novel potential anti-TB drugs’ mechanisms, as well as the assessment of risk factors for post-TB disease and usefulness of guidance and optimization of pulmonary rehabilitation. The use of rehabilitation programs for patients who successfully completed anti-tuberculotic treatment represents a potent multifaceted measure in preventing the increase of mortality rates, as researchers conclude that a patient with a TB diagnosis, even when properly completing pharmacotherapy, is threatened by a potential life loss of 4 years, in comparison to healthy individuals. Dissemination of pulmonary rehabilitation services and constant actualization of protocols could strengthen management of post-TB disease among under-resourced individuals.
Collapse
|
28
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
29
|
Jorge AM, Lao T, Kim R, Licciardi S, El Khoury J, Luster AD, Means TK, Ramirez-Ortiz ZG. SCARF1-Induced Efferocytosis Plays an Immunomodulatory Role in Humans, and Autoantibodies Targeting SCARF1 Are Produced in Patients with Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:955-967. [PMID: 35082161 PMCID: PMC8852219 DOI: 10.4049/jimmunol.2100532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.
Collapse
Affiliation(s)
- April M Jorge
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Rachel Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Samantha Licciardi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA
- Autoimmunity Cluster, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA
| | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA;
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and
| |
Collapse
|
30
|
Gao W, Cai Y, Zhang G, Wang X, Wang J, Li Y, Wang Y. Lipidomics revealed the global lipid responses of primary bovine alveolar macrophages to infections of Mycobacterium tuberculosis and Mycobacterium bovis. Int Immunopharmacol 2021; 104:108407. [PMID: 34924313 DOI: 10.1016/j.intimp.2021.108407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis (MTB) and M. bovis (MB) of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of the notorious infectious disease tuberculosis (TB) in a range of mammals, including bovine and human. The lipid composition of MTB/MB performed imperative function as invading host macrophage. However, the detailed variations in lipid compositions of MTB and MB were unknown, while the responses relevant to lipid metabolisms in MTB/MB-infected host were also unclear. In the present study, a dual-Lipidomics were used to elucidate the differences in lipid composition of MTB and MB and responses in lipid metabolisms of primary bovine alveolar macrophages infected by MTB/MB. The Lipidomics showed significant differences in lipid composition, especially differences in levels of Glycerophospholipids, Sterol Lipids, Fatty Acyls and Polyketides between these two mycobacterium species. Meanwhile, both MTB and MB could invoke various responses of lipid metabolisms in host macrophages. An infection of MTB mainly induced the increases of Polyketides and Glycerophospholipids in macrophages, whereas an MB infection induced the increases of Glycerophospholipids and Sterol. Furthermore, TAG 13:0-18:5-18:5 of MTB and PC (16:1(9E)/0:0), PI(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), 4, 6-Decadiyn-1-ol isovalerate and LacCer (d18:1/24:1(15Z)) of MB were identified to cause variations in lipid metabolisms of macrophages, respectively. From these data, we proposed that the differential compositions of lipid compositions in MTB and MB could successfully colonize in macrophage by different mechanisms. MTB could promote the formation of foam cells of macrophage for its colonization and development, while MB mainly suppresses the macrophage autophagy to escape the immune responses of host.
Collapse
Affiliation(s)
- Weifeng Gao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yurong Cai
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Gang Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoping Wang
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Juan Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
31
|
Wu M, Liu Z, Zhang S. Down-regulation of hsa_circ_0045474 induces macrophage autophagy in tuberculosis via miR-582-5p/TNKS2 axis. Innate Immun 2021; 28:11-18. [PMID: 34861798 PMCID: PMC8841633 DOI: 10.1177/17534259211064285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Macrophage autophagy plays a major role in the control and elimination of invading Mycobacterium tuberculosis. However, the function and mechanism of circRNA on macrophage autophagy in tuberculosis remain unclear. Therefore, this study aimed to explore the role of circRNA underlying macrophage autophagy in tuberculosis. Quantitative real-time polymerase chain reaction was used to detect the expression of hsa_circ_0045474, miR-582-5p and TNKS2. Autophagy was detected by LC3B immunofluorescence and transmission electron microscopy. Dual-luciferase reporter assays were used to detect the relationship of miR-582-5p and hsa_circ_0045474 or TNKS2. Western blot was used to detect the expression of LC3-І and LC3-ІІ. The results showed that hsa_circ_0045474 was down-regulated in monocytes from patients with tuberculosis and induced autophagy in macrophages. hsa_circ_0045474 sponged miR-582-5p and negatively regulated miR-582-5p expression. Overexpression of miR-582-5p affected by hsa_circ_0045474 induced autophagy in macrophages. TNKS2 served as a target of miR-582-5p and down-regulation of TNKS2 induced autophagy in macrophages regulated by miR-582-5p. In conclusion, our results demonstrated that hsa_circ_0045474 down-regulation induced macrophage autophagy in tuberculosis via miR-582-5p/ TNKS2 axis, implying a novel strategy to treat the occurrence of active pulmonary tuberculosis caused by immune escape of M. tuberculosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| | - Zhibin Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| | - Shaojun Zhang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, 89668Tongji University, China
| |
Collapse
|
32
|
Afriyie-Asante A, Dabla A, Dagenais A, Berton S, Smyth R, Sun J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front Immunol 2021; 12:742370. [PMID: 34745115 PMCID: PMC8564185 DOI: 10.3389/fimmu.2021.742370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.
