1
|
Blin K, Shaw S, Vader L, Szenei J, Reitz ZL, Augustijn HE, Cediel-Becerra JDD, de Crécy-Lagard V, Koetsier RA, Williams SE, Cruz-Morales P, Wongwas S, Segurado Luchsinger AE, Biermann F, Korenskaia A, Zdouc MM, Meijer D, Terlouw BR, van der Hooft JJJ, Ziemert N, Helfrich EJN, Masschelein J, Corre C, Chevrette MG, van Wezel GP, Medema MH, Weber T. antiSMASH 8.0: extended gene cluster detection capabilities and analyses of chemistry, enzymology, and regulation. Nucleic Acids Res 2025:gkaf334. [PMID: 40276974 DOI: 10.1093/nar/gkaf334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Microorganisms synthesize small bioactive compounds through their secondary or specialized metabolism. Those compounds play an important role in microbial interactions and soil health, but are also crucial for the development of pharmaceuticals or agrochemicals. Over the past decades, advancements in genome sequencing have enabled the identification of large numbers of biosynthetic gene clusters directly from microbial genomes. Since its inception in 2011, antiSMASH (https://antismash.secondarymetabolites.org/), has become the leading tool for detecting and characterizing these gene clusters in bacteria and fungi. This paper introduces version 8 of antiSMASH, which has increased the number of detectable cluster types from 81 to 101, and has improved analysis support for terpenoids and tailoring enzymes, as well as improvements in the analysis of modular enzymes like polyketide synthases and nonribosomal peptide synthetases. These modifications keep antiSMASH up-to-date with developments in the field and extend its overall predictive capabilities for natural product genome mining.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Lisa Vader
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Judit Szenei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, 1169 Biological Sciences II, Santa Barbara, CA 93106, United States
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - José D D Cediel-Becerra
- Department of Microbiology and Cell Science, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, United States
| | - Robert A Koetsier
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Sam E Williams
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Pablo Cruz-Morales
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| | - Sopida Wongwas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alejandro E Segurado Luchsinger
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Aleksandra Korenskaia
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Mitja M Zdouc
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - David Meijer
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, C2 Lab Building 224, Kingsway Campus, Cnr University & Kingsway Road, Auckland Park, Johannesburg 2006, South Africa
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, United States
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2950 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Adeniji AA, Chukwuneme CF, Conceição EC, Ayangbenro AS, Wilkinson E, Maasdorp E, de Oliveira T, Babalola OO. Unveiling novel features and phylogenomic assessment of indigenous Priestia megaterium AB-S79 using comparative genomics. Microbiol Spectr 2025; 13:e0146624. [PMID: 39969228 PMCID: PMC11960082 DOI: 10.1128/spectrum.01466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Priestia megaterium strain AB-S79 isolated from active gold mine soil previously expressed in vitro heavy metal resistance and has a 5.7 Mb genome useful for biotechnological exploitation. This study used web-based bioinformatic resources to analyze P. megaterium AB-S79 genomic relatedness, decipher its secondary metabolite biosynthetic gene clusters (BGCs), and better comprehend its taxa. Genes were highly conserved across the 14 P. megaterium genomes examined here. The pangenome reflected a total of 61,397 protein-coding genes, 59,745 homolog protein family hits, and 1,652 singleton protein family hits. There were also 7,735 protein families, including 1,653 singleton families and 6,082 homolog families. OrthoVenn3 comparison of AB-S79 protein sequences with 13 other P. megaterium strains, 7 other Priestia spp., and 6 other Bacillus spp. highlighted AB-S79's unique genomic and evolutionary trait. antiSMASH identified two key transcription factor binding site regulators in AB-S79's genome: zinc-responsive repressor (Zur) and antibiotic production activator (AbrC3), plus putative enzymes for the biosynthesis of terpenes and ranthipeptides. AB-S79 also harbors BGCs for two unique siderophores (synechobactins and schizokinens), phosphonate, dienelactone hydrolase family protein, and phenazine biosynthesis protein (phzF), which is significant for this study. Phosphonate particularly showed specificity for the P. megaterium sp. validating the effect of gene family expansion and contraction. P. megaterium AB-S79 looks to be a viable source for value-added compounds. Thus, this study contributes to the theoretical framework for the systematic metabolic and genetic exploitation of the P. megaterium sp., particularly the value-yielding strains. IMPORTANCE This study explores microbial natural product discovery using genome mining, focusing on Priestia megaterium. Key findings highlight the potential of P. megaterium, particularly strain AB-S79, for biotechnological applications. The research shows a limited output of P. megaterium genome sequences from Africa, emphasizing the importance of the native strain AB-S79. Additionally, the study underlines the strain's diverse metabolic capabilities, reinforcing its suitability as a model for microbial cell factories and its foundational role in future biotechnological exploitation.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Chinenyenwa Fortune Chukwuneme
- Department of Natural Sciences, Faculty of Applied & Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Emilyn Costa Conceição
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SAMRC Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Olubukola Oluranti Babalola
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, Berkshire, United Kingdom
| |
Collapse
|
3
|
Jeong H, Choe Y, Nam J, Ban YH. A guide to genome mining and genetic manipulation of biosynthetic gene clusters in Streptomyces. J Microbiol 2025; 63:e2409026. [PMID: 40313146 DOI: 10.71150/jm.2409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 05/03/2025]
Abstract
Streptomyces are a crucial source of bioactive secondary metabolites with significant clinical applications. Recent studies of bacterial and metagenome-assembled genomes have revealed that Streptomyces harbors a substantial number of uncharacterized silent secondary metabolite biosynthetic gene clusters (BGCs). These BGCs represent a vast diversity of biosynthetic pathways for natural product synthesis, indicating significant untapped potential for discovering new metabolites. To exploit this potential, genome mining using comprehensive strategies that leverage extensive genomic databases can be conducted. By linking BGCs to their encoded products and integrating genetic manipulation techniques, researchers can greatly enhance the identification of new secondary metabolites with therapeutic relevance. In this context, we present a step-by-step guide for using the antiSMASH pipeline to identify secondary metabolite-coding BGCs within the complete genome of a novel Streptomyces strain. This protocol also outlines gene manipulation methods that can be applied to Streptomyces to activate cryptic clusters of interest and validate the functions of biosynthetic genes. By following these guidelines, researchers can pave the way for discovering and characterizing valuable natural products.
