1
|
Fındık I, Özdemir M. Genetic polymorphism of Pit-1 and CSN3 genes in Holstein calves and its associations with calf birth weight. Arch Anim Breed 2022; 65:285-292. [PMID: 36035879 PMCID: PMC9399906 DOI: 10.5194/aab-65-285-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract. The aim of this study was to examine the polymorphic structures of Pit-1 and
CSN3 genes of Holstein calves bred in Gümüşhane province of Türkiye, to
determine the distribution of genotype and allele gene frequencies, as well
as examine the effects of determined polymorphisms on birth weight of
calves. HinfI polymorphisms of Pit-1 and CSN3 genes were identified in DNA
isolated from blood samples of 100 Holstein calves used in the study, using
the PCR-RFLP method. According to the Hardy–Weinberg genetic equilibrium
test, it was observed that the distribution of genotype frequencies of
HinfI polymorphisms of Pit-1 genes in the studied population was in equilibrium,
but not in equilibrium in terms of CSN3 gene location. The AA, AB, and BB
genotype frequencies of the Pit-1 gene in the population were 13.4 %,
40.2 %, and 46.3 %, respectively; the frequency of the A allele was 0.34,
while for B allele it was 0.66. The AA, AB, and BB genotype frequencies of
the CSN3 gene were found to be 24.5 %, 36.7 %, and 38.8 %,
respectively; the frequency of the A allele was 0.43 and the frequency of
the B allele was 0.57. According to the Hardy–Weinberg genetic equilibrium
test, the distribution of genotype frequencies was in equilibrium in the
Pit-1/HinfI polymorphism, but not in the CSN3/HinfI polymorphism. A statistically
significant relationship was not found between the genotypes of both
polymorphic regions and calf birth weight.
Collapse
|
2
|
Dorjay C, Abraham BL. Association of POU1F1 gene polymorphism with pre-pubertal body weights in Attappady Black goats of India. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Chang CW, Sung YW, Hsueh YW, Chen YY, Ho M, Hsu HC, Yang TC, Lin WC, Chang HM. Growth hormone in fertility and infertility: Mechanisms of action and clinical applications. Front Endocrinol (Lausanne) 2022; 13:1040503. [PMID: 36452322 PMCID: PMC9701841 DOI: 10.3389/fendo.2022.1040503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Secreted by the anterior pituitary gland, growth hormone (GH) is a peptide that plays a critical role in regulating cell growth, development, and metabolism in multiple targeted tissues. Studies have shown that GH and its functional receptor are also expressed in the female reproductive system, including the ovaries and uterus. The experimental data suggest putative roles for GH and insulin-like growth factor 1 (IGF-1, induced by GH activity) signaling in the direct control of multiple reproductive functions, including activation of primordial follicles, folliculogenesis, ovarian steroidogenesis, oocyte maturation, and embryo implantation. In addition, GH enhances granulosa cell responsiveness to gonadotropin by upregulating the expression of gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), indicating crosstalk between this ovarian regulator and the endocrine signaling system. Notably, natural gene mutation of GH and the age-related decline in GH levels may have a detrimental effect on female reproductive function, leading to several reproductive pathologies, such as diminished ovarian reserve, poor ovarian response during assisted reproductive technology (ART), and implantation failure. Association studies using clinical samples showed that mature GH peptide is present in human follicular fluid, and the concentration of GH in this fluid is positively correlated with oocyte quality and the subsequent embryo morphology and cleavage rate. Furthermore, the results obtained from animal experiments and human samples indicate that supplementation with GH in the in vitro culture system increases steroid hormone production, prevents cell apoptosis, and enhances oocyte maturation and embryo quality. The uterine endometrium is another GH target site, as GH promotes endometrial receptivity and pregnancy by facilitating the implantation process, and the targeted depletion of GH receptors in mice results in fewer uterine implantation sites. Although still controversial, the administration of GH during ovarian stimulation alleviates age-related decreases in ART efficiency, including the number of oocytes retrieved, fertilization rate, embryo quality, implantation rate, pregnancy rate, and live birth rate, especially in patients with poor ovarian response and recurrent implantation failure.
Collapse
|
4
|
Brenmoehl J, Walz C, Caffier C, Brosig E, Walz M, Ohde D, Trakooljul N, Langhammer M, Ponsuksili S, Wimmers K, Zettl UK, Hoeflich A. Central Suppression of the GH/IGF Axis and Abrogation of Exercise-Related mTORC1/2 Activation in the Muscle of Phenotype-Selected Male Marathon Mice (DUhTP). Cells 2021; 10:3418. [PMID: 34943926 PMCID: PMC8699648 DOI: 10.3390/cells10123418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Christina Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Caroline Caffier
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Elli Brosig
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Michael Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Daniela Ohde
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Nares Trakooljul
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Martina Langhammer
- Lab Animal Facility, Research Institute for Genetics and Biometry, Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Klaus Wimmers
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| |
Collapse
|
5
|
Liu Y, Masternak MM, Schneider A, Zhi X. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online 2021; 44:5-13. [PMID: 34794884 DOI: 10.1016/j.rbmo.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China.
| |
Collapse
|
6
|
Zhao W, Yuan T, Fu Y, Niu D, Chen W, Chen L, Lu L. Seasonal differences in the transcriptome profile of the Zhedong white goose (Anser cygnoides) pituitary gland. Poult Sci 2020; 100:1154-1166. [PMID: 33518074 PMCID: PMC7858147 DOI: 10.1016/j.psj.2020.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
In animals, the adaptation to breed at the time of greatest survival of the young is known as seasonal reproduction. This is mainly controlled by the photoperiod, which stimulates the hypothalamic-pituitary-gonadal axis and starts the breeding season. Herein, we have determined the seasonal changes in gene expression patterns of Zhedong white geese pituitary glands under a natural photoperiodism, conducted at autumn equinox (AE), winter solstice (WS), spring equinox (SE), and summer solstice (SS). Pairwise comparisons of WS vs. AE, SE vs. WS, SS vs. SE, and AE vs. SS resulted in 1,139, 33, 704, and 3,503 differently expressed genes, respectively. When compared with SS, AE showed downregulation of genes, such as vasoactive intestinal peptide receptor, prolactin receptor, and thyroid hormone receptor beta, whereas gonadotropin-releasing hormone II receptor was upregulated, indicating that these genes may be responsible for the transition from cessation to egg laying. In addition, the expression levels of 5 transcription factors (POU1F1, Pitx2, NR5A1, NR4A2, and SREBF2) and 6 circadian clock-associated genes (Clock, Per2, ARNTL2, Eya3, Dio2, and NPAS2) also changed seasonally. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that “response to oxidative stress” and steroid biosynthesis pathway also participate in regulating the reproduction seasonality of geese. Overall, these results contribute to the identification of genes involved in seasonal reproduction, enabling a better understanding of the molecular mechanism underlying seasonal reproduction of geese.
