1
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Sarraf TR, Sen M. Wnt5A signaling supports antigen processing and CD8 T cell activation. Front Immunol 2022; 13:960060. [PMID: 36091060 PMCID: PMC9459031 DOI: 10.3389/fimmu.2022.960060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and antigen-specific CD8 T cell activation form part and parcel of cell-mediated immunity to infections. Yet, several lacunae remain in our understanding of how antigen processing and CD8 T cell response are coordinated. In this study, using mouse bone marrow-derived dendritic cells (BMDC) as antigen-presenting cells and Ovalbumin (OVA)/DQ-Ovalbumin (DQ-OVA) as model antigen we demonstrated that Wnt5A signaling in BMDC supports antigen processing/presentation and concomitant CD8 T cell activation through regulation of actin and proteasome dynamics. Recombinant Wnt5A conditioning of BMDC and associated actin assembly facilitated DQ-OVA processing, which was inhibited by the proteasome inhibitor MG132. Moreover, Wnt5A depletion led to a significant reduction in OVA processing and presentation. Impaired DQ-OVA processing in Wnt5A depleted BMDC correlated with altered dynamics of both actin and the proteasome regulator PA28α-PA28β, and reduced association of DQ-OVA with actin and proteasome subunits. Inhibited OVA processing/presentation in the Wnt5A depleted BMDC also resulted in subdued activation of OVA-sensitized CD8 T cells in co-culture with the BMDC. In concurrence with these findings, we demonstrated reduced OVA processing and impaired CD8 T cell response to OVA immunization in Wnt5A heterozygous mice lacking a copy of the Wnt5A gene in comparison to the wild-type cohorts. Taken together, our results reveal a crucial requirement of Wnt5A signaling in antigen processing/presentation and CD8 T cell activation, thus unveiling a vital regulatory node of cell-mediated immunity, unidentified thus far.
Collapse
|
3
|
Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T. Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8α(+) dendritic cells. Oncoimmunology 2021; 1:581-592. [PMID: 22934250 PMCID: PMC3429562 DOI: 10.4161/onci.19893] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PolyI:C is a nucleotide pattern molecule that induces cross-presentation of foreign Ag in myeloid dendritic cells (DC) and MHC Class I-dependent proliferation of cytotoxic T lymphocytes (CTL). DC (BM or spleen CD8α+) have sensors for dsRNA including polyI:C to signal facilitating cross-presentation. Endosomal TLR3 and cytoplasmic RIG-I/MDA5 are reportedly responsible for polyI:C sensing and presumed to deliver signal for cross-presentation via TICAM-1 (TRIF) and IPS-1 (MAVS, Cardif, VISA) adaptors, respectively. In fact, when tumor-associated Ag (TAA) was simultaneously taken up with polyI:C in DC, the DC cross-primed CTL specific to the TAA in a syngenic mouse model. Here we tested which of the TICAM-1 or IPS-1 pathway participate in cross-presentation of tumor-associated soluble Ag and retardation of tumor growth in the setting with a syngeneic tumor implant system, EG7/C57BL6, and exogenously challenged soluble Ag (EG7 lysate) and polyI:C. When EG7 lysate and polyI:C were subcutaneously injected in tumor-bearing mice, EG7 tumor growth retardation was observed in wild-type and to a lesser extent IPS-1−/− mice, but not TICAM-1−/− mice. IRF-3/7 were essential but IPS-1 and type I IFN were minimally involved in the polyI:C-mediated CTL proliferation. Although both TICAM-1 and IPS-1 contributed to CD86/CD40 upregulation in CD8α+ DC, H2Kb-SL8 tetramer and OT-1 proliferation assays indicated that OVA-recognizing CD8 T cells predominantly proliferated in vivo through TICAM-1 and CD8α+ DC is crucial in ex vivo analysis. Ultimately, tumor regresses > 8 d post polyI:C administration. The results infer that soluble tumor Ag induces tumor growth retardation, i.e., therapeutic potential, if the TICAM-1 signal coincidentally occurs in CD8α+ DC around the tumor.
Collapse
Affiliation(s)
- Masahiro Azuma
- Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
| | | | | | | | | |
Collapse
|
4
|
Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci U S A 2020; 117:19399-19407. [PMID: 32719124 DOI: 10.1073/pnas.2004372117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.
Collapse
|
5
|
Gezinir E, Podlech J, Gergely KM, Becker S, Reddehase MJ, Lemmermann NAW. Enhancement of Antigen Presentation by Deletion of Viral Immune Evasion Genes Prevents Lethal Cytomegalovirus Disease in Minor Histocompatibility Antigen-Mismatched Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2020; 10:279. [PMID: 32582572 PMCID: PMC7296086 DOI: 10.3389/fcimb.2020.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Hematoablative treatment followed by hematopoietic cell transplantation (HCT) for reconstituting the co-ablated immune system is a therapeutic option to cure aggressive forms of hematopoietic malignancies. In cases of family donors or unrelated donors, immunogenetic mismatches in major histocompatibility complex (MHC) and/or minor histocompatibility (minor-H) loci are unavoidable and bear a risk of graft-vs.-host reaction and disease (GvHR/D). Transient immunodeficiency inherent to the HCT protocol favors a productive reactivation of latent cytomegalovirus (CMV) that can result in multiple-organ CMV disease. In addition, there exists evidence from a mouse model of MHC class-I-mismatched GvH-HCT to propose that mismatches interfere with an efficient reconstitution of antiviral immunity. Here we used a mouse model of MHC-matched HCT with C57BL/6 donors and MHC-congenic BALB.B recipients that only differ in polymorphic autosomal background genes, including minor-H loci coding for minor-H antigens (minor-HAg). Minor-HAg mismatch is found to promote lethal CMV disease in absence of a detectable GvH response to an immunodominant minor-HAg, the H60 locus-encoded antigenic peptide LYL8. Lethality of infection correlates with inefficient reconstitution of viral epitope-specific CD8+ T cells. Notably, lethality is prevented and control of cytopathogenic infection is restored when viral antigen presentation is enhanced by deletion of immune evasion genes from the infecting virus. We hypothesize that any kind of mismatch in GvH-HCT can induce "non-cognate transplantation tolerance" that dampens not only a mismatch-specific GvH response, which is beneficial, but adversely affects also responses to mismatch-unrelated antigens, such as CMV antigens in the specific case, with the consequence of lethal CMV disease.
Collapse
Affiliation(s)
- Emin Gezinir
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Kerstin M Gergely
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Sara Becker
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
6
|
Chou YJ, Lin CC, Dzhagalov I, Chen NJ, Lin CH, Lin CC, Chen ST, Chen KH, Fu SL. Vaccine adjuvant activity of a TLR4-activating synthetic glycolipid by promoting autophagy. Sci Rep 2020; 10:8422. [PMID: 32439945 PMCID: PMC7242473 DOI: 10.1038/s41598-020-65422-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptors (TLRs) play crucial roles in host immune defenses. Recently, TLR-mediated autophagy is reported to promote immune responses via increasing antigen processing and presentation in antigen presenting cells. The present study examined whether the synthetic TLR4 activator (CCL-34) could induce autophagy to promote innate and adaptive immunity. In addition, the potential of CCL-34 as an immune adjuvant in vivo was also investigated. Our data using RAW264.7 cells and bone marrow-derived macrophages showed that CCL-34 induced autophagy through a TLR4-NF-κB pathway. The autophagy-related molecules (Nrf2, p62 and Beclin 1) were activated in RAW264.7 cells and bone marrow-derived macrophages under CCL-34 treatment. CCL-34-stimulated macrophages exhibited significant antigen-processing activity and induced the proliferation of antigen-specific CD4+T cells as well as the production of activated T cell-related cytokines, IL-2 and IFN-γ. Furthermore, CCL-34 immunization in mice induced infiltration of monocytes in the peritoneal cavity and elevation of antigen-specific IgG in the serum. CCL-34 treatment in vivo did not cause toxicity based on serum biochemical profiles. Notably, the antigen-specific responses induced by CCL-34 were attenuated by the autophagy inhibitor, 3-methyladenine. In summary, we demonstrated CCL-34 can induce autophagy to promote antigen-specific immune responses and act as an efficient adjuvant.