Collapse
Affiliation(s)
- Heonjun Jeong
- Department of Intergrative Molecular and Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - YeonU Choe
- Department of Intergrative Molecular and Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyoon Nam
- Department of Intergrative Molecular and Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon Hee Ban
- Department of Intergrative Molecular and Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Augustijn HE, van Nassauw D, Cernat S, Reitz ZL, van Wezel GP, Medema MH. Regulatory Genes as Beacons for Discovery and Prioritization of Biosynthetic Gene Clusters in Streptomyces. Biochemistry 2025. [PMID: 40133269 DOI: 10.1021/acs.biochem.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Actinobacteria are renowned for their ability to produce a wide range of bioactive molecules, including many anticancer compounds and antibiotics that are critical in the battle against antimicrobial resistance. Despite identification of a vast array of biosynthetic gene clusters (BGCs) through genome mining, much of this biosynthetic potential remains unexplored, partially due to the fact that many remain silent or cryptic under typical laboratory conditions. Regulatory networks can provide clues to the location of yet undiscovered gene cluster families or be leveraged to predict their expression. Here, we investigate the associations between regulatory genes and BGCs to uncover their predictive capabilities in discovering and prioritizing gene clusters for downstream wet-lab validation. By analyzing the protein domain architectures of 128,993 potential regulators derived from 440 complete Streptomyces genomes, we uncovered various associations between biosynthetic classes, biological activities of their products, and regulator families. Specifically, subsets of the Streptomyces Antibiotic Regulatory Protein (SARP) and LuxR families were strongly associated with biosynthetic pathways encoding the production of bioactive compounds. After closer genomic inspection of the small SARPs, we discovered 82 putative SARP-associated BGCs that escaped detection by state-of-the-art software. This shows that continued exploration of regulatory systems will not only deepen our understanding of Actinobacteria's biosynthetic capabilities but also facilitates discovery and prioritization of high-potential BGCs in future genome-mining applications.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Daan van Nassauw
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Simona Cernat
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Zachary L Reitz
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
5
|
Salazar-Hamm PS, Homan FE, Good SA, Hathaway JJM, Clements AE, Haugh EG, Caesar LK. Subterranean marvels: microbial communities in caves and underground mines and their promise for natural product discovery. Nat Prod Rep 2025; 42:592-622. [PMID: 39950737 DOI: 10.1039/d4np00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2014 to 2024Since the dawn of human history, caves have played an intimate role in our existence. From our earliest ancestors seeking shelter from the elements to more recent generations harnessing cave substances for medicinal purposes, caves have served as essential resources and havens. The last 40 years of geomicrobiology research has replaced the outdated perception of subterranean environments as lifeless and unchanging with the realization that vibrant microbial communities have adapted to thrive in extreme conditions over millions of years. The ability of subterranean microbial communities to withstand nutrient deprivation and darkness creates a unique reservoir of untapped biosynthetic potential. These communities offer exciting prospects for medicine (e.g., antimicrobial and antitumor therapies) and biotechnology (e.g., redox chemical properties and biomineralization). This article highlights the significance of caves and mines as reservoirs of microbial diversity, the potential impact of their bioactive compounds on the fields of healthcare and biotechnology, and the significant challenges that must be overcome to access and harness the biotechnological potential of subterranean microbial communities. Additionally, it emphasizes the conservation efforts needed to protect these delicate ecosystems, ensuring the preservation of both ancient traditions and tomorrow's medicines.
Collapse
Affiliation(s)
| | - Frances E Homan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Shyleigh A Good
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | | | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Evelyn G Haugh
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
6
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Ragozzino C, Casella V, Coppola A, Scarpato S, Buonocore C, Consiglio A, Palma Esposito F, Galasso C, Tedesco P, Della Sala G, de Pascale D, Vitale L, Coppola D. Last Decade Insights in Exploiting Marine Microorganisms as Sources of New Bioactive Natural Products. Mar Drugs 2025; 23:116. [PMID: 40137302 PMCID: PMC11943599 DOI: 10.3390/md23030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Marine microorganisms have emerged as prolific sources of bioactive natural products, offering a large chemical diversity and a broad spectrum of biological activities. Over the past decade, significant progress has been made in discovering and characterizing these compounds, pushed by technological innovations in genomics, metabolomics, and bioinformatics. Furthermore, innovative isolation and cultivation approaches have improved the isolation of rare and difficult-to-culture marine microbes, leading to the identification of novel secondary metabolites. Advances in synthetic biology and metabolic engineering have further optimized natural product yields and the generation of novel compounds with improved bioactive properties. This review highlights key developments in the exploitation of marine bacteria, fungi, and microalgae for the discovery of novel natural products with potential applications in diverse fields, underscoring the immense potential of marine microorganisms in the growing Blue Economy sector.
