1
|
Kraithong S, Liu Y, Suwanangul S, Sangsawad P, Theppawong A, Bunyameen N. A comprehensive review of the impact of anthocyanins from purple/black Rice on starch and protein digestibility, gut microbiota modulation, and their applications in food products. Food Chem 2025; 473:143007. [PMID: 39874887 DOI: 10.1016/j.foodchem.2025.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This review explores the impact of anthocyanins derived from purple and black rice on starch and protein digestibility, gut microbiota modulation, and their applications in food production. Anthocyanins are shown to reduce starch digestibility by forming complexes with starch, thereby inhibiting key digestive enzymes. Additionally, they can influence protein digestion by inducing structural changes that enhance resistance to digestive processes. Evidence suggests that black rice anthocyanins positively modulate gut microbiota composition, potentially improving overall gut health. The incorporation of anthocyanin-rich extracts into various food products, such as bread and beverages, underscores their potential as functional ingredients. This review provides valuable insights into the health benefits associated with rice anthocyanins and identifies areas for future research to optimize their application in functional foods aimed at managing metabolic health.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B, 9000, Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Department of Research and Development of Halal Products, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand.
| |
Collapse
|
2
|
Bertolo MRV, Pereira TS, dos Santos FV, Facure MHM, dos Santos F, Teodoro KBR, Mercante LA, Correa DS. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr Rev Food Sci Food Saf 2025; 24:e70144. [PMID: 40034076 PMCID: PMC11929373 DOI: 10.1111/1541-4337.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Citrus fruits are one of the most popular crops in the world, and around one quarter of them are subjected to industrial processes, aiming at the production of different food products. Citrus processing generates large amounts of waste, including peels, pulp, and seeds. These materials are rich sources of polymers (e.g., pectin, cellulose, hemicellulose, lignin), phenolic compounds, and essential oils. At the same time, the development of food packaging materials using citrus waste is a highly sought strategy for food preservation, and meets the principles of circular economy. This review surveys current advances in the development of active and intelligent food packaging produced using one or more citrus waste components (polymers, phenolics extracts, and essential oils). It highlights the contribution and effects of each of these components on the properties of the developed packaging, as well as emphasizes the current state and challenges for developing citrus-based packaging. Most of the reported investigations employed citrus pectin as a base polymer to produce packaging films through the casting technique. Likewise, most of them focused on developing active materials, and fewer studies have explored the preparation of citrus waste-based intelligent materials. All studies characterized the materials developed, but only a few actually applied them to food matrices. This review is expected to encourage novel investigations that contribute to food preservation and to reduce the environmental impacts caused by discarded citrus byproducts.
Collapse
Affiliation(s)
- Mirella R. V. Bertolo
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Tamires S. Pereira
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Fabrício dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Luiza A. Mercante
- Institute of ChemistryFederal University of Bahia (UFBA)SalvadorBABrazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| |
Collapse
|
3
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
4
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
5
|
Zheng Q, Yang SJ, Yi EJ, Park SJ, Jin X, Nguyen TTM, Yi GS, Jeon YJ, Yi TH. Enzyme-assisted Rosa davurica mitigates UV-induced skin photodamage by modulating apoptosis through Nrf2/ARE and MAPK/NF-κB pathways. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 263:113098. [PMID: 39787977 DOI: 10.1016/j.jphotobiol.2025.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Exposure to UV irradiation results in abnormal, extensive apoptosis of skin cells. This excessive cell death can promote inflammation and alter the microenvironment, increasing the risk of skin cancer. Despite extensive research, few materials are effective at simultaneously protecting against both UVA and UVB irradiation. This study aims to develop dual-action material using enzyme-assisted extraction of Rosa davurica Pall (RD) to prevent skin photodamage caused by UVA and UVB irradiation. Three different enzymes were used to assist the extraction of RD, followed by an analysis of the changes in active component levels. Skin photodamage models were established by exposing Normal Human Dermal Fibroblasts (NHDF) and HaCaT cells to UVA and UVB irradiation. The impact of enzyme-assisted extracted RD (ERD) on Reactive Oxygen Species (ROS) production and cell apoptosis was assessed using Flow Cytometry. The effects of ERDs on inflammatory cytokines were measured using ELISA, and RT-PCR was used to evaluate its impact on apoptotic gene expression in photodamaged cells. Furthermore, the impact of ERDs on the Nuclear factor erythroid 2-related factor 2 (Nrf2)/Antioxidant response element (ARE) and Mitogen-activated protein kinases (MAPK)/Nuclear factor-κB (NF-κB) signaling pathways was assessed through Western blot analysis. Finally, the impact of ERDs on full-thickness artificial skin tissue after UV irradiation was assessed using hematoxylin and eosin (H&E) staining. Furthermore, leveraging the experimental results, network pharmacology was utilized to explore the potential of ERDs in preventing skin cancer. Enzyme-assisted extraction enhanced the bioactive components of RD. ERDs effectively reduced ROS levels and suppressed the secretion of Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6 by modulating the Nrf2/ARE and inhibiting the MAPK/NF-κB signaling pathways. This mechanism promoted the expression of the anti-apoptotic gene Bcl-2 and decreased the activity of proapoptotic genes BAX, caspase-3, and caspase-9, thereby countering UV-induced apoptosis. Additionally, staining results demonstrated that ERDs effectively repaired UV-induced photodamage and maintained the integrity of skin structure. ERDs provides comprehensive protection against photodamage induced by UVA and UVB irradiation, demonstrating its potential as an effective photoprotective material and possibly in preventing skin cancer.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea; Snowwhitefactory Co., Ltd., 184, Jungbu-daero, Giheung, Yongin 17905, Republic of Korea
