1
|
Kratz JD, Rehman S, Johnson KA, Gillette AA, Sunil A, Favreau PF, Pasch CA, Miller D, Zarling LC, Yeung AH, Clipson L, Anderson SJ, Steimle AK, Sprackling CM, Lemmon KK, Abbott DE, Burkard ME, Bassetti MF, Eickhoff JC, Foley EF, Heise CP, Kimple RJ, Lawson EH, LoConte NK, Lubner SJ, Mulkerin DL, Matkowskyj KA, Sanger CB, Uboha NV, Mcilwain SJ, Ong IM, Carchman EH, Skala MC, Deming DA. Subclonal response heterogeneity to define cancer organoid therapeutic sensitivity. Sci Rep 2025; 15:12072. [PMID: 40200028 PMCID: PMC11978853 DOI: 10.1038/s41598-025-96204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor heterogeneity is predicted to confer inferior clinical outcomes with precision-based strategies, however, modeling heterogeneity in a manner that still represents the tumor of origin remains a formidable challenge. Sequencing technologies are limited in their ability to identify rare subclonal populations and predict response to treatments for patients. Patient-derived organotypic cultures have significantly improved the modeling of cancer biology by faithfully representing the molecular features of primary malignant tissues. Patient-derived cancer organoid (PCO) cultures contain subclonal populations with the potential to recapitulate heterogeneity, although treatment response assessments commonly ignore diversity in the molecular profile or treatment response. Here, we demonstrate the advantage of evaluating individual PCO heterogeneity to enhance the sensitivity of these assays for predicting clinical response. Additionally, organoid subcultures identify subclonal populations with altered treatment response. Finally, dose escalation studies of PCOs to targeted anti-EGFR therapy are utilized which reveal divergent pathway expression when compared to pretreatment cultures. Overall, these studies demonstrate the importance of population-based organoid response assessments, the use of PCOs to identify molecular heterogeneity not observed with bulk tumor sequencing, and PCO heterogeneity for understanding therapeutic resistance mechanisms.
Collapse
Affiliation(s)
- Jeremy D Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Katherine A Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Amani A Gillette
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Aishwarya Sunil
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Peter F Favreau
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Devon Miller
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Lucas C Zarling
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Austin H Yeung
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | | | | | | | - Kayla K Lemmon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Daniel E Abbott
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Michael F Bassetti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Jens C Eickhoff
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eugene F Foley
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Charles P Heise
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Randall J Kimple
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Elise H Lawson
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Noelle K LoConte
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sam J Lubner
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Daniel L Mulkerin
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cristina B Sanger
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sean J Mcilwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Evie H Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Zhu Z, Shen J, Ho PCL, Hu Y, Ma Z, Wang L. Transforming cancer treatment: integrating patient-derived organoids and CRISPR screening for precision medicine. Front Pharmacol 2025; 16:1563198. [PMID: 40201690 PMCID: PMC11975957 DOI: 10.3389/fphar.2025.1563198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The persistently high mortality rates associated with cancer underscore the imperative need for innovative, efficacious, and safer therapeutic agents, as well as a more nuanced understanding of tumor biology. Patient-derived organoids (PDOs) have emerged as innovative preclinical models with significant translational potential, capable of accurately recapitulating the structural, functional, and heterogeneous characteristics of primary tumors. When integrated with cutting-edge genomic tools such as CRISPR, PDOs provide a powerful platform for identifying cancer driver genes and novel therapeutic targets. This comprehensive review delves into recent advancements in CRISPR-mediated functional screens leveraging PDOs across diverse cancer types, highlighting their pivotal role in high-throughput functional genomics and tumor microenvironment (TME) modeling. Furthermore, this review highlights the synergistic potential of integrating PDOs with CRISPR screens in cancer immunotherapy, focusing on uncovering immune evasion mechanisms and improving the efficacy of immunotherapeutic approaches. Together, these cutting-edge technologies offer significant promise for advancing precision oncology.
Collapse
Affiliation(s)
- Ziyi Zhu
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiayang Shen
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ya Hu
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Afolabi HA, Salleh SM, Zakaria Z, Seng CE, Nafi SNM, Aziz AABA, Zainon WMNW, Irekola AA, Wada Y, Al-Mhanna SB, Elesho RF. Molecular characterization of colorectal cancer (CRC) using next generation sequencing (NGS) in bridging the gap between research and clinical practice: from biomarker discovery to clinical implementation. Discov Oncol 2025; 16:268. [PMID: 40048017 PMCID: PMC11885200 DOI: 10.1007/s12672-025-01960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cancer in men and third in females, a heterogeneous disease involving multistep mechanisms that represents 10% of all cancers globally. This study investigates gene mutation profiling in CRC using Next-Generation sequencing machine. METHOD Formalin-fixed paraffin-embedded tissues of 30 CRC patients were retrieved and reviewed. DNA was isolated from selected tissues. Desirable quality check using Qubit and Nanoquant machine was done, and desirable libraries prepared were loaded into the sequencer for sequencing. Using Illumina BaseSpace and Illumina Variant interpreter, generated FastQ data were treated for annotation, alignment, and mapping with reference genome. Sequencing-runs with Phred-score ≥ 30 were selected as desirable runs. Finally, the variants were validated on NCBI-dsSNP and Ensembl databases for clinical consequence interpretations. RESULTS Overall, patient distribution consists of 12(40%) females and 18 (60%) males with mean age (53.2 + 5.3). most patients were in TNM stage-3: 53.3% (15/30) and the least was Stage-4: 20%(6/30) respectively. Overall, 73.3%: (22/30) completed the sequencing, and 552 mutations involving 29 genes and 12 chromosomes were detected. The most upregulated variants are KIT:68(12.3%), FGFR4:61(11.1%), EGFR:60(10.9%), ALK:53(9.6%), DCUN1D1:41(7.4%), PDGFR:40(7.2%), KRAS:33(6.0%), CDK4:27(4.9%), FGFR3:26(4.7%), MTOR:14(2.6), while NRAS, CDK6, PIK3CA, and RET each has 13(2.4%) apiece. Chromosomes 4:134/55(24.2%), chr7:84/552(15.2%), chr12:71/552(12.9%), chr5:64/552(11.6%), chr2:61/552(11.1%), chr3:54/552(9.8%), and chr1:43/552(7.8%) are the most involved chromosomes. Nine genes (APC, NRAS, ALK, PIK3CA, KRAS, IDH1, FGFR1, ERBB2, and ESR1) are identified as pathogenic-causing variants in CRC. CONCLUSION This is the first NGS-based molecular study on FFPE-CRC tissues in hospital-USM that showed the most upregulated variants in CRC and identified nine genes as crucial pathogenic variants.
Collapse
Affiliation(s)
- Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Zaidi Zakaria
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of General Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ch'ng Ewe Seng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Aizat Bin Abdul Aziz
- Department of Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wan Mohd Nazri Wan Zainon
- Department of Nuclear Medicine, Radiotherapy, and Oncology, Hospital Universiti Sains Malaysia, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Adebayo Irekola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa, Kwara, Nigeria
| | - Yusuf Wada
- Department of Zoology, Ahmadu Bello University, Zaria, 810211, Kaduna, Nigeria
| | - Sameer Badri Al-Mhanna
- Department of Exercise Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rashidat Folashade Elesho
- Department of Clinical and Administrative Pharmacy Sciences, Howard University, 2400 Sixth Street NW, Washington, DC, 20059, USA
| |
Collapse
|
4
|
Jin Y, Chen P, Zhou H, Mu G, Wu S, Zha Z, Ma B, Han C, Chiu ML. Developing transcriptomic biomarkers for TAVO412 utilizing next generation sequencing analyses of preclinical tumor models. Front Immunol 2025; 16:1505868. [PMID: 39995668 PMCID: PMC11847686 DOI: 10.3389/fimmu.2025.1505868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction TAVO412, a multi-specific antibody targeting epidermal growth factor receptor (EGFR), mesenchymal epithelial transition factor (c-Met), and vascular endothelial growth factor A (VEGF-A), is undergoing clinical development for the treatment of solid tumors. TAVO412 has multiple mechanisms of action for tumor growth inhibition that include shutting down the EGFR, c-Met, and VEGF signaling pathways, having enhanced Fc effector functions, addressing drug resistance that can be mediated by the crosstalk amongst these three targets, as well as inhibiting angiogenesis. TAVO412 demonstrated strong in vivo tumor growth inhibition in 23 cell-line derived xenograft (CDX) models representing diverse cancer types, as well as in 9 patient-derived xenograft (PDX) lung tumor models. Methods Using preclinical CDX data, we established transcriptomic biomarkers based on gene expression profiles that were correlated with anti-tumor response or distinguished between responders and non-responders. Together with specific driver mutation that associated with efficacy and the targets of TAVO412, a set of 21-gene biomarker was identified to predict the efficacy. A biomarker predictor was formulated based on the Linear Prediction Score (LPS) to estimate the probability of patients or tumor model response to TAVO412 treatment. Results This efficacy predictor for TAVO412 demonstrated 78% accuracy in the CDX training models. The biomarker model was further validated in the PDX data set and resulted in comparable accuracy. Conclusions In implementing precision medicine by leveraging preclinical model data, a predictive transcriptomic biomarker empowered by next-generation sequencing was identified that could optimize the selection of patients that may benefit most from TAVO412 treatment.