Collapse
Affiliation(s)
- Yi-Ju Chou
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan
| | - Ching-Cheng Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Kuo-Hsin Chen
- Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, 22060, Taiwan.
| | - Shu-Ling Fu
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Traditional Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
7
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
8
|
Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 2018; 115:E6817-E6825. [PMID: 29967140 DOI: 10.1073/pnas.1719451115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lifelong interactions between host and the ubiquitous and persistent cytomegalovirus (CMV) have been proposed to contribute to the age-related decline in immunity. Prior work from us and others found some support for that idea, yet evidence that this led to increased vulnerability to other infections was not obtained. Moreover, evidence has accumulated that CMV infection can be beneficial to immune defense in young/adult mice and humans, dominantly via enhanced innate immunity. Here, we describe an unexpected impact of murine CMV (MCMV) upon the T cell response of old mice to Listeria monocytogenes expressing the model antigen, OVA (Lm-OVA). Single-cell sequencing of the OVA-specific CD8 T cell receptor β (TCRβ) repertoire of old mice demonstrated that old MCMV-infected mice recruited many diverse clonotypes that afforded broad and often more efficient recognition of antigenic peptide variants. This stood in contrast to old control mice, which exhibited strong narrowing and homogenization of the elicited repertoire. High-throughput sequencing of the total naïve CD8 TCRβ repertoire showed that many of these diverse OVA-specific clonotypes were present in the naïve CD8 repertoire of mice in all groups (adult, old control, and old MCMV+) yet were only recruited into the Lm-OVA response in MCMV+ old mice. These results have profound implications for our understanding of T cell immunity over a life span and suggest that our coevolution with CMV may include surprising, potentially positive impacts on adaptive heterologous immunity in late life.
Collapse
|
9
|
Wakabayashi A, Shimizu M, Shinya E, Takahashi H. HMGB1 released from intestinal epithelia damaged by cholera toxin adjuvant contributes to activation of mucosal dendritic cells and induction of intestinal cytotoxic T lymphocytes and IgA. Cell Death Dis 2018; 9:631. [PMID: 29795370 PMCID: PMC5967345 DOI: 10.1038/s41419-018-0665-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Cholera toxin (CT) is a potent mucosal adjuvant and oral administration of ovalbumin (OVA) antigens plus CT induces OVA-specific CD8+ cytotoxic T lymphocytes (CTLs) and IgA production in intestinal mucosa. However, the mechanisms of induction of these immune responses remain unknown. Intestinal OVA-specific CD8+ CTLs were not induced by oral administration of the CT active (CTA) or CT binding (CTB) subunit as an adjuvant and CD11c+ DCs were involved in cross-priming of intestinal CTLs. CD8+CD103+CD11c+CD11b-DCs and DCIR2+CD103+CD11c+CD11b+ DCs were distributed in the intestinal lamina propria and mesenteric lymph nodes, both DC subsets expressed DEC-205, and the expression of co-stimulatory molecules such as CD80 and CD86 was enhanced in both DC subsets after oral administration of intact CT but not the CTA or CTB subunit. Intestinal DCs activated by the oral administration of OVA plus CT cross-presented OVA antigens and DCs that captured OVA antigen through DEC-205, but not DCIR2, could cross-present antigen. We found that oral administration of intact CT, but not the CTA or CTB subunit, enhanced cell death, cytoplasmic expression of high-mobility group box 1 protein (HMGB1) in epithelial cell adhesion molecule (EpCAM)+CD45- intestinal epithelial cells (IECs), and HMGB1 levels in fecal extracts. HMGB1 dose-dependently enhanced the expression of CD80 and CD86 on DCs in vitro, and intravenous or oral administration of glycyrrhizin, an HMGB1 inhibitor, significantly suppressed activation of mucosal DCs and induction of intestinal OVA-specific CTLs and IgA by oral CT administration. These results showed that oral administration of intact CT triggers epithelial cell death in the gut and the release of HMGB1 from damaged IECs, and that the released HMGB1 may mediate activation of mucosal DCs and induction of CTLs and IgA in the intestine.
Collapse
Affiliation(s)
- Ayako Wakabayashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Eiji Shinya
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
10
|
Ito T, Hirahara K, Onodera A, Koyama-Nasu R, Yano I, Nakayama T. Anti-tumor immunity via the superoxide-eosinophil axis induced by a lipophilic component of Mycobacterium lipomannan. Int Immunol 2017; 29:411-421. [DOI: 10.1093/intimm/dxx051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 01/21/2023] Open
|
11
|
Zufferey A, Speck ER, Machlus KR, Aslam R, Guo L, McVey MJ, Kim M, Kapur R, Boilard E, Italiano JE, Semple JW. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv 2017; 1:1773-1785. [PMID: 29296823 PMCID: PMC5728336 DOI: 10.1182/bloodadvances.2017007021] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Megakaryocytes (MKs) are bone marrow-derived cells that are primarily responsible for generating platelets for the maintenance of hemostasis. Although MK can variably express major histocompatibility complex (MHC) class I and II molecules during their differentiation, little is known whether they can elicit nonhemostatic immune functions such as T-cell activation. Here, we demonstrate that mature CD34- MHC class II- CD41+ MKs can endocytose exogenous ovalbumin (OVA) and proteolytically generate its immunogenic peptide ligand, which is crosspresented on their surface in association with MHC class I molecules. This crosspresentation triggered in vitro and in vivo OVA-specific CD8+ T-cell activation and proliferation. In addition, the OVA-MHC class I complexes were transferred from MK to pro-platelets upon thrombopoiesis in vitro. MK could also present endogenous MK-associated (CD61) peptides to activate CD61-specific CD8+ T cells and mediate immune thrombocytopenia in vivo. These results suggest that, in addition to their hemostatic role, mature MKs can significantly affect antigen-specific CD8+ T-cell responses via antigen presentation and are able to spread this immunogenic information through platelets.
Collapse
Affiliation(s)
- Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Edwin R Speck
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Kellie R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rukhsana Aslam
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Li Guo
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Mark J McVey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Anesthesia and Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael Kim
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; and
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Maelfait J, Bridgeman A, Benlahrech A, Cursi C, Rehwinkel J. Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1. Cell Rep 2016; 16:1492-1501. [PMID: 27477283 PMCID: PMC4978700 DOI: 10.1016/j.celrep.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection. Spontaneous IFN production in SAMHD1-deficient cells requires cGAS and STING During HIV-1 infection, SAMHD1 limits activation of myeloid cells cGAS and STING detect HIV-1 infection in SAMHD1-deficient cells and induce IFN SAMHD1 prevents virus-specific CD8 T cell responses in vivo
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adel Benlahrech
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine and Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Leblanc P, Moise L, Luza C, Chantaralawan K, Lezeau L, Yuan J, Field M, Richer D, Boyle C, Martin WD, Fishman JB, Berg EA, Baker D, Zeigler B, Mais DE, Taylor W, Coleman R, Warren HS, Gelfand JA, De Groot AS, Brauns T, Poznansky MC. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever. Hum Vaccin Immunother 2015; 10:3022-38. [PMID: 25483693 DOI: 10.4161/hv.34413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.
