1
|
Zimoch-Rumanek P, Antos D. Coupling cation and anion exchange chromatography for fast separation of monoclonal antibody charge variants. J Chromatogr A 2024; 1733:465256. [PMID: 39153427 DOI: 10.1016/j.chroma.2024.465256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
A design procedure for the separation of charge variants of a monoclonal antibody (mAb) was developed, which was based on the coupling of cation-exchange chromatography (CEX) and anion-exchange chromatography (AEX) under high loading conditions. The design of the coupled process was supported by a dynamic model. The model was calibrated on the basis of band profiles of variants determined experimentally for the mAb materials of different variant compositions. The numerical simulations were used to select the coupling configuration and the loading conditions that allowed for efficient separation of the mAb materials into three products enriched with each individual variant: the acidic (av), main (mv) and basic (bv) one. In the CEX section, a two-step pH gradient was used to split the loaded mass of mAb into a weakly bound fraction enriched with av and mv, and a strongly bound fraction containing the bv-rich product. The weakly bound fraction was further processed in the AEX section, where the mv-rich product was eluted in flowthrough, while the av-rich product was collected by a step change in pH. The choice of flow distribution and the number of columns in the CEX and AEX sections depended on the variant composition of the mAb material. For the selected configurations, the optimized mAb loading density in the CEX columns ranged from 10 to 26 mg mL-1, while in the AEX columns it was as high as 300 or 600 mg mL-1, depending on the variant composition of the mAb material. By proper selection of the loading condition, a trade-off between yield and purity of the products could be reached.
Collapse
Affiliation(s)
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Rzeszów/PL, Poland.
| |
Collapse
|
2
|
Divase A, Pisal S, Dake MS, Dakshinamurthy PK, Reddy PS, Dhere R, Kamat C, Chahar DS, Pal J, Nawani N. Isolation and characterization of rabies monoclonal antibody charge variants. Electrophoresis 2024; 45:1339-1355. [PMID: 38700202 DOI: 10.1002/elps.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/20/2024] [Accepted: 03/02/2024] [Indexed: 05/05/2024]
Abstract
Current postexposure prophylaxis of rabies includes vaccines, human rabies immunoglobulin (RIG), equine RIG, and recombinant monoclonal antibodies (mAb). In the manufacturing of rabies recombinant mAb, charge variants are the most common source of heterogeneity. Charge variants of rabies mAb were isolated by salt gradient cation exchange chromatography (CEX) to separate acidic and basic and main charge variants. Separated variants were further extensively characterized using orthogonal analytical techniques, which include secondary and tertiary structure determination by far and near ultraviolet circular dichroism spectroscopy. Charge and size heterogeneity were evaluated using CEX, isoelectric focusing (IEF), capillary-IEF, size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and western blotting. Antigen binding affinity was assessed by enzyme linked immuno-sorbent assay and rapid florescence foci inhibition test. Results from structural and physicochemical characterizations concluded that charge variants are formed due to posttranslational modification demonstrating that the charge heterogeneity, these charge variants did neither show any considerable physicochemical change nor affect its biological function. This study shows that charge variants are effective components of mAb and there is no need of deliberate removal, until biological functions of rabies mAb will get affected.
Collapse
Affiliation(s)
- Ambika Divase
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sambhaji Pisal
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
| | - Manjusha Sudhakar Dake
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | | | | | - Rajeev Dhere
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
| | | | | | - Jayanta Pal
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Neelu Nawani
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
3
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Wysor SK, Synoground BF, Harcum SW, Marcus RK. In-line buffer exchange in the coupling of Protein A chromatography with weak cation exchange chromatography for the determination of charge variants of immunoglobulin G derived from chinese hamster ovary cell cultures. J Chromatogr A 2024; 1718:464722. [PMID: 38359690 DOI: 10.1016/j.chroma.2024.464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Benjamin F Synoground
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Sarah W Harcum
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
5
|
Sampathkumar K, Kerwin BA. Roadmap for Drug Product Development and Manufacturing of Biologics. J Pharm Sci 2024; 113:314-331. [PMID: 37944666 DOI: 10.1016/j.xphs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Therapeutic biology encompasses different modalities, and their manufacturing processes may be vastly different. However, there are many similarities that run across the different modalities during the drug product (DP) development process and manufacturing. Similarities include the need for Quality Target Product Profile (QTTP), analytical development, formulation development, container/closure studies, drug product process development, manufacturing and technical requirements set out by numerous regulatory documents such as the FDA, EMA, and ICH for pharmaceuticals for human use and other country specific requirements. While there is a plethora of knowledge on studies needed for development of a drug product, there is no specific guidance set out in a phase dependent manner delineating what studies should be completed in alignment with the different phases of clinical development from pre-clinical through commercialization. Because of this reason, we assembled a high-level drug product development and manufacturing roadmap. The roadmap is applicable across the different modalities with the intention of providing a unified framework from early phase development to commercialization of biologic drug products.