Collapse
Affiliation(s)
- Ying Jin
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Peng Chen
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Huajun Zhou
- Global Center for Data Science and Bioinformatics, Crown Bioscience Inc., Suzhou, Jiangsu, China
| | - Guangmao Mu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Simin Wu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Zhengxia Zha
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Bin Ma
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Chao Han
- Research & Development, Tavotek Biotherapeutics, Spring House, PA, United States
| | - Mark L. Chiu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
- Research & Development, Tavotek Biotherapeutics, Spring House, PA, United States
| |
Collapse
|
5
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
6
|
Dankner M, Rousselle E, Petrecca S, Fabi F, Nowakowski A, Lazaratos AM, Rajadurai CV, Stein AJ, Bian D, Tai P, Belaiche A, Li M, Quaiattini A, Normanno N, Arcila M, Elkrief A, Johnson DB, Ladanyi M, Rose AA. Clinical Activity of Mitogen-Activated Protein Kinase Inhibitors in Patients With MAP2K1 (MEK1)-Mutated Metastatic Cancers. JCO Precis Oncol 2025; 9:e2400199. [PMID: 39869838 PMCID: PMC11784909 DOI: 10.1200/po.24.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/11/2024] [Accepted: 10/31/2024] [Indexed: 01/29/2025] Open
Abstract
PURPOSE MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined. We sought to characterize the genomic and clinical landscape of MAP2K1 mutant tumors to evaluate the relationship between MAP2K1 mutation class and clinical activity of MAPKi. METHODS We interrogated American Association for Cancer Research (AACR) GENIE (v13) to analyze solid tumors with MAP2K1 mutations. We performed a systematic review and meta-analysis of published reports of patients with MAP2K1-mutant cancers treated with MAPKi according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The primary end point was progression-free survival (PFS), and secondary end points were overall treatment response rate (ORR), duration of response (DOR), and overall survival. RESULTS In the AACR GENIE data set, class 2 MAP2K1 mutations (63%) were more prevalent than class 1 (24%) and class 3 (13%) mutations (P < .0001). Co-occurring MAPK pathway-activating mutations were more likely to occur in class 1 versus class 2 or 3 MAP2K1-mutant tumors (P < .0001). Our systematic meta-analysis of the literature identified 46 patients with MAP2K1-mutant tumors who received MAPKi. In these patients, ORR was 28% and median PFS was 3.9 months. ORR did not differ according to MAP2K1 mutation class or cancer type. However, patients with class 2 mutations experienced longer PFS (5.0 months) and DOR (23.8 months) compared with patients with class 1, 3, or unclassified MAP2K1 mutations (PFS 3.5 months, P = .04; DOR 4.2 months, P = .02). CONCLUSION Patients with class 2 MAP2K1 mutations represent a novel subgroup that may derive benefit from MAPKi. Prospective clinical studies with novel MAPKi regimens are warranted in these patients.
Collapse
Affiliation(s)
- Matthew Dankner
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada
| | - Emmanuelle Rousselle
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Sarah Petrecca
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - François Fabi
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - Alexander Nowakowski
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada
| | | | - Charles Vincent Rajadurai
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
| | | | - David Bian
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | - Peter Tai
- McGill University Faculty of Medicine, Montréal, QC, Canada
| | | | - Meredith Li
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
| | - Andrea Quaiattini
- Schulich Library of Physical Sciences, Life Sciences, and Engineering, McGill University, Montréal, QC, Canada
| | - Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola (FC), Italy
| | - Maria Arcila
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arielle Elkrief
- Memorial Sloan Kettering Cancer Center, New York, NY
- Centre hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | | | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - April A.N. Rose
- McGill University Faculty of Medicine, Montréal, QC, Canada
- Lady Davis Research Institute & Segal Cancer Centre, Jewish General Hospital, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Ali MA, Zahra OS, Morsi MI, El Safwany MM, El Feky SE. Predictive role of [ 18F]FDG PET-CT radiomic parameters for KRAS/BRAF/EGFR mutations in metastatic colorectal cancer patients. EJNMMI REPORTS 2024; 8:42. [PMID: 39722096 DOI: 10.1186/s41824-024-00233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES The objective of this study was to evaluate the predictive value of 18F-fluorodeoxyglucose [18F]FDG positron emission tomography (PET-CT) radiomic parameters in relation to KRAS/BRAF/EGFR mutations in patients with metastatic colorectal cancer (mCRC). METHODS Blood samples were collected from 90 mCRC patients to assess KRAS G13V, BRAF V600E, and EGFR exon 20 mutations. [18F]FDG PET-CT scans were performed, and radiomic parameters, including the SUV max, max TBR, total MTV, and total TLG, were calculated and correlated with different genotypes and haplotypes of the aforementioned mutations. RESULTS The SUV max, TLG, and TBR were significantly greater in patients with the KRAS G13V and BRAF V600E mutations than in patients with the wild-type genotype. The SUVmax was also significantly greater in patients with EGFR exon 20 mutations. Haplotype analysis revealed that the SUVmax was significantly greater in patients with KRAS/BRAF/EGFR mutations than in other patients, with a specificity of 68.18% and sensitivity of 65.28%. CONCLUSION The results suggest that [18F] FDG PET-CT radiomic parameters, particularly the SUV max, have the potential to serve as noninvasive tools for predicting the KRAS/BRAF/EGFR mutation status in mCRC patients.
Collapse
Affiliation(s)
- Magdi A Ali
- Faculty of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates.
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt.
| | - Omar Shebl Zahra
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohmed I Morsi
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Mohamed M El Safwany
- Radiology and Medical Imaging Department, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Shaymaa Essam El Feky
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
8
|
Geng Y, Xia W, Zheng X, Chen L, Zhou Y, Feng J, Yuan Y, Zhang M, Lu J, Wei S, Hu W. Targeted delivery of FAK siRNA by engineered exosomes to reverse cetuximab resistance via activating paraptosis in colon cancer. Apoptosis 2024; 29:1959-1977. [PMID: 38960944 PMCID: PMC11550291 DOI: 10.1007/s10495-024-01986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cetuximab is extensively used in the treatment of metastatic colorectal cancer (mCRC). However, resistance poses a significant challenge to successful therapy. Recently, paraptosis, a non-classical programmed cell death, has garnered increased attention for its potential application value in antitumor treatments. We aimed to identify the essential pathways and signaling molecules involved in paraptosis inhibition and select them as therapeutic targets in cetuximab resistance. Additionally, engineered exosome technology is used as a drug delivery system with both targeted and effector properties. RESULTS By comparing the differential expression of paraptosis-related genes between drug-resistant colon cancer cells and sensitive cells, it was observed that the paraptosis level induced by cetuximab was significantly downregulated in drug-resistant cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the focal adhesion kinase (FAK) signaling pathway as a key pathway involved in the suppression of paraptosis. The biological function of FAK in cetuximab-resistant cells was investigated through cell morphology observation, CCK-8 assay, colony formation assay, RT-qPCR, Western Blot, and loss-of-function experiments. The results showed that the FAK signaling pathway was significantly upregulated in cetuximab-resistant colon cancer cells, and siRNA interference targeting FAK could notably inhibit cell proliferation while upregulating the paraptosis level. Based on this, engineered colon cancer cells targeted and FAK siRNA loaded exosomes (CT-Exo-siFAK1) were constructed. In vitro experiments, CT-Exo-siFAK1 could effectively activate paraptosis and inhibit the proliferation of drug-resistant colon cancer cells. In vivo experiments also confirmed that CT-Exo-siFAK1 significantly suppressed tumor growth and metastasis while upregulating the paraptosis level. CONCLUSION This study suggests that FAK signaling pathway-mediated inhibition of paraptosis levels is crucial in the sensitivity of cetuximab targeted therapy in colon cancer, and the use of engineered exosomes to deliver FAK siRNA may be an effective strategy to reverse cetuximab resistance.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xiao Zheng
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Lujun Chen
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Ye Yuan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mingyue Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Jianwen Lu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
9
|
Perron U, Grassi E, Chatzipli A, Viviani M, Karakoc E, Trastulla L, Brochier LM, Isella C, Zanella ER, Klett H, Molineris I, Schueler J, Esteller M, Medico E, Conte N, McDermott U, Trusolino L, Bertotti A, Iorio F. Integrative ensemble modelling of cetuximab sensitivity in colorectal cancer patient-derived xenografts. Nat Commun 2024; 15:9139. [PMID: 39528460 PMCID: PMC11555063 DOI: 10.1038/s41467-024-53163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Patient-derived xenografts (PDXs) are tumour fragments engrafted into mice for preclinical studies. PDXs offer clear advantages over simpler in vitro cancer models - such as cancer cell lines (CCLs) and organoids - in terms of structural complexity, heterogeneity, and stromal interactions. Here, we characterise 231 colorectal cancer PDXs at the genomic, transcriptomic, and epigenetic levels, along with their response to cetuximab, an EGFR inhibitor used clinically for metastatic colorectal cancer. After evaluating the PDXs' quality, stability, and molecular concordance with publicly available patient cohorts, we present results from training, interpreting, and validating the integrative ensemble classifier CeSta. This model takes in input the PDXs' multi-omic characterisation and predicts their sensitivity to cetuximab treatment, achieving an area under the receiver operating characteristics curve > 0.88. Our study demonstrates that large PDX collections can be leveraged to train accurate, interpretable drug sensitivity models that: (1) better capture patient-derived therapeutic biomarkers compared to models trained on CCL data, (2) can be robustly validated across independent PDX cohorts, and (3) could contribute to the development of future therapeutic biomarkers.