Collapse
Key Words
- 6MDP, 6-muramyl dipeptide
- CGE, Capillary Gel Electrophoresis
- CLO97, TLR7 ligand
- CTL, Cytotoxic T-lymphocyte
- CpG1826, Synthetic Oligodeoxynucleotide containing unmethylated dinucleotide sequences (Toll-like receptor 9 agonist)
- DARPA, Defense Advanced Research Projects Agency
- EIDs, Emerging Infectious Diseases
- Flu vaccine
- GLP, Good Laboratory Practice
- GMP, Good Manufacturing Practice
- GP1, Glycoprotein-1
- GP2, Glycoprotein-2
- HLA, Human Leukocyte Antigen
- HRP, Horseradish Peroxidase
- LV, Lassa Fever Virus
- Lassa fever virus
- MAV, Mycobacterium tuberculosis Heat Shock Protein 70 – Avidin
- MtbHSP70, Mycobacterium tuberculosis Heat Shock Protein 70
- NHP, Non-human Primates
- OVA, Ovalbumin
- PAGE, Polyacrylamide Gel Electrophoresis
- PBMC, Peripheral Blood Mononuclear Cell
- PEG, Polyethyleneglycol
- RVKR, Furin Cleavage Site (Arginine, Valine, Lysine, Arginine)
- SAV, Self-assembled vaccine
- SAVL; Self-assembled vaccine formulated for Lassa Fever Virus
- VaxCelerate
- arenavirus
- emerging infectious diseases
- mycobacterium tuberculosis heat shock protein 70
- peptide design
- self-assembled vaccine
- vaccine
Collapse
Affiliation(s)
- Pierre Leblanc
- a Vaccine and Immunotherapy Center; Massachusetts General Hospital ; Charlestown , MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int J Pharm 2015; 491:375-83. [DOI: 10.1016/j.ijpharm.2015.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
|
15
|
Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 2015. [PMID: 26209187 DOI: 10.1016/j.imlet.2015.07.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major effector cells for cellular adaptive immunity are CD8(+) cytotoxic T lymphocytes (CTLs), which can recognize and kill virus-infected cells and tumor cells. Although CTLs exhibit strong cytolytic activity against target cells in vitro, a number of studies have demonstrated that their function is often impaired within tumors. Nevertheless, CTLs can regain their cytotoxic ability after escaping from the tumor environment, suggesting that the milieu created by tumors may affect the function of CTLs. As for the tumor environment, the patho-physiological situation present in vivo has been shown to differ from in vitro experimental conditions. In particular, low pH and hypoxia are the most important microenvironmental factors within growing tumors. In the present study, to determine the effect of these factors on CTL function in vivo, we examined the cytolytic activity of CTLs against their targets using murine CTL lines and the induction of these cells from memory cells under low pH or hypoxic conditions using antigen-primed spleen cells. The results indicated that both cytotoxic activity and the induction of functional CTLs were markedly inhibited under low pH. In contrast, in hypoxic conditions, although cytotoxic activity was almost unchanged, the induction of CTLs in vitro showed a slight enhancement, which was completely abrogated in low pH conditions. Therefore, antigen-specific CTL functions may be more vulnerable to low pH than to the oxygen concentration in vivo. The findings shown here provide new therapeutic approaches for controlling tumor growth by retaining CTL cytotoxicity through the maintenance of higher pH conditions.
Collapse
Affiliation(s)
- Yohko Nakagawa
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Megumi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Masao Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
16
|
Holm BE, Bergmann AC, Hansen PR, Koch C, Houen G, Trier NH. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays. APMIS 2014; 123:136-45. [DOI: 10.1111/apm.12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Eide Holm
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
| | - Ann Christina Bergmann
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
- Department of Biochemistry and Molecular Biology; Southern University of Denmark; Odense Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Claus Koch
- Department of Cancer and Inflammation; Institute for Molecular Medicine; Southern University of Denmark; Odense Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
| | - Nicole Hartwig Trier
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
| |
Collapse
|
17
|
The activating Ly49W and inhibitory Ly49G NK cell receptors display similar affinities for identical MHC class I ligands. Immunogenetics 2014; 66:467-77. [DOI: 10.1007/s00251-014-0777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/23/2014] [Indexed: 01/26/2023]
|
18
|
Characterization of beta-tricalcium phosphate as a novel immunomodulator. Int Immunopharmacol 2014; 19:45-51. [DOI: 10.1016/j.intimp.2013.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 11/22/2022]
|
19
|
Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol Ther 2013; 22:464-475. [PMID: 24166483 DOI: 10.1038/mt.2013.248] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/16/2013] [Indexed: 12/14/2022] Open
Abstract
Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.
Collapse
|
20
|
Xie J, Huppa JB, Newell EW, Huang J, Ebert PJR, Li QJ, Davis MM. Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be 'preferentially' transported to the cSMAC. Nat Immunol 2012; 13:674-80. [PMID: 22660579 PMCID: PMC3645478 DOI: 10.1038/ni.2344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022]
Abstract
The binding of T cell antigen receptors (TCRs) to specific complexes of peptide and major histocompatibility complex (pMHC) is typically of very low affinity, which necessitates the use of multimeric pMHC complexes to label T lymphocytes stably. We report here the development of pMHC complexes able to be crosslinked by ultraviolet irradiation; even as monomers, these efficiently and specifically stained cognate T cells. We also used this reagent to probe T cell activation and found that a covalently bound pMHC was more stimulatory than an agonist pMHC on lipid bilayers. This finding suggested that serial engagement of TCRs is dispensable for activation when a substantial fraction of TCRs are stably engaged. Finally, pMHC-bound TCRs were 'preferentially' transported into the central supramolecular activation cluster after activation, which suggested that ligand engagement enabled linkage of the TCR and its associated CD3 signaling molecules to the cytoskeleton.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Distinct CD4+ helper T cells involved in primary and secondary responses to infection. Proc Natl Acad Sci U S A 2012; 109:9511-6. [PMID: 22645349 DOI: 10.1073/pnas.1202408109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helper T cells are critical for protective immunity, CD8(+) T-cell memory, and CD4(+) recall responses, but whether the same or distinct CD4(+) T cells are involved in these responses has not been established. Here we describe two CD4(+) T cells, LLO118 and LLO56, specific for an immunodominant Listeria monocytogenes epitope, with dramatically different responses to primary and secondary infection. Comparing in vivo responses, LLO118 T cells proliferate more strongly to primary infection, whereas surprisingly, LLO56 has a superior CD4(+) recall response to secondary infection. LLO118 T cells provide more robust help for CD8(+) T-cell responses to secondary infection than LLO56. We found no detectable differences in antigen sensitivity, but naive LLO118 T cells have much lower levels of CD5 and their T-cell receptor levels are dramatically down-regulated after their strong primary response. Thus, distinct CD4(+) helper T cells are specialized to help either in primary or secondary responses to infection.