Collapse
Affiliation(s)
- Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Taoyan Yuan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, Zhejiang, China
| | - Weihu Chen
- Department of Animal Husbandry and Veterinary, Xiangshan County Agricultural and Rural Bureau, Ningbo 315700, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Peel MT, Ho Y, Liebhaber SA. The Transcription Factor NR4A2 Plays an Essential Role in Driving Prolactin Expression in Female Pituitary Lactotropes. Endocrinology 2020; 161:5809733. [PMID: 32188976 PMCID: PMC7195901 DOI: 10.1210/endocr/bqaa046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Differentiation of the hormone-producing cells of the pituitary represents an informative model of cell fate determination. The generation and maintenance of 2 pituitary lineages, the growth hormone (GH)- producing somatotropes and the prolactin (PRL)- producing lactotropes, are dependent on the pituitary-specific transcription factor, POU1F1. While POU1F1 is expressed in both cell types, and plays a role in activation of both the Gh and Prl genes, expression of Gh and Prl is restricted to somatotropes and lactotropes, respectively. These observations imply the existence of additional factors that contribute to the somatotrope and lactotrope identities and their hormone expressions. Prior transcriptome analysis of primary somatotropes and lactotropes isolated from the mouse pituitary identified enrichment of a transcription factor, Nr4a2, in the lactotropes. Nr4a2 was shown in a cell culture model to bind the Prl promoter at a position adjacent to Pou1f1 and to synergize with Pou1f1 in driving Prl transcription. Here we demonstrate in vivo the role of Nr4a2 as an enhancer of Prl expression by conditional gene inactivation of the Nr4a2 gene in mouse lactotropes. We demonstrate that nuclear orphan receptor transcription factor (NR4A2) binding at the Prl promoter is dependent on actions of POU1F1; while POU1F1 is essential to loading polymerase (Pol) II on the Prl promoter, Nr4a2 plays a role in enhancing Pol II release into the Prl gene body. These studies establish an in vivo role of Nr4a2 in enhancing Prl expression in mouse lactotropes, explore its mechanism of action, and establish a system for further study of the lactotrope lineage in the pituitary.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Female
- Gene Expression Regulation
- Lactotrophs/cytology
- Lactotrophs/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Pituitary Gland/cytology
- Pituitary Gland/metabolism
- Prolactin/genetics
- Prolactin/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Transcription Factor Pit-1/genetics
- Transcription Factor Pit-1/metabolism
Collapse
Affiliation(s)
- Michael T Peel
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Correspondence: Yugong Ho, Department of Genetics, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA, 19104. E-mail:
| | - Stephen A Liebhaber
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Ullah Y, Li C, Li X, Ni W, Yao R, Xu Y, Quan R, Li H, Zhang M, Liu L, Hu R, Guo T, Li Y, Wang X, Hu S. Identification and Profiling of Pituitary microRNAs of Sheep during Anestrus and Estrus Stages. Animals (Basel) 2020; 10:ani10030402. [PMID: 32121341 PMCID: PMC7142988 DOI: 10.3390/ani10030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, molecules of 21 to 25 nucleotides in length, that regulate gene expression by binding to their target mRNA and play a significant role in animal development. The expression and role of miRNAs in regulating sheep estrus, however, remain elusive. Transcriptome analysis is helpful to understand the biological roles of miRNAs in the pituitary gland of sheep. A sheep's pituitary gland has a significant difference between estrus and anestrus states. Here, we investigate the expression profiles of sheep anterior pituitary microRNAs (miRNAs) in two states, estrus and anestrus, using Illumina HiSeq-technology. This study identified a total of 199 miRNAs and 25 differentially expressed miRNAs in the estrus and anestrus pituitary gland in sheep. Reverse transcription quantitative-PCR (RT-qPCR) analysis shows six differentially (p < 0.05) expressed miRNAs, that are miR-143, miR-199a, miR-181a, miR-200a, miR-218, and miR-221 in both estrus and anestrus states. miRNAs containing estrus-related terms and pathways regulation are enriched using enrichment analysis from gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, we also envisioned a miRNA-mRNA interaction network to understand the function of miRNAs involved in the pituitary gland regulatory network. In conclusion, miRNA expression profiles in sheep pituitary gland in the anestrus and estrus deliver a theoretical basis for the study of pituitary gland biology in sheep.
Collapse
Affiliation(s)
- Yaseen Ullah
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- Correspondence: (W.N.); (S.H.); Tel.: +86-18040835399 (W.N.); +86-18199688693 (S.H.)
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Yaxin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Xiaokui Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- Correspondence: (W.N.); (S.H.); Tel.: +86-18040835399 (W.N.); +86-18199688693 (S.H.)
| |
Collapse
|
9
|
Determination of Polymorphisms in Pituitary Genes of the Native Afghani Naked Neck Chicken. J Poult Sci 2019; 56:253-261. [PMID: 32055222 PMCID: PMC7005394 DOI: 10.2141/jpsa.0180087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated means to improve the production of the indigenous Naked Neck chicken in Afghanistan. Specifically, we analyzed single nucleotide polymorphisms (SNPs) in the prolactin (PRL) (24 bp indel), growth hormone (GH) (T185G), and pituitary specific transcript factor 1 (PIT-1) (intron 5) genes. Blood samples were collected from 52 birds and genomic DNA was extracted. Polymorphisms in the mentioned loci were analyzed by PCR, allele-specific PCR, and PCR-restriction fragment length polymorphism (RFLP) using TaqI and MspI endonucleases. Cloning followed by DNA sequencing was performed to ascertain the accuracy of the PCR-RFLP analysis for PIT-1.Two alleles were found for the PRL 24 bp indel, GH (T185G), and PIT-1/TaqI, with the following respective allelic frequencies: PRL-In 0.64 and PRL-Del 0.36, GH-T 0.91 and GH-G 0.09, and PIT-1-A 0.64 and PIT-1-B 0.36. Regarding the PIT-1/MspI polymorphism, three novel MspI recognition sites, as well as two reported MspI recognition sites, were detected in intron 5. Moreover, during sequence screening, two novel SNPs were found that generated restriction sites for MseI. Therefore, our results suggest that the PRL indel, GH T185G, and PIT-1/TaqI polymorphisms may be used as selection markers for Afghanistan Naked Neck chickens. Intron 5 of PIT-1 in the Afghani Naked Neck chicken was highly polymorphic compared to the reported Gallus gallus PIT-1 gene (GenBank accession no. NC_006088.4).
Collapse
|
10
|
Işık R, Bilgen G. Associations between genetic variants of the POU1F1 gene and production traits in Saanen goats. Arch Anim Breed 2019; 62:249-255. [PMID: 31807635 PMCID: PMC6852870 DOI: 10.5194/aab-62-249-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 12/02/2022] Open
Abstract
This study was conducted to determine the polymorphisms of the POU1F1 gene and their relationships with milk yield and components, litter size, birth weight, and weaning weight in goats. For this purpose, a total of 108 Saanen goats from two different farms (Bornova and Manisa) were used as animal materials. Polymorphisms at the exon 6 and the 3' flanking region of the POU1F1 gene were determined by using PCR-RFLP with PstI and AluI restriction enzymes and DNA sequencing analyses. Two alleles and three genotypes were identified by AluI or PstI digestions of the POU1F1 gene. The genotypes frequencies of TT, TC, and CC were 64.8 %, 31.5 % and 3.7 % for the PstI locus; 54.6 %, 31.5 % and 13.9 % for the AluI locus, respectively. T allele frequencies (0.56 and 0.88 for the AluI locus, 0.80 and 0.81 for the PstI locus, respectively) were predominant in both loci at the Bornova and Manisa farms. In terms of POU1F1-AluI and POU1F1-PstI loci, two populations were found to be in Hardy-Weinberg equilibrium. In the POU1F1-AluI locus, significant associations were found between genotypes and lactation milk yield and litter size. Similarly, a significant relationship between genotypes and birth weight in the POU1F1-PstI locus ( p < 0.05 ) was determined. The TC and CC genotypes were observed to be higher than the TT genotype for lactation milk yield and litter size at the POU1F1-AluI locus. Birth weight was found to be higher in animals that have the CC genotype at the POU1F1-PstI locus. In conclusion, the POU1F1 gene can be used as a molecular marker for economic features like reproduction, growth, milk content and yield in Saanen goats.