Collapse
Affiliation(s)
- Umberto Perron
- Human Technopole, Milano, Italy
- Omniscope España, Barcelona, Spain
| | - Elena Grassi
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Aikaterini Chatzipli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Viviani
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Emre Karakoc
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lucia Trastulla
- Human Technopole, Milano, Italy
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Lorenzo M Brochier
- Human Technopole, Milano, Italy
- Nerviano Medical Sciences, Milan, Nerviano, Italy
| | - Claudio Isella
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Hagen Klett
- Charles River Germany GmbH, Freiburg, Germany
| | - Ivan Molineris
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Enzo Medico
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Nathalie Conte
- European Molecular Biology Laboratory European Bioinformatics Institute, Cambridge, UK
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- AstraZeneca Oncology R&D, Cambridge, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Andrea Bertotti
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Francesco Iorio
- Human Technopole, Milano, Italy.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
10
|
Awasthi S, Kumar R, Pradhan D, Rawal N, Goel H, Sahu P, Sisodiya S, Rana R, Kumar S, Dash NR, Das P, Agrawal U, Rath GK, Kaur T, Dhaliwal RS, Hussain S, Saluja SS, Tanwar P. Genomic landscape of gallbladder cancer: insights from whole exome sequencing. Int J Surg 2024; 110:6883-6897. [PMID: 39166960 PMCID: PMC11573093 DOI: 10.1097/js9.0000000000002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) is a common gastrointestinal malignancy noted for its aggressive characteristics and poor prognosis, which is mostly caused by delayed detection. However, the scarcity of information regarding somatic mutations in Indian patients with GBC has hampered the development of efficient therapeutic options. In the present study, the authors attempted to bridge this gap by revealing the mutational profile of GBC. MATERIALS AND METHODS To evaluate the somatic mutation profile, whole exome sequencing (WES) was performed on 66 tumor and matched blood samples from individuals with GBC. Somatic variant calling was performed using GATK pipeline. Variants were annotated at pathogenic and oncogenic levels, using ANNOVAR, VEP tools and the OncoKB database. Mutational signature analysis, oncogenic pathway analysis and cancer driver genes identification were performed at the functional level by using the maftools package. RESULTS Our findings focused on the eight most altered genes with pathogenic and oncogenic mutations: TP53, SMAD4, ERBB3, KRAS, ARID1A, PIK3CA, RB1, and AXIN1. Genes with pathogenic single nucleotide variations (SNVs) were enriched in oncogenic signaling pathways, particularly RTK-RAS, WNT, and TP53 pathways. Furthermore, our research related certain mutational signatures, such as cosmic 1, cosmic 6, and cosmic 18, 29, to known characteristics including patient age and tobacco smoking, providing important insights into disease etiology. CONCLUSIONS Given the scarcity of exome-based sequencing studies focusing on the Indian population, this study represents a significant step forward in providing a framework for additional in-depth mutational analysis. Genes with substantial oncogenic and pathogenic mutations are promising candidates for developing targeted mutation panels, particularly for GBC detection.
Collapse
Affiliation(s)
| | - Rahul Kumar
- Laboratory Oncology Unit, Dr. BRA-IRCH, AIIMS
| | | | - Neetu Rawal
- Laboratory Oncology Unit, Dr. BRA-IRCH, AIIMS
| | - Harsh Goel
- Laboratory Oncology Unit, Dr. BRA-IRCH, AIIMS
| | - Parameswar Sahu
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research
| | - Sandeep Sisodiya
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention Research, Noida, India
| | - Rashmi Rana
- Department of Biotechnology and Research, GRIPMER
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. BRA-IRCH, AIIMS
| | | | | | - Usha Agrawal
- Ex Director, ICMR National Institute of Pathology
| | - GK Rath
- Ex Chief & Professor, Department of Radiotherapy, Dr. BRA-IRCH, AIIMS, New Delhi
| | - Tanvir Kaur
- Division of Non-Communicable Diseases, Indian Council of Medical Research
| | - RS Dhaliwal
- Division of Non-Communicable Diseases, Indian Council of Medical Research
| | - Showket Hussain
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention Research, Noida, India
| | - Sundeep Singh Saluja
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research
| | | |
Collapse
|
11
|
Sartore-Bianchi A, Marsoni S, Amatu A, Torri V, Bonoldi E, Bardelli A, Trusolino L, Siena S. How to Test HER2 for Predicting Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Metastatic Colorectal Cancer? Evidence From the Secondary Analysis of Biomarkers of CALGB/SWOG 80405. J Clin Oncol 2024; 42:3631-3632. [PMID: 39079079 DOI: 10.1200/jco.24.00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 10/18/2024] Open
Affiliation(s)
- Andrea Sartore-Bianchi
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Silvia Marsoni
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alessio Amatu
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Valter Torri
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Bonoldi
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Livio Trusolino
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Siena
- Andrea Sartore-Bianchi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Silvia Marsoni, MD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Alessio Amatu, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Valter Torri, MD, Department of Clinical Oncology, "Mario Negri" Institute for Pharmacological Research- IRCCS, Milan, Italy; Emanuela Bonoldi, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Alberto Bardelli, PhD, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy, Department of Oncology, Università degli Studi di Torino, Turin, Italy; Livio Trusolino, MD, Department of Oncology, Università degli Studi di Torino, Turin, Italy, Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy; Salvatore Siena, MD, Department of Hematology Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Battaglin F, Ou FS, Innocenti F, Lenz HJ. Reply to A. Sartore-Bianchi et al. J Clin Oncol 2024; 42:3632-3634. [PMID: 39079060 DOI: 10.1200/jco.24.01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 10/18/2024] Open
Affiliation(s)
- Francesca Battaglin
- Francesca Battaglin, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Fang-Shu Ou, PhD, Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN; Federico Innocenti, MD, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Heinz-Josef Lenz, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Fang-Shu Ou
- Francesca Battaglin, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Fang-Shu Ou, PhD, Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN; Federico Innocenti, MD, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Heinz-Josef Lenz, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Federico Innocenti
- Francesca Battaglin, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Fang-Shu Ou, PhD, Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN; Federico Innocenti, MD, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Heinz-Josef Lenz, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Heinz-Josef Lenz
- Francesca Battaglin, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Fang-Shu Ou, PhD, Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN; Federico Innocenti, MD, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Heinz-Josef Lenz, MD, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
13
|
Ai H, Tong Z, Deng Z, Shi Q, Tao S, Sun G, Liang J, Sun M, Wu X, Zheng Q, Liang L, Yin H, Li JB, Gao S, Tian C, Liu L, Pan M. Mechanism of nucleosomal H2A K13/15 monoubiquitination and adjacent dual monoubiquitination by RNF168. Nat Chem Biol 2024:10.1038/s41589-024-01750-x. [PMID: 39394267 DOI: 10.1038/s41589-024-01750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
The DNA damage repair regulatory protein RNF168, a monomeric RING-type E3 ligase, has a crucial role in regulating cell fate and DNA repair by specific and efficient ubiquitination of the adjacent K13 and K15 (K13/15) sites at the H2A N-terminal tail. However, understanding how RNF168 coordinates with its cognate E2 enzyme UbcH5c to site-specifically ubiquitinate H2A K13/15 has long been hampered by the lack of high-resolution structures of RNF168 and UbcH5c~Ub (ubiquitin) in complex with nucleosomes. Here we developed chemical strategies and determined the cryo-electron microscopy structures of the RNF168-UbcH5c~Ub-nucleosome complex captured in transient H2A K13/15 monoubiquitination and adjacent dual monoubiquitination reactions, providing a 'helix-anchoring' mode for monomeric E3 ligase RNF168 on nucleosome in contrast to the 'compass-binding' mode of dimeric E3 ligases. Our work not only provides structural snapshots of H2A K13/15 site-specific monoubiquitination and adjacent dual monoubiquitination but also offers a near-atomic-resolution structural framework for understanding pathogenic amino acid substitutions and physiological modifications of RNF168.
Collapse
Affiliation(s)
- Huasong Ai
- Institute of Translational Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shixian Tao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gaoge Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiawei Liang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Maoshen Sun
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lujun Liang
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Gao
- Department of Urology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changlin Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
15
|
Khattri A, Sheikh N, Agrawal N, Kaushik S, Kochanny S, Ginat D, Lingen MW, Blair E, Seiwert TY. Switching anti-EGFR antibody re-sensitizes head and neck cancer patient following acquired resistance to cetuximab. Cancer Gene Ther 2024; 31:1477-1485. [PMID: 39085630 DOI: 10.1038/s41417-024-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Cetuximab induces responses in about 13% of head and neck squamous cell carcinomas (HNSCC). We describe the molecular mechanism of acquired resistance to cetuximab, which could be overcome by switching to a different anti-EGFR antibody. Biopsies were collected at three different time points: before the start of cetuximab (PRE-cetux), at acquired resistance to cetuximab (AR-cetux), and at acquired resistance to duligotuzumab (AR-duligo). Biopsies were analyzed using tumor and normal whole-exome sequencing, RNASeq, and targeted panel sequencing with ultra-deep coverage to generate differential mutation and expression profiles. WES and targeted sequencing analysis identified an EGFR p.G465R extracellular domain mutation in AR-cetux biopsy. Furthermore, RNASeq confirmed the expression of this mutation in the tumor tissue. This mutation prevented the binding of cetuximab to EGFR and was not present in PRE-cetux and AR-duligo biopsies, suggesting a potential mechanism of acquired resistance to cetuximab. Molecular dynamic simulations confirmed that duligotuzumab effectively binds EGFR with a p.G465R mutation. Interestingly, the p.G465R mutation improved the stability of the duligotuzumab-EGFR complex as compared to the wild-type EGFR. This is the first report of an EGFR ECD mutation associated with acquired resistance to cetuximab, posing a need for further validation. We suggest appropriate serial mutational profiling to identify ECD mutations should be considered for select patients with initial cetuximab benefit.
Collapse
Affiliation(s)
- Arun Khattri
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA.
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India.
| | - Nizamuddin Sheikh
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikhil Agrawal
- College of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Sandeep Kaushik
- Formerly at 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimaraes, Portugal
| | - Sara Kochanny
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA
| | - Daniel Ginat
- Department of Radiology, The University of Chicago Medicine, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, USA
| | - Elizabeth Blair
- Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA
| | - Tanguy Y Seiwert
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA.