Collapse
|
22
|
Modeling the Kinetics of the Immune Response. NEW CHALLENGES FOR CANCER SYSTEMS BIOMEDICINE 2012. [DOI: 10.1007/978-88-470-2571-4_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Fu X, Tao L, Zhang X. A short polypeptide from the herpes simplex virus type 2 ICP10 gene can induce antigen aggregation and autophagosomal degradation for enhanced immune presentation. Hum Gene Ther 2011; 21:1687-96. [PMID: 20583863 DOI: 10.1089/hum.2010.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It has been reported that certain polypeptides derived from aggregation-prone cellular proteins can turn soluble green fluorescent protein (GFP) into aggregates. Here we report our finding that a short peptide derived from a viral gene, ICP10 of herpes simplex virus (HSV)-2, also possesses such a property. A sequence as short as 13 amino acids from the middle region of the gene can convert GFP into an aggregation-prone toxic protein once it is fused to the C terminus. Moreover, this short peptide can direct a surrogate tumor antigen into the autophagosome/lysosome degradation pathway, drastically increasing both MHC class I and class II antigen presentation. The simultaneous induction of both arms of the T cell immune response to the tumor antigen effectively protects the immunized animals from tumor challenge. Designated VIPA (i.e., viral inducer of protein aggregation), this unique viral sequence may represent an attractive candidate as a molecular adjuvant for cancer immunotherapy and for other immunologically preventable diseases.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
24
|
Benson HL, Mobashery S, Chang M, Kheradmand F, Hong JS, Smith GN, Shilling RA, Wilkes DS. Endogenous matrix metalloproteinases 2 and 9 regulate activation of CD4+ and CD8+ T cells. Am J Respir Cell Mol Biol 2010; 44:700-8. [PMID: 20639459 DOI: 10.1165/rcmb.2010-0125oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We reported that inhibiting matrix metalloproteinases (MMP), known to remodel the extracellular matrix, also down-regulated antigen-specific T-cell responses. However, the direct role of MMP2 and MMP9 in regulating intracellular function in T cells is unknown. Markers of cellular activation and cytokine profiles were examined in anti-CD3-stimulated wild-type C57BL/6 mouse-derived CD4(+) or CD8(+) T cells, or MMP2- or MMP9-deficient (-/-) mice. MMP-sufficient T cells were also treated with SB-3CT, a highly selective inhibitor of MMP2 and MMP9. The effect of MMP-specific inhibition on T cell-dependent, antigen-specific murine lung injury was examined in vivo. SB-3CT induced dose-dependent reductions in anti-CD3-stimulated T-cell proliferation. Although MMP2(-/-) cells were reduced 20%, anti-CD3-induced proliferation was down-regulated 80-85% in MMP9(-/-) or in SB-3CT-treated wild-type CD4(+) and CD8(+) T cells. Intracellular calcium flux was augmented in response to MMP inhibition or deficiency in the same cells, and IL-2 production was reduced in CD4(+) and CD8(+) MMP9(-/-) T cells. SB-3CT-mediated MMP2 and MMP9 inhibition abrogated antigen-specific CD8(+) T cell-mediated lung injury in vivo. MMPs, particularly MMP9, may function intracellularly to regulate T-cell activation. T cell-targeted MMP inhibition may provide a novel approach of immune regulation in the treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Heather L Benson
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Juang J, Ebert PJ, Feng D, Garcia KC, Krogsgaard M, Davis MM. Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection. J Exp Med 2010; 207:1223-34. [PMID: 20457759 PMCID: PMC2882826 DOI: 10.1084/jem.20092170] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 04/08/2010] [Indexed: 11/04/2022] Open
Abstract
T cell selection and maturation in the thymus depends on the interactions between T cell receptors (TCRs) and different self-peptide-major histocompatibility complex (pMHC) molecules. We show that the affinity of the OT-I TCR for its endogenous positively selecting ligands, Catnb-H-2Kb and Cappa1-H-2Kb, is significantly lower than for previously reported positively selecting altered peptide ligands. To understand how these extremely weak endogenous ligands produce signals in maturing thymocytes, we generated soluble monomeric and dimeric peptide-H-2Kb ligands. Soluble monomeric ovalbumin (OVA)-Kb molecules elicited no detectable signaling in OT-I thymocytes, whereas heterodimers of OVA-Kb paired with positively selecting or nonselecting endogenous peptides, but not an engineered null peptide, induced deletion. In contrast, dimer-induced positive selection was much more sensitive to the identity of the partner peptide. Catnb-Kb-Catnb-Kb homodimers, but not heterodimers of Catnb-Kb paired with a nonselecting peptide-Kb, induced positive selection, even though both ligands bind the OT-I TCR with detectable affinity. Thus, both positive and negative selection can be driven by dimeric but not monomeric ligands. In addition, positive selection has much more stringent requirements for the partner self-pMHC.
Collapse
Affiliation(s)
- Jeremy Juang
- The Department of Microbiology and Immunology, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Peter J.R. Ebert
- The Department of Microbiology and Immunology, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Dan Feng
- The Department of Microbiology and Immunology, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - K. Christopher Garcia
- The Department of Microbiology and Immunology, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Michelle Krogsgaard
- Department of Pathology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | - Mark M. Davis
- The Department of Microbiology and Immunology, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
26
|
Hu J, Cladel N, Balogh K, Christensen N. Mucosally delivered peptides prime strong immunity in HLA-A2.1 transgenic rabbits. Vaccine 2010; 28:3706-13. [PMID: 20332046 PMCID: PMC2879011 DOI: 10.1016/j.vaccine.2010.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 12/22/2022]
Abstract
DNA vaccines delivered subcutaneously by gene-gun have generated strong protective and therapeutic immunity in rabbits. Recent studies have shown that peptides delivered by the mucosal routes also stimulate local and systemic immune responses. Since mucosal delivery is easier to administer and more cost-effective when compared to gene-gun delivery, we were interested to learn whether mucosally delivered peptides would prime protective immunity comparable to that of gene-gun-delivered DNA in rabbits. Our newly developed HLA-A2.1 transgenic rabbit model was used to test the hypothesis. We chose an HLA-A2.1 restricted cottontail rabbit papillomavirus (CRPV) E1 epitope (E1/303-311, MLQEKPFQL) for the peptide immunization studies because it provided complete protection when used as a DNA vaccine. Adjuvant has been widely used to boost immunity for vaccines. In this study, three adjuvants reported to be effective for rabbits (TT helper motif, PADRE and CpG2007) were tested with the peptide vaccine. Peptide alone or fused to TT helper or PADRE to create chimeric peptides was delivered by two mucosal routes (ocular and intranasal) together. Partial protection was found in HLA-A2.1 transgenic rabbits when peptide was delivered mucosally in the presence of adjuvant. When a subsequent booster of a half-dose of the corresponding DNA vaccine was delivered, complete protections were achieved. We conclude that mucosal peptide immunization can be combined with a single DNA vaccination to provide strong protective immunity in rabbits.
Collapse
Affiliation(s)
- Jiafen Hu
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. <>
| | | | | | | |
Collapse
|
27
|
White KL, Rades T, Furneaux RH, Tyler PC, Hook S. Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol 2010; 58:729-37. [PMID: 16734974 DOI: 10.1211/jpp.58.6.0003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
The immune stimulating ability of mannosylated liposomes containing FITC-ovalbumin as a model antigen and displaying either a branched tri-mannose or a mono-mannose ligand on the liposome surface was investigated in human monocyte-derived dendritic cells (MoDCs) and murine bone-marrow-derived dendritic cells (BMDCs). Uptake of liposomes, dendritic cell activation and proliferation of CD8+ T cells from OT-I transgenic mice were determined by flow cytometry. Uptake of liposomes displaying the tri-mannose ligand was enhanced in human MoDCs compared with both non-mannosylated liposomes and liposomes displaying mono-mannose ligands. However, this increased uptake did not result in an increase in expression of CD80 or CD86 on the surface of the MoDCs. In contrast, neither tri-mannose- nor mono-mannose-containing liposomes were taken up by murine BMDCs to a greater extent than non-mannose-containing liposomes. The expression of CD86 and CD40 on the surface of BMDCs was not increased after exposure to mannosylated lipo-somes and BMDCs incubated with mannosylated liposomes were not able to stimulate proliferation of CD8+ T cells to any greater extent than BMDCs incubated with non-mannosylated liposomes. These findings suggest that while mannose-containing ligands can enhance the uptake of antigen-containing liposomes by some dendritic cells, important differences in the affinity of carbohydrate-binding receptors for mannose-containing ligands do exist between species. In addition, the increase in uptake of antigen by dendritic cells using mannosylated liposomes does not necessarily result in enhanced dendritic cell activation.
Collapse
Affiliation(s)
- Karen L White
- School of Pharmacy, University of Otago, PO Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
28
|
Ordaz ML, Larmonier N, Lybarger L. DC-expressed MHC class I single-chain trimer-based vaccines prime cytotoxic T lymphocytes against exogenous but not endogenous antigens. Cell Immunol 2010; 262:141-9. [PMID: 20199770 DOI: 10.1016/j.cellimm.2010.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/05/2010] [Indexed: 11/30/2022]
Abstract
The poor immunogenicity of many tumors can be partly explained by the inefficiency of the MHC class I peptide presentation pathway. MHC-I-based single-chain trimers (SCT) represent a new class of molecules with the potential to overcome this limitation. We here evaluated the ability of SCT presenting a melanoma antigen peptide (TRP-2) to prime cytotoxic T lymphocyte (CTL) responses in mice when given as DNA vaccines via Gene Gun or when expressed by dendritic cells. The SCT was unable to induce detectable priming or significant anti-tumor activity of CTL using either vaccination strategy, whereas control SCT (with an exogenous peptide) primed strong responses. This study thus provides the first data related to the use of SCT in combination with DC and their application toward self antigens and suggest this potent technology, alone, is insufficient to overcome self tolerance.