Collapse
Affiliation(s)
- Raziye Işık
- Faculty of Agriculture, Department of
Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Güldehen Bilgen
- Faculty of Agriculture, Department of Animal Science, Ege University, İzmir, Turkey
| |
Collapse
|
11
|
Morenikeji OB, Akinyemi MO, Wheto M, Ogunshola OJ, Badejo AA, Chineke CA. Transcriptome profiling of four candidate milk genes in milk and tissue samples of temperate and tropical cattle. J Genet 2019. [DOI: 10.1007/s12041-019-1060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Peel MT, Ho Y, Liebhaber SA. Transcriptome Analyses of Female Somatotropes and Lactotropes Reveal Novel Regulators of Cell Identity in the Pituitary. Endocrinology 2018; 159:3965-3980. [PMID: 30247555 PMCID: PMC6260062 DOI: 10.1210/en.2018-00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
The differentiation of the hormone-producing cell lineages of the anterior pituitary represents an informative model of mammalian cell fate determination. The generation and maintenance of two of these lineages, the GH-producing somatotropes and prolactin (PRL)-producing lactotropes, are dependent on the pituitary-specific transcription factor POU1F1. Whereas POU1F1 is expressed in both cell types, and plays a direct role in the activation of both the Gh and Prl genes, GH expression is restricted to somatotropes and PRL expression is restricted to lactotropes. These observations imply the existence of additional, cell type-enriched factors that contribute to the somatotrope and lactotrope cell identities. In this study, we use transgenic mouse models to facilitate sorting of somatotrope and lactotrope populations based on the expression of fluorescent markers expressed under Gh and Prl gene transcriptional controls. The transcriptomic analyses reveal a concordance of gene expression profiles in the two populations. The limited number of divergent mRNAs between the two populations includes a set of transcription factors that may have roles in pituitary lineage divergence and/or in regulating expression of cell type-specific genes after differentiation. Four of these factors were validated for lineage enrichment at the level of protein expression, two somatotrope enriched and two lactotrope enriched. Three of these four factors were shown to have corresponding activities in appropriate enhancement or repression of landmark genes in a cell culture model system. These studies identify novel regulators of the somatotropes and lactotropes, and they establish a useful database for further study of these lineages in the anterior pituitary.
Collapse
Affiliation(s)
- Michael T Peel
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yugong Ho
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence: Stephen A. Liebhaber, MD, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104. E-mail:
| |
Collapse
|
13
|
Jin S, He T, Yang L, Tong Y, Chen X, Geng Z. Association of polymorphisms in Pit-1 gene with growth and feed efficiency in meat-type chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1685-1690. [PMID: 30056669 PMCID: PMC6212749 DOI: 10.5713/ajas.18.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The pituitary specific transcription factor-1 (Pit-1) gene is responsible for pituitary development and growth hormone expression and is regarded as a pivotal candidate gene for growth and production in chickens. Therefore, the aim of this study was to investigate the association of Pit-1 polymorphisms with growth and feed efficiency traits in yellow meat-type chickens. METHODS In the present study, five single nucleotide polymorphisms (SNPs) of Pit-1 were selected and genotyped by high-throughput matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in 724 meat-type chickens. RESULTS Association analysis showed that rs13687126 of Pit-1 was strongly associated with body weight gain (BWG) and feed intake (FI) (p<0.05), and that rs13687128 was significantly correlated with body weight at 70 days of age (BW70), BWG and feed conversion ratio (FCR) (p<0.05). SNP rs13905622 was strongly related to BW70 and FCR (p<0.05). Furthermore, birds with the GG genotype of rs13687126 had larger BWG and FI than those with the AG genotype (p<0.05). Individuals with the TT genotype of rs13687128 were significantly higher BW70 and BWG than those of the CT and CC genotype, while FCR was just the opposite (p<0.05). For rs13905622, the AA chickens showed strongly larger BW70 and lower FCR compared with the AT and TT chickens (p<0.05). Additionally, an ACA haplotype based on rs13687126, rs13687128, and rs13905622 had significant effects on BW70 and FCR (p<0.05). CONCLUSION Our studies thus provide crucial evidence for the relationship between polymorphisms of Pit-1 and growth and feed efficiency traits which may be useful for meat-type chicken breeding programs.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yucui Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Thuy NTD, Thu NT, Cuong NH, Ty LV, Nguyen TTB, Khoa DVA. Polymorphism of PIT-1 and Prolactin Genes and Their Effects on Milk Yield in Holstein Frisian Dairy Cows Bred in Vietnam. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418030146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sarmento-Cabral A, Peinado JR, Halliday LC, Malagon MM, Castaño JP, Kineman RD, Luque RM. Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary Anterior Pituitary Cell Cultures from Two Primate Species. Sci Rep 2017; 7:43537. [PMID: 28349931 PMCID: PMC5640086 DOI: 10.1038/srep43537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Adipose-tissue (AT) is an endocrine organ that dynamically secretes multiple hormones, the adipokines, which regulate key physiological processes. However, adipokines and their receptors are also expressed and regulated in other tissues, including the pituitary, suggesting that locally- and AT-produced adipokines might comprise a regulatory circuit that relevantly modulate pituitary cell-function. Here, we used primary pituitary cell-cultures from two normal nonhuman-primate species [Papio-anubis/Macaca-fascicularis] to determine the impact of different adipokines on the functioning of all anterior-pituitary cell-types. Leptin and resistin stimulated GH-release, a response that was blocked by somatostatin. Conversely, adiponectin decreased GH-release, and inhibited GHRH-, but not ghrelin-stimulated GH-secretion. Furthermore: 1) Leptin stimulated PRL/ACTH/FSH- but not LH/TSH-release; 2) adiponectin stimulated PRL-, inhibited ACTH- and did not alter LH/FSH/TSH-release; and 3) resistin increased ACTH-release and did not alter PRL/LH/FSH/TSH-secretion. These effects were mediated through the activation of common (AC/PKA) and distinct (PLC/PKC, intra-/extra-cellular calcium, PI3K/MAPK/mTOR) signaling-pathways, and by the gene-expression regulation of key receptors/transcriptional-factors involved in the functioning of these pituitary cell-types (e.g. GHRH/ghrelin/somatostatin/insulin/IGF-I-receptors/Pit-1). Finally, we found that primate pituitaries expressed leptin/adiponectin/resistin. Altogether, these and previous data suggest that local-production of adipokines/receptors, in conjunction with circulating adipokine-levels, might comprise a relevant regulatory circuit that contribute to the fine-regulation of pituitary functions.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Spain
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - María M Malagon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| |
Collapse
|
16
|
Abstract
Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects.
Collapse
Affiliation(s)
- Mara Giordano
- Department of Health Sciences, Laboratory of Human Genetics, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
17
|
Zhou F, Yang Q, Lei C, Chen H, Lan X. Relationship between genetic variants of POU1F1 , PROP1 , IGFBP3 genes and milk performance in Guanzhong dairy goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Yao J, Leng L, Sauler M, Fu W, Zheng J, Zhang Y, Du X, Yu X, Lee P, Bucala R. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest 2016; 126:732-44. [PMID: 26752645 DOI: 10.1172/jci81937] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
The immunoregulatory cytokine macrophage migration inhibitory factor (MIF) is encoded in a functionally polymorphic locus that is linked to the susceptibility of autoimmune and infectious diseases. The MIF promoter contains a 4-nucleotide microsatellite polymorphism (-794 CATT) that repeats 5 to 8 times in the locus, with greater numbers of repeats associated with higher mRNA levels. Because there is no information about the transcriptional regulation of these common alleles, we used oligonucleotide affinity chromatography and liquid chromatography-mass spectrometry to identify nuclear proteins that interact with the -794 CATT5-8 site. An analysis of monocyte nuclear lysates revealed that the transcription factor ICBP90 (also known as UHRF1) is the major protein interacting with the MIF microsatellite. We found that ICBP90 is essential for MIF transcription from monocytes/macrophages, B and T lymphocytes, and synovial fibroblasts, and TLR-induced MIF transcription is regulated in an ICBP90- and -794 CATT5-8 length-dependent manner. Whole-genome transcription analysis of ICBP90 shRNA-treated rheumatoid synoviocytes uncovered a subset of proinflammatory and immune response genes that overlapped with those regulated by MIF shRNA. In addition, the expression levels of ICBP90 and MIF were correlated in joint synovia from patients with rheumatoid arthritis. These findings identify ICBP90 as a key regulator of MIF transcription and provide functional insight into the regulation of the polymorphic MIF locus.