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Xiangji Jin
- Department of Dermatology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dong-daemun, Seoul 02447, Republic of Korea
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Gyeong-Seon Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Yong-Jun Jeon
- Department of Oriental Medicine Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Zubaidi MA, Czaplicka M, Kolniak-Ostek J, Nawirska-Olszańska A. Effect of Different Enzyme Treatments on Juice Yield, Physicochemical Properties, and Bioactive Compound of Several Hybrid Grape Varieties. Molecules 2025; 30:556. [PMID: 39942660 PMCID: PMC11819835 DOI: 10.3390/molecules30030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the effects of four enzymatic treatments on the yield, physicochemical properties, and bioactive compounds of grape juices from two red (Golubok, Regent) and two white (Muscaris, Aurora) hybrid grape varieties. A total of 20 samples were prepared using four commercial enzyme formulations (Pectinex Ultra, Safizym Clear Plus, Safizym Press, and Rapidase color) applied at a concentration of 0.02% (w/w). The juices were evaluated for yield, total phenolic content, antioxidant capacities (ABTS, DPPH, FRAP), titratable acidity, turbidity, total soluble solids, and phenolic profile. The addition of enzymes significantly improved juice yield by 10% to 20%, with the effect varying depending on the type of enzyme and the variety of grapes. Pectinex Ultra was the most effective enzyme in reducing turbidity, while enzyme treatments had minimal impact on Brix levels and sugar concentration, which were primarily determined by the characteristics of each grape variety. The enzyme addition showed a minor influence on the titratable acidity of the juices, with slight increases observed in Muscaris, but the grape variety played a major role in determining the titratable acidity levels. Color parameters revealed that white grape juices (Muscaris and Aurora) were brighter than red varieties (Golubok and Regent). Additionally, enzyme treatments influenced the color, enhancing the red hues in red grape juices. Enzyme treatments also improved the antioxidant capacity of grape juices, especially in Aurora and Muscaris, although the effect on polyphenol content was more dependent on the variety of grapes, with red varieties showing higher levels of polyphenols than white varieties. These findings highlight the significant role of both enzyme treatments and grape variety in determining the quality and health-promoting properties of grape juice.
Collapse
Affiliation(s)
- Muhamad Alfiyan Zubaidi
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.A.Z.); (J.K.-O.)
| | - Marta Czaplicka
- Department of Horticulture, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.A.Z.); (J.K.-O.)
| | - Agnieszka Nawirska-Olszańska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.A.Z.); (J.K.-O.)
| |
Collapse
|
7
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
9
|
Durmus N, Gulsunoglu‐Konuskan Z, Kilic‐Akyilmaz M. Recovery, Bioactivity, and Utilization of Bioactive Phenolic Compounds in Citrus Peel. Food Sci Nutr 2024; 12:9974-9997. [PMID: 39723030 PMCID: PMC11666827 DOI: 10.1002/fsn3.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024] Open
Abstract
Citrus peels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in Citrus peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes. Novel processing technologies can help in improvement of extraction efficiency. Extreme process or medium conditions degrade phenolics and their bioactivity where encapsulation can be applied to improve their stability, solubility, and bioactivity. Citrus peel powder including ascorbic acid and dietary fiber besides phenolics or extracts therefrom can be used as functional food ingredients to extend shelf life and provide health benefits. In addition, phenolic extracts can be used as antioxidant and antimicrobial agents in active food packaging applications. Phenolic extracts have also a potential to be used as nutraceuticals and pharmaceuticals. In this review, phenolic compounds in different forms in Citrus peels, their recovery, bioactivity and possible applications for upcycling in the industry are presented.
Collapse
Affiliation(s)
- Nihal Durmus
- Department of Food EngineeringIstanbul Technical UniversityIstanbulTürkiye
- Department of Food ProcessingDuzce UniversityDuzceTürkiye
| | | | | |
Collapse
|
10
|
Cazier EA, Pham TN, Cossus L, Abla M, Ilc T, Lawrence P. Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:11-38. [PMID: 39094219 DOI: 10.1016/j.wasman.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.
Collapse
Affiliation(s)
- Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France(1).
| | - Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Louis Cossus
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Maher Abla
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Tina Ilc
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| |
Collapse
|
11
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Karastergiou A, Gancel AL, Jourdes M, Teissedre PL. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants (Basel) 2024; 13:1131. [PMID: 39334790 PMCID: PMC11428247 DOI: 10.3390/antiox13091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Vitis vinifera L., commonly known as grapes, is one of the most widely cultivated crops worldwide, with over 80% used for wine production. However, the winemaking process generates substantial residues, including grape pomace (GP), wine lees, and wastewater, which can pose significant environmental and economic challenges. Among these, GP stands out not only as a waste product but also as a rich source of polyphenols-bioactive compounds with recognized antioxidant and anti-inflammatory properties. Recent advancements have expanded the application of GP-derived extracts, particularly in the health and food industries, due to their potent bioactive properties. This review provides a comprehensive overview of the valorization of GP, focusing on its phenolic composition and therapeutic potential. It evokes innovative, environmentally friendly extraction techniques and integrated methods for the chemical analysis of these valuable compounds. Additionally, the health benefits of GP polyphenols are explored, with recent experimental findings examining their metabolism and highlighting the key role of gut microbiota in these processes. These insights contribute to a deeper understanding of the biological activity of GP extracts and underscore their growing significance as a high-added-value product. By illustrating how winemaking by-products can be transformed into natural therapeutic agents, this review emphasizes the importance of sustainable development and eco-friendly waste management practices, significantly contributing to the advancement of a circular economy.