Collapse
Affiliation(s)
- Krishnan Sampathkumar
- SSK Biosolutions LLC, 14022 Welland Terrace, North Potomac, MD 20878, USA; Currently at Invetx, Inc., One Boston Place, Suite 3930, 201 Washington Street, Boston, MA 02108, USA
| | - Bruce A Kerwin
- Kerwin BioPharma Consulting LLC, 14138 Farmview Ln NE, Bainbridge Island, WA 98110, USA; Coriolis Scientific Advisory Board, Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
6
|
Anupa A, Bansode V, Kateja N, Rathore AS. A novel method for continuous chromatographic separation of monoclonal antibody charge variants by combining displacement mode chromatography and step elution. Biotechnol Prog 2024; 40:e3395. [PMID: 37828820 DOI: 10.1002/btpr.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform.
Collapse
Affiliation(s)
- Anupa Anupa
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikrant Bansode
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Nikhil Kateja
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Füssl F, Millán-Martín S, Bones J, Carillo S. Cation exchange chromatography on a monodisperse 3 µm particle enables extensive analytical similarity assessment of biosimilars. J Pharm Biomed Anal 2023; 234:115534. [PMID: 37343453 DOI: 10.1016/j.jpba.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Biosimilarity assessment requires extensive characterization and comparability exercises to investigate product quality attributes of an originator product and its potential biosimilar(s) and to highlight any differences between them. Performing a thorough comparison allows a shortened approval path, which also eliminates lengthy and expensive clinical trials, ensuring comparable product quality and efficacy but at lower drug prices. The wide variety of analytical methods available for biosimilar assessment ranges from biological to analytical assays, each providing orthogonal information to fully characterize biosimilar candidates. Intact native mass spectrometry (MS) has been shown to be an excellent tool for detection and monitoring of important quality attributes such as N-glycosylation, deamidation, sequence truncation and higher order structures. When combined with efficient upfront separation methods, simplification of the proteoform heterogeneity and associated complexity prior to MS analysis can be achieved. Native mass spectrometry can provide robust and accurate results within short analysis times and requires minimal sample preparation. In this study we report the use of a monodisperse strong cation exchange chromatography phase hyphenated with Orbitrap mass spectrometry (SCX-MS) to compare the best-selling biopharmaceutical product Humira® with 7 commercially approved biosimilar products. SCX-MS analysis allowed for the identification of previously described as well as so far unreported proteoforms and their relative quantitation across all samples, revealing differences in N-glycosylation and lysine truncation, as well as unique features for some products such as sialylation and N-terminal clipping. SCX-MS analysis, powered by a highly efficient separation column, enabled deep and efficient analytical comparison of biosimilar products.
Collapse
Affiliation(s)
- Florian Füssl
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland.
| |
Collapse
|
8
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
10
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
11
|
Poplewska I, Zimoch P, Antos D. Dissociation events during processing of monoclonal antibodies on strong cation exchange resins. J Chromatogr A 2022; 1670:462969. [DOI: 10.1016/j.chroma.2022.462969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
|
12
|
Separation of charge variants of a monoclonal antibody by overloaded ion exchange chromatography. J Chromatogr A 2021; 1658:462607. [PMID: 34656842 DOI: 10.1016/j.chroma.2021.462607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022]
Abstract
A procedure for adjusting the content of charge variants of monoclonal antibody by ion exchange chromatography has been developed. The band splitting phenomenon was utilized to split the protein load into two parts, i.e., the flowthrough and bound fractions, which were either enriched or depleted with some of variants. The phenomenon was triggered by thermodynamic effects resulting from oversaturation of the resin binding sites at high column loadings as well as from kinetic effects arising from limited rates of mass transport. Cation exchange chromatography (CEX) and anion exchange chromatography (AEX) separations were examined, with the reverse order of the variant elution: acidic, main, basic in CEX, and basic, main, acidic in AEX, and the corresponding reverse enrichment tendency in the collected fractions. The separations were performed by pH gradient, whose course was simplified to two stages: isocratic loading and washing at mild pH to load and partly elute the protein, followed by a rapid pH change towards non-binding conditions to desorb the remains of the protein load. To improve yield of the operation, possibility of recycling of waste fractions was considered. To predict the process performance, a dynamic model was developed, which accounted for both adsorption kinetics and thermodynamics.