Collapse
Affiliation(s)
- Afrakoma Afriyie-Asante
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ankita Dabla
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Amy Dagenais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Abstract
The impact of cellular apoptosis in controlling M. tuberculosis during tuberculosis (TB) infection remains unresolved. In this issue of Immunity, Stutz et al. provide compelling evidence that apoptosis controls M. tuberculosis infection in vivo and compounds that induce apoptosis limit M. tuberculosis growth in mice.
Collapse
|
34
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021; 10:cells10071645. [PMID: 34209120 PMCID: PMC8305481 DOI: 10.3390/cells10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
As a major effector of the ESX-1 secretion system, EsxA is essential for the virulence of pathogenic mycobacteria, such as Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). EsxA possesses an acidic pH-dependent membrane permeabilizing activity and plays an essential role by mediating mycobacterial escape from the phagosome and translocation to the cytosol for intracellular replication. Moreover, EsxA regulates host immune responses as a potent T-cell antigen and a strong immunoregulator. EsxA interacts with multiple cellular proteins and stimulates several signal pathways, such as necrosis, apoptosis, autophagy, and antigen presentation. Interestingly, there is a co-dependency in the expression and secretion of EsxA and other mycobacterial factors, which greatly increases the complexity of dissecting the precise roles of EsxA and other factors in mycobacterium-host interaction. In this review, we summarize the current understandings of the roles and functions of EsxA in mycobacterial infection and discuss the challenges and future directions.
Collapse
|
36
|
Ostrik AA, Azhikina TL, Salina EG. Small Noncoding RNAs and Their Role in the Pathogenesis of Mycobacterium tuberculosis Infection. BIOCHEMISTRY (MOSCOW) 2021; 86:S109-S119. [PMID: 33827403 PMCID: PMC7905965 DOI: 10.1134/s000629792114008x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host–pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.
Collapse
Affiliation(s)
- Albina A Ostrik
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
37
|
Dalboni LC, Alvares Saraiva AM, Konno FTDC, Perez EC, Codeceira JF, Spadacci-Morena DD, Lallo MA. Encephalitozoon cuniculi takes advantage of efferocytosis to evade the immune response. PLoS One 2021; 16:e0247658. [PMID: 33667240 PMCID: PMC7935246 DOI: 10.1371/journal.pone.0247658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are recognized as opportunistic pathogens in individuals with immunodeficiencies, especially related to T cells. Although the activity of CD8+ T lymphocytes is essential to eliminate these pathogens, earlier studies have shown significant participation of macrophages at the beginning of the infection. Macrophages and other innate immunity cells play a critical role in activating the acquired immunity. After programmed cell death, the cell fragments or apoptotic bodies are cleared by phagocytic cells, a phenomenon known as efferocytosis. This process has been recognized as a way of evading immunity by intracellular pathogens. The present study evaluated the impact of efferocytosis of apoptotic cells either infected or not on macrophages and subsequently challenged with Encephalitozoon cuniculi microsporidia. Macrophages were obtained from the bone marrow monocytes from C57BL mice, pre-incubated with apoptotic Jurkat cells (ACs), and were further challenged with E. cuniculi spores. The same procedures were performed using the previously infected Jurkat cells (IACs) and challenged with E. cuniculi spores before macrophage pre-incubation. The average number of spores internalized by macrophages in phagocytosis was counted. Macrophage expression of CD40, CD206, CD80, CD86, and MHCII, as well as the cytokines released in the culture supernatants, was measured by flow cytometry. The ultrastructural study was performed to analyze the multiplication types of pathogens. Macrophages pre-incubated with ACs and challenged with E. cuniculi showed a higher percentage of phagocytosis and an average number of internalized spores. Moreover, the presence of stages of multiplication of the pathogen inside the macrophages, particularly after efferocytosis of infected apoptotic bodies, was observed. In addition, pre-incubation with ACs or IACs and/or challenge with the pathogen decreased the viability of macrophages, reflected as high percentages of apoptosis. The marked expression of CD206 and the release of large amounts of IL-10 and IL-6 indicated the polarization of macrophages to an M2 profile, compatible with efferocytosis and favorable for pathogen development. We concluded that the pathogen favored efferocytosis and polarized the macrophages to an M2 profile, allowing the survival and multiplication of E. cuniculi inside the macrophages and explaining the possibility of macrophages acting as Trojan horses in microsporidiosis.