Collapse
|
19
|
Zhang H, Xu C, Sun N, Zhou Y, Yu X, Yan X, Zhang Q. Gene expression profiling analysis of MENX-associated rat pituitary adenomas contributes to understand molecular mechanisms of human pituitary adenomas. Oncol Lett 2015; 11:125-133. [PMID: 26870179 PMCID: PMC4727179 DOI: 10.3892/ol.2015.3904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/10/2015] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to screen potential genes associated with pituitary adenomas to obtain further understanding with regard to the pathogenesis of pituitary adenomas. The microarray GSE23207 dataset, containing 16 pituitary adenoma samples from multiple endocrine neoplasia syndrome-associated rats and 5 normal pituitary tissue samples, was downloaded from Gene Expression Omnibus. The Linear Models for Microarray Data package was used to identify the differentially-expressed genes (DEGs) with the cut-off criteria of a |log2fold change (FC)|>1 and adjusted P-values of <0.05. The potential functions of the DEGs were predicted by functional and pathway enrichment analysis with the Database for Annotation, Visualization and Integrated Discovery. Furthermore, the interaction associations of the up- and downregulated DEGs obtained from the Search Tool for the Retrieval of Interacting Genes database were respectively revealed by the protein-protein interaction networks visualized with Cytoscape. A total of 391 upregulated and 238 downregulated DEGs in were screened in the pituitary adenoma samples. The upregulated DEGs with a higher degree in the protein-protein interaction network (e.g., CCNA2, CCNB1 and CDC20) were significantly involved in cell cycle and cell division. Notably, PTTG1 was enriched in every functional term. These DEGs interacted with each other. The downregulated DEGs (e.g., GABRA1, GABRA4 and GABRB1) also interacted with each other, and were relevant to neuroactive ligand-receptor interaction; the DEG POU1F1, interacting with POMC, was correlated with the development of the pituitary gland, adenohypophysis and endocrine system. Certain DEGs, including CCNB1, CCNA2, CDC20, GABRA1, GABRA4, GABRB1, POU1F1 and POMC, and particularly PTTG1, were shown to be closely involved in the pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Ningyang Sun
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yinting Zhou
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiaofei Yu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xue Yan
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
20
|
Murase D, Namekawa S, Ohkubo T. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro. Comp Biochem Physiol B Biochem Mol Biol 2015; 191:46-52. [PMID: 26403688 DOI: 10.1016/j.cbpb.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022]
Abstract
Leptin is an adipocyte-derived hormone that not only regulates food intake and energy homeostasis but also induces growth hormone (GH) mRNA expression and release, thereby controlling growth and metabolism in mammals. The molecular mechanism of leptin-induced regulation of GH gene transcription is unclear. The current study investigated the effects of leptin on the chicken GH (cGH) promoter and the molecular mechanism underlying leptin-induced cGH gene expression in vitro. Leptin activated the cGH promoter in the presence of chPit-1α in CHO cells stably expressing the chicken leptin receptor. Promoter activation did not require STAT-binding elements in the cGH promoter or STAT3 activity. However, JAK2 activation was required for leptin-dependent activity. JAK2-dependent pathways include p42/44 MAPK and PI3K, and inhibition of these pathways partially blocked leptin-induced cGH gene transcription. Although CK2 directly activates JAK2, a CK2 inhibitor blocked leptin-dependent activation of the cGH gene without affecting JAK2 phosphorylation. The CK2 inhibitor suppressed Erk1/2 and Akt phosphorylation. Additional data implicate Src family kinases in leptin-dependent cGH gene activation. These results suggest that leptin activates the cGH gene in the presence of chPit-1α via several leptin-activated kinases. Although further study is required, we suggest that the leptin-induced JAK2/p42/44 MAPK and JAK2/PI3K cascades are activated by Src-meditated CK2, leading to CBP phosphorylation and interaction with chPit-1α, resulting in transactivation of the cGH promoter.
Collapse
Affiliation(s)
- Daisuke Murase
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-81-1 Harumi, Fuchu, Tokyo 790-8566, Japan
| | - Shoko Namekawa
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-81-1 Harumi, Fuchu, Tokyo 790-8566, Japan.
| |
Collapse
|
21
|
Meng M, Cheng DJ, Peng J, Qian WL, Li JR, Dai DD, Zhang TL, Xia QY. The homeodomain transcription factors antennapedia and POU-M2 regulate the transcription of the steroidogenic enzyme gene Phantom in the silkworm. J Biol Chem 2015; 290:24438-52. [PMID: 26253172 DOI: 10.1074/jbc.m115.651810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
The steroid hormone ecdysone, which controls insect molting and metamorphosis, is synthesized in the prothoracic gland (PG), and several steroidogenic enzymes that are expressed specifically in the PG are involved in ecdysteroidogenesis. In this study, we identified new regulators that are involved in the transcriptional control of the silkworm steroidogenic enzyme genes. In silico analysis predicted several potential cis-regulatory elements (CREs) for the homeodomain transcription factors Antennapedia (Antp) and POU-M2 in the proximal promoters of steroidogenic enzyme genes. Antp and POU-M2 are expressed dynamically in the PG during larval development, and their overexpression in silkworm embryo-derived (BmE) cells induced the expression of steroidogenic enzyme genes. Importantly, luciferase reporter analyses, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Antp and POU-M2 promote the transcription of the silkworm steroidogenic enzyme gene Phantom (Phm) by binding directly to specific motifs within overlapping CREs in the Phm promoter. Mutations of these CREs in the Phm promoter suppressed the transcriptional activities of both Antp and POU-M2 in BmE cells and decreased the activities of mutated Phm promoters in the silkworm PG. In addition, pulldown and co-immunoprecipitation assays demonstrated that Antp can interact with POU-M2. Moreover, RNA interference-mediated down-regulation of either Antp or POU-M2 during silkworm wandering not only decreased the ecdysone titer but also led to the failure of metamorphosis. In summary, our results suggest that Antp and POU-M2 coordinate the transcription of the silkworm Phm gene directly, indicating new roles for homeodomain proteins in regulating insect ecdysteroidogenesis.