Collapse
Affiliation(s)
- Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Alessandro Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Antonella Consiglio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, CRIMAC, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy;
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Laura Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| |
Collapse
|
8
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
9
|
Patel S, Naik L, Rai A, Palit K, Kumar A, Das M, Nayak DK, Dandsena PK, Mishra A, Singh R, Dhiman R, Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: a review. Arch Microbiol 2025; 207:64. [PMID: 39961874 DOI: 10.1007/s00203-024-04233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
The bacterial genus Streptomyces is known for the prolific production of secondary metabolites, which exhibit remarkable structural diversity and potent biological activities. Tuberculosis (TB) remains a formidable global health challenge exacerbated by the emergence of antimicrobial resistance (AMR), necessitating the discovery of novel therapeutic agents. The untapped potential of marine Streptomyces-derived secondary metabolites offers a promising avenue for screening anti-tubercular (anti-TB) compounds with unique chemical structures and potential bioactive properties. The review emphasizes the diverse marine habitats and Streptomyces with novel anti-TB bioactive metabolites. It discusses fermentation and bioprocessing strategies for screening anti-TB drugs. This review also covers the chemical diversity, potency, mechanism of action, and structures of about seventy anti-TB compounds discovered from marine Streptomyces. These compounds span various chemical classes, including quinones, macrolactams, macrolides, phenols, esters, anthracyclines, peptides, glycosides, alkaloids, piperidones, thiolopyrrolones, nucleosides, terpenes, flavonoids, polyketides, and actinomycins. It emphasizes the need to explore marine ecosystems to discover more novel anti-TB natural products.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ankita Rai
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
10
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
11
|
Byers AK, Condron L, O'Callaghan M, Waipara N, Black A. Whole genome sequencing of Penicillium and Burkholderia strains antagonistic to the causal agent of kauri dieback disease (Phytophthora agathidicida) reveals biosynthetic gene clusters related to antimicrobial secondary metabolites. Mol Ecol Resour 2025; 25:e13810. [PMID: 37208988 PMCID: PMC11696490 DOI: 10.1111/1755-0998.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Phytophthora agathidicida is a virulent soil pathogen of Aotearoa New Zealand's iconic kauri tree species (Agathis australis (D. Don) Lindl.) and the primary causal agent of kauri dieback disease. To date, only a few control options are available to treat infected kauri that are expressing symptoms of dieback disease. Previous research has identified strains of Penicillium and Burkholderia that inhibited the mycelial growth of P. agathidicida in vitro. However, the mechanisms of inhibition remain unknown. By performing whole genome sequencing, we screened the genomes of four Penicillium and five Burkholderia strains to identify secondary metabolite encoding biosynthetic gene clusters (SM-BGCs) that may be implicated in the production of antimicrobial compounds. We identified various types of SM-BGCs in the genome of each strain, including polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), and terpenes. Across all four of the Penicillium strains, five SM-BGCs were detected that encoded the biosynthesis of napthopyrone, clavaric acid, pyranonigrin E, dimethyl coprogen and asperlactone. Across all five of the Burkholderia strains, three SM-BGCs were detected that encoded the biosynthesis of ornibactin, pyochelin and pyrrolnitin. Our analysis detected numerous SM-BGCs which could not be characterised. Further efforts should be made to identify the compounds encoded by these SM-BGCs so that we can explore their antimicrobial potential. The potential inhibitory effects of the compounds encoded by the SM-BGCs identified in this study may be worthy of further investigation for their effect on the growth and virulence of P. agathidicida.
Collapse
Affiliation(s)
- Alexa K. Byers
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | - Leo Condron
- Faculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
| | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| |
Collapse
|
12
|
Liu RZ, Zhang Z, Li M, Zhang L. A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases. Chem Sci 2025; 16:1696-1706. [PMID: 39568943 PMCID: PMC11575545 DOI: 10.1039/d4sc04174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinformatics-guided metabolomics is a powerful means for the discovery of novel natural products. However, the application of such metabologenomics approaches on microbial polyketides, a prominent class of natural products with diverse bioactivities, remains largely hindered due to our limited understanding on the mass spectrometry behaviors of these metabolites. Here, we present a metabologenomics approach for the targeted discovery of polyketides biosynthesized by modular type I polyketide synthases. We developed the NegMDF workflow, which uses mass defect filtering (MDF) supported by bioinformatic structural prediction, to connect the biosynthetic gene clusters to corresponding metabolite ions obtained under negative ionization mode. The efficiency of the NegMDF workflow is illustrated by rapid characterization of 22 polyketides synthesized by three gene clusters from a well-characterized strain Streptomyces cattleya NRRL 8057, including cattleyatetronates, new members of polyketides containing a rare tetronate moiety. Our results showcase the effectiveness of the MDF-based metabologenomics workflow for analyzing microbial natural products, and will accelerate the genome mining of microbial polyketides.
Collapse
Affiliation(s)
- Run-Zhou Liu
- Department of Chemistry, Fudan University Shanghai 200433 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Zhihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Min Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou 310024 China
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou 310030 China
| |
Collapse
|
13
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025:10.1038/s41579-024-01141-y. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
14
|
Mohite OS, Jørgensen TS, Booth TJ, Charusanti P, Phaneuf PV, Weber T, Palsson BO. Pangenome mining of the Streptomyces genus redefines species' biosynthetic potential. Genome Biol 2025; 26:9. [PMID: 39810189 PMCID: PMC11734326 DOI: 10.1186/s13059-024-03471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives. RESULTS We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies. Employing a data-driven approach based on genome similarities, the Streptomyces genus was classified into 7 primary and 42 secondary Mash-clusters, forming the basis for comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene clusters (BGCs) redefines their diversity across different Mash-clusters. This workflow also reassigns 2729 known BGC families to only 440 families, a reduction caused by inaccuracies in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a conserved genomic structure, or synteny, among BGCs becomes apparent within species and Mash-clusters. This synteny suggests that vertical inheritance is a major factor in the diversification of BGCs. CONCLUSIONS Our analysis of a genomic dataset at a scale of thousands of genomes refines predictions of BGC diversity using Mash-clusters as a basis for pangenome analysis. The observed conservation in the order of BGCs' genomic locations shows that the BGCs are vertically inherited. The presented workflow and the in-depth analysis pave the way for large-scale pangenome investigations and enhance our understanding of the biosynthetic potential of the Streptomyces genus.