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
16
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
17
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
18
|
Richiardone E, Al Roumi R, Lardinois F, Giolito MV, Ambroise J, Boidot R, Drotleff B, Ghesquière B, Bellahcène A, Bardelli A, Arena S, Corbet C. MCT1-dependent lactate recycling is a metabolic vulnerability in colorectal cancer cells upon acquired resistance to anti-EGFR targeted therapy. Cancer Lett 2024; 598:217091. [PMID: 38964730 DOI: 10.1016/j.canlet.2024.217091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Despite the implementation of personalized medicine, patients with metastatic CRC (mCRC) still have a dismal overall survival due to the frequent occurrence of acquired resistance mechanisms thereby leading to clinical relapse. Understanding molecular mechanisms that support acquired resistance to anti-EGFR targeted therapy in mCRC is therefore clinically relevant and key to improving patient outcomes. Here, we observe distinct metabolic changes between cetuximab-resistant CRC cell populations, with in particular an increased glycolytic activity in KRAS-mutant cetuximab-resistant CRC cells (LIM1215 and OXCO2) but not in KRAS-amplified resistant DiFi cells. We show that cetuximab-resistant LIM1215 and OXCO2 cells have the capacity to recycle glycolysis-derived lactate to sustain their growth capacity. This is associated with an upregulation of the lactate importer MCT1 at both transcript and protein levels. Pharmacological inhibition of MCT1, with AR-C155858, reduces the uptake and oxidation of lactate and impairs growth capacity in cetuximab-resistant LIM1215 cells both in vitro and in vivo. This study identifies MCT1-dependent lactate utilization as a clinically actionable, metabolic vulnerability to overcome KRAS-mutant-mediated acquired resistance to anti-EGFR therapy in CRC.
Collapse
Affiliation(s)
- Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Rim Al Roumi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Fanny Lardinois
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Maria Virginia Giolito
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center-UNICANCER, 21079, Dijon, France
| | | | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium.
| |
Collapse
|
19
|
Dang Q, Zuo L, Hu X, Zhou Z, Chen S, Liu S, Ba Y, Zuo A, Xu H, Weng S, Zhang Y, Luo P, Cheng Q, Liu Z, Han X. Molecular subtypes of colorectal cancer in the era of precision oncotherapy: Current inspirations and future challenges. Cancer Med 2024; 13:e70041. [PMID: 39054866 PMCID: PMC11272957 DOI: 10.1002/cam4.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most hackneyed malignancies. Even patients with identical clinical symptoms and the same TNM stage still exhibit radically different clinical outcomes after receiving equivalent treatment regimens, indicating extensive heterogeneity of CRC. Myriad molecular subtypes of CRC have been exploited for decades, including the most compelling consensus molecular subtype (CMS) classification that has been broadly applied for patient stratification and biomarker-drug combination formulation. Encountering barriers to clinical translation, however, CMS classification fails to fully reflect inter- or intra-tumor heterogeneity of CRC. As a consequence, addressing heterogeneity and precisely managing CRC patients with unique characteristics remain arduous tasks for clinicians. REVIEW In this review, we systematically summarize molecular subtypes of CRC and further elaborate on their clinical applications, limitations, and future orientations. CONCLUSION In recent years, exploration of subtypes through cell lines, animal models, patient-derived xenografts (PDXs), organoids, and clinical trials contributes to refining biological insights and unraveling subtype-specific therapies in CRC. Therapeutic interventions including nanotechnology, clustered regulatory interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9), gut microbiome, and liquid biopsy are powerful tools with the possibility to shift the immunologic landscape and outlook for CRC precise medicine.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lulu Zuo
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xinru Hu
- Department of Cardiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaokai Zhou
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shuang Chen
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
20
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
21
|
Battaglin F, Ou FS, Qu X, Hochster HS, Niedzwiecki D, Goldberg RM, Mayer RJ, Ashouri K, Zemla TJ, Blanke CD, Venook AP, Kabbarah O, Lenz HJ, Innocenti F. HER2 Gene Expression Levels Are Predictive and Prognostic in Patients With Metastatic Colorectal Cancer Enrolled in CALGB/SWOG 80405. J Clin Oncol 2024; 42:1890-1902. [PMID: 38457761 PMCID: PMC11240881 DOI: 10.1200/jco.23.01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE The phase III Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial found no difference in overall survival (OS) in patients with metastatic colorectal cancer receiving first-line chemotherapy in combination with either bevacizumab or cetuximab. We investigated the potential prognostic and predictive value of HER2 amplification and gene expression using next-generation sequencing (NGS) and NanoString data. PATIENTS AND METHODS Primary tumor DNA from 559 patients was profiled for HER2 amplification by NGS (FoundationOne CDx). Tumor tissue from 925 patients was tested for NanoString gene expression using an 800-gene panel. OS and progression-free survival (PFS) were the time-to-event end points. RESULTS High HER2 expression (dichotomized at median) was associated with longer PFS (11.6 v 10 months, P = .012) and OS (32 v 25.3 months, P = .033), independent of treatment. An OS benefit for cetuximab versus bevacizumab was observed in the high HER2 expression group (P = .02), whereas a worse PFS for cetuximab was seen in the low-expression group (P = .019). When modeled as a continuous variable, increased HER2 expression was associated with longer OS (hazard ratio [HR], 0.83 [95% CI, 0.75 to 0.93]; adjusted P = .0007) and PFS (HR, 0.82 [95% CI, 0.74 to 0.91]; adjusted P = .0002), reaching a plateau effect after the median. In patients with HER2 expression lower than median, treatment with cetuximab was associated with worse PFS (HR, 1.38 [95% CI, 1.12 to 1.71]; adjusted P = .0027) and OS (HR, 1.28 [95% CI, 1.02 to 1.59]; adjusted P = .03) compared with that with bevacizumab. A significant interaction between HER2 expression and the treatment arm was observed for OS (Pintx = .017), PFS (Pintx = .048), and objective response rate (Pintx = .001). CONCLUSION HER2 gene expression was prognostic and predictive in CALGB/SWOG 80405. HER2 tumor expression may inform treatment selection for patients with low HER2 favoring bevacizumab- versus cetuximab-based therapies.
Collapse
Affiliation(s)
- Francesca Battaglin
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | - Karam Ashouri
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Tyler J. Zemla
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | - Alan P. Venook
- University of California, San Francisco, San Francisco, CA
| | | | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | | |
Collapse
|
22
|
Tang L, Zhu Y, Du Y, Long X, Long Y, Tang Y, Liu J. Clinicopathologic features and genomic profiling of female axillary lymph node metastases from adenocarcinoma or poorly differentiated carcinoma of unknown primary. J Cancer Res Clin Oncol 2024; 150:256. [PMID: 38750402 PMCID: PMC11096249 DOI: 10.1007/s00432-024-05783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Axillary lymph node metastases from adenocarcinoma or poorly differentiated carcinoma of unknown primary (CUPAx) is a rare disease in women. This retrospective study intended to examine the clinicopathological features of CUPAx and compared CUPAx genetically with axillary lymph node metastases from breast cancer (BCAx), investigating differences in their biological behavior. METHODS We conducted the clinical and prognostic analysis of 58 CUPAx patients in West China Hospital spanning from 2009 to 2021. Gemonic profiling of 12 CUPAx patients and 16 BCAx patients was conducted by the FoundationOne CDx (F1CDx) platform. Moreover, we also compared the gene mutation spectrum and relevant pathways between the two groups and both TCGA and COSMIC databases. RESULTS The majority of the 58 CUPAx patients were HR-/HER2- subtype. Most patients received mastectomy combined radiotherapy (50 Gy/25f). CUPAx patients who received mastectomy instead of breast-conserving surgery had a more favorable overall prognosis. Radiotherapy in chest wall/breast and supraclavicular/infraclavicular fossa was the independent prognostic factor (HR = 0.05, 95%CI = 0.00-0.93, P = 0.04). In 28 sequencing samples (CUPAx, n = 12, BCAx, n = 16) and 401 TCGA-BRCA patients, IRS2 only mutated in CUPAx (33.33%) but amplified in BCAx (11.11%) and TCGA-BRCA (1.5%). Pathway analysis revealed that BCAx had more NOTCH pathway mutations than CUPAx. Enrichment analysis showed that CUPAx enriched more in mammary development and PML bodies than BCAx, but less in the positive regulation of kinase activity. CONCLUSIONS More active treatment methods, like chemotherapy, mastectomy and postoperative radiotherapy, could improve the prognosis of CUPAx. The differential mutation genes of CUPAx and BCAx might be associated with their respective biological behaviors like invasiveness and prognosis.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
- Biotherapy Clinical Research Center of Sichuan Province, Chengdu, 610041, China
| | - Yueting Zhu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
- Biotherapy Clinical Research Center of Sichuan Province, Chengdu, 610041, China
| | - Yang Du
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
- Biotherapy Clinical Research Center of Sichuan Province, Chengdu, 610041, China
| | - Xiangyu Long
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
- Biotherapy Clinical Research Center of Sichuan Province, Chengdu, 610041, China
| | - Yixiu Long
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Yuan Tang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
- Biotherapy Clinical Research Center of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
23
|
Geng Y, Zheng X, Zhang D, Wei S, Feng J, Wang W, Zhang L, Wu C, Hu W. CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1α-mediated glycometabolism alteration. Biol Direct 2024; 19:36. [PMID: 38715141 PMCID: PMC11075259 DOI: 10.1186/s13062-024-00478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Luo Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
24
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard M, Price J, Olson JM, Nairn NW. CYpHER: Catalytic extracellular targeted protein degradation with high potency and durable effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581471. [PMID: 38712232 PMCID: PMC11071310 DOI: 10.1101/2024.02.21.581471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R. Crook
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gregory P. Sevilla
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Emily J. Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | | | | | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - Natalie W. Nairn
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
| |
Collapse
|
25
|