Collapse
Affiliation(s)
- Meng Meng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dao-Jun Cheng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Wen-Liang Qian
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia-Rui Li
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan-Dan Dai
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Tian-Lei Zhang
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Besold AN, Michel SLJ. Neural Zinc Finger Factor/Myelin Transcription Factor Proteins: Metal Binding, Fold, and Function. Biochemistry 2015; 54:4443-52. [DOI: 10.1021/bi501371a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelique N. Besold
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
23
|
Ibáñez-Costa A, Córdoba-Chacón J, Gahete MD, Kineman RD, Castaño JP, Luque RM. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. Endocrinology 2015; 156:1100-10. [PMID: 25545385 PMCID: PMC4330310 DOI: 10.1210/en.2014-1819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Melatonin (MT) is secreted by the pineal gland and exhibits a striking circadian rhythm in its release. Depending on the species studied, some pituitary hormones also display marked circadian/seasonal patterns and rhythms of secretion. However, the precise relationship between MT and pituitary function remains controversial, and studies focusing on the direct role of MT in normal pituitary cells are limited to nonprimate species. Here, adult normal primate (baboons) primary pituitary cell cultures were used to determine the direct impact of MT on the functioning of all pituitary cell types from the pars distalis. MT increased GH and prolactin (PRL) expression/release in a dose- and time-dependent fashion, a response that was blocked by somatostatin. However, MT did not significantly affect ACTH, FSH, LH, or TSH expression/release. MT did not alter GHRH- or ghrelin-induced GH and/or PRL secretions, suggesting that MT may activate similar signaling pathways as ghrelin/GHRH. The effects of MT on GH/PRL release, which are likely mediated through MT1 receptor, involve both common (adenylyl cyclase/protein kinase A/extracellular calcium-channels) and distinct (phospholipase C/intracellular calcium-channels) signaling pathways. Actions of MT on pituitary cells also included regulation of the expression of other key components for the control of somatotrope/lactotrope function (GHRH, ghrelin, and somatostatin receptors). These results show, for the first time in a primate model, that MT directly regulates somatotrope/lactotrope function, thereby lending support to the notion that the actions of MT on these cells might substantially contribute to the define daily patterns of GH and PRL observed in primates and perhaps in humans.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology, and Immunology (A.I.-C., J.C.-C., M.D.G., J.P.C., R.M.L.), University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), E-14014 Córdoba, Spain; and Department of Medicine (J.C.-C., R.D.K.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | | | | | | | | |
Collapse
|
24
|
Zhang DX, Xu ZQ, He J, Ji CL, Zhang Y, Zhang XQ. Polymorphisms in the 5′-flanking regions of the GH, PRL, and Pit-1 genes with Muscovy duck egg production1. J Anim Sci 2015; 93:28-34. [DOI: 10.2527/jas.2014-8071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- D. X. Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural Univ., Guangdong 510642, P. R. China
| | - Z. Q. Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural Univ., Guangdong 510642, P. R. China
| | - J. He
- Wens Nanfang Poultry Breeding Co. Ltd., Yunfu, Guangdong, P. R. China
| | - C. L. Ji
- Wens Nanfang Poultry Breeding Co. Ltd., Yunfu, Guangdong, P. R. China
| | - Y. Zhang
- Wens Nanfang Poultry Breeding Co. Ltd., Yunfu, Guangdong, P. R. China
| | - X. Q. Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural Univ., Guangdong 510642, P. R. China
| |
Collapse
|
25
|
Kim GW, Yoo JY, Kim HY. Association of genotype of POU1F1 intron 1 with carcass characteristics in crossbred pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:25. [PMID: 26290714 PMCID: PMC4540259 DOI: 10.1186/2055-0391-56-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022]
Abstract
This study was carried out to investigate the association of POU1F1 (POU domain, class 1, transcription factor 1, Pit1, renamed as POU1F1) gene with backfat thickness (mm), carcass weight (kg), pH, and color values (L*, a*, b*) in crossbred pigs (Landrace x Yorkshire x Duroc). Frequency of the AA genotype indel was at the highest level (66.67%). Frequency of A allele (0.81) was higher than that of b allele (0.19). This population followed Hardy-Weinberg equilibrium. Carcass weights and a* values of the three genotypes were all significantly different (p < 0.05), respectively. However, backfat thickness, L*, b*, visual color, and pH of the three genotypes were not significantly different (p > 0.05). Visual color was negatively correlated with L* (r = -0.521) and b* (r = -0.390) values, L* value was correlated with b* (r = 0.419) value, and a* value was positively correlated with b* (r = 0.612) value. These results indicate that the POU1F1 gene affected carcass weight and meat redness.
Collapse
Affiliation(s)
- Gye-Woong Kim
- Department of Animal Resources, Kong-Ju National University, # 54 Daehakro, Yesan, Chungnam, 340-702 Korea
| | - Jae-Young Yoo
- Department of Obstetrics and Gynecology, Ewha Woman's University, Seoul, 158-710 Korea
| | - Hack-Youn Kim
- Department of Animal Resources, Kong-Ju National University, # 54 Daehakro, Yesan, Chungnam, 340-702 Korea
| |
Collapse
|
26
|
|
27
|
Yan LJ, Fang XT, Liu Y, Zhang CL, Liu XX, Zhao J, Li JJ, Chen H. Effects of single and combined genotypes of MC4R and POU1F1 genes on two production traits in Langshan chicken. Mol Biol Rep 2013; 40:4645-50. [PMID: 23644987 DOI: 10.1007/s11033-013-2558-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 04/29/2013] [Indexed: 11/27/2022]
Abstract
The objective of this study was to analyze the effects of single and combined genotypes of MC4R and POU1F1 genes in Chinese well-known indigenous chicken (Langshan chicken) population. Genetic variants within MC4R gene and POU1F1 gene were screened through PCR-SSCP and DNA sequencing methods. A C/T mutation at nt 944 in MC4R gene (NC_006089.2:g. 944C>T) and a G/A mutation at nt 3109 in POU1F1 gene (NC_006088.2:g. 3109 G>A) were identified. Associations between the mutations of the two genes with two production traits were analyzed. The results showed that, at MC4R locus, individuals with BB and AB genotypes had highly significantly higher body weight at 16 weeks (p < 0.01) than did those with the AA genotype. And, individuals within AA and AB genotypes had significantly higher egg numbers at 300 days (p < 0.05). At POU1F1 locus, individuals with CD genotype had higher body weight at 16 weeks and egg numbers at 300 days (p < 0.05). Furthermore, combined genotypes from these two loci were found to be associated with egg numbers at 300 days (p < 0.05). The individuals within combined genotype AB/CD had higher egg production. Therefore, variations identified within the MC4R and POU1F1genes are suitable for future use in identifying chickens with the genetic potential of higher body weight and reproductive traits, at least in the population of Langshan chickens.
Collapse
Affiliation(s)
- Lin Jun Yan
- Institute of Cellular and Molecular Biology, College of Life Science, Xuzhou Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Daga C, Paludo M, Luridiana S, Mura MC, Bodano S, Pazzola M, Dettori ML, Vacca GM, Carcangiu V. Identification of novel SNPs in the Sarda breed goats POU1F1 gene and their association with milk productive performance. Mol Biol Rep 2012. [PMID: 23184007 DOI: 10.1007/s11033-012-2298-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the study was to detect polymorphism in the POU1F1 gene in Sarda breed goat, as well as to establish if SNPs could be associated with milk productive traits. The research was conducted on 129 Sarda breed goats from 4 to 5 years old, multiparous, lactating and in their third to fifth lactation. We report nine exonic and seven non-coding regions SNPs within the Sarda goat POU1F1 gene, namely, Ex 1 61 G>C; Ex 1 108 G>A; Ex 3 C>T; Ex 3 92 C>T; Ex 4 110 A>G; Ex 5 34 G>A resulting in Arg213Lys change; IVS4 641 G>A, IVS4 643 A>C, IVS4 659 G>A, IVS4 677 A>C, IVS4 G699Del, IVS4 709 C>G, Ex 6 17 G>A resulting in Arg228Ser change, Ex 6 58 G>T, Ex 6 172 T>C, 3'UTR 110 T>C. A statistically significant association was found between genotype TT, in position 17 of the exon 6 (3.1 % of frequency), and increased milk yield (P < 0.01) while genotype GT (25.6 % of frequency) was associated with a higher fat content. Genotype TT in position 58 of the exon 6 (3.9 % of frequency) was found to be associated with a higher fat (P < 0.01) and protein content (P < 0.05). Twenty-eight haplotypes were detected, but no significant association between the haplotypes and the milk production traits have been found. Our data, as well as providing new SNPs extending the POU1F1 gene characterization, evidence a relationship between polymorphism and milk production traits in Sarda goat breed.