Collapse
|
13
|
Fekete S, Murisier A, Lauber M, Guillarme D. Empirical correction of non-linear pH gradients and a tool for application to protein ion exchange chromatography. J Chromatogr A 2021; 1651:462320. [PMID: 34144399 DOI: 10.1016/j.chroma.2021.462320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
This concept article reports a practical solution to improve the linearity of effluent pH response as observed in pH gradient cation exchange chromatography (CEX). When performing pH gradient CEX, it is not easy to develop buffer systems that will universally provide pH response proportional with the mobile phase (buffer) composition. It is an especially challenging pursuit when exploring MS compatible buffers (e.g. ammonium-acetate, ammonium-carbonate). In addition to "non-proportional" behavior from the mobile phase composition, the chromatographic column itself will sometimes impose an unpredictable impact on the effluent pH. Here, we propose a simple approach based on the on-line measurement of effluent pH response, conversion of pH to mobile phase volume fraction (φ) and then generation of the inverse response function in the time domain. In the end, when setting the inverse function as the gradient program instead of a linear gradient, an improved - ideally linear - pH response can be produced. A simple Excel tool was developed to assist analysts with this correction procedure, and it has been made available by download for public use.
Collapse
Affiliation(s)
- Szabolcs Fekete
- Waters Corporation, located in CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Yüce M, Sert F, Torabfam M, Parlar A, Gürel B, Çakır N, Dağlıkoca DE, Khan MA, Çapan Y. Fractionated charge variants of biosimilars: A review of separation methods, structural and functional analysis. Anal Chim Acta 2021; 1152:238189. [PMID: 33648647 DOI: 10.1016/j.aca.2020.12.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| | - Fatma Sert
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Milad Torabfam
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Büşra Gürel
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Nilüfer Çakır
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Duygu E Dağlıkoca
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Mansoor A Khan
- Texas A&M Health Sciences Centre, Irma Lerma Rangel College of Pharmacy, TX, 77843, USA
| | - Yılmaz Çapan
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey; Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
15
|
Poplewska I, Piątkowski W, Antos D. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography. J Chromatogr A 2020; 1636:461687. [PMID: 33246679 DOI: 10.1016/j.chroma.2020.461687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
A mechanistic model for describing unfolding of a monoclonal antibody (mAb) in ion exchange chromatography has been developed. The model reproduced retention behavior characteristic for conformational changes of antibodies upon adsorption, including: multi-peak elution, aggregate formation, and recovery reduction. Two competitive paths in the adsorption mechanism of the unfolded protein were assumed: refolding in the adsorbed phase to the native form followed by its desorption, or direct desorption followed by instantaneous aggregation in the liquid phase. The reduction in recovery of the eluted protein was attributed to spreading of the unfolded protein on the adsorbent surface, which enhanced the binding affinity. The model was formulated based on the analysis of retention behavior of a model mAb that was eluted in pH gradients on a strong cation exchange resin. The pH profile was found to be distorted in the presence of the protein, which was ascribed to dissociation of ionizable groups of the protein in the adsorbed phase. Since the protein retention was strongly pH dependent, that phenomenon was also accounted for in mathematical modeling. A series of independent experiments was designed to evaluate the model parameters that quantified the process thermodynamics and kinetics: the Henry constants of the native, unfolded, spread and aggregated forms of the protein along with underlying kinetic coefficients. The model was efficient in reproducing the retention pattern of the protein and the aggregate content in eluting band profiles. After proper calibration, the model can potentially be used to quantify protein unfolding and elution in other ion exchange systems.
Collapse
Affiliation(s)
- Izabela Poplewska
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
16
|
Baek J, Schwahn AB, Lin S, Pohl CA, De Pra M, Tremintin SM, Cook K. New Insights into the Chromatography Mechanisms of Ion-Exchange Charge Variant Analysis: Dispelling Myths and Providing Guidance for Robust Method Optimization. Anal Chem 2020; 92:13411-13419. [DOI: 10.1021/acs.analchem.0c02775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Baek
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | | | - Shanhua Lin
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Christopher A. Pohl
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstrasse 4, Germering 82110, Germany
| | - Stacy M. Tremintin
- Thermo Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States of America
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead HP2 7GE, U.K
| |
Collapse
|
17
|
Wang D, Nowak C, Mason B, Katiyar A, Liu H. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. J Pharm Biomed Anal 2020; 183:113131. [DOI: 10.1016/j.jpba.2020.113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023]
|
18
|
Jing SY, Gou JX, Gao D, Wang HB, Yao SJ, Lin DQ. Separation of monoclonal antibody charge variants using cation exchange chromatography: Resins and separation conditions optimization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Abstract
Background:
Biopharmaceuticals are biological drugs consisting of a complex compound
that can be produced by a living organism or derive from it. Biopharmaceuticals are very complicated
compounds from structural point of view and for this reason, they cannot be fully characterized in
terms of their structure with current analytical methods as it happens instead of low molecular weight
chemicals drugs.