Zhou YW, Zhao X, Ni L, Cao P, Leng WB, Zhu Q, Gou HF, Zhang J, Li XF, Qiu M. Dynamic ctDNA-based analysis of drug-resistant gene alterations at RAS/BRAF wild-type metastatic colorectal cancer patients after cetuximab plus chemotherapy as the first-line treatment. Int Immunopharmacol 2024; 131:111887. [PMID: 38503018 DOI: 10.1016/j.intimp.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The purpose of this study was to explore the dynamic changes of genomic mutations and their correlations with the efficacy in metastatic colorectal cancer (mCRC) patients treated with cetuximab plus mFOLFOX as the first-line treatment. METHODS We included mCRC patients from January 2018 to October 2020 as a studied cohort which were treated with cetuximab plus mFOLFOX as first line therapy. Blood samples were collected for circulating tumor DNA (ctDNA) test at three timepoints: before the first-line therapy(baseline), at the time of first-line progression and at the time of second-line progression. Progression-free survival was considered as the primary endpoint while objective response rate and overall survival were determined as the secondary endpoints. RESULTS Totally 39 patients received first-line treatment, of which 25 patients entered the second-line treatment, while 10 patients entered the third-line treatment. The median follow-up time was 16.4 months (95 %CI, 14.8-19.3). Along the treatment from first-line progress disease (PD) to second-line PD, proportions of TP53 (12/18, 67 %), APC (10/18, 56 %), FBXW7 (3/18, 17 %), and AMER1 (2/18, 11 %) were gradually increased according to results of single nucleotide variation (SNV). CONCLUSIONS Resistant gene mutations caused by anti-EGFR drugs in RAS/BRAF wild-type mCRC patients can be observed by dynamic ctDNA analysis. TP53 and AMER1 mutations, tumor mutational burden (TMB) levels, and TP53/AMER1 co-mutation may predict the efficacy of the first-line cetuximab-contained treatment. Situations of genetic mutations were differentiated from first-line PD to second-line PD, which indicated that mutation detection may contribute to predict prognosis of mCRC patients.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhao
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ni
- Department of Oncology, Mianyang Central Hospital, Sichuan Province, China
| | - Peng Cao
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Bing Leng
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Hong-Feng Gou
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite C, 1310-1318, Xishan District, Wuxi City, Jiangsu 214104, China
| | - Xiao-Fen Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Meng Qiu
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
27
|
Li Y, Wang B, Yang W, Ma F, Zou J, Li K, Tan S, Feng J, Wang Y, Qin Z, Chen Z, Ding C. Longitudinal plasma proteome profiling reveals the diversity of biomarkers for diagnosis and cetuximab therapy response of colorectal cancer. Nat Commun 2024; 15:980. [PMID: 38302471 PMCID: PMC10834432 DOI: 10.1038/s41467-024-44911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Cetuximab therapy is the major treatment for colorectal cancer (CRC), but drug resistance limits its effectiveness. Here, we perform longitudinal and deep proteomic profiling of 641 plasma samples originated from 147 CRC patients (CRCs) undergoing cetuximab therapy with multi-course treatment, and 90 healthy controls (HCs). COL12A1, THBS2, S100A8, and S100A9 are screened as potential proteins to distinguish CRCs from HCs both in plasma and tissue validation cohorts. We identify the potential biomarkers (RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2) for the initial response prediction. In a longitudinal setting, we identify two clusters with distinct fluctuations and construct the model with high accuracy to predict the longitudinal response, further validated in the independent cohort. This study reveals the heterogeneity of different biomarkers for tumor diagnosis, the initial and longitudinal response prediction respectively in the first course and multi-course cetuximab treatment, may ultimately be useful in monitoring and intervention strategies for CRC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianling Zou
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Chen
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Ueda S, Tanaka T, Hirosuna K, Miyamoto S, Murakami H, Nishie R, Tsuchihashi H, Toji A, Morita N, Hashida S, Daimon A, Terada S, Maruoka H, Kogata Y, Taniguchi K, Komura K, Ohmichi M. Consistency between Primary Uterine Corpus Malignancies and Their Corresponding Patient-Derived Xenograft Models. Int J Mol Sci 2024; 25:1486. [PMID: 38338763 PMCID: PMC10855170 DOI: 10.3390/ijms25031486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Patient-derived xenograft (PDX) models retain the characteristics of tumors and are useful tools for personalized therapy and translational research. In this study, we aimed to establish PDX models for uterine corpus malignancies (UC-PDX) and analyze their similarities. Tissue fragments obtained from 92 patients with uterine corpus malignancies were transplanted subcutaneously into immunodeficient mice. Histological and immunohistochemical analyses were performed to compare tumors of patients with PDX tumors. DNA and RNA sequencing were performed to validate the genetic profile. Furthermore, the RNA in extracellular vesicles (EVs) extracted from primary and PDX tumors was analyzed. Among the 92 cases, 52 UC-PDX models were established, with a success rate of 56.5%. The success rate depended on tumor histology and staging. The pathological and immunohistochemical features of primary and PDX tumors were similar. DNA sequencing revealed similarities in gene mutations between the primary and PDX tumors. RNA sequencing showed similarities in gene expressions between primary and PDX tumors. Furthermore, the RNA profiles of the EVs obtained from primary and PDX tumors were similar. As UC-PDX retained the pathological and immunohistochemical features and gene profiles of primary tumors, they may provide a platform for developing personalized medicine and translational research.
Collapse
Affiliation(s)
- Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kensuke Hirosuna
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatachou, Kita-ku, Okayama 700-8558, Okayama, Japan;
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Hikaru Murakami
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Hiromitsu Tsuchihashi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Akihiko Toji
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Atsushi Daimon
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Hiroshi Maruoka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (S.U.); (S.M.); (H.M.); (R.N.); (H.T.); (A.T.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (Y.K.); (M.O.)
| |
Collapse
|
29
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
30
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
31
|
Peter S, Aderibigbe BA. Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents. Curr Top Med Chem 2024; 24:644-665. [PMID: 38357952 DOI: 10.2174/0115680266288319240206052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes. OBJECTIVES Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents. METHODS Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity. RESULTS The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds. CONCLUSION The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| |
Collapse
|
32
|
Li Y, Wang B, Ma F, Jiang D, Wang Y, Li K, Tan S, Feng J, Wang Y, Qin Z, Xu G, Tian S, Zhang X, Xu C, Wu J, Xu J, Hou Y, Ding C. Proteomic characterization of the colorectal cancer response to chemoradiation and targeted therapies reveals potential therapeutic strategies. Cell Rep Med 2023; 4:101311. [PMID: 38086380 PMCID: PMC10772406 DOI: 10.1016/j.xcrm.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2023]
Abstract
Chemoradiation and targeted therapies are the major treatments for colorectal cancer (CRC); however, molecular properties associated with therapy resistance are incompletely characterized. Here, we profile the proteome of 254 tumor tissues from patients with CRC undergoing chemotherapy, chemoradiation, or chemotherapy combined with targeted therapy. Proteome-based classification reveals four subtypes featured with distinct biological and therapeutic characteristics. The integrative analysis of CRC cell lines and clinical samples indicates that immune regulation is significantly associated with drug sensitivity. HSF1 can increase DNA damage repair and cell cycle, thus inducing resistance to radiation, while high expression of HDAC6 is negatively associated with response of cetuximab. Furthermore, we develop prognostic models with high accuracy to predict the therapeutic response, further validated by parallel reaction monitoring (PRM) assay in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemoradiation and targeted therapy in CRC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Bing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Ganfei Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
33
|
Kasi PM, Afable MG, Herting C, Lukanowski M, Jin Z. Anti-EGFR Antibodies in the Management of Advanced Colorectal Cancer. Oncologist 2023; 28:1034-1048. [PMID: 37774394 PMCID: PMC11025386 DOI: 10.1093/oncolo/oyad262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, and incidence is rising in younger individuals. Anti-EGFR antibodies, including cetuximab and panitumumab, have been incorporated into standard-of-care practice for patients with advanced disease. Herein, we review the molecular characteristics of these agents and the trials that lead to their approvals. Further, we discuss clinical implications of data regarding biomarkers that dictate treatment selection, different dosing strategies, and side effect management. Finally, we look towards the future and describe contexts in which these agents are currently being investigated clinically with a focus on combinations with MAPK-targeted therapies and immunotherapy. Overall, this review provides historical context, current clinical usage, and future directions for anti-EGFR antibodies in advanced colorectal cancer.
Collapse
Affiliation(s)
- Pashtoon Murtaza Kasi
- Department of Oncology/Hematology, Division of Internal Medicine, Weill Cornell Medicine, Meyer Cancer Center, Englander Institute of Precision Medicine, New York, NY, USA
| | | | - Cameron Herting
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Baranov E, Nowak JA. Pathologic Evaluation of Therapeutic Biomarkers in Colorectal Adenocarcinoma. Surg Pathol Clin 2023; 16:635-650. [PMID: 37863556 DOI: 10.1016/j.path.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Molecular testing is an essential component of the pathologic evaluation of colorectal carcinoma providing diagnostic, prognostic, and predictive therapeutic information. Mismatch repair status evaluation is required for all tumors. Advanced and metastatic tumors also require determination of tumor mutational burden, KRAS, NRAS, and BRAF mutation status, ERBB2 amplification status, and NTRK and RET gene rearrangement status to guide therapy. Multiple assays, including immunohistochemistry, microsatellite instability testing, MLH1 promoter methylation, and next-generation sequencing, are typically needed. Pathologists must be aware of these requirements to optimally triage tissue. Advances in colorectal cancer molecular diagnostics will continue to drive refinements in colorectal cancer personalized therapy.