Collapse
Affiliation(s)
- Maria L Ordaz
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, United States
| | | | | |
Collapse
|
29
|
Jordan KA, Wilson EH, Tait ED, Fox BA, Roos DS, Bzik DJ, Dzierszinski F, Hunter CA. Kinetics and phenotype of vaccine-induced CD8+ T-cell responses to Toxoplasma gondii. Infect Immun 2009; 77:3894-901. [PMID: 19528214 PMCID: PMC2738025 DOI: 10.1128/iai.00024-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/25/2009] [Accepted: 06/04/2009] [Indexed: 11/20/2022] Open
Abstract
Multiple studies have established that the ability of CD8(+) T cells to act as cytolytic effectors and produce gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To better understand the generation of the antigen-specific CD8(+) T-cell responses induced by T. gondii, mice were immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8(+) T cells. The peak CD8(+) T-cell response was found at day 10 postimmunization, after which the frequency and numbers of antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-specific CD8(+) effector T cells was found to require CD4(+) T-cell help. At 7 days following immunization, antigen-specific cells were found to be CD62L(low), KLRG1(+), and CD127(low), and they maintained this phenotype for more than 70 days. Antigen-specific CD8(+) effector T cells in immunized mice exhibited potent perforin-dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that correlate with protective immunity to T. gondii and identifies a critical role for CD4(+) T cells in the generation of protective CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Kimberly A Jordan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mizuki N, Inoko H, Ohno S. Role of HLA and T lymphocytes in the immune response. Ocul Immunol Inflamm 2009; 2:57-91. [DOI: 10.3109/09273949409057064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Lazoura E, Lodding J, Farrugia W, Day S, Ramsland PA, Apostolopoulos V. Non-canonical anchor motif peptides bound to MHC class I induce cellular responses. Mol Immunol 2008; 46:1171-8. [PMID: 19118903 DOI: 10.1016/j.molimm.2008.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/05/2008] [Accepted: 11/11/2008] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which results in the initiation of a T cell dependent immune response. An understanding of how peptides bind to MHC molecules is important for determining the structural basis for T cell dependent immune responses and facilitates the structure-based design of peptides as candidate vaccines to elicit a specific immune response. To date, crystal structures, immunogenicity and in vivo biological relevance have mainly been characterized for high affinity peptide-MHC interactions. From the crystal structures of numerous peptide-MHC complexes it became apparent what canonical sequence features were required for high affinity binding, which led to the ability to predict in most instances peptides with high affinity for MHC. We previously identified the crystal structures of non-canonical peptides in complex with MHC class I (one bound with low affinity and the other with high affinity, but utilizing novel peptide anchors and MHC pockets). It is becoming increasingly evident that other non-canonical peptides can also bind, such as long-, short- and glyco-peptides. However, the in vivo role of non-canonical peptides is not clear and we present here the immunogenicity of two non-canonical peptides and their affinity when bound to MHC class I, H2K(b). Comparison of the three-dimensional structures in complex with MHC suggests major differences in hydrogen bonding patterns with H2K(b), despite sharing similar binding modes, which may account for the differences in affinity and immunogenicity. These studies provide further evidence for the diverse range of peptide ligands that can bind to MHC and be recognized by the TCR, which will facilitate approaches to peptide-based vaccine design.
Collapse
Affiliation(s)
- Eliada Lazoura
- Immunology and Vaccine Laboratory, Centre for Immunology, The Macfarlane Burnet Institute for Medical Research and Public Health, Austin Campus, VIC, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, Noelle RJ. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. THE JOURNAL OF IMMUNOLOGY 2008; 181:354-63. [PMID: 18566401 DOI: 10.4049/jimmunol.181.1.354] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF-kappaB-inducing kinase (NIK) is responsible for activation of the non-canonical p100 processing pathway of NF-kappaB activation. This kinase has been shown to be critical for activation of this pathway after signaling through several TNF family members including CD40. The functional importance of this pathway in CD40 and TLR-induced dendritic cell (DC) differentiation was studied in vivo in the alymphoplasia (Aly) mouse. The Aly mouse expresses a mutant NIK molecule that prohibits the induction of the non-canonical pathway. We show that while MHC class II presentation and in vivo migration of Aly DCs is intact, these cells are unable to cross-prime CD8+ T cells to exogenous Ag. Gene expression array analysis of DCs matured in vivo indicates multiple defects in Ag processing pathways after maturation and provide a global view of the genes that are regulated by the NF-kappaB2 pathway in DCs. These experiments indicate a possible role for NIK in mediating cross-priming of soluble Ag. In addition, our findings explain the profound immune unresponsiveness of the Aly mouse.
Collapse
Affiliation(s)
- Evan F Lind
- Department of Microbiology and Immunology, Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hansen T, Myers N. Peptide induction of surface expression of class I MHC. ACTA ACUST UNITED AC 2008; Chapter 18:Unit 18.11. [PMID: 18432904 DOI: 10.1002/0471142735.im1811s57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes a method for comparing the relative binding of different peptides to the same MHC class I (MHC-I) molecule using live cells. Live cells expressing suboptimally loaded MHC-I proteins are incubated with medium containing diluted amounts of synthetic peptides to be tested for binding to class I. After overnight incubation with peptide, surface class I expression is monitored by flow cytometry using an allele-specific MAb. Relative binding affinity of peptide reliably correlates with the amount of surface induction of the class I molecule to which it specifically binds. The mechanistic basis of this assay is that surface MHC-I molecules become conformationally unstable shortly after peptide dissociation. However, the binding of an exogenous peptide can stabilize the surface class I molecule, prevent conformational instability, and thus increase class I surface expression in an allele-specific manner.
Collapse
Affiliation(s)
- Ted Hansen
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
34
|
Regulation of protein translation through mRNA structure influences MHC class I loading and T cell recognition. Proc Natl Acad Sci U S A 2008; 105:9319-24. [PMID: 18591662 DOI: 10.1073/pnas.0801968105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many viruses avoid immune surveillance during latent infection through reduction in the synthesis of virally encoded proteins. Although antigen presentation critically depends on the level of viral protein synthesis, the precise mechanism used to regulate the generation of antigenic peptide precursors remains elusive. Here, we demonstrate that a purine overloaded virally encoded mRNA lacking secondary structure significantly impacts the efficiency of protein translation and prevents endogenous antigen presentation. Reducing this purine bias through the generation of constructs expressing codon-modified sequences, while maintaining the encoded protein sequence, increased the stem-loop structure of the corresponding mRNA and dramatically enhanced self-synthesis of the viral protein. As a consequence, a higher number of HLA-peptide complexes were detected on the surface of cells expressing this viral protein. Furthermore, these cells were more efficiently recognized by virus-specific T cells compared with those expressing the same antigen expressed by a purine-biased mRNA. These findings delineate a mechanism by which viruses regulate self-synthesis of proteins and offer an effective strategy to evade CD8(+) T cell-mediated immune regulation.