Collapse
Affiliation(s)
| | | | | | - Pierre-Louis Teissedre
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d’Ornon, France; (A.K.); (A.-L.G.); (M.J.)
| |
Collapse
|
13
|
Ahmadi N, Mosleh N, Yeganeh M, Ahmadi N, Malakouti S, Shahsavari S, Shahraki R, Katebi S, Agapoor M, Sadeghi S, Bagheri K. Procedures to evaluate potential of plants as natural food preservatives: Phytochemical characterization, novel extraction technology, and safety evaluation-A comprehensive review. Food Sci Nutr 2024; 12:6142-6156. [PMID: 39554363 PMCID: PMC11561796 DOI: 10.1002/fsn3.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 11/19/2024] Open
Abstract
There is increasing demand for natural food preservative in food manufacturing industry as it is the key to meet consumers' preferences toward healthier food choice. Plant is listed among the most important resources of bioactive components to be utilized as the green and natural food preservatives. There are more than 10,000 kinds of bioactive components in plants that possess antioxidant and antimicrobial properties. Artemisia with potential antimicrobial and antioxidant attributes, as well as functional and medicinal properties, is one of the most important plant species. The manuscript presents a comprehensive review of the potential of the Artemisia species as natural food preservatives. The current challenges and ways forward in using Artemisia EOs and extracts as food preservatives are also discussed. This topic is timely and important considering the natural preservatives used to replace chemical ingredients, sustaining quality, healthy properties, and shelf life of food products as well as efficient and novel extraction techniques.
Collapse
Affiliation(s)
- Negin Ahmadi
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Nazanin Mosleh
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Mahta Yeganeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Nadia Ahmadi
- Department of Food Science and TechnologyIslamic Azad University, Science and Research BranchTehranIran
| | - Sara Malakouti
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Saleh Shahsavari
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Reza Shahraki
- General Bureau of Standard Sistan and Baluchestan ProvinceIran National Standards OrganizationZahedanIran
| | - Somaye Katebi
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Mina Agapoor
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Sonia Sadeghi
- Department of Horticultural Science, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Karim Bagheri
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
14
|
Januskevice V, Gomes AM, Sousa S, Barbosa JC, Vedor R, Martusevice P, Liaudanskas M, Zvikas V, Viskelis P, Cesoniene L, Balciunaitiene A, Viskelis J, Szonn S, Urbonaviciene D. Phytochemical and Functional Diversity of Enzyme-Assisted Extracts from Hippophae rhamnoides L., Aralia cordata Thunb., and Cannabis sativa L. Antioxidants (Basel) 2024; 13:950. [PMID: 39199196 PMCID: PMC11351958 DOI: 10.3390/antiox13080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Plant leaves are a source of essential phenolic compounds, which have numerous health benefits and can be used in multiple applications. While various techniques are available for recovering bioactive compounds from by-products, more data are needed on enzyme-assisted extraction (EAE). The aim of this study was to compare EAE and solid-liquid extraction (SLE), to evaluate the impact on bioactive compounds' extraction yield, phytochemical composition, and the antioxidant, antimicrobial, and antidiabetic properties of Aralia cordata leaves and roots, sea buckthorn Hippophae rhamnoides, and hemp Cannabis sativa leaves. The results indicate that EAE with Viscozyme L enzyme (EAE_Visc) extracts of the tested plant leaves possess the highest yield, antioxidant activity, and total phenolic content. Moreover, the EAE_Visc extract increased by 40% the total sugar content compared to the control extract of A. cordata root. Interestingly, the sea buckthorn leaf extracts exhibited α-glucosidase inhibitory activity, which reached an almost 99% inhibition in all extracts. Furthermore, the sea buckthorn leaves SLE and EAE_Visc extracts possess antibacterial activity against Staphylococcus aureus. Additionally, scanning electron microscopy was used to examine changes in cell wall morphology after EAE. Overall, this study shows that EAE can be a promising method for increasing the yield and improving the functional properties of the resulting extracts in a fast and sustainable way compared to SLE.
Collapse
Affiliation(s)
- Viktorija Januskevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Ana Maria Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Sérgio Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Joana Cristina Barbosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Rita Vedor
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Sonata Szonn
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| |
Collapse
|
15
|
Fan SJ, Zhang XY, Cheng Y, Qiu YX, Hu YY, Yu T, Qian WZ, Zhang DJ, Gao S. Extraction Optimization of Phenolic Compounds from Triadica sebifera Leaves: Identification, Characterization and Antioxidant Activity. Molecules 2024; 29:3266. [PMID: 39064845 PMCID: PMC11278767 DOI: 10.3390/molecules29143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Triadica sebifera (T. sebifera) has attracted much attention because of the high oil content in its seeds, but there are few systematic studies on the phenolic compounds of T. sebifera leaves (TSP). In this study, the extraction process of TSP was optimized by response surface methodology. The phenolic components of these extracts were analyzed by high-performance liquid chromatography (HPLC). Moreover, the effects of hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activity and characterization of T. sebifera leaf extract (TSLE) were evaluated. Under the conditions of ethanol concentration 39.8%, liquid-solid ratio (LSR) 52.1, extraction time 20.2 min and extraction temperature 50.6 °C, the maximum TSP yield was 111.46 mg GAE/g dw. The quantitative analysis and correlation analysis of eight compounds in TSP showed that the type and content of phenolic compounds had significant correlations with antioxidant activity, indicating that tannic acid, isoquercitrin and ellagic acid were the main components of antioxidant activities. In addition, through DPPH and ABTS determination, VD-TSLE and FD-TSLE showed strong scavenging ability, with IC50 values of 138.2 μg/mL and 135.5 μg/mL and 73.5 μg/mL and 74.3 μg/mL, respectively. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) infrared spectroscopy revealed small differences in the extracts of the three drying methods. This study lays a foundation for the effective extraction process and drying methods of phenolic antioxidants from T. sebifera leaves, and is of great significance for the utilization of T. sebifera leaves.