Introduction:
The regulatory guidelines require the characterization of the primary or higher sequence
of these molecules and the characterization of any post-translational modifications. The use
of biopharmaceuticals has really grown in the last few years: in 2016, the number of biopharmaceuticals
approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA)
for use in humans’ diseases was 1357. From 2013 to 2016, 73 of these compounds were approved for
the treatment of cancer, inflammation, immune disorders, infections, anemia and cardiovascular diseases.
Aim/Conclusion:
The aim of the present review is to provide an overview of recent approaches for
the characterization of biopharmaceutical products in HPLC that have been presented in the literature
in the last years.
Collapse
Affiliation(s)
- Angela Tartaglia
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Victoria Samanidou
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Madadkar P, Sadavarte R, Ghosh R. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. MEMBRANES 2019; 9:E138. [PMID: 31671843 PMCID: PMC6918161 DOI: 10.3390/membranes9110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.
Collapse
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
21
|
Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development. J Ind Microbiol Biotechnol 2019; 46:1167-1178. [PMID: 31175523 PMCID: PMC6697719 DOI: 10.1007/s10295-019-02202-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as stability, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal antibodies provides aggregated information about these modifications. In this work, we established a direct injection pH gradient cation exchange chromatography method, which determines charge heterogeneity from cell culture supernatant without any purification steps. This tool was further applied to monitor processes that were performed under certain process conditions. Concretely, we were able to provide insights into charge variant formation during a fed-batch process of a Chinese hamster ovary cell culture, in turn producing a monoclonal antibody under varying temperatures and glucose feed strategies. Glucose concentration impacted the total emergence of acidic variants, whereas the variation of basic species was mainly dependent on process temperature. The formation rates of acidic species were described with a second-order reaction, where a temperature increase favored the conversion. This platform method will aid as a sophisticated optimization tool for mammalian cell culture processes. It provides a quality fingerprint for the produced mAb, which can be tested, compared to the desired target and confirmed early in the process chain.
Collapse
|
22
|
Kuiper M, Spencer C, Fäldt E, Vuillemez A, Holmes W, Samuelsson T, Gruber D, Castan A. Repurposing fed‐batch media and feeds for highly productive CHO perfusion processes. Biotechnol Prog 2019; 35:e2821. [DOI: 10.1002/btpr.2821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Marcel Kuiper
- Biopharmaceutical Development, MedImmune Cambridge UK
| | - Chris Spencer
- Biopharmaceutical Development, MedImmune Cambridge UK
| | - Eric Fäldt
- GE Healthcare Bio‐Sciences AB, BioProcess R&D Uppsala Sweden
| | | | | | | | - David Gruber
- Biopharmaceutical Development, MedImmune Cambridge UK
| | - Andreas Castan
- GE Healthcare Bio‐Sciences AB, BioProcess R&D Uppsala Sweden
| |
Collapse
|
23
|
Multi-column displacement chromatography for separation of charge variants of monoclonal antibodies. J Chromatogr A 2019; 1586:40-51. [DOI: 10.1016/j.chroma.2018.11.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/19/2022]
|
24
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
25
|
Bailey AO, Han G, Phung W, Gazis P, Sutton J, Josephs JL, Sandoval W. Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis. MAbs 2018; 10:1214-1225. [PMID: 30339478 PMCID: PMC6284562 DOI: 10.1080/19420862.2018.1521131] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The preponderance and diversity of charge variants in therapeutic monoclonal antibodies has implications for antibody efficacy and degradation. Understanding the extent and impact of minor antibody variants is of great interest, and it is also a critical regulatory requirement. Traditionally, a combination of approaches is used to characterize antibody charge heterogeneity, including ion exchange chromatography and independent mass spectrometric variant site mapping after proteolytic digestion. Here, we describe charge variant native mass spectrometry (CVMS), an integrated native ion exchange mass spectrometry-based charge variant analytical approach that delivers detailed molecular information in a single, semi-automated analysis. We utilized pure volatile salt mobile phases over a pH gradient that effectively separated variants based on minimal differences in isoelectric point. Characterization of variants such as deamidation, which are traditionally unattainable by intact mass due to their minimal molecular weight differences, were measured unambiguously by mass and retention time to allow confident MS1 identification. We demonstrate that efficient chromatographic separation allows introduction of the purified forms of the charge variant isoforms into the Orbitrap mass spectrometer. Our CVMS method allows confident assignment of intact monoclonal antibody isoforms of similar mass and relative abundance measurements across three orders of magnitude dynamic range.