Collapse
|
35
|
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 2008; 38:1033-42. [PMID: 18350546 DOI: 10.1002/eji.200737995] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Anti-tumor vaccines consisting of extended CTL peptides in combination with CpG-ODN were shown to be superior to those comprising minimal CTL epitopes and CpG-ODN, in that they elicit stronger effector CTL responses with greater tumoricidal potential. We now demonstrate that this improved performance is primarily due to the focusing of CTL epitope presentation onto activated DC in the inflamed lymph nodes draining the vaccination site. In the case of vaccination with minimal peptides, additional APC including T and B cells are also loaded with CTL epitopes. Our data suggest that circulation of these peptide-loaded lymphocytes leads to epitope presentation in non-inflamed lymphoid organs distal from the vaccination site, in the absence of potent costimulatory signals required for efficient CTL priming. The resulting blend of pro-immunogenic and tolerogenic signals, which results in suboptimal activation of the CTL response, is avoided by vaccinating with extended CTL peptides. An additional advantage of extended CTL peptide vaccines is an increased duration of in vivo epitope presentation.
Collapse
Affiliation(s)
- Martijn S Bijker
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Wakabayashi A, Nakagawa Y, Shimizu M, Moriya K, Nishiyama Y, Takahashi H. Suppression of an Already Established Tumor Growing through Activated Mucosal CTLs Induced by Oral Administration of Tumor Antigen with Cholera Toxin. THE JOURNAL OF IMMUNOLOGY 2008; 180:4000-10. [DOI: 10.4049/jimmunol.180.6.4000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111:3684-91. [PMID: 18256321 DOI: 10.1182/blood-2007-05-091728] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Collagen exposure in tissue activates platelets, initiates wound healing, and modulates adaptive immunity. In this report, data are presented to demonstrate a requirement for platelet-derived CD154 for both collagen-induced augmentation of T-cell immunity and induction of pro-tective immunity to Listeria challenge. Specifically, we demonstrate that Ad5 encoding the membrane-bound form of ovalbumin (Ad5-mOVA) delivered in collagen induces higher ovalbumin-specific cytotoxic T lymphocyte (CTL) activity in a dose-dependent manner compared with Ad5-mOVA delivered in PBS. Increased CTL activity was dependent on the ability of platelets to respond to collagen and to express CD154. Furthermore, mice immunized with low-dose Ad5-mOVA in collagen were able to control a challenge of Listeria monocytogenes recombinant for ovalbumin expression (Lm-OVA), whereas mice immunized with low-dose Ad5-mOVA in PBS were not. These data indicate that in a physiologic setting that mimics wounding, platelets perform a sentinel function when antigen dose is too low to provoke an efficient immune response, and can enhance the generation of antigen-specific CD8 T cells that are functionally relevant to the host.
Collapse
|
38
|
Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 2007; 25:8622-36. [PMID: 17959279 DOI: 10.1016/j.vaccine.2007.09.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
The utility of archaeal polar lipids as an adjuvant/delivery system for elicitation of antigen-specific mucosal immune responses in intranasally administered vaccines was investigated. Although unilamellar archaeosomes (liposomes made from archaeal polar lipids) with encapsulated ovalbumin (OVA/archaeosomes) induced anti-OVA IgG antibody responses in sera, they failed to induce anti-OVA IgA antibody responses at mucosal sites. However, the addition of CaCl2 to convert OVA/archaeosomes into an archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) vaccine (OVA/AMVAD) consisting of larger, particulate, aggregated structures resulted in an efficacious intranasal (i.n.) vaccine. Intranasal immunization of mice with OVA/AMVAD vaccines prepared from various archaeal polar lipid compositions elicited anti-OVA IgA antibody responses in sera, feces, bile, vaginal and nasal wash samples. The i.n. immunization also induced anti-OVA IgG, IgG1 and IgG2a antibody responses in sera, as well as cytotoxic T lymphocyte responses. The mucosal and systemic immune responses induced by OVA/AMVAD immunization were generally sustained over several months, and were subject to memory boost responses. Thus, polar archaeal lipids appear to be promising for developing a non-replicating mucosal adjuvant and vaccine delivery system.
Collapse
|
39
|
Truscott SM, Lybarger L, Martinko JM, Mitaksov VE, Kranz DM, Connolly JM, Fremont DH, Hansen TH. Disulfide bond engineering to trap peptides in the MHC class I binding groove. THE JOURNAL OF IMMUNOLOGY 2007; 178:6280-9. [PMID: 17475856 DOI: 10.4049/jimmunol.178.10.6280] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominant peptides in CD8 T cell responses to pathogens and tumors are not always tight binders to MHC class I molecules. Furthermore, antigenic peptides that bind weakly to the MHC can be problematic when designing vaccines to elicit CD8 T cells in vivo or for the production of MHC multimers for enumerating pathogen-specific T cells in vitro. Thus, to enhance peptide binding to MHC class I, we have engineered a disulfide bond to trap antigenic peptides into the binding groove of murine MHC class I molecules expressed as single-chain trimers or SCTs. These SCTs with disulfide traps, termed dtSCTs, oxidized properly in the endoplasmic reticulum, transited to the cell surface, and were recognized by T cells. Introducing a disulfide trap created remarkably tenacious MHC/peptide complexes because the peptide moiety of the dtSCT was not displaced by high-affinity competitor peptides, even when relatively weak binding peptides were incorporated into the dtSCT. This technology promises to be useful for DNA vaccination to elicit CD8 T cells, in vivo study of CD8 T cell development, and construction of multivalent MHC/peptide reagents for the enumeration and tracking of T cells-particularly when the antigenic peptide has relatively weak affinity for the MHC.
Collapse
Affiliation(s)
- Steven M Truscott
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramírez F, Ghani Y, Gao L, Stauss H. Dendritic cell immunization induces Nonprotective WT1-specific CTL responses in mouse. J Immunother 2007; 30:140-9. [PMID: 17471162 DOI: 10.1097/01.cji.0000211328.76266.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present article we describe the immunogenicity in the mouse of 2 epitopes from the tumor-associated antigen Wilms tumor 1 antigen (WT1). The newly described K-restricted pWT330 epitope stimulates high-avidity allo-major histocompatibility complex restricted cytotoxic T lymphocyte (CTL) capable of killing WT1-expressing tumor cell lines. The epitope pWT126 has been previously described as a D-restricted CTL epitope. Both epitopes are weakly immunogenic as immunization with incomplete Freund adjuvant induced poor CTL responses. In contrast, when coated onto dendritic cells (DCs) both peptides readily induced CTL responses. However, these peptide-specific CTL were of low avidity and unable to recognize WT1-expressing tumor cells in vitro and to protect against tumor challenge in vivo. In contrast, vaccination with DCs coated with peptides derived from the nonself antigen ovalbumin (OVA) induced CTL that recognized OVA-expressing tumor cells and protected against tumor growth in vivo. These data show that although DC vaccination readily stimulated CTL against WT1 peptides, these CTL did not display antitumor activity in vitro and in vivo. This suggests that tolerance to the 2 WT1 epitopes interferes with the generation of protective CTL immunity in mice.
Collapse
Affiliation(s)
- Francisco Ramírez
- Department of Immunology and Molecular Pathology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | |
Collapse
|
41
|
Taqueti VR, Grabie N, Colvin R, Pang H, Jarolim P, Luster AD, Glimcher LH, Lichtman AH. T-bet Controls Pathogenicity of CTLs in the Heart by Separable Effects on Migration and Effector Activity. THE JOURNAL OF IMMUNOLOGY 2006; 177:5890-901. [PMID: 17056513 DOI: 10.4049/jimmunol.177.9.5890] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8+ CTL contribute to the pathogenesis of myocarditis and cardiac allograft rejection. Using a transgenic model of myocarditis, we examined the role of the transcription factor T-bet in the differentiation of pathogenic cardiac Ag-specific CTL. We demonstrate that T-bet-deficient CTL are significantly impaired in their ability to cause disease, despite intact proliferation and activation phenotypes. In the absence of T-bet, there is markedly reduced expression of the chemokine receptor CXCR3, and CXCR3-gene knockout CTL are significantly less pathogenic than control CTL. Retroviral-mediated CXCR3 expression in T-bet-deficient CD8+ T cells reconstitutes their ability to infiltrate but not to damage the heart, establishing that CD8+ T cell pathogenicity is related to T-bet-dependent CXCR3 expression, reduced cytotoxicity, and enhanced regulation. These findings highlight the potential therapeutic benefit of targeting T-bet-regulated gene expression and CXCR3-dependent migration in immune-mediated heart disease.