Collapse
Affiliation(s)
- Shao-Jun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Xin-Yue Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu Cheng
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu-Xian Qiu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yun-Yi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Ting Yu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
| | - Wen-Zhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Dan-Ju Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Melo FDO, Ferreira VC, Barbero GF, Carrera C, Ferreira EDS, Umsza-Guez MA. Extraction of Bioactive Compounds from Wine Lees: A Systematic and Bibliometric Review. Foods 2024; 13:2060. [PMID: 38998566 PMCID: PMC11241285 DOI: 10.3390/foods13132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The extraction of bioactive compounds from wine lees involves a variety of methods, the selection of which is crucial to ensure optimal yields. This systematic review, following PRISMA guidelines and utilizing the Web of Science database, aimed to examine the current state of this field, providing insights for future investigations. The search employed strategies with truncation techniques and Boolean operators, followed by a three-step screening using well-defined eligibility criteria. A bibliometric analysis was conducted to identify authors, affiliations, countries/regions, and research trends. Thirty references were selected for analysis, with Spain standing out as the main source of research on the topic. The majority of studies (66%) focused on the extraction of bioactive compounds from alcoholic fermentation lees, while 33% were directed towards malolactic fermentation lees. Binary mixtures (ethanol-water) were the predominant solvents, with ultrasound being the most used extraction method (31.3%), providing the highest average yields (288.6%) for the various evaluated compounds, especially flavonoids. The potential of wine lees as a source of bioactive compounds is highlighted, along with the need for further research exploring alternative extraction technologies and the combination of methods. Additionally, the importance of "in vitro" and "in vivo" tests to assess the bioactive potential of lees, as well as the use of computational tools to optimize extraction and identify the molecules responsible for bioactive activity, is emphasized.
Collapse
Affiliation(s)
- Filipe de Oliveira Melo
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Gerardo Fernandez Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ederlan de Souza Ferreira
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Marcelo Andrés Umsza-Guez
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| |
Collapse
|
17
|
Ma J, Li P, Ma Y, Liang L, Jia F, Wang Y, Yu L, Huang W. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. Heliyon 2024; 10:e31518. [PMID: 38826714 PMCID: PMC11141385 DOI: 10.1016/j.heliyon.2024.e31518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Peng Li
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
- The Work of Forestry Administrative Station of Kirgiz Autonomous Prefecture, Artush, 845350, PR China
| | - Liya Liang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| |
Collapse
|
18
|
Hao Y, Pei F, Huang J, Li G, Zhong C. Application of deep eutectic solvents on extraction of flavonoids. J Sep Sci 2024; 47:e2300925. [PMID: 38726740 DOI: 10.1002/jssc.202300925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/24/2024]
Abstract
Deep eutectic solvents (DESs), as a new type of eco-friendly solvent, have attracted increasing attention on the extraction and separation of flavonoid compounds from various samples, owing to their excellent properties such as biodegradability and ease of handling with very low toxicity. This article provides a status review of the applications of DESs in the extraction of flavonoids, including the introduction of flavonoid compounds, the properties and superiority of DESs, and extraction methods (ultrasonic-assisted extraction, heating reflux extraction, matrix solid-phase dispersion, and solid-phase extraction). Finally, prospects and challenges in the application of DESs on extraction and separation are extensively elucidated and critically reviewed.
Collapse
Affiliation(s)
- Ying Hao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fengxia Pei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jingjing Huang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
19
|
Wang Z, Zou J, Shi Y, Zhang X, Zhai B, Guo D, Sun J, Luan F. Extraction techniques, structural features and biological functions of Hippophae rhamnoides polysaccharides: A review. Int J Biol Macromol 2024; 263:130206. [PMID: 38373568 DOI: 10.1016/j.ijbiomac.2024.130206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Hippophae rhamnoides L. (sea buckthorn) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to strengthen the stomach and digestion, relieving cough and resolving phlegm, promoting blood circulation, and resolving blood stasis in traditional Chinese medicine. Emerging evidence has shown that H. rhamnoides polysaccharides (HRPs) are vital bioactive macromolecules responsible for its various health benefits. HRPs possess the huge potential to develop a drug improving or treating different diseases. In this review, we comprehensively and systematically summarize the recent information on extraction and purification methods, structural features, biological activities, structure-activity relationships, and potential industry applications of HRPs and further highlight the therapeutic potential and sanitarian functions of HRPs in the fields of therapeutic agents and functional food development. Additionally, this paper also lists a variety of biological activities of HRPs in vitro and in vivo roundly. Finally, this paper also discusses the structure-activity relationships and potential applications of HRPs. Overall, this work will help to have a better in-depth understanding of HRPs and provide a scientific basis and direct reference for more scientific and rational applications.
Collapse
Affiliation(s)
- Zhichao Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
20
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
21
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
22
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
23
|
Lee EJ, Yoon KY. Optimization of extraction conditions for functional compounds from thinned unripe apple using β-cyclodextrin-based ultrasound-assisted extraction. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2156619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eun Ji Lee
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Young Yoon
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
24
|
Borsoi FT, Bonadiman BDSR, Marafon F, Fischer DLDO, Bagatini MD, Kempka AP. Eugenia uniflora L. seed and pulp extracts: phytochemical profile, cytotoxic potential, antitumoral activity, and α-amylase and α-glucosidase inhibition capacity. Nat Prod Res 2023; 37:3862-3867. [PMID: 36448430 DOI: 10.1080/14786419.2022.2153128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In this study, phytochemical profiling, cytotoxic potential, antitumoral activity, and α-amylase and α-glucosidase inhibition capacity of extracts of seed and pulp of Eugenia uniflora L. fruits were investigated. The extracts were obtained using a cellulase complex and the phenolic compounds were quantified. The cytotoxic potential and antitumoral activity were evaluated using peripheral blood mononuclear cells and melanoma-type tumor cells, respectively. The α-amylase and α-glucosidase inhibition capacity was determined. For all extracts, the compounds identified and quantified were salicylic acid, protocatechuic acid, gallic acid and, myricitrin. For extract of pulp, ellagic and p-coumaric acids were also identified and quantified. The extracts do not show cytotoxicity in peripheral blood mononuclear cells. Extract of seed was able to decrease cell viability in melanoma-type tumor cells within 24 h of exposure. The concentration 5 µg mL-1 of extracts inhibited 7.73% of α-amylase and 15.34% of α-glucosidase. The Pitanga extracts presents substances with biological activities.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| | | | - Filomena Marafon
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Pinhalzinho, Brazil
| |
Collapse
|
25
|
Puzeryte V, Martusevice P, Sousa S, Balciunaitiene A, Viskelis J, Gomes AM, Viskelis P, Cesoniene L, Urbonaviciene D. Optimization of Enzyme-Assisted Extraction of Bioactive Compounds from Sea Buckthorn ( Hippophae rhamnoides L.) Leaves: Evaluation of Mixed-Culture Fermentation. Microorganisms 2023; 11:2180. [PMID: 37764024 PMCID: PMC10536544 DOI: 10.3390/microorganisms11092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.