Collapse
Affiliation(s)
- Aaron O Bailey
- a Chromatography and Mass Spectrometry Division , Thermo Fisher Scientific , San Jose , CA , USA
| | - Guanghui Han
- b Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc , South San Francisco , CA , USA
| | - Wilson Phung
- b Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc , South San Francisco , CA , USA
| | - Paul Gazis
- a Chromatography and Mass Spectrometry Division , Thermo Fisher Scientific , San Jose , CA , USA
| | - Jennifer Sutton
- a Chromatography and Mass Spectrometry Division , Thermo Fisher Scientific , San Jose , CA , USA
| | - Jonathan L Josephs
- a Chromatography and Mass Spectrometry Division , Thermo Fisher Scientific , San Jose , CA , USA
| | - Wendy Sandoval
- b Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc , South San Francisco , CA , USA
| |
Collapse
|
26
|
Development and Validation of Salt Gradient CEX Chromatography Method for Charge Variants Separation and Quantitative Analysis of the IgG mAb-Cetuximab. Chromatographia 2018. [DOI: 10.1007/s10337-018-3627-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Trappe A, Füssl F, Carillo S, Zaborowska I, Meleady P, Bones J. Rapid charge variant analysis of monoclonal antibodies to support lead candidate biopharmaceutical development. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:166-176. [DOI: 10.1016/j.jchromb.2018.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
|
28
|
Reinhart D, Damjanovic L, Castan A, Ernst W, Kunert R. Differential gene expression of a feed-spiked super-producing CHO cell line. J Biotechnol 2018; 285:23-37. [PMID: 30157452 DOI: 10.1016/j.jbiotec.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 08/25/2018] [Indexed: 01/09/2023]
Abstract
Feed supplements are concentrated cell culture media that contain a variety of nutrients, which can be added during a bioprocess. During fed-batch cultivation, feed media are typically added to a growing cell culture to maximize cell and product concentrations. In this study, only a single shot of feed medium was added on day 0 to a basal cell culture medium and compared to non-supplemented basal medium (feed-spiked at day 0 versus control experiments) by cultivation of a recombinant mAb expressing CHO cell line in batch mode under controlled conditions in a bioreactor. Since the feed-spike at day 0 was based on existing medium components without introducing additional supplements, a desirable process with decreased complexity was generated. Unlike cells in basal medium, feed-spiked cultures reached almost 2× higher peak cell concentrations (10 × 106 c/mL vs. 18 × 106 c/mL) and 3× higher antibody concentrations (0.8 g/L vs. 2.4 g/L). Batch process time and the integral over the viable cell count were similar for both process types. Constantly high cell-specific production rates in feed-spiked cultures (70 pg/cell/day) compared to continuously declining rates in basal medium (from 70 to 10 pg/cell/day) were responsible for an overall 70% higher cell-specific production rate and the higher product concentrations. To associate gene expression patterns to different process proceedings, transcriptome analysis was performed using microarrays. Several transcripts that are involved with glutamine de novo synthesis and citric acid cycle were significantly upregulated on several days in feed-spiked cultures. The top identified gene ontology (GO) terms related well to cell cycle and primary metabolism, cellular division as well as nucleobase formation or regulation, which indicated a more active proliferative state for feed-spiked cultures. KEGG biochemical pathway analysis and Gene set enrichment analysis (GSEA) further confirmed these findings from a complementary perspective. Moreover, several interesting gene targets, which have not yet been associated with recombinant protein expression, were identified that related to a higher proliferative state, growth, protein synthesis, cell-size control, metabolism, cell survival as well as genes that are associated with the control of the mammalian target of rapamycin (mTOR) in feed-spiked cultures. Analysis of critical product quality attributes (i.e. glycosylation, charge variants and size distribution) showed that feed-spiking did not change antibody quality.