Collapse
Affiliation(s)
- Esther Baranov
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Reissig TM, Ladigan‐Badura S, Steinberg A, Maghnouj A, Li T, Verdoodt B, Liffers ST, Pohl M, Wolters H, Teschendorf C, Viebahn R, Admard J, Casadei N, Tannapfel A, Schmiegel W, Hahn SA, Vangala DB. Lasting response by vertical inhibition with cetuximab and trametinib in KRAS-mutated colorectal cancer patient-derived xenografts. Mol Oncol 2023; 17:2396-2414. [PMID: 37604687 PMCID: PMC10620118 DOI: 10.1002/1878-0261.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Although approximately half of all metastatic colorectal cancers (mCRCs) harbour mutations in KRAS or NRAS, hardly any progress has been made regarding targeted treatment for this group over the last few years. Here, we investigated the efficacy of vertical inhibition of the RAS-pathway by targeting epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase kinase (MEK) in patient-derived xenograft (PDX) tumours with primary KRAS mutation. In total, 19 different PDX models comprising 127 tumours were tested. Responses were evaluated according to baseline tumour volume changes and graded as partial response (PR; ≤ - 30%), stable disease (SD; between -30% and +20%) or progressive disease (PD; ≥ + 20%). Vertical inhibition with trametinib and cetuximab induced SD or PR in 74% of analysed models, compared to 24% by monotherapy with trametinib. In cases of PR by vertical inhibition (47%), responses were lasting (as long as day 137), with a low incidence of secondary resistance (SR). Molecular analyses revealed that primary and SR was driven by transcriptional reprogramming activating the RAS pathway in a substantial fraction of tumours. Together, these preclinical data strongly support the translation of this combination therapy into clinical trials for CRC patients.
Collapse
Affiliation(s)
- Timm M. Reissig
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital Essen, University Duisburg‐EssenGermany
| | - Swetlana Ladigan‐Badura
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Anja Steinberg
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Abdelouahid Maghnouj
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Ting Li
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | | | - Sven T. Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital Essen, University Duisburg‐EssenGermany
- Institute of PathologyRuhr University BochumGermany
| | - Michael Pohl
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Heiner Wolters
- Department of Visceral and General SurgerySt. Josef HospitalDortmundGermany
| | | | - Richard Viebahn
- Department of Visceral and General SurgeryUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Jakob Admard
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenGermany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenGermany
| | | | - Wolff Schmiegel
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Stephan A. Hahn
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Deepak B. Vangala
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| |
Collapse
|
36
|
Tsai HL, Lin CC, Sung YC, Chen SH, Chen LT, Jiang JK, Wang JY. The emergence of RAS mutations in patients with RAS wild-type mCRC receiving cetuximab as first-line treatment: a noninterventional, uncontrolled multicenter study. Br J Cancer 2023; 129:947-955. [PMID: 37488448 PMCID: PMC10491612 DOI: 10.1038/s41416-023-02366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
ABSRTACT BACKGROUND: Patients treated with anti-epidermal growth factor receptor (anti-EGFR) will ultimately develop acquired resistance promoted by clonal selection, mainly the emergence of mutations in the MAPK pathway (mostly RAS mutations). Baseline assessment of RAS mutations in the blood of patients correlates well with RAS tumour tissue testing and is currently an alternative option in routine clinical practice to guide first-line therapy. The aim of this study was the prevalence of acquired genomic alterations detected in the auxiliary tool of ctDNA testing and investigated the role of RAS ctDNA status for detecting tumour response and predicting benefit to anti-EGFR therapy. METHODS Only patients with concordant wild-type formalin-fixed, paraffin-embedded (FFPE) tumour tissue and baseline ctDNA RAS wild-type were included. RAS mutations in plasma were evaluated using MassARRAY platform. Blood samples were collected at baseline, every 3 months during first-line treatment, and at disease progression. The primary endpoint was the detection rate of RAS mutations during cetuximab treatment. The correlation between response and survival outcomes and the emergence of circulating RAS mutations was also analysed. RESULTS The detection rate of RAS mutations during treatment was 9.3% (10/108). RAS mutations detection occurred a median of 3 months prior to radiologic documentation. The subgroup of patients with RAS mutations exhibited significantly inferior progression-free survival and overall survival (P = 0.002 and 0.027, respectively) but the baseline characteristics, response rates, disease control rates, and metastatectomy were not significant (all P > 0.05). CONCLUSIONS We demonstrated that RAS ctDNA status might be a valuable biomarker for detecting early tumour response and predicting benefit to anti-EGFR therapy. CLINICAL TRIAL REGISTRATION NCT03401957 (January 17, 2018).
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Chung Sung
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Division of Hematology/Oncology, Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Shang-Hung Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Kai Jiang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan.
| |
Collapse
|
37
|
Chang SH, Ice RJ, Chen M, Sidorov M, Woo RWL, Rodriguez-Brotons A, Jian D, Kim HK, Kim A, Stone DE, Nazarian A, Oh A, Tranah GJ, Nosrati M, de Semir D, Dar AA, Desprez PY, Kashani-Sabet M, Soroceanu L, McAllister SD. Pan-Cancer Pharmacogenomic Analysis of Patient-Derived Tumor Cells Using Clinically Relevant Drug Exposures. Mol Cancer Ther 2023; 22:1100-1111. [PMID: 37440705 DOI: 10.1158/1535-7163.mct-22-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
As a result of tumor heterogeneity and solid cancers harboring multiple molecular defects, precision medicine platforms in oncology are most effective when both genetic and pharmacologic determinants of a tumor are evaluated. Expandable patient-derived xenograft (PDX) mouse tumor and corresponding PDX culture (PDXC) models recapitulate many of the biological and genetic characteristics of the original patient tumor, allowing for a comprehensive pharmacogenomic analysis. Here, the somatic mutations of 23 matched patient tumor and PDX samples encompassing four cancers were first evaluated using next-generation sequencing (NGS). 19 antitumor agents were evaluated across 78 patient-derived tumor cultures using clinically relevant drug exposures. A binarization threshold sensitivity classification determined in culture (PDXC) was used to identify tumors that best respond to drug in vivo (PDX). Using this sensitivity classification, logic models of DNA mutations were developed for 19 antitumor agents to predict drug response. We determined that the concordance of somatic mutations across patient and corresponding PDX samples increased as variant allele frequency increased. Notable individual PDXC responses to specific drugs, as well as lineage-specific drug responses were identified. Robust responses identified in PDXC were recapitulated in vivo in PDX-bearing mice and logic modeling determined somatic gene mutation(s) defining response to specific antitumor agents. In conclusion, combining NGS of primary patient tumors, high-throughput drug screen using clinically relevant doses, and logic modeling, can provide a platform for understanding response to therapeutic drugs targeting cancer.
Collapse
Affiliation(s)
- Stephen H Chang
- University of California at San Francisco, School of Pharmacy, Department of Clinical Pharmacy, San Francisco, California
| | - Ryan J Ice
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Michelle Chen
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Maxim Sidorov
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Rinette W L Woo
- California Pacific Medical Center Research Institute, San Francisco, California
| | | | - Damon Jian
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Han Kyul Kim
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Angela Kim
- California Pacific Medical Center Research Institute, San Francisco, California
| | - David E Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Ari Nazarian
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Alyssia Oh
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Mehdi Nosrati
- California Pacific Medical Center Research Institute, San Francisco, California
| | - David de Semir
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Pierre-Yves Desprez
- California Pacific Medical Center Research Institute, San Francisco, California
| | | | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Sean D McAllister
- California Pacific Medical Center Research Institute, San Francisco, California
| |
Collapse
|
38
|
Beekhof R, Bertotti A, Böttger F, Vurchio V, Cottino F, Zanella ER, Migliardi G, Viviani M, Grassi E, Lupo B, Henneman AA, Knol JC, Pham TV, de Goeij-de Haas R, Piersma SR, Labots M, Verheul HMW, Trusolino L, Jimenez CR. Phosphoproteomics of patient-derived xenografts identifies targets and markers associated with sensitivity and resistance to EGFR blockade in colorectal cancer. Sci Transl Med 2023; 15:eabm3687. [PMID: 37585503 DOI: 10.1126/scitranslmed.abm3687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome harbored distinctive response signatures. We found that increased pathway activity related to mitogen-activated protein kinase (MAPK) inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase activities in single samples confirmed the driver activity of ERBB2, EGFR, and MET in cetuximab-resistant tumors. This analysis also revealed high kinase activity of several members of the Src and ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-resistant tumors.