Collapse
Affiliation(s)
- Viktorija Puzeryte
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| |
Collapse
|
26
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
27
|
Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Enzyme-assisted polysaccharides extraction from Calocybe indica: Synergistic antibiofilm and oxidative stability of essential oil nanoemulsion. Int J Biol Macromol 2023; 242:124843. [PMID: 37182620 DOI: 10.1016/j.ijbiomac.2023.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Recently, mushroom polysaccharides have been explored to attribute to vital biologically important functions, and several extraction techniques can be employed, therefore, polysaccharides were extracted from the edible mushroom Calocybe indica to explore its functionality. Multiple enzymes viz., cellulase, pectinase, and protease (1:1:1) at temperature 47 °C and pH 4.64 with an extraction time of 2 h yielded 7.24 % polysaccharide content. The thermograph curve of polysaccharides showed two-stage decomposition at a different temperature range and decomposition of polysaccharides initiated with an onset temperature of 226.77 °C and a maximum peak at 248.90 °C. Hydrodistillation processed Eucalyptus globulus leaf oil was characterized using the chromatography technique and eucalyptol, p-cymene, Γ-terpinene, 4-epi-cubebol, spathulenol, viridiflorol, and p-mentha-1,5-dien-8-ol was observed as major components. As well, we formulated nanoemulsion using mushroom polysaccharide and eucalyptus leaf oil with 140.8 nm and evaluated synergistic antimicrobial and antibiofilm activity. MIC and MBC values for Pseudomonas aeruginosa, E. coli, and S. typhi were 12.50-3.125 and 6.25-1.56, and for S. aureus were 6.25, 6.25, 3.125, and 3.125, 3.125, 1.56 and for C. albicans the values were 12.50,12.50, 6.250 and 6.25,6.25, and 3.125 μl/mL respectively. The polysaccharides, essential oil, and nanoemulsion showed remarkable antibiofilm activity against S.aureus with inhibition of 57.42 ± 0.19, 59.62 ± 0.15, and 69.34 ± 0.19 %, while E. coli showed the least antibiofilm activity. However, all three tested samples showed significant (p < 0.05) differences against tested pathogenic microorganisms with inhibition of biofilm formation. Therefore, it could be inferred that the synergistic properties of essential oils with mushroom polysaccharides are a promising strategy to enhance antimicrobial efficacy and control foodborne pathogens.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
28
|
Bai X, Zhou L, Zhou L, Cang S, Liu Y, Liu R, Liu J, Feng X, Fan R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023; 28:molecules28083610. [PMID: 37110844 PMCID: PMC10140916 DOI: 10.3390/molecules28083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blueberry is the source of a variety of bioactive substances, including phenolic compounds, such as anthocyanins, pterostilbene, phenolic acids, etc. Several studies have revealed that polyphenols in blueberry have important bioactivities in maintaining health, such as antioxidant and anti-tumor activities, immune regulation, the prevention of chronic diseases, etc. Therefore, these phenolic compounds in blueberries have been widely used in the field of healthcare, and the extraction, isolation, and purification of phenolic compounds are the prerequisites for their utilization. It is imperative to systematically review the research progress and prospects of phenolic compounds present in blueberries. Herein, the latest progress in the extraction, purification, and analysis of phenolic compounds from blueberries is reviewed, which can in turn provide a foundation for further research and usage of blueberries.
Collapse
Affiliation(s)
- Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Zhou
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Song Cang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yuhan Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Rui Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Jie Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
29
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). Int J Biol Macromol 2023; 233:123557. [PMID: 36740126 DOI: 10.1016/j.ijbiomac.2023.123557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hyssopus officinalis L (Hyssop) is a good source of phenolic compounds. However, conventional methods for extraction of these compounds typically take a long time and have relatively low recovery rates. This study focused on cold atmospheric plasma (CAP) pretreatment and investigated its effects on the ultrasound-assisted extraction (UAE) of phenolic compounds from hyssop. Hyssop was treated at dielectric barrier discharge plasma with air and nitrogen gases for 5, 10, and 15 min. Optical emission spectroscopy was used to evaluate present active species in the plasma. The water contact angle changes, cell wall polysaccharides distribution, and structural variations of the treated samples were determined after treatment. Antioxidant activity and total phenolic contents (TPC) of the extracts were also evaluated. The results showed that CAP treatment reduced the contact angle making surface more hydrophilic. Compared with hyssop, overall no significant changes in the basic structure of all treated samples or the formation of new functional groups were recognized. In addition, CAP pretreatment before UAE increased the antioxidant activity of extracts according to the FRAP assay than the un-pretreated sample and conventional solvent extraction method. Also, TPC increased in samples treated with nitrogen plasma.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
30
|
Leangnim N, Unban K, Thangsunan P, Tateing S, Khanongnuch C, Kanpiengjai A. Ultrasonic-assisted enzymatic improvement of polyphenol content, antioxidant potential, and in vitro inhibitory effect on digestive enzymes of Miang extracts. ULTRASONICS SONOCHEMISTRY 2023; 94:106351. [PMID: 36878085 PMCID: PMC9988395 DOI: 10.1016/j.ultsonch.2023.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The aims of this research were to optimize the ultrasonic-assisted enzymatic extraction of polyphenols under Miang and tannase treatment conditions for the improvement of antioxidant activity of Miang extracts via response surface methodology. Miang extracts treated with and without tannase were investigated for their inhibitory effects on digestive enzymes. The optimal conditions for ultrasonic-assisted enzymatic extraction of the highest total polyphenol (TP) (136.91 mg GAE/g dw) and total flavonoid (TF) (5.38 mg QE/g dw) contents were as follows: 1 U/g cellulase, 1 U/g xylanase, 1 U/g pectinase, temperature (74 °C), and time (45 min). The antioxidant activity of this extract was enhanced by the addition of tannase obtained from Sporidiobolus ruineniae A45.2 undergoing ultrasonic treatment and under optimal conditions (360 mU/g dw, 51 °C for 25 min). The ultrasonic-assisted enzymatic extraction selectively promoted the extraction of gallated catechins from Miang. Tannase treatment improved the ABTS and DPPH radical scavenging activities of untreated Miang extracts by 1.3 times. The treated Miang extracts possessed higher IC50 values for porcine pancreatic α-amylase inhibitory activity than those that were untreated. However, it expressed approximately 3 times lower IC50 values for porcine pancreatic lipase (PPL) inhibitory activity indicating a marked improvement in inhibitory activity. The molecular docking results support the contention that epigallocatechin, epicatechin, and catechin obtained via the biotransformation of the Miang extracts played a crucial role in the inhibitory activity of PPL. Overall, the tannase treated Miang extract could serve as a functional food and beneficial ingredient in medicinal products developed for obesity prevention.