Collapse
Affiliation(s)
- David Reinhart
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Lukas Damjanovic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Andreas Castan
- GE Healthcare Life Sciences AB, Björkgatan 30, 75184, Uppsala, Sweden.
| | - Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
29
|
Top-down LC–MS quantitation of intact denatured and native monoclonal antibodies in biological samples. Bioanalysis 2018; 10:1039-1054. [DOI: 10.4155/bio-2017-0282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: The requirements for developing antibody biotherapeutics benefit from understanding the nature and relevant aspects of the entire molecule. The method presented herein employs on-line multidimensional LC–quadrupole time-of-flight (QTOF)-MS for the quantitative determination of an antibody isolated from biological samples while maintaining the intact native biologically active conformation of the antibody. Results: Following method optimization for a model antibody, an incurred biotherapeutic in cynomologus monkey was quantified in its intact top-down native conformation. A partial method validation demonstrated acceptable precision and accuracy although improved sensitivity requires further studies. Conclusion: An on-line multidimensional LC–MS approach presents a proof-of-principle example for quantifying an intact, native antibody isolated from an incurred biological sample via immunoaffinity techniques coupled with top-down QTOF LC–MS bioanalysis.
Collapse
|
30
|
Creasy A, Reck J, Pabst T, Hunter A, Barker G, Carta G. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads. Biotechnol J 2018; 14:e1800132. [DOI: 10.1002/biot.201800132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Arch Creasy
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| | - Jason Reck
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| | | | | | - Gregory Barker
- Biologics Process Development; Bristol-Myers Squibb; Hopewell New Jersey USA
| | - Giorgio Carta
- Department of Chemical Engineering; University of Virginia; 102 Engineers’ Way Charlottesville Virginia 22904 USA
| |
Collapse
|
31
|
Coupling Multi Angle Light Scattering to Ion Exchange chromatography (IEX-MALS) for protein characterization. Sci Rep 2018; 8:6907. [PMID: 29720692 PMCID: PMC5931992 DOI: 10.1038/s41598-018-25246-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
Multi-angle light scattering coupled with size exclusion chromatography (SEC-MALS) is a standard and common approach for characterizing protein mass, overall shape, aggregation, oligomerization, interactions and purity. The limited resolution of analytical SEC restricts in some instances the accurate analysis that can be accomplished by MALS. These include mixtures of protein populations with identical or very similar molecular masses, oligomers with poor separation and short peptides. Here we show that combining MALS with the higher resolution separation technique ion exchange (IEX-MALS) can allow precise analyses of samples that cannot be resolved by SEC-MALS. We conclude that IEX-MALS is a valuable and complementary method for protein characterization, especially for protein systems that could not be fully analyzed by SEC-MALS.
Collapse
|
32
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
33
|
Lee YF, Jöhnck M, Frech C. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin. Biotechnol Prog 2018; 34:973-986. [DOI: 10.1002/btpr.2626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Feng Lee
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| | - Matthias Jöhnck
- Department of Process Solutions, Actives & Formulation; Merck KGaA; Darmstadt Germany
| | - Christian Frech
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
34
|
Füssl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. Charge Variant Analysis of Monoclonal Antibodies Using Direct Coupled pH Gradient Cation Exchange Chromatography to High-Resolution Native Mass Spectrometry. Anal Chem 2018; 90:4669-4676. [DOI: 10.1021/acs.analchem.7b05241] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Füssl
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead, HP2 7GE, United Kingdom
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Amy Farrell
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Stefan Mittermayr
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Jonathan Bones
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
35
|
Dai J, Lamp J, Xia Q, Zhang Y. Capillary Isoelectric Focusing-Mass Spectrometry Method for the Separation and Online Characterization of Intact Monoclonal Antibody Charge Variants. Anal Chem 2018; 90:2246-2254. [DOI: 10.1021/acs.analchem.7b04608] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Dai
- Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| | - Jared Lamp
- CMP Scientific, Corporation, 760 Parkside Avenue, Suite 211, Brooklyn, New York 11226, United States
| | - Qiangwei Xia
- CMP Scientific, Corporation, 760 Parkside Avenue, Suite 211, Brooklyn, New York 11226, United States
| | - Yingru Zhang
- Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
36
|
Sadavarte R, Madadkar P, Filipe CDM, Ghosh R. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:27-33. [DOI: 10.1016/j.jchromb.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/25/2017] [Accepted: 12/02/2017] [Indexed: 11/17/2022]
|
37
|
Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J Sep Sci 2017; 41:125-144. [DOI: 10.1002/jssc.201700988] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Tassi
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sneha Chatterjee
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
| | - Jonathan Bones
- The National Institute for Bioprocessing Research and Training (NIBRT); Dublin Ireland
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
38
|
Goyon A, Excoffier M, Janin-Bussat MC, Bobaly B, Fekete S, Guillarme D, Beck A. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:119-128. [PMID: 28961486 DOI: 10.1016/j.jchromb.2017.09.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023]
Abstract
Despite the popularity of therapeutic monoclonal antibodies (mAbs), data relative to their ionic physico-chemical properties are very scarce in the literature. In this work, isoelectric points (pIs) of 23 Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved mAbs were determined by imaged capillary isoelectric focusing (icIEF), and ranged from 6.1 to 9.4. The obtained values were in good agreement with those calculated by both Vector NTI and MassLynx softwares. icIEF can therefore be considered as a reference technique for such a determination. The relative percentages of acidic and basic variants determined by cation exchange chromatography (CEX) using both salt- and pH-gradients were comprised between 15% and 30% for most mAbs and were in good agreement with each other, whereas generic icIEF seems to overestimate the amount of acidic charge variants in mAb products. To our knowledge, this is the first study focusing on the ionic properties of a wide range of FDA and EMA approved reference mAbs, using both generic chromatographic and electrophoretic methodologies. To illustrate the interest of the study for mAb developability purposes, ionic properties of a clinical mAb candidate (dalotuzumab) were also investigated.