Collapse
Affiliation(s)
- Luciane Costa Dalboni
- Programa de Patologia Ambiental e Experimental da Universidade Paulista–Unip, São Paulo, Brazil
| | - Anuska Marcelino Alvares Saraiva
- Mestrado e Doutorado Interdisciplinar em Ciências da Saúde da Universidade Cruzeiro do Sul, São Paulo, Brazil
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental da Universidade Paulista–Unip, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
38
|
Gupta SK, Parlane NA, Luo D, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Self-assembled particulate vaccine elicits strong immune responses and reduces Mycobacterium avium subsp. paratuberculosis infection in mice. Sci Rep 2020; 10:22289. [PMID: 33339863 PMCID: PMC7749150 DOI: 10.1038/s41598-020-79407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786 as a fusion ('MAP fusion protein particle'). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - Natalie A Parlane
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Dongwen Luo
- Bioinformatics and Statistics, AgResearch, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, Australia
| | - Axel Heiser
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Bryce M Buddle
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - D Neil Wedlock
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
39
|
Liu G, Wan Q, Li J, Hu X, Gu X, Xu S. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle 2020; 19:3182-3194. [PMID: 33121314 DOI: 10.1080/15384101.2020.1838792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is one of the most important infectious diseases worldwide and macrophage apoptosis is the major host defense mechanism against TB. We attempted to characterize the role of miRNA (miR)-125b-5p on mycobacterium tuberculosis (Mtb) infection and macrophages behaviors in vitro. According to fluorescence-activated cell separation (FACS), primary monocytes (CD14+) in TB patients were accumulated, and apoptotic monocytes were decreased. Peripheral blood mononuclear cells (PBMCs)-derived macrophages (MDMs) and monocytic cells THP-1-derived macrophage-like cells (TDMs) in vitro were used to be infected with H37Rv. After infection, colony-forming units assay revealed the increase of bacterial activity, FACS demonstrated the decrease of apoptosis rate of MDMs and TDMs, as well as promoted levels of IL-6, TNF-α, Bax, and Bim and suppressed levels of IL-10 and Bcl-2, examined by enzyme-linked immunosorbent assay (ELISA) and western blot assay. Expression of miR-125b-5p and DNA damage-regulated autophagy modulator 2 (DRAM2) was examined, and real-time PCR and western blot assay showed that miR-125b-5p was upregulated, whereas DRAM2 was downregulated in primary monocytes and H37Rv-infected macrophages (MDMs and TDMs). Moreover, blocking miR-125b-5p could attenuated H37Rv-induced bacterial activity and inflammatory response of MDMs and TDMs, accompanied with apoptosis inhibition. Whereas these effects of miR-125b-5p knockdown were abolished by downregulating DRAM2. In mechanism, DRAM2 was a downstream target of miR-125b-5p, as evidenced by dual-luciferase reporter assay. Collectively, silencing miR-125b-5p could protect human macrophages against Mtb infection through promoting apoptosis and inhibiting inflammatory response via targeting DRAM2, suggesting a novel target for Mtb eliminating. Abbreviations: TB: tuberculosis; PBMCs: peripheral blood mononuclear cells; Mtb: mycobacterium tuberculosis; AFB: acid fast bacilli; FITC: fluorescein isothiocyanate; MDMs: monocytes-derived macrophages; TDMs: THP-1-derived macrophage-like cells; ERFP: Mtb-enhanced red fluorescent protein; CFU: colony-forming units; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell separation; PI: propidium iodide; DRAM2: DNA damage-regulated autophagy modulator 2; Real-time PCR: real-time polymerase chain reaction; in-miR-125b-5p: miR-125b-5p inhibitor; si-DRAM2: siRNA against DRAM2.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China.,Department of Internal Medicine, Tacheng Municipality People's Hospital , Xinjiang, China
| | - Qiufeng Wan
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Jingwen Li
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Xinying Hu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Xingli Gu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| | - Sicheng Xu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University , Xinjiang, China
| |
Collapse
|
40
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
41
|
Auld SC, Staitieh BS. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology 2020; 17:32. [PMID: 32967690 PMCID: PMC7509826 DOI: 10.1186/s12977-020-00540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