Collapse
Affiliation(s)
- Nalapat Leangnim
- Program in Biotechnology, The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
31
|
Babotă M, Frumuzachi O, Nicolescu A, Dias MI, Pinela J, Barros L, Añibarro-Ortega M, Stojković D, Carević T, Mocan A, López V, Crișan G. Thymus Species from Romanian Spontaneous Flora as Promising Source of Phenolic Secondary Metabolites with Health-Related Benefits. Antioxidants (Basel) 2023; 12:antiox12020390. [PMID: 36829949 PMCID: PMC9952121 DOI: 10.3390/antiox12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Wild thyme aerial parts (Serpylli herba) are recognized as a valuable herbal product with antioxidant, anti-inflammatory, and antibacterial effects. Although pharmacopoeial regulations allow its collection exclusively from Thymus serpyllum, substitution with other species is frequent in current practice. This study analyzed the phenolic composition, antioxidant, and enzyme-inhibitory and antimicrobial activity of the hydroethanolic extracts obtained from five Romanian wild thyme species (Thymus alpestris, T. glabrescens, T. panonicus, T. pulcherimus and T. pulegioides). The analysis of individual phenolic constituents was performed through LC-ESI-DAD/MS2, while for the in vitro evaluation of antioxidant potential, TEAC, FRAP, DPPH, TBARS and OxHLIA assays were employed. The anti-enzymatic potential was tested in vitro against tyrosinase, α-glucosidase and acetylcholinesterase. High rosmarinic acid contents were quantified in all species (20.06 ± 0.32-80.49 ± 0.001 mg/g dry extract); phenolic acids derivatives (including salvianolic acids) were confirmed as the principal metabolites of T. alpestris and T. glabrescens, while eriodictyol-O-di-hexoside was found exclusively in T. alpestris. All species showed strong antioxidant potential and moderate anti-enzymatic effect against α-glucosidase and acetylcholinesterase, showing no anti-tyrosinase activity. This is the first detailed report on the chemical and biological profile of T. alpestris collected from Romanian spontaneous flora.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-742-017-816
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Paz-Arteaga SL, Ascacio-Valdés JA, Aguilar CN, Cadena-Chamorro E, Serna-Cock L, Aguilar-González MA, Ramírez-Guzmán N, Torres-León C. Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
33
|
Nirmal NP, Khanashyam AC, Mundanat AS, Shah K, Babu KS, Thorakkattu P, Al-Asmari F, Pandiselvam R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023; 12:foods12030556. [PMID: 36766085 PMCID: PMC9914274 DOI: 10.3390/foods12030556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The fruit production and processing sectors produce tremendous amounts of by-products and waste that cause significant economic losses and an undesirable impact on the environment. The effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse gas emissions, thereby achieving sustainable development goals. These by-products contain a variety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants, polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive compounds can be extracted and used as value-added products in different industrial applications. The bioactive components extracted can be used in developing nutraceutical products, functional foods, or food additives. This review provides a comprehensive review of the recent developments in fruit waste valorization techniques and their application in food industries. The various extraction techniques, including conventional and emerging methods, have been discussed. The antioxidant and antimicrobial activities of the active compounds extracted and isolated from fruit waste have been described. The most important food industrial application of bioactive compounds extracted from fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on the topic are summarized.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| | | | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat 131028, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| |
Collapse
|
34
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
35
|
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023; 28:887. [PMID: 36677944 PMCID: PMC9862941 DOI: 10.3390/molecules28020887] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Postharvest Technology, College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Nirmal P
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anina Jose
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vidisha Tomer
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens Zographou, 157 84 Athens, Greece
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Sneha K
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
36
|
Häsler Gunnarsdottir S, Sommerauer L, Schnabel T, Oostingh GJ, Schuster A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics (Basel) 2023; 12:antibiotics12010130. [PMID: 36671331 PMCID: PMC9854852 DOI: 10.3390/antibiotics12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant species have developed effective defense strategies for colonizing diverse habitats and protecting themselves from numerous attacks from a wide range of organisms, including insects, vertebrates, fungi, and bacteria. The bark of trees in particular constitutes a number of components that protect against unwanted intruders. This review focuses on the antioxidative, dermal immunomodulatory, and antimicrobial properties of bark extracts from European common temperate trees in light of various skin pathogens, wound healing, and the maintenance of skin health. The sustainability aspect, achieved by utilizing the bark, which is considered a byproduct in the forest industry, is addressed, as are various extraction methods applied to retrieve extracts from bark.