Collapse
Affiliation(s)
- Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas J Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Ahmad M, Tahir M, Hong Z, Zia MA, Rafeeq H, Ahmad MS, Rehman SU, Sun J. Plant and marine-derived natural products: sustainable pathways for future drug discovery and therapeutic development. Front Pharmacol 2025; 15:1497668. [PMID: 39834812 PMCID: PMC11743463 DOI: 10.3389/fphar.2024.1497668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Plant- and marine-derived natural products are rich sources of bioactive compounds essential for drug discovery. These compounds contain complex mixtures of metabolites, which collectively contribute to their pharmacological properties. However, challenges arise in the isolation of individual bioactive compounds, owing to their intricate chemistry and low abundance in natural extracts. Despite these limitations, numerous plant and marine-derived compounds have achieved regulatory approval, particularly for treating cancer and infectious diseases. This review explores the therapeutic potential of plant and marine sources along with innovative extraction and isolation methods that support sustainable drug development. Future perspectives will highlight the role of responsible innovation, artificial intelligence, and machine learning in advancing drug discovery, underscoring the importance of continued research to meet global health needs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maleha Tahir
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zibin Hong
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hamza Rafeeq
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shaheez Ahmad
- Enzyme Biotechnology Lab, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saif ur Rehman
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital-Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Ren S, Yan Y, Zhou Y, Han Y, Yuan S, Chen J, Guo H, Lin Z, Lin Q, Chen S, Liu L, Qiao Y, Gao Z. Genome mining of nonenzymatic ortho-quinone methide-based pseudonatural products from ascidian-derived fungus Diaporthe sp.SYSU-MS4722. Bioorg Chem 2025; 154:108081. [PMID: 39742673 DOI: 10.1016/j.bioorg.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Ortho-quinone methides (o-QMs), generated by oxidative dehydration of clavatol, are highly reactive intermediates in biosynthesis that give rise to a variety of clavatol-containing pseudonatural products (PNPs) in fungi through intra- and intermolecular nonenzymatic cyclization/addition reaction, and some compounds have significant biological activities. Here we report our genome mining efforts on a cryptic clavatol biosynthetic gene cluster (BGC) from an ascidian-derived fungus Diaporthe sp. SYSU-MS4722. The core genes NR-PKS (DiaG), Esterase (DiaF) derived from the fungus Diaporthe sp. SYSU-MS4722 clavatol BGC and the known α-ketoglutarate-dependent nonheme iron enzymes (ClaD) were heterologously expressed in the Aspergillus oryzae NSAR1 (A. oryzae NSAR1). Thirteen new monomeric, dimeric, and trimeric clavatol-based PNPs (7-19), together with three known compounds (20-22) were isolated from the above transformant. Their structures including absolute configurations were elucidated by spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR data), complemented with the X-ray crystallography, the comparison of the experimental and calculated ECD spectra, and gauge-independent atomic orbital (GIAO) NMR calculations. Based on the structural characteristics, their plausible biosynthetic pathways were proposed. Notably, Compounds 8, 9, 14 and 16 exhibited potent anti-fibrotic activity with EC50 values of 28.9, 10.0, 3.5 and 30.1 μM, respectively.
Collapse
Affiliation(s)
- Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Dermatology Hospital, Southern Medical University, Guangzhou 510091,China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yanhong Han
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519000, China
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Junjie Chen
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Zhenjian Lin
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Qifeng Lin
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519000, China.
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
17
|
Shukla G, Sharma G. A unique bacterial family strikes again! Trends Microbiol 2024; 32:1153-1155. [PMID: 39443225 DOI: 10.1016/j.tim.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Garcia et al. recently identified a novel myxobacterial family, Pendulisporaceae, encompassing four strains with novel biosynthetic gene clusters. This study underscores the value of exploring underrepresented microbial taxa for novel natural products, highlighting the potential of the family Pendulisporaceae as a source of new antimicrobial and therapeutic agents.
Collapse
Affiliation(s)
- Gyanesh Shukla
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India.