As HIV has fueled a global resurgence of tuberculosis over the last several decades, there is a growing awareness that HIV-mediated impairments in both innate and adaptive immunity contribute to the heightened risk of tuberculosis in people with HIV. Since early immune responses to Mycobacterium tuberculosis (Mtb) set the stage for subsequent control or progression to active tuberculosis disease, early host-pathogen interactions following Mtb infection can be thought of as establishing a mycobacterial "set point," which we define as the mycobacterial burden at the point of adaptive immune activation. This early immune response is impaired in the context of HIV coinfection, allowing for a higher mycobacterial set point and greater likelihood of progression to active disease with greater bacterial burden. Alveolar macrophages, as the first cells to encounter Mtb in the lungs, play a critical role in containing Mtb growth and establishing the mycobacterial set point. However, a number of key macrophage functions, ranging from pathogen recognition and uptake to phagocytosis and microbial killing, are blunted in HIV coinfection. To date, research evaluating the effects of HIV on the alveolar macrophage response to Mtb has been relatively limited, particularly with regard to the critical early events that help to dictate the mycobacterial set point. A greater understanding of alveolar macrophage functions impacted by HIV coinfection will improve our understanding of protective immunity to Mtb and may reveal novel pathways amenable to intervention to improve both early immune control of Mtb and clinical outcomes for the millions of people worldwide infected with HIV.
Collapse
Affiliation(s)
- Sara C Auld
- Emory University School of Medicine, Atlanta, GA, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
42
|
Lv X, Li K, Hu Z. Autophagy and Others Respiratory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:585-597. [PMID: 32671777 DOI: 10.1007/978-981-15-4272-5_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Besides COPD, pulmonary fibrosis, and asthma, autophagy also participates in the development of many other respiratory diseases. Cystic fibrosis is an innate lung disease. Unlike idiopathic pulmonary fibrosis, cystic fibrosis has unique pathogenesis. Autophagy is an essential biological mechanism for the removal of misfolded proteins and damaged organelles in cells. Abnormal autophagy activity is involved in the pathogenesis of cystic fibrosis. Various studies have demonstrated that abnormalities or impaired autophagy are associated with cardiovascular diseases including pulmonary vascular disease. Autophagy plays a key role in maintaining normal vascular biological functions and vascular cell tissue homeostasis, and also plays an important role in the pathogenesis of various vascular diseases. For example, recent studies have found that autophagy participates in the occurrence and development of pulmonary hypertension. In addition, autophagy plays a central role in both innate and adaptive immune responses in immune cells or other cells with immune function. Thus, autophagy is the important cellular biological mechanism which causes cell fighting against pathogenic microorganisms including viruses, bacteria, and parasites. In this chapter, we discuss the work related to autophagy and other lung diseases.
Collapse
Affiliation(s)
- Xiaoxi Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuowei Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Xu J, Zhou Y, Yang Y, Lv C, Liu X, Wang Y. Involvement of ABC-transporters and acyltransferase 1 in intracellular cholesterol-mediated autophagy in bovine alveolar macrophages in response to the Bacillus Calmette-Guerin (BCG) infection. BMC Immunol 2020; 21:26. [PMID: 32397995 PMCID: PMC7216371 DOI: 10.1186/s12865-020-00356-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Understanding pathogenic mechanisms is imperative for developing novel treatment to the tuberculosis, an important public health burden worldwide. Recent studies demonstrated that host cholesterol levels have implications in the establishment of Mycobacterium tuberculosis (M. tuberculosis, Mtb) infection in host cells, in which the intracellular cholesterol-mediated ATP-binding cassette transporters (ABC-transporters) and cholesterol acyltransferase1 (ACAT1) exhibited abilities to regulate macrophage autophagy induced by Mycobacterium bovis bacillus Calmette–Guérin (BCG). Results The results showed that a down-regulated expression of the ABC-transporters and ACAT1 in primary bovine alveolar macrophages (AMs) and murine RAW264.7 cells in response to a BCG infection. The inhibited expression of ABC-transporters and ACAT1 was associated with the reduction of intracellular free cholesterol, which in turn induced autophagy in macrophages upon to the Mycobacterial infection. These results strongly suggest an involvement of ABC-transporters and ACAT1 in intracellular cholesterol-mediated autophagy in AMs in response to BCG infection. Conclusion This study thus provides an insight into into a mechanism by which the cholesterol metabolism regulated the autophagy in macrophages in response to mycobacterial infections.