Collapse
Affiliation(s)
| | - Lukas Sommerauer
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Salzburg Center for Smart Materials, c/o Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Thomas Schnabel
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov, B-dul. Eroilor nr. 29, 500036 Brasov, Romania
| | - Gertie Janneke Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
| | - Anja Schuster
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
- Correspondence:
| |
Collapse
|
37
|
Diaconeasa Z, Iuhas CI, Ayvaz H, Mortas M, Farcaş A, Mihai M, Danciu C, Stanilă A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010074. [PMID: 36616202 PMCID: PMC9823320 DOI: 10.3390/plants12010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 05/13/2023]
Abstract
Drastic growth in the amount of global food waste produced is observed every year, not only due to incessant population growth but also economic growth, lifestyle, and diet changes. As a result of their increasing health awareness, people are focusing more on healthy diets rich in fruits and vegetables. Thus, following worldwide fruit and vegetable consumption and their processing in various industries (juice, jams, wines, preserves), significant quantities of agro-industrial waste are produced (pomace, peels, seeds) that still contain high concentrations of bioactive compounds. Among bioactive compounds, anthocyanins have an important place, with their multiple beneficial effects on health; therefore, their extraction and recovery from food waste have become a topic of interest in recent years. Accordingly, this review aims to summarize the primary sources of anthocyanins from food waste and the novel eco-friendly extraction methods, such as pulsed electric field extraction, enzyme-assisted extraction, supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. The advantages and disadvantages of these techniques will also be covered to encourage future studies and opportunities focusing on improving these extraction techniques.
Collapse
Affiliation(s)
- Zoriţa Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Cristian I. Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
| | - Huseyin Ayvaz
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Mustafa Mortas
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Anca Farcaş
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Mihaela Mihai
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Andreea Stanilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-748-650-764
| |
Collapse
|
38
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
39
|
Lajoie L, Fabiano-Tixier AS, Chemat F. Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products-Past, Present and Future Solutions. Pharmaceuticals (Basel) 2022; 15:ph15121507. [PMID: 36558959 PMCID: PMC9788067 DOI: 10.3390/ph15121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Water is considered the greenest solvent. Nonetheless, the water solubility of natural products is still an incredibly challenging issue. Indeed, it is nearly impossible to solubilize or to extract many natural products properly using solely water due to their low solubility in this solvent. To address this issue, researchers have tried for decades to tune water properties to enhance its solvent potential in order to be able to solubilise or extract low-water solubility compounds. A few methods involving the use of solubilisers were described in the early 2000s. Since then, and particularly in recent years, additional methods have been described as useful to ensure the effective green extraction but also solubilisation of natural products using water as a solvent. Notably, combinations of these green methods unlock even higher extraction performances. This review aims to present, compare and analyse all promising methods and their relevant combinations to extract natural products from bioresources with water as solvent enhanced by green solubilisers and/or processes.
Collapse
|
40
|
A Case Study for the Extraction, Purification, and Co-Pigmentation of Anthocyanins from Aronia melanocarpa Juice Pomace. Foods 2022; 11:foods11233875. [PMID: 36496683 PMCID: PMC9738773 DOI: 10.3390/foods11233875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Chokeberry (Aronia melanocarpa) pomace is a by-product from the juice industry very rich in anthocyanins and other bioactive components. Recovery and purification of anthocyanins from the pomace is a viable valorization strategy that can be implemented to produce high-value natural food colorants with antioxidant properties. In this study, chokeberry pomace was subjected to enzyme-assisted extraction using commercial pectinases. The extracts were further purified by adsorption-desorption using an acrylic resin and stabilized by co-pigmentation with ferulic acid. The anthocyanin concentration and antioxidant activity of the extracts were unaffected by the enzymatic treatment at the conditions tested. The total phenolic content of the extracts suffered minor variations depending on the enzyme formulation used, whereas the dissolved solid content increased in all cases. The adsorption-desorption strategy allowed a 96% recovery of the anthocyanins initially present in the extract, whereas the co-pigmentation treatment magnified the intensity of the color in terms of absorbance, and improved the stability during storage up to one month.
Collapse
|
41
|
Cui H, Xie W, Hua Z, Cao L, Xiong Z, Tang Y, Yuan Z. Recent Advancements in Natural Plant Colorants Used for Hair Dye Applications: A Review. Molecules 2022; 27:8062. [PMID: 36432162 PMCID: PMC9692289 DOI: 10.3390/molecules27228062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
There is an on-going demand in recent years for safer and "greener" hair coloring agents with the global consumer awareness of the adverse effects of synthetic hair dyes. The belief in sustainability and health benefits has focused the attention of the scientific community towards natural colorants that serve to replace their synthetic toxic counterparts. This review article encompasses the historical applications of a vast array of natural plant hair dyes and summarizes the possible coloration mechanisms (direct dyeing and mordant dyeing). Current information on phytochemicals (quinones, tannins, flavonoids, indigo, curcuminoids and carotenoids) used for hair dyeing are summarized, including their botanical sources, color chemistry and biological/toxicological activities. A particular focus is given on research into new natural hair dye sources along with eco-friendly, robust and cost-effective technologies for their processing and applications, such as the synthetic biology approach for colorant production, encapsulation techniques for stabilization and the development of inorganic nanocarriers. In addition, innovative in vitro approaches for the toxicological assessments of natural hair dye cosmetics are highlighted.