Collapse
Affiliation(s)
- Viviany R Taqueti
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas MJ, Nouzé C, Brodin P, Sebo P, Leclerc C. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 2006; 74:3396-407. [PMID: 16714570 PMCID: PMC1479244 DOI: 10.1128/iai.02086-05] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TB10.4 is a newly identified antigen of Mycobacterium tuberculosis recognized by human and murine T cells upon mycobacterial infection. Here, we show that immunization with Mycobacterium bovis BCG induces a strong, genetically controlled, Th1 immune response against TB10.4 in mice. BALB/c and C57BL/6 strains behave as high and low responders to TB10.4 protein, respectively. The TB10.4:74-88 peptide was identified as an immunodominant CD4+ T-cell epitope for H-2d mice. Since recent results, as well as the present study, have raised interest in TB10.4 as a subunit vaccine, we analyzed immune responses induced by this antigen delivered by a new vector, the adenylate cyclase (CyaA) of Bordetella pertussis. CyaA is able to target dendritic cells and to deliver CD4+ or CD8+ T-cell epitopes to the major histocompatibility complex class II/I molecule presentation pathways, triggering specific Th1 or cytotoxic T-lymphocyte (CTL) responses. Several CyaA harboring either the entire TB10.4 protein or various subfragments containing the TB10.4:20-28 CTL epitope were shown to induce TB10.4-specific Th1 CD4+ and CD8+ T-cell responses. However, none of the recombinant CyaA, injected in the absence of adjuvant, was able to induce protection against M. tuberculosis infection. In contrast, TB10.4 protein administered with a cocktail of strong adjuvants that triggered a strong Th1 CD4+ T-cell response induced significant protection against M. tuberculosis challenge. These results confirm the potential value of the TB10.4 protein as a candidate vaccine and show that the presence of high frequencies of CD4+ T cells specific to this strong immunogen correlates with protection against M. tuberculosis infection.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Biologie des Régulations Immunitaires, Inserm, E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cai YH, Alvarez A, Alcaide P, Duramad P, Lim YC, Jarolim P, Lowe JB, Luscinskas FW, Lichtman AH. Abrogation of Functional Selectin-Ligand Expression Reduces Migration of Pathogenic CD8+T Cells into Heart. THE JOURNAL OF IMMUNOLOGY 2006; 176:6568-75. [PMID: 16709814 DOI: 10.4049/jimmunol.176.11.6568] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CD8+ T cells are involved in autoimmune and infectious myocarditis and cardiac allograft rejection. The role of selectins in cardiac recruitment of CD8+ T cells is not understood. In this study, the contribution of T cell selectin ligands to effector CD8+ T cell recruitment into the heart was examined using a model of myocarditis, which depends on transfer of OVA peptide-specific CD8+ T cells (OT-I) into mice (CMy-mOva) that express OVA in the heart. alpha-(1,3)-Fucosyltransferase (FucT)-VII-deficient OT-I cells displayed over a 95% reduction in their ability to interact with P-selectin under flow conditions in vitro, compared with wild-type OT-I cells. Interaction of FucT-VII-deficient OT-I cells with E-selectin was reduced approximately 50%. FucT-VII-deficient OT-I cells were also less efficiently recruited into a dermal site of Ag and adjuvant injection. Significantly, FucT-VII-deficient OT-I cells were also impaired in their ability to migrate into CMy-mOva hearts, compared with wild-type OT-I cells. Transfer of FucT-VII-deficient T cells caused less severe early myocarditis and myocyte damage than transfer of wild-type T cells. Combined FucT-IV/VII-deficient OT-I cells displayed a more profound reduction in E-selectin interactions in vitro compared with FucT-VII-deficient T cells, and the FucT-IV/VII-deficient T cells also showed less early recruitment and pathogenicity in the CMy-mOva myocarditis model. These results identify a prominent role for selectin ligands in contributing to effector CD8+ T cell recruitment into the myocardium and indicate that selectin-dependent T cell recruitment is relevant to other tissues besides the skin.
Collapse
Affiliation(s)
- Yi Hong Cai
- Vascular Research Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Su H, Chang DS, Gambhir SS, Braun J. Monitoring the antitumor response of naive and memory CD8 T cells in RAG1-/- mice by positron-emission tomography. THE JOURNAL OF IMMUNOLOGY 2006; 176:4459-67. [PMID: 16547284 DOI: 10.4049/jimmunol.176.7.4459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Therapeutic antitumor immunity depends on a highly migratory CTL population capable of activation and trafficking between lymphoid and tumor-bearing microanatomic sites. We recently adapted positron-emission tomography gene expression imaging for noninvasive, longitudinal localization and quantitation of antitumor T lymphocyte migration in vivo. In this study, we apply this system to enumerate the temporal accumulation of naive vs memory T cells. Naive or memory OT-1 CD8(+) T cells, retrovirally marked with the sr39TK gene, were adoptively transferred into RAG1(-/-) animals bearing EL-4 or EG.7 (an OVA-expressing subline), and repetitively imaged by microPET over several weeks. Memory cells demonstrated early accumulation and apparent proliferation, with large T cell numbers at the Ag-positive tumor as early as day 1 after T cell transfer. Naive T cells did not accumulate in the E.G7 tumor until day 8, and reached only 25% of the peak levels achieved by memory T cells. Both naive and memory cells eradicated the Ag-expressing tumor at a comparable density of intratumoral T cells (2-4 x 10(6)/g). However, due to the slower rate of T cell expansion and continued tumor growth, naive cells required approximately 10-fold higher Ag-specific precursor frequency to reach a tumoricidal cell density. As recently reported, memory but not naive T cells accumulated in local lymph nodes and lungs, where they persisted as a resident population after tumor eradication. Positron-emission tomography-based immunologic imaging is a noninvasive modality providing unique and meaningful information on the dynamics of the antitumor CTL response.
Collapse
Affiliation(s)
- Helen Su
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
45
|
Ossevoort M, Zaldumbide A, Cramer SJ, van der Voort EIH, Toes REM, Hoeben RC. Characterization of an immuno ‘stealth’ derivative of the herpes simplex virus thymidine-kinase gene. Cancer Gene Ther 2006; 13:584-91. [PMID: 16456552 DOI: 10.1038/sj.cgt.7700925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular immune response against transgene-encoded neoantigens is a potential hurdle in gene therapy applications where long-term expression of transgenes is desired. Here a new optimized derivative of the herpes simplex virus 1-thymidine-kinase (HSV1-TK) gene is described. The HSV-TK gene is frequently used in experimental studies on gene-directed enzyme prodrug therapy. In the optimized gene, the HSV-TK coding region is fused with the codons for the Gly-Ala repeat of the Epstein-Barr virus nuclear-antigen 1 to prevent proteasomal degradation of the HSV-TK. To measure the protective effect in vitro, a model cytotoxic T lymphocyte epitope derived from the ovalbumin was inserted in the TK. Cells expressing the GAr-modified TK do not present TK-derived peptides in the major histocompatibility complex. Furthermore, conservative nucleotide substitutions were introduced, which prevent splicing, as well as mutations that render the TK-expressing cells more sensitive to ganciclovir (GCV). The GAr HSV-TK fusion protein is fully functional in vitro. This HSV-TK gene may be especially useful in those gene therapy applications where an immune response against the transgene-encoded product would frustrate the treatment.