Collapse
Affiliation(s)
- Cinzia Daga
- Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Homeodomain POU and Abd-A proteins regulate the transcription of pupal genes during metamorphosis of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 2012; 109:12598-603. [PMID: 22802616 DOI: 10.1073/pnas.1203149109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cascade of 20-hydroxyecdysone-mediated gene expression and repression initiates larva-to-pupa metamorphosis. We recently showed that two transcription factors, BmPOUM2 and BmβFTZ-F1, bind to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, BmWCP4, and regulate its expression during Bombyx mori metamorphosis. Here we show that down-regulation of BmPOUM2 expression by RNA interference during the wandering stage resulted in failure to complete metamorphosis. The thorax epidermis of RNA interference-treated larvae became transparent, wing disc growth and differentiation were arrested, and the larvae failed to spin cocoons. Quantitative real-time PCR analysis showed that expression of the genes coding for pupal-specific wing cuticle proteins BmWCP1, BmWCP2, BmWCP3, BmWCP4, BmWCP5, BmWCP6, BmWCP8, and BmWCP9 were down-regulated in BmPOUM2 dsRNA-treated animals, whereas overexpression of BmPOUM2 protein increased the expression of BmWCP4, BmWCP5, BmWCP6, BmWCP7, and BmWCP8. Pull-down assays, far-Western blot, and electrophoretic mobility shift assay showed that the BmPOUM2 protein interacted with another homeodomain transcription factor, BmAbd-A, to induce the expression of BmWCP4. Immunohistochemical localization of BmPOUM2, BmAbd-A, and BmWCP4 proteins revealed that BmAbd-A and BmPOUM2 proteins are colocalized in the wing disc cell nuclei, whereas BmWCP4 protein is localized in the cytoplasm. Together these data suggest that BmPOUM2 interacts with the homeodomain transcription factor BmAbd-A and regulates the expression of BmWCP4 and probably other BmWCPs to complete the larva-to-pupa transformation. Although homeodomain proteins are known to regulate embryonic development, this study showed that these proteins also regulate metamorphosis.
Collapse
|
30
|
Xu HY, Wang Y, Liu YP, Wang JW, Zhu Q. Polymorphisms and expression of the chicken POU1F1 gene associated with carcass traits. Mol Biol Rep 2012; 39:8363-71. [DOI: 10.1007/s11033-012-1686-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
31
|
Bhattacharya TK, Chatterjee RN, Priyanka M. Polymorphisms of Pit-1 gene and its association with growth traits in chicken. Poult Sci 2012; 91:1057-64. [PMID: 22499861 DOI: 10.3382/ps.2011-01990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pit-1 gene is involved in regulation of muscle growth through controlling the expression of growth hormone, prolactin, and transforming growth factor-β genes in chicken. The objectives of the study were to explore polymorphisms of the Pit-1 gene and to estimate the effect of these polymorphisms on growth traits in PB-1 and control (broiler strain) and IWI (layer strain) chickens. Single-stranded conformation polymorphism followed by sequencing was performed to reveal polymorphisms of the gene. In total, 10 haplotypes were found across the lines. The mRNA expression of Pit-1 varied among haplogroups and had a significant effect on BW and growth rates. The haplogroups showed a significant effect on BW in wk 7 in PB-1 chickens. In control chickens there was a significant effect at d 1 and in wk 2 and 7, and in IWI strains, there was a significant effect at d 1 and wk 6 and 7. The significant association of haplogroups and growth rate was found between 0 and 2 wk in control and between 0 and 2 and 6 and 7 wk in IWI strains. It was concluded that the Pit-1 gene is polymorphic and has a significant effect on growth traits in chickens.
Collapse
Affiliation(s)
- T K Bhattacharya
- Project Directorate on Poultry, Rajendranagar, Hyderabad, India.
| | | | | |
Collapse
|
32
|
Heidari M, Azari MA, Hasani S, Khanahmadi A, Zerehdaran S. Effect of polymorphic variants of GH, Pit-1, and β-LG genes on milk production of Holstein cows. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412040060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Othman OE, Zayed FA, El Gawead AA, El-Rahman MR. Genetic polymorphism of three genes associated with milk trait in Egyptian buffalo. J Genet Eng Biotechnol 2011. [DOI: 10.1016/j.jgeb.2011.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yan L, Fang X, Zhang R, Zhang C, Chen H. Analysis of pituitary specific transcription factor-1 gene polymorphism in several indigenous Chinese cattle and crossbred cattle. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2011.607920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Murase D, Taniuchi S, Takeuchi S, Adachi H, Kansaku N, Okazaki K, Ohkubo T. Role of chicken Pit-1 isoforms in activating growth hormone gene. Gen Comp Endocrinol 2011; 173:248-52. [PMID: 21703269 DOI: 10.1016/j.ygcen.2011.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/25/2011] [Accepted: 06/05/2011] [Indexed: 11/23/2022]
Abstract
In the present study, we expressed chicken (ch) Pit-1α (chPit-1α) and chPit-1γin vitro to compare the roles of chPit-1s in the transcription of the chicken growth hormone (chGH) gene. Both green fluorescence protein (GFP)-fused chPit-1γ and GFP-fused chPit-1α were localized in the nuclei of COS-7 cells. In a luciferase reporter gene assay, both chPit-1α and chPit-1γ transactivated the chGH promoter, and chPit-1α showed a more potent effect than chPit-1γ. On the other hand, an increase of cellular cAMP induced by forskolin promoted transactivation of the chGH gene with chPit-1α and chPit-1γ to similar extents. These results suggest that chPit-1γ may modulate the basal promoter activity of the chGH gene to the same degree as chPit-1α; however, a structural difference observed at the N-terminus transactivation domains in chPit-1α and chPit-1γ could be associated with the efficiency of basal activation of the chGH promoter.
Collapse
Affiliation(s)
- Daisuke Murase
- Graduate School of Agriculture, Kagawa University, Mikicho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Feng T, Chu MX, Cao GL, Tang QQ, Di R, Fang L, Li N. Polymorphisms of caprine POU1F1 gene and their association with litter size in Jining Grey goats. Mol Biol Rep 2011; 39:4029-38. [PMID: 21769479 DOI: 10.1007/s11033-011-1184-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Seven pairs of primers were designed to amplify 5' promoter region, six exons and partial introns and to detect the polymorphisms of POU1F1 gene in five goat breeds with different prolificacy. The results showed that six mutations were identified in caprine POU1F1 gene including C256T in exon 3, C53T and T123G in intron 3, and G682T (A228S), T723G and C837T in exon 6. The former four mutations were novel SNPs in goat POU1F1 gene. The 53 and 123 loci were in complete linkage disequilibrium in five caprine breeds. Regarding the 256 locus, the Jining Grey goat does with genotype CT had 0.66 kids more than those with genotype CC (P < 0.05), while does with genotype GT had 0.63 (P < 0.05) kids more than those with genotype GG at the 682 locus. The present study preliminarily showed an association between allele T at the 256 and 682 loci of POU1F1 gene and high litter size in Jining Grey goats. Totally 16 haplotypes and 50 genotypes were identified at the above six loci in POU1F1 gene of five goat breeds. Three common haplotypes (hap2, hap3 and hap4) were identified in five goat breeds joined. Four specific haplotypes (hap7, hap9, hap11 and hap13) were detected in Jining Grey goats. The predominant haplotype was hap1 (35.29% and 48.25%) in both Jining Grey and Guizhou White goats, while hap4 (50%) in Boer goats, and hap2 (42.86% and 38.75%) in both Wendeng Dairy and Liaoning Cashmere goats. The most frequent genotypes at six loci in the above five goat breeds were hap1/hap2 (14.38%) and hap1/hap4 (14.38%), hap1/hap2 (38.60%), hap4/hap4 (40.91%), hap2/hap4 (26.53%), hap2/hap5 (20.00%), respectively. The Jining Grey goat does with nine genotypes analyzed of POU1F1 gene showed no obvious difference in litter size.