| |
Collapse
|
18
|
Engelhardt PM, Keyzers R, Brimble MA. Histidine-bridged cyclic peptide natural products: isolation, biosynthesis and synthetic studies. Org Biomol Chem 2024; 22:8374-8396. [PMID: 39352687 DOI: 10.1039/d4ob01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Robert Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Laby Building Kelburn Parade, Wellington 6012, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
19
|
Yang Z, Qiao Y, Strøbech E, Morth JP, Walther G, Jørgensen TS, Lum KY, Peschel G, Rosenbaum MA, Previtali V, Clausen MH, Lukassen MV, Gotfredsen CH, Kurzai O, Weber T, Ding L. Alligamycin A, an antifungal β-lactone spiroketal macrolide from Streptomyces iranensis. Nat Commun 2024; 15:9259. [PMID: 39461983 PMCID: PMC11513958 DOI: 10.1038/s41467-024-53695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Fungal infections pose a great threat to public health and there are only four main types of antifungal drugs, which are often limited with toxicity, drug-drug interactions and antibiotic resistance. Streptomyces is an important source of antibiotics, represented by the clinical drug amphotericin B. Here we report the discovery of alligamycin A (1) as an antifungal compound from the rapamycin-producer Streptomyces iranensis through genome-mining, genetics and natural product chemistry approaches. Alligamycin A harbors a unique chemical scaffold with 13 chiral centers, featuring a β-lactone moiety, a [6,6]-spiroketal ring, and an unreported 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential crotonyl-CoA carboxylase/reductase. It is biosynthesized by a type I polyketide synthase which is confirmed through CRISPR-based gene editing. Alligamycin A displayed potent antifungal effects against numerous clinically relevant filamentous fungi, including resistant Aspergillus and Talaromyces species. β-Lactone ring is essential for the antifungal activity since alligamycin B (2) with disruption in the ring abolished the antifungal effect. Proteomics analysis revealed alligamycin A potentially disrupts the integrity of fungal cell walls and induces the expression of stress-response proteins in Aspergillus niger. Discovery of the potent antifungal candidate alligamycin A expands the limited antifungal chemical space.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Grit Walther
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Viola Previtali
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
20
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
21
|
Cai M, Zhang H, Zheng L, Tang X. A global microbiome analysis reveals the ecological feature of Tistrella and its production of the bioactive didemnins in the marine ecosystem. MARINE POLLUTION BULLETIN 2024; 207:116939. [PMID: 39243471 DOI: 10.1016/j.marpolbul.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
22
|
Pardo-Esté C, Cortés J, Castro-Severyn J, Pérez V, Henriquez-Aedo K, Cuadros F, Yañez C, Cuadros-Orellana S, Dorador C, Molina V, Eissler Y, Paquis P, Jeffrey WH, Pozo P, Pérez PA, Hengst MB. Secondary metabolites with antimicrobial activity produced by thermophilic bacteria from a high-altitude hydrothermal system. Front Microbiol 2024; 15:1477458. [PMID: 39411441 PMCID: PMC11474921 DOI: 10.3389/fmicb.2024.1477458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Thermophilic microorganisms possess several adaptations to thrive in high temperature, which is reflected as biosynthesis of proteins and thermostable molecules, isolation and culture represent a great methodological challenge, therefore High throughput sequencing enables screening of the whole bacterial genome for functional potential, providing rapid and cost-effective information to guide targeted cultures for the identification and characterization of novel natural products. In this study, we isolated two thermophilic bacterial strains corresponding to Bacillus LB7 and Streptomyces LB8, from the microbial mats in the Atacama Desert. By combining genome mining, targeted cultures and biochemical characterization, we aimed to identify their capacity to synthesize bioactive compounds with antimicrobial properties. Additionally, we determined the capability to produce bioactive compounds under controlled in vitro assays and detected by determining their masses by Thin-Layer Chromatography/Mass Spectrometry (TLC/MS). Overall, both isolates can produce antimicrobial (e.g., Myxalamide C by-product) and antioxidants (e.g. Dihydroxymandelic Acid, Amide biotine and Flavone by-products) compounds. Bacillus LB7 strain possesses a more diverse repertoire with 51.95% of total metabolites unmatched, while Streptomyces LB8 favors mainly antioxidants, but has over 70% of unclassified compounds, highlighting the necessity to study and elucidate the structure of novel compounds. Based on these results, we postulate that the uncultured or rare cultured thermophiles inhabiting high-altitude hydrothermal ecosystems in the Atacama Desert offer a promising opportunity to the study of novel microbial bioactive compounds.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Johanna Cortés
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Vilma Pérez
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Karem Henriquez-Aedo
- Laboratorio de Biotecnología y Genética de los Alimentos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío Bío, Chillán, Chile
| | - Fabian Cuadros
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Carolina Yañez
- Microbial Ecology of the Rhizosphere Group, Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Sara Cuadros-Orellana
- Laboratorio de Genómica, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Cristina Dorador
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Veronica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Centro COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Yoanna Eissler
- Laboratorio de Virología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Paquis
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Wade H. Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, United States
| | - Patricia Pozo
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Catolica Del Norte, Antofagasta, Chile
| | - Pablo A. Pérez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Catolica Del Norte, Antofagasta, Chile
| | - Martha B. Hengst
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
23
|
Zhang S, Shi G, Xu X, Guo X, Li S, Li Z, Wu Q, Yin WB. Global Analysis of Natural Products Biosynthetic Diversity Encoded in Fungal Genomes. J Fungi (Basel) 2024; 10:653. [PMID: 39330413 PMCID: PMC11433233 DOI: 10.3390/jof10090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal secondary metabolites (SMs) represent an invaluable source of therapeutic drugs. Genomics-based approaches to SM discovery have revealed a vast and largely untapped biosynthetic potential within fungal genomes. Here, we used the publicly available fungal genome sequences from the NCBI public database, as well as tools such as antiSMASH, BIG-SLiCE, etc., to analyze a total of 11,598 fungal genomes, identifying 293,926 biosynthetic gene clusters (BGCs), which were subsequently categorized into 26,825 gene cluster families (GCFs). It was discovered that only a tiny fraction, less than 1%, of these GCFs could be mapped to known natural products (NPs). Some GCFs that only contain a single BGC internally are crucial for the biodiversity of fungal biosynthesis. Evident patterns emerged from our analysis, revealing popular taxa as prominent sources of both actual and potential biosynthetic diversity. Our study also suggests that the genus rank distribution of GCF is generally consistent with NP diversity. It is noteworthy that genera Xylaria, Hypoxylon, Colletotrichum, Diaporthe, Nemania, and Calonectria appear to possess a higher potential for SM synthesis. In addition, 7213 BGCs match possible known compound structures, and homologous gene clusters of well-known drugs can be located in different genera, facilitating the development of derivatives that share structural similarity to these drugs and may potentially possess similar biological activity. Our study demonstrated the various types of fungi with mining potential, assisting researchers in prioritizing their research efforts and avoiding duplicate mining of known resources to further explore fungal NP producers.