Collapse
Affiliation(s)
- Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yanbing Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Cuiping Lv
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China. .,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China. .,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
44
|
Ozturk-Gurgen H, Rieseberg B, Leipig-Rudolph M, Straubinger RK, Hermanns W. Morphology of Naturally-Occurring Tuberculosis in Cattle Caused by Mycobacterium caprae. J Comp Pathol 2020; 174:120-139. [PMID: 31955797 DOI: 10.1016/j.jcpa.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
This study describes the pathomorphological alterations of bovine tuberculosis through gross and histopathological examinations, assessment of the distribution of lesions and the demonstration of mycobacteria. Samples from lungs, liver, small intestine, their regional lymph nodes and retropharyngeal lymph nodes were collected from 84 cattle with tuberculosis from the Allgäu, Germany. Organs were evaluated grossly, histopathologically and by transmission electron microscopy. Mycobacteria and mycobacterial antigens were demonstrated using acid-fast staining and immunohistochemistry (IHC). Bacteriological tests revealed Mycobacterium caprae in all animals. Gross alterations were classified into five patterns (I to V) with an additional pattern of acute exudative pulmonary inflammation (pattern VI). Histological lesions were classified into four types (1-4) with additional lesions occurring in lungs only. Acid-fast staining revealed a low number of bacteria in all tissues, while IHC showed comparatively more mycobacterial antigens within the lesions and also at their periphery. The alimentary tract (68%) was the main portal of entry followed by an aerosol infection (19%). It was assumed that the observed lesions reflect a continuous primary period of infection; there were no lesions typical of a secondary (post-primary) period, as reported in man and also described in the older literature on bovine tuberculosis. The broad spectrum of changes described formerly was not observed in the present cases and the route of infection and nature of acid fast staining showed differences when compared with previous studies of naturally-occurring bovine tuberculosis.
Collapse
Affiliation(s)
- H Ozturk-Gurgen
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany.
| | - B Rieseberg
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - M Leipig-Rudolph
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - R K Straubinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Muenchen, Munich, Germany
| | - W Hermanns
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| |
Collapse
|
45
|
The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc Natl Acad Sci U S A 2019; 117:1160-1166. [PMID: 31879349 DOI: 10.1073/pnas.1911646117] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Following mycobacterial entry into macrophages the ESX-1 type VII secretion system promotes phagosomal permeabilization and type I IFN production, key features of tuberculosis pathogenesis. The current model states that the secreted substrate ESAT-6 is required for membrane permeabilization and that a subsequent passive leakage of extracellular bacterial DNA into the host cell cytosol is sensed by the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) pathway to induce type I IFN production. We employed a collection of Mycobacterium marinum ESX-1 transposon mutants in a macrophage infection model and show that permeabilization of the phagosomal membrane does not require ESAT-6 secretion. Moreover, loss of membrane integrity is insufficient to induce type I IFN production. Instead, type I IFN production requires intact ESX-1 function and correlates with release of mitochondrial and nuclear host DNA into the cytosol, indicating that ESX-1 affects host membrane integrity and DNA release via genetically separable mechanisms. These results suggest a revised model for major aspects of ESX-1-mediated host interactions and put focus on elucidating the mechanisms by which ESX-1 permeabilizes host membranes and induces the type I IFN response, questions of importance for our basic understanding of mycobacterial pathogenesis and innate immune sensing.