Collapse
Affiliation(s)
- T Feng
- Key Laboratory of Farm Animal Genetic Resources and Utilization of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Selvaggi M, Dario C, Normanno G, Dambrosio A, Dario M. Analysis of two pit-1 gene polymorphisms and relationships with growth performance traits in Podolica young bulls. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Polymorphisms in the pituitary growth hormone gene and its receptor associated with coronary artery disease in a predisposed cohort from India. J Genet 2010; 89:437-47. [DOI: 10.1007/s12041-010-0062-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Yamamoto M, Iguchi G, Takeno R, Okimura Y, Sano T, Takahashi M, Nishizawa H, Handayaningshi AE, Fukuoka H, Tobita M, Saitoh T, Tojo K, Mokubo A, Morinobu A, Iida K, Kaji H, Seino S, Chihara K, Takahashi Y. Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. J Clin Invest 2010; 121:113-9. [PMID: 21123951 DOI: 10.1172/jci44073] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 09/29/2010] [Indexed: 11/17/2022] Open
Abstract
The pituitary-specific transcriptional factor-1 (PIT-1, also known as POU1F1), is an essential factor for multiple hormone-secreting cell types. A genetic defect in the PIT-1 gene results in congenital growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH) deficiency. Here, we investigated 3 cases of adult-onset combined GH, PRL, and TSH deficiencies and found that the endocrinological phenotype in each was linked to autoimmunity directed against the PIT-1 protein. We detected anti-PIT-1 antibody along with various autoantibodies in the patients' sera. An ELISA-based screening revealed that this antibody was highly specific to the disease and absent in control subjects. Immunohistochemical analysis revealed that PIT-1-, GH-, PRL-, and TSH-positive cells were absent in the pituitary of patient 2, who also had a range of autoimmune endocrinopathies. These clinical manifestations were compatible with the definition of autoimmune polyendocrine syndrome (APS). However, the main manifestations of APS-I--hypoparathyroidism and Candida infection--were not observed and the pituitary abnormalities were obviously different from the hypophysitis associated with APS. These data suggest that these patients define a unique "anti-PIT-1 antibody syndrome," related to APS.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
E. Mullis P. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2010; 2:52-62. [PMID: 21274339 PMCID: PMC3014602 DOI: 10.4274/jcrpe.v2i2.52] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/04/2010] [Indexed: 12/31/2022] Open
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin-like Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GH-releasing hormone (GHRH)-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD.
Collapse
Affiliation(s)
- Primus E. Mullis
- Inselspital, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Bern, Switzerland
| |
Collapse
|
41
|
Han SH, Cho IC, Ko MS, Jeong HY, Oh HS, Lee SS. Effects of POU1F1 and GH1 genotypes on carcass traits in Hanwoo cattle. Genes Genomics 2010. [DOI: 10.1007/s13258-009-0708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Carlomagno Y, Salerno M, Vivenza D, Capalbo D, Godi M, Mellone S, Tiradani L, Corneli G, Momigliano-Richiardi P, Bona G, Giordano M. A novel recessive splicing mutation in the POU1F1 gene causing combined pituitary hormone deficiency. J Endocrinol Invest 2009; 32:653-8. [PMID: 19498317 DOI: 10.1007/bf03345736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mutations in the gene encoding the pituitary transcription factor POU1F1 (Pit-1, pituitary transcription factor-1) have been described in combined pituitary hormone deficiency (CPHD). AIM The aim of this study was the characterisation of the molecular defect causing CPHD in a patient born to consanguineous parents. SUBJECT AND METHODS The case of a 12.5-yr-old girl presenting with severe growth failure at diagnosis (-3 SD score at 3 months) and deficiency of GH, PRL, and TSH was investigated for the presence of POU1F1 gene mutations by denaturing high performance liquid chromatography analysis. RESULTS A novel mutation adjacent to the IVS2 splicing acceptor site (IVS2-3insA) was identified in the patient at the homozygous state. Analysis of patient's lymphocyte mRNA and an in vitro splicing assay revealed the presence of 2 aberrant splicing products: a) deletion of the first 71 nucleotides of exon 3, altering the open reading frame and generating a premature stop codon, b) total exon 3 skipping resulting in an in frame deleted mRNA encoding a putative protein lacking part of the transactivation domain and of the POUspecific homeodomain. Notably, the patient's relatives heterozygous for the mutation had PRL levels under the normal range with no evident clinical symptoms. CONCLUSIONS The IVS2- 3insAmutation, responsible for CPHD at the homozygous state, causes the presence of 2 aberrant splicing products encoding non-functional products. In the heterozygotes one normal allele might not guarantee a complete pituitary function.
Collapse
Affiliation(s)
- Y Carlomagno
- Laboratory of Human Genetics, Department of Medical Sciences, Eastern Piedmont University and Interdisciplinary Research Center on Autoimmune Diseases, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim GW, Yoo JY. Analysis of Carcass Characteristics in the 3rd Intron of Pig POU1F1 Gene. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2009. [DOI: 10.5187/jast.2009.51.4.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Gaston-Massuet C, Andoniadou CL, Signore M, Sajedi E, Bird S, Turner JM, Martinez-Barbera JP. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 2008; 324:322-33. [PMID: 18775421 PMCID: PMC3606136 DOI: 10.1016/j.ydbio.2008.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
Hesx1 has been shown to be essential for normal pituitary development. The homeobox gene Six3 is expressed in the developing pituitary gland during mouse development but its function in this tissue has been precluded by the fact that in the Six3-deficient embryos the pituitary gland is not induced. To gain insights into the function of Six3 during pituitary development we have generated Six3+/- ;Hesx1Cre/+ double heterozygous mice. Strikingly, these mice show marked dwarfism, which is first detectable around weaning, and die by the 5th-6th week of age. Thyroid and gonad development is also impaired in these animals. Analysis of Six3+/- ;Hesx1Cre/+ compound embryos indicates that hypopituitarism is the likely cause of these defects since pituitary development is severely impaired in these mutants. Similar to the Hesx1-deficient embryos, Rathke's pouch is initially expanded in Six3+/- ;Hesx1Cre/+ compound embryos due to an increase in cell proliferation. Subsequently, the anterior pituitary gland appears bifurcated, dysmorphic and occasionally ectopically misplaced in the nasopharyngeal cavity, but cell differentiation is unaffected. Our research has revealed a role for Six3 in normal pituitary development, which has likely been conserved during evolution as SIX3 is also expressed in the pituitary gland of the human embryo.