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinran Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijia Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Vu PH, Nguyen DH, Vu TS, Le AH, Tran TQT, Nguyen YT, Nguyen TTT, Mai LDT, Bui HVT, Tran HM, Nguyen HQ, Nguyen TKN, Truong BG, Tran HTT, Pham HT. Biodegradation of DDT using multi-species mixtures: From genome-mining prediction to practical assessment. Microb Biotechnol 2024; 17:e70021. [PMID: 39316024 PMCID: PMC11421292 DOI: 10.1111/1751-7915.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) is a commonly used insecticide that is recalcitrant and highly stable in the environment. Currently, DDT residue contamination, especially in agricultural soil, is still a concern in many countries, threatening human health and the environment. Among the approaches to resolve such an issue, novel biodegradation-based methods are now preferred to physicochemical methods, due to the sustainability and the effectiveness of the former. In this study, we explored the possibility of building mixed microbial cultures that can offer improved DDT-degrading efficiencies and be more environmentally transilient, based on genome annotation using the KEGG database and prediction of interactions between single strains using the obtained metabolic maps. We then proposed 10 potential DDT-degrading mixed cultures of different strain combinations and evaluated their DDT degradation performances in liquid, semi-solid and solid media. The results demonstrated the superiority of the mixtures over the single strains in terms of degrading DDT, particularly in a semi-solid medium, with up to 40-50% more efficiency. Not only did the mixed cultures degrade DDT more efficiently, but they also adapted to broader spectra of environmental conditions. The three best DDT-degrading and transilient mixtures were selected, and it turned out that their component strains seemed to have more metabolic interactions than those in the other mixtures. Thus, our study demonstrates the effectiveness of exploiting genome-mining techniques and the use of constructed mixed cultures in improving biodegradation.
Collapse
Affiliation(s)
- Phuong Ha Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Dang Huy Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Tung Son Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Anh Hien Le
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Trang Quynh Thi Tran
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Yen Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thuy Thu Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Linh Dam Thi Mai
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Ha Viet Thi Bui
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hanh My Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huy Quang Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Key Laboratory of Enzyme and Protein TechnologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thao Kim Nu Nguyen
- Department of Cell Biology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Bao Gia Truong
- High School for Gifted StudentsVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huyen Thanh Thi Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hai The Pham
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| |
Collapse
|
25
|
Yu Y, Wang Z, Xiong D, Zhou L, Kong F, Wang Q. New Secondary Metabolites of Mangrove-Associated Strains. Mar Drugs 2024; 22:372. [PMID: 39195488 DOI: 10.3390/md22080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Positioned at the dynamic interface between terrestrial and marine realms, mangroves embody a vibrant tapestry of biodiversity, encompassing an array of plants, animals, and microorganisms. These microbial inhabitants of mangrove habitats have emerged as a pivotal resource for antimicrobials and a plethora of pharmaceutically valuable compounds, spanning enzymes, antineoplastic agents, pesticides, immunosuppressants, and immunomodulators. This review delves into the recent landscape (January 2021 to May 2024, according to the time of publication) of novel secondary metabolites isolated from mangrove-associated microorganisms, analyzing 41 microbial strains that collectively yielded 165 distinct compounds. Our objective is to assess the productivity and potential of natural products derived from microbial populations within mangrove ecosystems in recent times. Notably, fungi stand out as the preeminent contributors to the emergence of these novel natural products, underscoring their pivotal role in the bioprospecting endeavors within these unique environments.
Collapse
Affiliation(s)
- Yunxia Yu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou 570206, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Zimin Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Dingmi Xiong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Liman Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou 570206, China
| |
Collapse
|
26
|
Kostka M, Krug D, Herrmann J, Dickschat JS, Meyer J, Müller R, Schulz S. Identification by Synthesis: Imidacins, Urocanate-Derived Alkaloids from the Myxobacterium Stigmatella aurantiaca. Org Lett 2024; 26:6359-6363. [PMID: 39037587 DOI: 10.1021/acs.orglett.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Innovative discovery approaches such as genome-mining and metabolomics-inspired methods have reshaped the natural product research field, complementing traditional bioactivity-based screens and allowing hitherto unseen compounds to be uncovered from previously investigated producers. In line with these trends, we report here imidacins, a novel class of secondary metabolites specific to the myxobacterial genus Stigmatella. A combination of secondary metabolome analysis, genome-mining techniques, spectroscopic analysis, and finally total synthesis was used to allow structure elucidation. Imidacins are urocanate-derived aliphatic acids with an adjacent cyclopropane moiety, structural features unprecedented in natural products to date.
Collapse
Affiliation(s)
- Michael Kostka
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jeroen S Dickschat
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Julia Meyer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
27
|
Luo X, Hu C, Yin Q, Zhang X, Liu Z, Zhou C, Zhang J, Chen W, Yang Y. Dual-Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria-infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401793. [PMID: 38874469 PMCID: PMC11321617 DOI: 10.1002/advs.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Collapse
Affiliation(s)
- Xue‐Yue Luo
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Chun‐Mei Hu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Qi Yin
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Xiao‐Mei Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Zhen‐Zhen Liu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Cheng‐Kai Zhou
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Jian‐Gang Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Wei Chen
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Yong‐Jun Yang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| |
Collapse
|
28
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
30
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
31
|
Yi Y, Liang L, de Jong A, Kuipers OP. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems. Genomics 2024; 116:110880. [PMID: 38857812 DOI: 10.1016/j.ygeno.2024.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.