Collapse
Affiliation(s)
- M Ossevoort
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Diaz-de-Durana Y, Mantchev GT, Bram RJ, Franco A. TACI-BLyS signaling via B-cell-dendritic cell cooperation is required for naive CD8+ T-cell priming in vivo. Blood 2005; 107:594-601. [PMID: 16195331 PMCID: PMC1895615 DOI: 10.1182/blood-2004-12-4708] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We demonstrated that B-cell-dendritic cell (DC) interactions via transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI) and B-lymphocyte stimulator (BLyS) provide an early signal critical to generate adequate numbers of mature antigen presenting cells (APCs) to prime naive CD8(+) T cells (CTLs) in vivo. Evidence that B cells are required for efficient CTL generation in mice and that reconstitution with wild-type but not TACI-knockout B cells restored normal CTL responses support our conclusion. Moreover, low doses of a TACI fusion protein (TACI-Fc) that express the extracellular domain of TACI (amino acid [aa] 1-126) restored CTL priming in B-cell-deficient mice in vivo and induced DC maturation in vitro. In fact, following interactions with B cells, splenic DCs rapidly express the CD86 costimulatory molecule, to an extent comparable to the exposure to antigenic stimuli. BLyS(high) peptide-pulsed bone marrow-derived DCs, used as vaccines in vivo, cannot generate CTLs in B-cell-deficient and TACI-deficient mice, strongly supporting a need for B-cell-DC cooperation through TACI-BLyS during CTL first encounter with antigens in vivo.
Collapse
|
47
|
Xu Y, Sette A, Sidney J, Gendler SJ, Franco A. Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunol Cell Biol 2005; 83:440-8. [PMID: 16033540 DOI: 10.1111/j.1440-1711.2005.01347.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we examine the use of glycopeptides containing tumour-associated carbohydrate antigens (TACA) as potential preventive vaccines for carcinomas. Our recent results suggest that CD8+ T cells (CTL) are capable of recognizing TACA in a conventional class I MHC-restricted fashion. The ThomsenFriedenreich antigen (TF), a disaccharide, and Tn, its immediate precursor, are TACA largely expressed in carcinomas. TF and Tn can be successfully used as Th-independent vaccines when conjugated to designer peptides with optimal binding affinity for class I MHC molecules. TF- and Tn-specific CTL generated using this strategy are capable of recognizing TACA-expressing tumours in vitro, suggesting that glycopeptides are as effectively presented by class I MHC molecules as non-glycosylated peptides. Because the exact sequences of endogenously synthesized glycopeptides are unknown, the TACA-specific T cell repertoire elicited by carbohydrate-based vaccines is assumed to be degenerate. Here we report that mice genetically manipulated to develop TACA-expressing mammary tumours are not tolerant to glycopeptide vaccination. Moreover, we tested the immunogenicity of designer glycopeptides capable of binding multiple HLA alleles as a novel approach for the development of vaccines potentially useful for vaccination of a large fraction of the general population. Our results have suggested that CTL derived from normal donors respond with high efficiency to glycopeptides in vitro, opening a new avenue for the design of prospective vaccines for cancer prevention.
Collapse
Affiliation(s)
- Yanfei Xu
- Torrey Pines Institute for Molecular Studies, San Diego, California, USA
| | | | | | | | | |
Collapse
|
48
|
Medoff BD, Seung E, Wain JC, Means TK, Campanella GSV, Islam SA, Thomas SY, Ginns LC, Grabie N, Lichtman AH, Tager AM, Luster AD. BLT1-mediated T cell trafficking is critical for rejection and obliterative bronchiolitis after lung transplantation. ACTA ACUST UNITED AC 2005; 202:97-110. [PMID: 15998790 PMCID: PMC2212891 DOI: 10.1084/jem.20042481] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 is a lipid mediator that recently has been shown to have potent chemotactic activity for effector T lymphocytes mediated through its receptor, BLT1. Here, we developed a novel murine model of acute lung rejection to demonstrate that BLT1 controls effector CD8+ T cell trafficking into the lung and that disruption of BLT1 signaling in CD8+ T cells reduces lung inflammation and mortality in the model. In addition, we used BLT1-deficient mice and a BLT1 antagonist in two tracheal transplant models of lung transplantation to demonstrate the importance of BLT1 for the recruitment of T cells into tracheal allografts. We also show that BLT1-mediated CD8+ T cell recruitment plays an important role in the development of airway fibroproliferation and obliteration. Finally, in human studies of lung transplant recipients, we found that BLT1 is up-regulated on T lymphocytes isolated from the airways of patients with obliterative bronchiolitis. These data demonstrate that BLT1 contributes to the development of lung rejection and obliterative bronchiolitis by mediating effector T lymphocyte trafficking into the lung. This is the first report that describes a pathologic role for BLT1-mediated T lymphocyte recruitment in disease and identifies BLT1 as a potential therapeutic target after lung transplantation.
Collapse
Affiliation(s)
- Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hudrisier D, Riond J, Garidou L, Duthoit C, Joly E. T cell activation correlates with an increasedproportion of antigen among the materials acquiredfrom target cells. Eur J Immunol 2005; 35:2284-94. [PMID: 16021601 DOI: 10.1002/eji.200526266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the density of peptides required to elicit different biological responses in cytotoxic T lymphocytes (CTL), including trogocytosis (i.e., the phenomenon whereby the lymphocytes actively capture fragments of plasma membrane from those cells with which they establish an immune synapse). We have used two separate mouse models of CTL recognising defined peptides presented by MHC class I molecules. In both systems, triggering of cytotoxicity and capture of membrane components reached saturation with low densities of ligand. On the other hand, down-modulation of cell-surface levels of TCR, induction of IFN-gamma production and detection of peptide captured required much higher ligand densities. Interestingly, fratricide (i.e., killing between CTL sharing the same specificity), a mechanism proposed to account for CTL exhaustion, was detected only at antigen concentrations still well above that second threshold leading to full blown activation. Taken together, our results show that the different thresholds that govern the elicitation of different CTL functions correlate with different proportions of antigen among the target cell components being captured via trogocytosis.
Collapse
MESH Headings
- Animals
- Antigens/biosynthesis
- Biotin/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Histocompatibility Antigens/immunology
- Interferon-gamma/biosynthesis
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/immunology
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Denis Hudrisier
- CPTP, INSERM U563, Institut Claude de Préval, Toulouse, France.
| | | | | | | | | |
Collapse
|
50
|
Nugent CT, Renteria RO, Kuus-Reichel K, Kumar A. Low binding capacity of murine tetramers mutated at residue 227 does not preclude the ability to efficiently activate CD8+ T lymphocytes. Immunol Lett 2004; 98:208-15. [PMID: 15860220 DOI: 10.1016/j.imlet.2004.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/16/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
MHC tetramers are used to directly enumerate and visualize the antigen-specific T lymphocyte population of interest by flow cytometry, regardless of the T lymphocyte's functional capacity. Assay sensitivity can be hindered by non-specific binding activity, which is due to the inherent interactions of CD8 and MHC. Point mutations within the alpha3 loop of the HLA MHC class I heavy chain have been shown to reduce or abrogate MHC/CD8 interactions and also alleviate non-specific binding. This report compares the effects of two well-described mutations on the binding capacity and functional capacity of MHC tetramers in the H-2 MHC murine system. Tetramers folded with MHC mutated at either residue 227 or 245 of the class I heavy chain were compared to wild-type tetramer in binding studies using various antigen-specific, TCR-positive lymphocytes and cell lines. These experiments showed that the binding of wild-type and residue 245-mutated tetramer were comparable on CTL cultures, OT-1 splenocytes, and hybridomas. Both wild-type and 245-mutated tetramers' binding capacity was observed to be equally dependent on CD8 expression. Residue 227-mutated tetramer consistently bound antigen-specific CTL less efficiently, but in the absence of CD8 all three tetramers had similar binding capacity. In functional studies, 227-mutated tetramer had the greatest capacity to stimulate cytokine production in the absence of exogenous antigen addition. These experiments demonstrate that reduction of a tetramer's high avidity interaction with CD8 will not necessarily decrease the ability to stimulate the effector functions of activated T cells.
Collapse
Affiliation(s)
- C Thomas Nugent
- Beckman Coulter, Inc., 7330 Carroll Road, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|