Collapse
|
46
|
Abstract
The clearance of apoptotic cells by professional and non-professional phagocytes - a process termed 'efferocytosis' - is essential for the maintenance of tissue homeostasis. Accordingly, defective efferocytosis underlies a growing list of chronic inflammatory diseases. Although much has been learnt about the mechanisms of apoptotic cell recognition and uptake, several key areas remain incompletely understood. This Review focuses on new discoveries related to how phagocytes process the metabolic cargo they receive during apoptotic cell uptake; the links between efferocytosis and the resolution of inflammation in health and disease; and the roles of efferocytosis in host defence. Understanding these aspects of efferocytosis sheds light on key physiological and pathophysiological processes and suggests novel therapeutic strategies for diseases driven by defective efferocytosis and impaired inflammation resolution.
Collapse
|
47
|
Casadevall A, Fang FC. The intracellular pathogen concept. Mol Microbiol 2019; 113:541-545. [PMID: 31762116 DOI: 10.1111/mmi.14421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
The intracellular pathogen concept classifies pathogenic microbes on the basis of their site of replication and dependence on host cells. This concept played a fundamental role in establishing the field of cellular microbiology, founded in part by Dr. Pascale Cossart, whose seminal contributions are honored in this issue of Molecular Microbiology. The recognition that microbes can access and replicate in privileged compartments within host cells has led to many new and fruitful lines of investigation into the biology of the cell and mechanisms of cell-mediated immunity. However, like any scientific concept, the intracellular pathogen concept can become a dogma that constrains thinking and oversimplifies complex and dynamic host-pathogen interactions. Growing evidence has blurred the distinction between "intracellular" and "extracellular" pathogens and demonstrated that many pathogens can exist both within and outside of cells. Although the intracellular pathogen concept remains useful, it should not be viewed as a rigid classification of pathogenic microbes, which exhibit remarkable variation and complexity in their behavior in the host.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
48
|
NAD + Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis. Cell Rep 2019; 24:429-440. [PMID: 29996103 DOI: 10.1016/j.celrep.2018.06.042] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/05/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) kills infected macrophages by inhibiting apoptosis and promoting necrosis. The tuberculosis necrotizing toxin (TNT) is a secreted nicotinamide adenine dinucleotide (NAD+) glycohydrolase that induces necrosis in infected macrophages. Here, we show that NAD+ depletion by TNT activates RIPK3 and MLKL, key mediators of necroptosis. Notably, Mtb bypasses the canonical necroptosis pathway since neither TNF-α nor RIPK1 are required for macrophage death. Macrophage necroptosis is associated with depolarized mitochondria and impaired ATP synthesis, known hallmarks of Mtb-induced cell death. These results identify TNT as the main trigger of necroptosis in Mtb-infected macrophages. Surprisingly, NAD+ depletion itself was sufficient to trigger necroptosis in a RIPK3- and MLKL-dependent manner by inhibiting the NAD+ salvage pathway in THP-1 cells or by TNT expression in Jurkat T cells. These findings suggest avenues for host-directed therapies to treat tuberculosis and other infectious and age-related diseases in which NAD+ deficiency is a pathological factor.
Collapse
|
49
|
Ribero S, Licciardello M, Quaglino P, Dapavo P. Efficacy and Safety of Secukinumab in Patients with Plaque Psoriasis and Latent Tuberculosis. Case Rep Dermatol 2019; 11:23-28. [PMID: 31662735 PMCID: PMC6816124 DOI: 10.1159/000501989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Upon the association of biologic treatments with reactivation of latent tuberculosis infection (LTBI), screening for Mycobacterium tuberculosisinfection and anti-tuberculosis chemoprophylaxis in positive patients are required prior to biologic drug administration. Nevertheless, the risk of infection relapses associated with biologic drugs seems to be different. No cases of reactivation of LTBI have been observed in secukinumab-treated subjects, in contrast with clinical reports on the risk associated with anti-tumor necrosis factor Α-based therapy. Twelve patients with moderate to severe plaque psoriasis eligible for systemic treatment and found to have LTBI received secukinumab without previous chemoprophylaxis initiation because of clinical contraindication for 10 cases and refusal by 2 patients. None of them had tuberculosis reactivation.
Collapse
Affiliation(s)
- Simone Ribero
- Medical Sciences Department, Section of Dermatology, University of Turin, Turin, Italy
| | - Matteo Licciardello
- Medical Sciences Department, Section of Dermatology, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Medical Sciences Department, Section of Dermatology, University of Turin, Turin, Italy
| | - Paolo Dapavo
- Medical Sciences Department, Section of Dermatology, University of Turin, Turin, Italy
| |
Collapse
|
50
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|