Collapse
Affiliation(s)
- Robin Beekhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Franziska Böttger
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Oncode Institute, 1066 CX Amsterdam, Netherlands
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Francesca Cottino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Giorgia Migliardi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
| | - Alex A Henneman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Mariette Labots
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Henk M W Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, 10060 Torino, Italy
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, OncoProteomics Laboratory, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
39
|
Guo X, Li H, Meng X, Zhao Z, Zhang R, Wang L, Li J. CD8 + T-cell number and function are altered by Shkbp1 knockout mediated suppression of tumor growth in mice. Mol Immunol 2023; 160:32-43. [PMID: 37343421 DOI: 10.1016/j.molimm.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/12/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
CD8 + effector cells are highly skilled in immune surveillance and contribute to adaptive immunity against cancer cells. An increasing number of molecular factors affecting T-cell differentiation may alter T-cell function by increasing or decreasing the capacity of the immune system to kill cancer cells. Here, Sh3kbp1 binding protein 1 (Shkbp1), known as CIN85 binding protein or SETA binding protein, was found to be expressed in immune organs and immune cells. Shkbp1 knockout mice presented abnormal red and white pulp structures in spleen. Shkbp1 knockout increased CD8 + T cell number in spleen and enhanced the function of isolated CD8 + T cells from Shkbp1 knockout mice. The subcutaneous melanoma model in Shkbp1 knockout mice showed that tumor growth was inhibited, and the infiltration of CD8 + T cells in tumor tissue was increased. Furthermore, adenoviral therapy targeting Shkbp1 indicated that knockout of Shkbp1 increased CD8 + T cells and inhibited tumor growth. This study provides new insights into the role of Shkbp1 in CD8 differentiation and functions, suggesting that Shkbp1 may be a new, potential target in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaolan Guo
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haobin Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiuqiong Meng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - ZhiBin Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510006, China
| | - Rongxin Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Chowdhury S, Gupta R, Millstein J, Lin K, Haridas V, Zeineddine MA, Parseghian C, Lenz HJ, Kopetz S, Shen JP. Transcriptional Profiling and Consensus Molecular Subtype Assignment to Understand Response and Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Colorectal Cancer. JCO Precis Oncol 2023; 7:e2200422. [PMID: 37487150 PMCID: PMC10581628 DOI: 10.1200/po.22.00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Activating mutations in KRAS, NRAS, and BRAF are known to cause resistance to anti-epidermal growth factor receptor (EGFR) therapy; however, only approximately 40% of patients with colorectal cancer (CRC) with RASWT tumors respond to anti-EGFR treatment. We sought to discover novel biomarkers to predict response to anti-EGFR antibody treatment in CRC and to understand mechanisms of resistance to anti-EGFR therapy. MATERIALS AND METHODS Transcriptomic profiles from three clinical and two preclinical cohorts treated with cetuximab were used to assign consensus molecular subtypes (CMS) to each sample and correlated with outcomes. RESULTS Restricting to RASWT patients, we observed that CMS2 tumors (canonical subtype) had significantly higher response rates relative to other CMS when treated with cetuximab combination with doublet chemotherapy (Okita et al cohort: 92% disease control rate (DCR) for CMS2, chi-square P = .04; CALGB/SWOG 80405 cohort: 90% objective response rate (ORR) for CMS2, chi-square P < .001) and with single-agent cetuximab (68%, chi-square P = .01). CMS2 tumors showed best response among right-sided (ORR = 80%) and left-sided (ORR = 92%) tumors in the CALGB/SWOG 80405 cohort. CMS2 cells lines were most likely to be sensitive to cetuximab (60%) and CMS2 patient-derived xenograft had the highest DCR (84%). We found Myc, E2F, and mammalian target of rapamycin pathways were consistently upregulated in resistant samples (enrichment score >1, false discovery rate <0.25). Inhibitors of these pathways in resistant cell lines exhibited additive effects with cetuximab. CONCLUSION These data suggest that CRC transcriptional profiles, when used to assign CMS, provide additional ability to predict response to anti-EGFR therapy relative to using tumor sidedness alone. Notably both right-sided and left-sided CMS2 tumors had excellent response, suggesting that anti-EGFR therapy be included as a treatment option for right-sided CMS2 tumors.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ria Gupta
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Valsala Haridas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mohammad A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
41
|
Yoshino T, Di Bartolomeo M, Raghav K, Masuishi T, Loupakis F, Kawakami H, Yamaguchi K, Nishina T, Wainberg Z, Elez E, Rodriguez J, Fakih M, Ciardiello F, Saxena K, Kobayashi K, Bako E, Okuda Y, Meinhardt G, Grothey A, Siena S. Final results of DESTINY-CRC01 investigating trastuzumab deruxtecan in patients with HER2-expressing metastatic colorectal cancer. Nat Commun 2023; 14:3332. [PMID: 37286557 PMCID: PMC10247780 DOI: 10.1038/s41467-023-38032-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/12/2023] [Indexed: 06/09/2023] Open
Abstract
DESTINY-CRC01 (NCT03384940) was a multicenter, open-label, phase 2 trial assessing the efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients with HER2-expressing metastatic colorectal cancer (mCRC) that progressed after ≥2 prior regimens; results of the primary analysis are published. Patients received T-DXd 6.4 mg/kg every 3 weeks and were assigned to either: cohort A (HER2-positive, immunohistochemistry [IHC] 3+ or IHC 2+/in situ hybridization [ISH]+), cohort B (IHC 2+/ISH-), or cohort C (IHC 1+). Primary endpoint was objective response rate (ORR) by independent central review in cohort A. Secondary endpoints included ORR (cohorts B and C), duration of response, disease control rate, progression-free survival, overall survival, pharmacokinetics, and safety of T-DXd. 86 patients were enrolled (53 in cohort A, 15 in cohort B, and 18 in cohort C). Results of the primary analysis are published, reporting an ORR of 45.3% in cohort A. Here, we report the final results. No responses occurred in cohorts B or C. Median progression-free survival, overall survival, and duration of response were 6.9, 15.5, and 7.0 months, respectively. Overall serum exposure (cycle 1) of T-DXd, total anti-HER2 antibody, and DXd were similar regardless of HER2 status. Most common grade ≥3 treatment-emergent adverse events were decreased neutrophil count and anemia. Adjudicated drug-related interstitial lung disease/pneumonitis occurred in 8 patients (9.3%). These findings support the continued exploration of T-DXd in HER2-positive mCRC.
Collapse
Affiliation(s)
| | | | - Kanwal Raghav
- The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | | | | | | - Tomohiro Nishina
- National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | | | - Elena Elez
- Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Marwan Fakih
- City of Hope National Medical Center, Philadelphia, USA
| | | | | | | | | | | | | | | | - Salvatore Siena
- Università degli Studi di Milano, Milan, Italy.
- Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| |
Collapse
|
42
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
43
|
Martini G, Belli V, Napolitano S, Ciaramella V, Ciardiello D, Belli A, Izzo F, Avallone A, Selvaggi F, Menegon Tasselli F, Santaniello W, Franco R, Puig I, Ramirez L, Chicote I, Mancuso F, Caratu G, Serres X, Fasani R, Jimenez J, Ros J, Baraibar I, Mulet N, Della Corte CM, Troiani T, Vivancos A, Dienstmann R, Elez E, Palmer HG, Tabernero J, Martinelli E, Ciardiello F, Argilés G. Establishment of patient-derived tumor organoids to functionally inform treatment decisions in metastatic colorectal cancer. ESMO Open 2023; 8:101198. [PMID: 37119788 DOI: 10.1016/j.esmoop.2023.101198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) patients tend to have modest benefits from molecularly driven therapeutics. Patient-derived tumor organoids (PDTOs) represent an unmatched model to elucidate tumor resistance to therapy, due to their high capacity to resemble tumor characteristics. MATERIALS AND METHODS We used viable tumor tissue from two cohorts of patients with mCRC, naïve or refractory to treatment, respectively, for generating PDTOs. The derived models were subjected to a 6-day drug screening assay (DSA) with a comprehensive pipeline of chemotherapy and targeted drugs against almost all the actionable mCRC molecular drivers. For the second cohort DSA data were matched with those from PDTO genotyping. RESULTS A total of 40 PDTOs included in the two cohorts were derived from mCRC primary tumors or metastases. The first cohort included 31 PDTOs derived from patients treated in front line. For this cohort, DSA results were matched with patient responses. Moreover, RAS/BRAF mutational status was matched with DSA cetuximab response. Ten out of 12 (83.3%) RAS wild-type PDTOs responded to cetuximab, while all the mutant PDTOs, 8 out of 8 (100%), were resistant. For the second cohort (chemorefractory patients), we used part of tumor tissue for genotyping. Four out of nine DSA/genotyping data resulted applicable in the clinic. Two RAS-mutant mCRC patients have been treated with FOLFOX-bevacizumab and mitomycin-capecitabine in third line, respectively, based on DSA results, obtaining disease control. One patient was treated with nivolumab-second mitochondrial-derived activator of caspases mimetic (phase I trial) due to high tumor mutational burden at genotyping, experiencing stable disease. In one case, the presence of BRCA2 mutation correlated with DSA sensitivity to olaparib; however, the patient could not receive the therapy. CONCLUSIONS Using CRC as a model, we have designed and validated a clinically applicable methodology to potentially inform clinical decisions with functional data. Undoubtedly, further larger analyses are needed to improve methodology success rates and propose suitable treatment strategies for mCRC patients.