Collapse
Affiliation(s)
- Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Melissa Excoffier
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Marie-Claire Janin-Bussat
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Balazs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|
39
|
Tomita S, Matsuda A, Nishinami S, Kurita R, Shiraki K. One-Step Identification of Antibody Degradation Pathways Using Fluorescence Signatures Generated by Cross-Reactive DNA-Based Arrays. Anal Chem 2017; 89:7818-7822. [DOI: 10.1021/acs.analchem.7b01264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shunsuke Tomita
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, and DAILAB, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ayumi Matsuda
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Suguru Nishinami
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, and DAILAB, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kentaro Shiraki
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
40
|
Wagner-Rousset E, Fekete S, Morel-Chevillet L, Colas O, Corvaïa N, Cianférani S, Guillarme D, Beck A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. J Chromatogr A 2017; 1498:147-154. [DOI: 10.1016/j.chroma.2017.02.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
|
41
|
Vollrath M, Engert J, Winter G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. Eur J Pharm Biopharm 2017; 117:244-255. [PMID: 28442372 DOI: 10.1016/j.ejpb.2017.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023]
Abstract
Solid lipid implants (SLIs) prepared by twin-screw (tsc) extrusion represent a promising technology platform for the sustained release of pharmaceutical proteins. In this work, we report on two aspects, long-term release and stability of released protein. First, SLIs were produced by tsc-extrusion containing the low melting triglyceride H12 and the high melting triglyceride Dynasan D118. Two different proteins available in a freeze-dried matrix containing hydroxypropyl-β-cyclodextrine (HP-β-CD) were incorporated into the lipid matrix: a monoclonal antibody (mAb) from the IgG1 class and the fab-fragment Ranibizumab (Lucentis®). SLIs, composed of 10% protein lyophilizate and both triglycerides, were extruded at 35°C and 40rpm. Sustained release of both proteins was observed in a sustained manner for approximately 120days. Protein load per implant was increased by three different approaches resulting in a protein load of 3.00mg per implant without affecting the release profiles. The incubation medium containing the released protein was collected, concentrated and analyzed including liquid chromatography (SE-HPLC, IEX, HIC), electrophoresis (SDS-PAGE, on-chip gel electrophoresis) and FT-IR spectroscopy. The mAb showed a monomer loss of up to 7% (SE-HPLC) and IEX analysis revealed the formation of 16% acidic subspecies after 18weeks. FT-IR spectra of mAb indicated the formation of random coil structures towards the end of the release study. Ranibizumab was mainly released in its monomeric form (>95%), and approximately 5% hydrophobic subspecies were formed after 18weeks of release. FT-IR analysis revealed no changes in secondary structure. The release and stability profiles of both proteins underline the potential of SLIs as a delivery system. SLIs provide a promising platform for applications where really long-term release is needed, for example for intraocular delivery of anti-vascular endothelial growth factor (VEGF) drugs for age related macular degeneration (AMD).