Collapse
Affiliation(s)
- Carles Gaston-Massuet
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Cynthia L. Andoniadou
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Massimo Signore
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Ezat Sajedi
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - Sophie Bird
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | - James M.A. Turner
- Developmental Genetics and Stem Cell Research, National Institute for Medical Research, Mill Hill, London
| | | |
Collapse
|
45
|
Lan X, Pan C, Zhang L, Zhao M, Zhang C, Lei C, Chen H. A novel missense (A79V) mutation of goat PROP1 gene and its association with production traits. Mol Biol Rep 2008; 36:2069-73. [PMID: 19031010 DOI: 10.1007/s11033-008-9418-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
As a paired class homeodomain transcription factor, mutations of PROP1 (Prophet of POU1F1) are responsible for deficiencies of GH, PRL, TSH, LH and FSH. Regarding mutations of GH, PRL, and POU1F1 genes significantly associating with different production traits, PROP1 gene is a novel important candidate gene for detecting genetic variation and association analysis in marked-assist selection (MAS) program. Therefore, the objective of this study is to detect goat PROP1 gene mutation and its association with production traits. Herein, a novel mutation (AF453512:g.1795C>T) within PROP1 gene is revealed by PCR-SSCP and DNA sequencing methods, and genotyped by Hin6I PCR-RFLP method in 1,344 individuals belonging to eight goat breeds. Only two genotypes (CC and CT) are revealed and the frequencies of allele C go from 0.9014 to 1.000 in analyzed populations. The genetic diversity analysis reveals that all PIC values are less than 0.1619, implying that the Hin6I locus within PROP1 gene possesses low genetic diversity in goat. Furthermore, nucleotide sequence analysis shows that AF453512:g.1795C>T results in a missense amino acid (A79V). But, association analysis demonstrates no significant differences between different genotypes and production traits (such as body weight, cashmere yield, fiber length and wool thickness) of Inner Mongolia White Cashmere goat (P > 0.05), as well as no significant relationship between different genotypes and average milk yield (P > 0.05). Although Hin6I polymorphism can not be used as a molecular marker for production traits in MAS, the present work presents preliminary novel missense mutation which extends the spectrum of genetic variations of goat PROP1 gene and may benefit for considering its association with other biophysical and biochemical indexes.
Collapse
Affiliation(s)
- Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, No. 22 Xinong Road, 712100 Yangling, Shaanxi, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sajedi E, Gaston-Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, Etchevers HC, Gerrelli D, Dattani MT, Martinez-Barbera JP. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Dis Model Mech 2008; 1:241-54. [PMID: 19093031 PMCID: PMC2590837 DOI: 10.1242/dmm.000711] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/28/2008] [Indexed: 01/20/2023] Open
Abstract
A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1(I26T/I26T) embryos show pituitary defects comparable with Hesx1(-/-) mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1(R160C/R160C) mutants display forebrain and pituitary defects that are identical to those observed in Hesx1(-/-) null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans.
Collapse
Affiliation(s)
- Ezat Sajedi
- Neural Development Unit, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lan XY, Shu JH, Chen H, Pan CY, Lei CZ, Wang X, Liu SQ, Zhang YB. A PstI polymorphism at 3'UTR of goat POU1F1 gene and its effect on cashmere production. Mol Biol Rep 2008; 36:1371-4. [PMID: 18654839 DOI: 10.1007/s11033-008-9322-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022]
Abstract
POU1F1 is a positive regulator for prolactin (PRL) whose metabolites may directly or indirectly affect some aspects of the hair growth cycle, therefore, POU1F1 gene is an important candidate gene for cashmere traits selection through marker-assisted selection (MAS). Hence, in this study, the PCR-RFLP method was applied to detect a T>C transition determining a PstI polymorphism at the 3'UTR of POU1F1 locus and evaluate its associations with cashmere traits in 847 Inner Mongolia White Cashmere goats. In the analyzed population, the allelic frequencies for the T and C alleles are 0.959 and 0.041, respectively and the genotypic frequencies are in Hardy-Weinberg equilibrium (P > 0.05). Moreover, significant statistical relationships between the PstI polymorphism of POU1F1 gene and goat cashmere yields were found (*P < 0.05). When compared with TC genotype, TT genotype was associated with superior cashmere yields in 2, 4, and 5 years old individuals, as well as with average cashmere yield. Hence, TT genotype is suggested to be a molecular marker for senior cashmere yield.
Collapse
Affiliation(s)
- X Y Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22, Xinong Road, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lan XY, Li MJ, Chen H, Zhang LZ, Jing YJ, Wei TB, Ren G, Wang X, Fang XT, Zhang CL, Lei CZ. Analysis of caprine pituitary specific transcription factor-1 gene polymorphism in indigenous Chinese goats. Mol Biol Rep 2008; 36:705-9. [PMID: 18357513 DOI: 10.1007/s11033-008-9232-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
Abstract
Since mutations on POU1F1 gene possibly resulted in deficiency of GH, PRL, TSH and POU1F1, this study revealed the polymorphism of goat POU1F1-AluI locus and analyzed the distribution of alleles on 13 indigenous Chinese goat breeds. The PCR-RFLP analysis showed the predominance of TT genotype and the frequencies of allele T varied from 0.757 to 0.976 in the analyzed populations (SBWC, Bo, XH and HM). Further study, distributions of genotypic and allelic frequencies at this locus were found to be significantly different among populations based on a chi(2)-test (P < 0.001), suggesting that the breed factor significantly affected the molecular genetic character of POU1F1 gene. The genetic diversity analysis revealed that Chinese indigenous populations had a wide spectrum of genetic diversity in goat POU1F1-AluI locus. However, the ANOVA analysis revealed no significant differences for gene homozygosty, gene heterozygosty, effective allele numbers and PIC (polymorphism information content) among meat, dairy and cashmere utility types (P > 0.05), suggesting that goat utility types had no significant effect on the spectrum of genetic diversity.
Collapse
Affiliation(s)
- X Y Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Expression of the amphioxus Pit-1 gene (AmphiPOU1F1/Pit-1) exclusively in the developing preoral organ, a putative homolog of the vertebrate adenohypophysis. Brain Res Bull 2008; 75:324-30. [DOI: 10.1016/j.brainresbull.2007.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/17/2007] [Indexed: 01/06/2023]
|
50
|
Nie Q, Fang M, Xie L, Zhou M, Liang Z, Luo Z, Wang G, Bi W, Liang C, Zhang W, Zhang X. The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genet 2008; 9:20. [PMID: 18304318 PMCID: PMC2267206 DOI: 10.1186/1471-2156-9-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 02/27/2008] [Indexed: 12/02/2022] Open
Abstract
Background With crucial roles on the differentiation of anterior pituitary and the regulation of the prolactin (PRL), growth hormone (GH) and thyroid-stimulating hormone-β (TSH-β) genes, the chicken PIT1 gene is regarded as a key candidate gene for production traits. In this study, five reported polymorphisms (MR1-MR5) of the PIT1 gene were genotyped in a full sib F2 resource population to evaluate their effects on growth, carcass and fatty traits in chickens. Results Marker-trait association analyses showed that, MR1 was significantly associated with shank diameters (SD) at 84 days (P < 0.05), hatch weight (HW) and shank length (SL) at 84 days (P < 0.01), MR2 was significantly associated with BW at 28, 42 days and average daily gain (ADG) at 0–4 weeks (P < 0.05), and MR3 was significantly associated with ADG at 4–8 weeks (P < 0.05). MR4 was associated with SL at 63, 77, 84 days and BW at 84 days (P < 0.05), as well as SD at 77 days (P < 0.01). Significant association was also found of MR5 with BW at 21, 35 days and SD at 63 days (P < 0.05), BW at 28 days and ADG at 0–4 weeks (P < 0.01). Both T allele of MR4 and C allele of MR5 were advantageous for chicken growth. The PIT1 haplotypes were significantly associated with HW (P = 0.0252), BW at 28 days (P = 0.0390) and SD at 56 days (P = 0.0400). No significant association of single SNP and haplotypes with chicken carcass and fatty traits was found (P > 0.05). Conclusion Our study found that polymorphisms of PIT1 gene and their haplotypes were associated with chicken growth traits and not with carcass and fatty traits.
Collapse
Affiliation(s)
- Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|