Collapse
Affiliation(s)
- G Martini
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Belli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - S Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Ciaramella
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - D Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Belli
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Selvaggi
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Menegon Tasselli
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - W Santaniello
- Hepatobiliary Surgical Oncology Unit, AORN Cardarelli, Naples
| | - R Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - I Puig
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - L Ramirez
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - I Chicote
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - F Mancuso
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - G Caratu
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - X Serres
- Department of Interventional Radiology, Hospital Universitari Vall d'Hebron, Barcelona
| | - R Fasani
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Jimenez
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Ros
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - I Baraibar
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - N Mulet
- B-ARGO Badalona Applied Research Group in Oncology, Catalan Institute of Oncology, Badalona
| | - C M Della Corte
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - T Troiani
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - R Dienstmann
- Oncology Data Science, Vall d'Hebron Institute of Oncology, Barcelona
| | - E Elez
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - H G Palmer
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - J Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - E Martinelli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - G Argilés
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona; Universitat Autònoma de Barcelona, Barcelona, Spain; Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
44
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
45
|
Desai A, Reddy NK, Subbiah V. Top advances of the year: Precision oncology. Cancer 2023; 129:1634-1642. [PMID: 36946766 DOI: 10.1002/cncr.34743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The advent of precision medicine has changed the landscape of oncologic biomarkers, drug discovery, drug development, and, more importantly, outcomes for patients with cancer. Precision oncology entails the genomic profiling of tumors to detect actionable aberrations. The advances in clinical next-generation sequencing from both tumor tissue and liquid biopsy and availability of targeted therapies has rapidly entered mainstream clinical practice. In this review, recent major developments in precision oncology that have affected outcomes for patients with cancer are discussed. Rapid clinical development was seen of targeted agents across various mutational profiles such as KRASG12C (which was considered "undruggable" for almost 4 decades), Exon 20 insertions, and RET mutations. Approaches to precision chemotherapy delivery by the introduction of antibody drug conjugates in the armamentarium against lung cancer has been appreciated.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Medical Oncology, MayoClinic, Rochester, Minnesota, USA
| | - Neha K Reddy
- Department of Internal Medicine, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Vivek Subbiah
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
46
|
Leto SM, Ferri M, Sassi F, Zanella ER, Cottino F, Vurchio V, Catalano I, Ferrero A, Zingaretti CC, Marchiò C, Grassi E, Trusolino L, Bertotti A. Synthetic Lethal Interaction with BCL-XL Blockade Deepens Response to Cetuximab in Patient-Derived Models of Metastatic Colorectal Cancer. Clin Cancer Res 2023; 29:1102-1113. [PMID: 36622698 PMCID: PMC10011886 DOI: 10.1158/1078-0432.ccr-22-2550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
PURPOSE Approximately 20% of patients with RAS wild-type metastatic colorectal cancer (mCRC) experience objective responses to the anti-EGFR antibody cetuximab, but disease eradication is seldom achieved. The extent of tumor shrinkage correlates with long-term outcome. We aimed to find rational combinations that potentiate cetuximab efficacy by disrupting adaptive dependencies on antiapoptotic molecules (BCL2, BCL-XL, MCL1). EXPERIMENTAL DESIGN Experiments were conducted in patient-derived xenografts (PDX) and organoids (PDXO). Apoptotic priming was analyzed by BH3 profiling. Proapoptotic and antiapoptotic protein complexes were evaluated by co-immunoprecipitation and electroluminescence sandwich assays. The effect of combination therapies was assessed by caspase activation in PDXOs and by monitoring PDX growth. RESULTS A population trial in 314 PDX cohorts, established from as many patients, identified 46 models (14.6%) with appreciable (>50% tumor shrinkage) but incomplete response to cetuximab. From these models, 14 PDXOs were derived. Cetuximab primed cells for apoptosis, but only concomitant blockade of BCL-XL precipitated cell death. Mechanistically, exposure to cetuximab induced upregulation of the proapoptotic protein BIM and its sequestration by BCL-XL. Inhibition of BCL-XL resulted in displacement of BIM, which was not buffered by MCL1 and thereby became competent to induce apoptosis. In five PDX models, combination of cetuximab and a selective BCL-XL inhibitor triggered apoptosis and led to more pronounced tumor regressions and longer time to relapse after treatment discontinuation than cetuximab alone. CONCLUSIONS In mCRC tumors that respond to cetuximab, antibody treatment confers a synthetic-lethal dependency on BCL-XL. Targeting this dependency unleashes apoptosis and increases the depth of response to cetuximab.
Collapse
Affiliation(s)
| | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Caterina Marchiò
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Medical Sciences, University of Torino, Candiolo, Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| |
Collapse
|
47
|
Ten Hoorn S, Mol L, Sommeijer DW, Nijman L, van den Bosch T, de Back TR, Ylstra B, van Dijk E, van Noesel CJM, Reinten RJ, Nagtegaal ID, Koopman M, Punt CJA, Vermeulen L. Long-term Survival Update and Extended RAS Mutational Analysis of the CAIRO2 Trial: Addition of Cetuximab to CAPOX/Bevacizumab in Metastatic Colorectal Cancer. Clin Colorectal Cancer 2023; 22:67-75. [PMID: 36564280 DOI: 10.1016/j.clcc.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Here we present updated survival of the CAIRO2 trial and assessed whether the addition of anti-EGFR to anti-VEGF therapy could still be an effective treatment option for patients with extended RAS/BRAF wildtype and left-sided metastatic colorectal cancer (mCRC). MATERIALS AND METHODS Retrospective updated survival and extended RAS and BRAF V600E mutational analysis were performed in the CAIRO2 trial, a multicenter, randomized phase III trial on the effect of adding cetuximab to a combination of capecitabine, oxaliplatin (CAPOX), and bevacizumab in mCRC. RESULTS Updated survival analysis confirmed that the addition of cetuximab did not provide a benefit on either progression free (PFS) or overall survival (OS) in the intention-to-treat population. With the extended mutational analyses 31 KRAS, 31 NRAS and 12 BRAF V600E additional mutations were found. No benefit of the addition of cetuximab was observed within the extended wildtype group, even when selecting only left-sided tumors (PFS HR 0.96, p = 0.7775). However, compared to the original trial an increase of 6.5 months was seen for patients with both extended wildtype and left-sided tumors (median OS 28.6 months). CONCLUSION Adding cetuximab to CAPOX and bevacizumab does not provide clinical benefit in patients with mCRC, even in the extended wildtype group with left-sided tumors. However, in the extended wildtype group we did observe clinically relevant higher survival compared to the initial trial report, indicating that it is important to analyze a broader panel of RAS and BRAF variants using more recent sequencing techniques when assessing survival benefit after anti-EGFR therapy.
Collapse
Affiliation(s)
- Sanne Ten Hoorn
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Linda Mol
- Clinical Research Department, Netherlands Comprehensive Cancer Center (IKNL), Nijmegen, The Netherlands
| | - Dirkje W Sommeijer
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands; Flevohospital, Department of Internal Medicine, Almere, The Netherlands
| | - Lisanne Nijman
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tom van den Bosch
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Amsterdam UMC location University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Tim R de Back
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Bauke Ylstra
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Erik van Dijk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Roy J Reinten
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Iris D Nagtegaal
- Radboud Institute for Molecular Life Sciences, Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Louis Vermeulen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
48
|
van 't Erve I, Medina JE, Leal A, Papp E, Phallen J, Adleff V, Chiao EJ, Arun AS, Bolhuis K, Simmons JK, Karandikar A, Valkenburg KC, Sausen M, Angiuoli SV, Scharpf RB, Punt CJA, Meijer GA, Velculescu VE, Fijneman RJA. Metastatic Colorectal Cancer Treatment Response Evaluation by Ultra-Deep Sequencing of Cell-Free DNA and Matched White Blood Cells. Clin Cancer Res 2023; 29:899-909. [PMID: 36534496 PMCID: PMC9975664 DOI: 10.1158/1078-0432.ccr-22-2538] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) has the potential to guide therapy selection and monitor treatment response in patients with metastatic cancer. However, germline and clonal hematopoiesis-associated alterations can confound identification of tumor-specific mutations in cell-free DNA (cfDNA), often requiring additional sequencing of tumor tissue. The current study assessed whether ctDNA-based treatment response monitoring could be performed in a tumor tissue-independent manner by combining ultra-deep targeted sequencing analyses of cfDNA with patient-matched white blood cell (WBC)-derived DNA. EXPERIMENTAL DESIGN In total, 183 cfDNA and 49 WBC samples, along with 28 tissue samples, from 52 patients with metastatic colorectal cancer participating in the prospective phase III CAIRO5 clinical trial were analyzed using an ultra-deep targeted sequencing liquid biopsy assay. RESULTS The combined cfDNA and WBC analysis prevented false-positives due to germline or hematopoietic variants in 40% of patients. Patient-matched tumor tissue sequencing did not provide additional information. Longitudinal analyses of ctDNA were more predictive of overall survival than standard-of-care radiological response evaluation. ctDNA mutations related to primary or acquired resistance to panitumumab were identified in 42% of patients. CONCLUSIONS Accurate calling of ctDNA mutations for treatment response monitoring is feasible in a tumor tissue-independent manner by combined cfDNA and patient-matched WBC genomic DNA analysis. This tissue biopsy-independent approach simplifies sample logistics and facilitates the application of liquid biopsy ctDNA testing for evaluation of emerging therapy resistance, opening new avenues for early adaptation of treatment regimens.
Collapse
Affiliation(s)
- Iris van 't Erve
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jamie E Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Leal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eniko Papp
- Personal Genome Diagnostics, Baltimore, Maryland
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elaine Jiayuee Chiao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adith S Arun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen Bolhuis
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland
| | | | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Bae SW, Wang J, Georgiou DK, Wen X, Cohen AS, Geng L, Tantawy MN, Manning HC. Feasibility of [ 18F]FSPG PET for Early Response Assessment to Combined Blockade of EGFR and Glutamine Metabolism in Wild-Type KRAS Colorectal Cancer. Tomography 2023; 9:497-508. [PMID: 36961000 PMCID: PMC10037609 DOI: 10.3390/tomography9020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Early response assessment is critical for personalizing cancer therapy. Emerging therapeutic regimens with encouraging results in the wild-type (WT) KRAS colorectal cancer (CRC) setting include inhibitors of epidermal growth factor receptor (EGFR) and glutaminolysis. Towards predicting clinical outcome, this preclinical study evaluated non-invasive positron emission tomography (PET) with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) in treatment-sensitive and treatment-resistant WT KRAS CRC patient-derived xenografts (PDXs). Tumor-bearing mice were imaged with [18F]FSPG PET before and one week following the initiation of treatment with either EGFR-targeted monoclonal antibody (mAb) therapy, glutaminase inhibitor therapy, or the combination. Imaging was correlated with tumor volume and histology. In PDX that responded to therapy, [18F]FSPG PET was significantly decreased from baseline at 1-week post-therapy, prior to changes in tumor volume. In contrast, [18F]FSPG PET was not decreased in non-responding PDX. These data suggest that [18F]FSPG PET may serve as an early metric of response to EGFR and glutaminase inhibition in the WT KRAS CRC setting.
Collapse
Affiliation(s)
- Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jianbo Wang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Dimitra K. Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Allison S. Cohen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ling Geng
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232, USA
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - H. Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|