Collapse
Affiliation(s)
- Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | | | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands.
| |
Collapse
|
32
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
33
|
McBee DP, Hulsey ZN, Hedges MR, Baccile JA. Biological Demands and Toxicity of Isoprenoid Precursors in Bacillus Subtilis Through Cell-Permeant Analogs of Isopentenyl Pyrophosphate and Dimethylallyl Pyrophosphate. Chembiochem 2024; 25:e202400064. [PMID: 38568158 DOI: 10.1002/cbic.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Bacterial isoprenoids are necessary for many biological processes, including maintaining membrane integrity, facilitating intercellular communication, and preventing oxidative damage. All bacterial isoprenoids are biosynthesized from two five carbon structural isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are cell impermeant. Herein, we demonstrate exogenous delivery of IPP and DMAPP into Bacillus subtilis by utilizing a self-immolative ester (SIE)-caging approach. We initially evaluated native B. subtilis esterase activity, which revealed a preference for short straight chain esters. We then examined the viability of the SIE-caging approach in B. subtilis and demonstrate that the released caging groups are well tolerated and the released IPP and DMAPP are bioavailable, such that isoprenoid biosynthesis can be rescued in the presence of pathway inhibitors. We further show that IPP and DMAPP are both toxic and inhibit growth of B. subtilis at the same concentration. Lastly, we establish the optimal ratio of IPP to DMAPP (5 : 1) for B. subtilis growth and find that, surprisingly, DMAPP alone is insufficient to rescue isoprenoid biosynthesis under high concentrations of fosmidomycin. These findings showcase the potential of the SIE-caging approach in B. subtilis and promise to both aid in novel isoprenoid discovery and to inform metabolic engineering efforts in bacteria.
Collapse
Affiliation(s)
- Dillon P McBee
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Zackary N Hulsey
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Makayla R Hedges
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
34
|
Nuhamunada M, Mohite OS, Phaneuf P, Palsson B, Weber T. BGCFlow: systematic pangenome workflow for the analysis of biosynthetic gene clusters across large genomic datasets. Nucleic Acids Res 2024; 52:5478-5495. [PMID: 38686794 PMCID: PMC11162802 DOI: 10.1093/nar/gkae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Genome mining is revolutionizing natural products discovery efforts. The rapid increase in available genomes demands comprehensive computational platforms to effectively extract biosynthetic knowledge encoded across bacterial pangenomes. Here, we present BGCFlow, a novel systematic workflow integrating analytics for large-scale genome mining of bacterial pangenomes. BGCFlow incorporates several genome analytics and mining tools grouped into five common stages of analysis such as: (i) data selection, (ii) functional annotation, (iii) phylogenetic analysis, (iv) genome mining, and (v) comparative analysis. Furthermore, BGCFlow provides easy configuration of different projects, parallel distribution, scheduled job monitoring, an interactive database to visualize tables, exploratory Jupyter Notebooks, and customized reports. Here, we demonstrate the application of BGCFlow by investigating the phylogenetic distribution of various biosynthetic gene clusters detected across 42 genomes of the Saccharopolyspora genus, known to produce industrially important secondary/specialized metabolites. The BGCFlow-guided analysis predicted more accurate dereplication of BGCs and guided the targeted comparative analysis of selected RiPPs. The scalable, interoperable, adaptable, re-entrant, and reproducible nature of the BGCFlow will provide an effective novel way to extract the biosynthetic knowledge from the ever-growing genomic datasets of biotechnologically relevant bacterial species.
Collapse
Affiliation(s)
- Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
35
|
Haas D, Barba M, Vicente C, Nezbedová Š, Garénaux A, Bury-Moné S, Lorenzi JN, Hôtel L, Laureti L, Thibessard A, Le Goff G, Ouazzani J, Leblond P, Aigle B, Pernodet JL, Lespinet O, Lautru S. Synteruptor: mining genomic islands for non-classical specialized metabolite gene clusters. NAR Genom Bioinform 2024; 6:lqae069. [PMID: 38915823 PMCID: PMC11195616 DOI: 10.1093/nargab/lqae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes. Here we present Synteruptor (https://bioi2.i2bc.paris-saclay.fr/synteruptor), a program that identifies genomic islands, known to be enriched in SMBGCs, in the genomes of closely related species. With this tool, we identified a SMBGC in the genome of Streptomyces ambofaciens ATCC23877, undetected by antiSMASH versions prior to antiSMASH 5, and experimentally demonstrated that it directs the biosynthesis of two metabolites, one of which was identified as sphydrofuran. Synteruptor is also a valuable resource for the delineation of individual SMBGCs within antiSMASH regions that may encompass multiple clusters, and for refining the boundaries of these SMBGCs.
Collapse
Affiliation(s)
- Drago Haas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Matthieu Barba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Šarká Nezbedová
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Garénaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Laurence Hôtel
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Luisa Laureti
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | | | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
36
|
MacIntyre LW, Koirala B, Rosenzweig A, Morales-Amador A, Brady SF. Cinnamosyn, a Cinnamoylated Synthetic-Bioinformatic Natural Product with Cytotoxic Activity. Org Lett 2024; 26:4433-4437. [PMID: 38767867 PMCID: PMC11948286 DOI: 10.1021/acs.orglett.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Most biosynthetic gene clusters (BGCs) are functionally inaccessible by using fermentation methods. Bioinformatic-coupled total synthesis provides an alternative approach for accessing BGC-encoded bioactivities. To date, synthetic bioinformatic natural product (synBNP) methods have focused on lipopeptides containing simple lipids. Here we increase the bioinformatic and synthetic complexity of the synBNP approach by targeting BGCs that encode N-cinnamoyl lipids. This led to our synthesis of cinnamosyn, a 10-mer N-cinnamoyl-containing peptide that is cytotoxic to human cells.