Collapse
Affiliation(s)
- Hongyan Cui
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Xie
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongjie Hua
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Abbasi-Parizad P, Scarafoni A, Pilu R, Scaglia B, De Nisi P, Adani F. The recovery from agro-industrial wastes provides different profiles of anti-inflammatory polyphenols for tailored applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.996562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Food and agro-industrial processing produce a great amount of side-stream and waste materials that are excellent sources of functional bioactive molecules such as phenolic compounds that recover them can be beneficial not only for food sustainability but also to human for many industrial applications such as flavor compounds and therapeutic applications such as antimicrobial and anti-inflammatory. The treatments and extraction techniques have major effects on the recovery of bioactive compounds. Along with the conventional extraction methods, numerous innovative techniques have been evolved and have been optimized to facilitate bioactive extraction more efficiently and sustainably. In this work, we have summarized the state-of-the-art technological approaches concerning novel extraction methods applied for five most produced crops in Italy; Grape Pomace (GP), Tomato Pomace (TP), Olive Pomace (OP), Citrus Pomace (CP), and Spent Coffee Grounds (SCG), presenting the extraction yield and the main class of phenolic classes, with the focus on their biological activity as an anti-inflammatory in vitro and in vivo studies via describing their molecular mechanism of action.
Collapse
|
43
|
Sapatinha M, Oliveira A, Costa S, Pedro S, Gonçalves A, Mendes R, Bandarra NM, Pires C. Red and brown seaweeds extracts: A source of biologically active compounds. Food Chem 2022; 393:133453. [PMID: 35751208 DOI: 10.1016/j.foodchem.2022.133453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
The biological activities of Porphyra sp., Gracilaria gracilis, Alaria esculenta and Saccharina latissima extracts prepared by enzymatic and ball milling-assisted methods and hot water were evaluated. Enzyme-assisted methods allowed the highest extraction yields. Alcalase-assisted extraction (EAA) was the most effective in the recovery of polyphenolic compounds and Porphyra sp. had the highest content. The efficiency of flavonoids extraction was highly dependent on the used method. Globally, Porphyra sp. and EAA extracts exhibited the highest antioxidant and chelating activities. The highest α-amylase inhibitory activity was determined in HW Porphyra sp. extract while EAA A. esculenta extract had the highest α-glucosidase inhibitory activity. The highest ACE inhibitory activity was obtained in EAA from S. latissima. None of the extracts showed antimicrobial activity against the tested bacteria. The results showed that Porphyra sp. and S. latissima are potentially useful as ingredient in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- M Sapatinha
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - A Oliveira
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - S Costa
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - S Pedro
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - A Gonçalves
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - R Mendes
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - N M Bandarra
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C Pires
- IPMA, IP, Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
44
|
Nonthermal Food Processing: A Step Towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem X 2022; 16:100516. [DOI: 10.1016/j.fochx.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
45
|
Wei B, Wu Y, Liu F, Su M, Liang H. One-pot simultaneous extraction and enzymatic hydrolysis to prepare glycyrrhetinic acid via ionic liquid-based two-phase systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products - A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Lei Z, Chen X, Cao F, Guo Q, Wang J. Efficient saccharification of Lycium barbarum leaf biomass by using enzyme cocktails produced by a novel fungus Aspergillus costaricensis LS18. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115969. [PMID: 36104882 DOI: 10.1016/j.jenvman.2022.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/23/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The utilization of agro-industrial residues is an interesting issue contributing to sustainable development and environmental protection. Lycium barbarum leaves (LBL) are agro-industrial residues of the L. barabrum berry cultivation and seriously underutilized, leading to resource waste and environmental pollution. In this study, we prepared cost-effective enzyme cocktails with high xylanase activity from a novel soil-derived fungal strain Aspergillus costaricensis LS18. The xylanase activity of these on-site produced enzyme cocktails was 3.49 ± 0.55 U/mL. Through the hydrolysis using the enzyme cocktails with 6% substrate loading at 45 °C for 12 h, 86.57 ± 1.81% of total reducing sugars (RS) from LBL was released. The concentration of RS in the hydrolysates reached 8.17 ± 0.33 mg/mL. In this study, LBL were added values by two mutually independent bioprocess ways. On the one hand, LBL were used as the only nutrients in the medium for the on-site production of enzyme cocktails by fermentation. On the other hand, through hydrolysis using this enzyme cocktail, LBL biomass was efficiently hydrolyzed and fermentable monosugars were gained. This study could benefit to the exploitation of LBL resources and provide the references for utilization of other agro-industrial residues.
Collapse
Affiliation(s)
- Zilun Lei
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianqiang Chen
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
48
|
De la Peña-Armada R, Rupérez P, Villanueva-Suarez M, Mateos-Aparicio I. High hydrostatic pressure assisted by food-grade enzymes as a sustainable approach for the development of an antioxidant ingredient. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022; 27:molecules27206937. [PMID: 36296530 PMCID: PMC9610383 DOI: 10.3390/molecules27206937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The apple has been recognised as the most culturally important fruit crop in temperate land areas. Centuries of human exploitation and development led to the production of thousands of apple cultivars. Nowadays, the apple represents the third most widely cultivated fruit in the world. About 30% of the total production of apples is processed, being juice and cider the main resulting products. Regarding this procedure, a large quantity of apple by-product is generated, which tends to be undervalued, and commonly remains underutilised, landfilled, or incinerated. However, apple by-product is a proven source of bioactive compounds, namely dietary fibre, fatty acids, triterpenes, or polyphenols. Therefore, the application of green technologies should be considered in order to improve the functionality of apple by-product while promoting its use as the raw material of a novel product line. The present work provides a holistic view of the apple’s historical evolution, characterises apple by-product, and reviews the application of green technologies for improving its functionality. These sustainable procedures can enable the transformation of this perishable material into a novel ingredient opening up new prospects for the apple’s potential use and consumption.
Collapse
|
50
|
Razem M, Ding Y, Morozova K, Mazzetto F, Scampicchio M. Analysis of Phenolic Compounds in Food by Coulometric Array Detector: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7498. [PMID: 36236596 PMCID: PMC9572987 DOI: 10.3390/s22197498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. This review discusses the principle of this method and recent advances in its development, as well as trends in its application for the analysis of phenolic compounds in food products, such as fruits, cereals, beverages, herbs, and spices.
Collapse
|