Collapse
Affiliation(s)
- Moritz Vollrath
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany.
| |
Collapse
|
42
|
Gervais D, Hayzen J, Orphanou C, McEntee A, Hallam C, Brehm R. Understanding the process-induced formation of minor conformational variants of Erwinia chrysanthemi l-asparaginase. Enzyme Microb Technol 2017; 98:26-33. [DOI: 10.1016/j.enzmictec.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
|
43
|
Creasy A, Barker G, Carta G. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Arch Creasy
- Department of Chemical Engineering; University of Virginia; Charlottesville VA USA
| | - Gregory Barker
- Biologics Process Development; Bristol-Myers Squibb; Hopewell NJ USA
| | - Giorgio Carta
- Department of Chemical Engineering; University of Virginia; Charlottesville VA USA
| |
Collapse
|
44
|
Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B 2017; 5:9204-9210. [DOI: 10.1039/c7tb02107k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
pKa tuning of Brønsted acids in synthetic nano-materials is of great importance for the design of ion exchange and bio-/molecular-separation media and polymer catalysis.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka, Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Takaaki Miyoshi
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka, Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka, Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka, Nishi-ku
- Fukuoka 819-0395
- Japan
| |
Collapse
|
45
|
Sharkey B, Pudi S, Wallace Moyer I, Zhong L, Prinz B, Baruah H, Lynaugh H, Kumar S, Wittrup KD, Nett JH. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients. MAbs 2016; 9:257-268. [PMID: 27937066 DOI: 10.1080/19420862.2016.1267090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monovalent bispecific antibodies (BsAbs) are projected to have broad clinical applications due to their ability to bind two different targets simultaneously. Although they can be produced using recombinant technologies, the correct pairing of heavy and light chains is a significant manufacturing problem. Various approaches exploit mutations or linkers to favor the formation of the desired BsAb, but a format using a single common light chain has the advantage that no other modification to the antibody is required. This strategy reduces the number of formed molecules to three (the BsAb and the two parent mAbs), but the separation of the BsAb from the two monovalent parent molecules still poses a potentially difficult purification challenge. Current methods employ ion exchange chromatography and linear salt gradients, but are only successful if the difference in the observed isoelectric points (pIs) of two parent molecules is relatively large. Here, we describe the use of highly linear pH gradients for the facile purification of common light chain BsAbs. The method is effective at separating molecules with differences in pI as little as 0.10, and differing in their sequence by only a single charged amino acid. We also demonstrate that purification resins validated for manufacturing are compatible with this approach.
Collapse
Affiliation(s)
- Beth Sharkey
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Sarat Pudi
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Ian Wallace Moyer
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Lihui Zhong
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Bianka Prinz
- b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA
| | - Hemanta Baruah
- b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA
| | - Heather Lynaugh
- c Department of Protein Analytics , Adimab LLC , Lebanon , NH , USA
| | - Sampath Kumar
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - K Dane Wittrup
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA.,b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA.,c Department of Protein Analytics , Adimab LLC , Lebanon , NH , USA
| | - Juergen H Nett
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| |
Collapse
|
46
|
Singh SK, Narula G, Rathore AS. Should charge variants of monoclonal antibody therapeutics be considered critical quality attributes? Electrophoresis 2016; 37:2338-46. [DOI: 10.1002/elps.201600078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sumit Kumar Singh
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| | - Gunjan Narula
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| | - Anurag S. Rathore
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| |
Collapse
|
47
|
Planinc A, Bones J, Dejaegher B, Van Antwerpen P, Delporte C. Glycan characterization of biopharmaceuticals: Updates and perspectives. Anal Chim Acta 2016; 921:13-27. [PMID: 27126786 DOI: 10.1016/j.aca.2016.03.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/01/2023]
Abstract
Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009-2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization.
Collapse
Affiliation(s)
- Ana Planinc
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Bieke Dejaegher
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, B-1050 Brussels, Belgium; Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Faculty of Medicines and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Pierre Van Antwerpen
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Delporte
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
48
|
Stoll DR, Harmes DC, Danforth J, Wagner E, Guillarme D, Fekete S, Beck A. Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. Anal Chem 2015; 87:8307-15. [DOI: 10.1021/acs.analchem.5b01578] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - David C. Harmes
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - John Danforth
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - Elsa Wagner
- Center
of Immunology
Pierre Fabre, 5, Avenue Napoléon
III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School
of Pharmaceutical Sciences University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School
of Pharmaceutical Sciences University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Alain Beck
- Center
of Immunology
Pierre Fabre, 5, Avenue Napoléon
III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|
49
|
Fekete S, Beck A, Guillarme D. Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. J Pharm Biomed Anal 2015; 111:169-76. [DOI: 10.1016/j.jpba.2015.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/16/2022]
|
50
|
Structural Characterisation of Non-Deamidated Acidic Variants of Erwinia chrysanthemi L-asparaginase Using Small-Angle X-ray Scattering and Ion-Mobility Mass Spectrometry. Pharm Res 2015; 32:3636-48. [DOI: 10.1007/s11095-015-1722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|