Collapse
Affiliation(s)
- Logan W MacIntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Adam Rosenzweig
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Adrián Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
37
|
Wu S, Zhou H, Chen D, Lu Y, Li Y, Qiao J. Multi-omic analysis tools for microbial metabolites prediction. Brief Bioinform 2024; 25:bbae264. [PMID: 38859767 PMCID: PMC11165163 DOI: 10.1093/bib/bbae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
How to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Haonan Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yutong Lu
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
40
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
41
|
Frey B, Aiesi M, Rast BM, Rüthi J, Julmi J, Stierli B, Qi W, Brunner I. Searching for new plastic-degrading enzymes from the plastisphere of alpine soils using a metagenomic mining approach. PLoS One 2024; 19:e0300503. [PMID: 38578779 PMCID: PMC10997104 DOI: 10.1371/journal.pone.0300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Plastic materials, including microplastics, accumulate in all types of ecosystems, even in remote and cold environments such as the European Alps. This pollution poses a risk for the environment and humans and needs to be addressed. Using shotgun DNA metagenomics of soils collected in the eastern Swiss Alps at about 3,000 m a.s.l., we identified genes and their proteins that potentially can degrade plastics. We screened the metagenomes of the plastisphere and the bulk soil with a differential abundance analysis, conducted similarity-based screening with specific databases dedicated to putative plastic-degrading genes, and selected those genes with a high probability of signal peptides for extracellular export and a high confidence for functional domains. This procedure resulted in a final list of nine candidate genes. The lengths of the predicted proteins were between 425 and 845 amino acids, and the predicted genera producing these proteins belonged mainly to Caballeronia and Bradyrhizobium. We applied functional validation, using heterologous expression followed by enzymatic assays of the supernatant. Five of the nine proteins tested showed significantly increased activities when we used an esterase assay, and one of these five proteins from candidate genes, a hydrolase-type esterase, clearly had the highest activity, by more than double. We performed the fluorescence assays for plastic degradation of the plastic types BI-OPL and ecovio® only with proteins from the five candidate genes that were positively active in the esterase assay, but like the negative controls, these did not show any significantly increased activity. In contrast, the activity of the positive control, which contained a PLA-degrading gene insert known from the literature, was more than 20 times higher than that of the negative controls. These findings suggest that in silico screening followed by functional validation is suitable for finding new plastic-degrading enzymes. Although we only found one new esterase enzyme, our approach has the potential to be applied to any type of soil and to plastics in various ecosystems to search rapidly and efficiently for new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Beat Frey
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Margherita Aiesi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Facoltà de Science Agrarie e Alimentari, University Degli Studi di Milano, Milano, Italy
| | - Basil M. Rast
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Joel Rüthi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jérôme Julmi
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Forest Soils and Biogeochemistry, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
42
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
43
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
44
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
45
|
Chioti VT, Clark KA, Ganley JG, Han EJ, Seyedsayamdost MR. N-Cα Bond Cleavage Catalyzed by a Multinuclear Iron Oxygenase from a Divergent Methanobactin-like RiPP Gene Cluster. J Am Chem Soc 2024; 146:7313-7323. [PMID: 38452252 PMCID: PMC11062405 DOI: 10.1021/jacs.3c11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.
Collapse
Affiliation(s)
- Vasiliki T Chioti
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jack G Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Zou Z, Ji Y, Schwaneberg U. Empowering Site-Specific Bioconjugations In Vitro and In Vivo: Advances in Sortase Engineering and Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2024; 63:e202310910. [PMID: 38081121 DOI: 10.1002/anie.202310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 12/23/2023]
Abstract
Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Yu Ji
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
47
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
48
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
49
|
Sehnal L, Lo Presti L, Ziemert N. Discovering cryptic natural products by substrate manipulation. Nat Chem 2024; 16:149-151. [PMID: 38267538 DOI: 10.1038/s41557-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Ludek Sehnal
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Libera Lo Presti
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
Kwon T, Hovde BT. Global characterization of biosynthetic gene clusters in non-model eukaryotes using domain architectures. Sci Rep 2024; 14:1534. [PMID: 38233413 PMCID: PMC10794256 DOI: 10.1038/s41598-023-50095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The majority of pharmaceuticals are derived from natural products, bioactive compounds naturally synthesized by organisms to provide evolutionary advantages. Although the rich evolutionary history of eukaryotic algal species implicates a high potential for natural product-based drug discovery, it remains largely untouched. This study investigates 2762 putative biosynthetic gene clusters (BGCs) from 212 eukaryotic algal genomes. To analyze a vast set of structurally diverse BGCs, we employed comparative analysis based on the vectorization of biosynthetic domains, referred to as biosynthetic domain architecture (BDA). By characterizing core biosynthetic machineries through BDA, we identified key BDAs of modular BGCs in diverse eukaryotes and introduced 16 candidate modular BGCs with similar BDAs to previously validated BGCs. This study provides a global characterization of eukaryotic algal BGCs, offering an alternative to laborious manual curation for BGC prioritization.
Collapse
Affiliation(s)
- Taehyung Kwon
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Blake T Hovde
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|