1
|
Catapano G, Unger JK, Zanetti EM, Fragomeni G, Gerlach JC. Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors. Bioengineering (Basel) 2021; 8:104. [PMID: 34436107 PMCID: PMC8389311 DOI: 10.3390/bioengineering8080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.
Collapse
Affiliation(s)
- Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Via P. Bucci, I, 87030 Rende, CS, Italy;
| | - Juliane K. Unger
- Department of Experimental Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany;
| | | | - Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, University of Pittsburgh, & McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; or
- Department of Bioengineering, School of Medicine, University of Pittsburgh, & McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|
3
|
Gregory PG, Connolly CK, Gillis BE, Sullivan SJ. The Effect of Coculture with Nonparenchymal Cells on Porcine Hepatocyte Function. Cell Transplant 2017. [DOI: 10.3727/000000001783986297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Pinchuk SV, Vasilevich IB, Kvacheva ZB, Volotovski ID. The effect of quercetin on hepatic differentiation of human adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16050102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Helke KL, Nelson KN, Sargeant AM, Jacob B, McKeag S, Haruna J, Vemireddi V, Greeley M, Brocksmith D, Navratil N, Stricker-Krongrad A, Hollinger C. Pigs in Toxicology. Toxicol Pathol 2016; 44:575-90. [DOI: 10.1177/0192623316639389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both a rodent and a nonrodent species are required for evaluation in nonclinical safety studies conducted to support human clinical trials. Historically, dogs and nonhuman primates have been the nonrodent species of choice. Swine, especially the miniature swine or minipigs, are increasingly being used in preclinical safety as an alternate nonrodent species. The pig is an appropriate option for these toxicology studies based on metabolic pathways utilized in xenobiotic biotransformation. Both similarities and differences exist in phase I and phase II biotransformation pathways between humans and pigs. There are numerous breeds of pigs, yet only a few of these breeds are characterized with regard to both xenobiotic-metabolizing enzymes and background pathology findings. Some specific differences in these enzymes based on breed and sex are known. Although swine have been used extensively in biomedical research, there is also a paucity of information in the current literature detailing the incidence of background lesions and differences between commonly used breeds. Here, the xenobiotic-metabolizing enzymes are compared between humans and pigs, and minipig background pathology changes are reviewed with emphasis on breed differences.
Collapse
Affiliation(s)
- Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | - Binod Jacob
- Charles River Laboratories, Spencerville, Ohio, USA
| | | | | | | | | | - Derek Brocksmith
- Sinclair Research Center and Sinclair Bio Resources, Auxvasse, Missouri, USA
| | | | | | - Charlotte Hollinger
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, USA
| |
Collapse
|
6
|
Long-term culture and expansion of primary human hepatocytes. Nat Biotechnol 2015; 33:1264-1271. [PMID: 26501953 DOI: 10.1038/nbt.3377] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/16/2015] [Indexed: 12/22/2022]
Abstract
Hepatocytes have a critical role in metabolism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Here we describe the oncostatin M (OSM)-dependent expansion of primary human hepatocytes by low expression of the human papilloma virus (HPV) genes E6 and E7 coupled with inhibition of epithelial-to-mesenchymal transition. We show that E6 and E7 expression upregulates the OSM receptor gp130 and that OSM stimulation induces hepatocytes to expand for up to 40 population doublings, producing 1013 to 1016 cells from a single human hepatocyte isolate. OSM removal induces differentiation into metabolically functional, polarized hepatocytes with functional bile canaliculi. Differentiated hepatocytes show transcriptional and toxicity profiles and cytochrome P450 induction similar to those of primary human hepatocytes. Replication and infectivity of hepatitis C virus (HCV) in differentiated hepatocytes are similar to those of Huh7.5.1 human hepatoma cells. These results offer a means of expanding human hepatocytes of different genetic backgrounds for research, clinical applications and pharmaceutical development.
Collapse
|
7
|
Avior Y, Levy G, Zimerman M, Kitsberg D, Schwartz R, Sadeh R, Moussaieff A, Cohen M, Itskovitz-Eldor J, Nahmias Y. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes. Hepatology 2015; 62:265-78. [PMID: 25808545 DOI: 10.1002/hep.27803] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. CONCLUSION Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology.
Collapse
Affiliation(s)
- Yishai Avior
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gahl Levy
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Zimerman
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kitsberg
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert Schwartz
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ronen Sadeh
- Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arieh Moussaieff
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Cohen
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yaakov Nahmias
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
9
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
10
|
AhR signalling and dioxin toxicity. Toxicol Lett 2013; 230:225-33. [PMID: 24239782 DOI: 10.1016/j.toxlet.2013.10.039] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022]
Abstract
Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health.
Collapse
|
11
|
Paszti-Gere E, Matis G, Farkas O, Kulcsar A, Palocz O, Csiko G, Neogrady Z, Galfi P. The Effects of Intestinal LPS Exposure on Inflammatory Responses in a Porcine Enterohepatic Co-culture System. Inflammation 2013; 37:247-60. [DOI: 10.1007/s10753-013-9735-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kumar A, Mann HJ, Remmel RP, Beilman GJ, Kaila N. Pharmacokinetic study in pigs andin vitrometabolic characterization in pig- and human-liver microsomes reveal marked differences in disposition and metabolism of tiletamine and zolazepam (Telazol). Xenobiotica 2013; 44:379-90. [DOI: 10.3109/00498254.2013.833362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Kiruthiga PV, Karthikeyan K, Archunan G, Pandian SK, Devi KP. Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicol Ind Health 2013; 31:523-41. [DOI: 10.1177/0748233713475524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benzo(a)pyrene (B(a)P), which is commonly used as an indicator species for polycyclic aromatic hydrocarbon (PAH) contamination, has a large number of hazardous consequences on human health. In the presence of the enzyme cytochrome-P-450 1A1 (CYP1A1), it undergoes metabolic activation to form reactive intermediates that are capable of inducing mutagenic, cytotoxic, teratogenic and carcinogenic effects in various species and tissues. Research within the last few years has shown that flavonoids exhibit chemopreventive effect against these toxins. In the present study, the protective effect of silymarin (a flavonoid) against B(a)P-induced toxicity was monitored in Wistar rats by evaluating the levels of hepatic phase I (CYP1A1), phase II enzymes (glutathione-S-transferase, epoxide hydroxylases, uridinediphosphate glucuronosyltransferases, NAD(P)H: quinone oxidoreductase 1, sulfotransferases), cellular antioxidant enzyme heme oxygenase and total glutathione. The results reveal that silymarin possesses substantial protective effect against B(a)P-induced damages by inhibiting phase I detoxification enzyme CYP1A1 and modulating phase II conjugating enzymes, which were confirmed by histopathological analysis. Overall, the inhibition of CYP1A1 and the modulation of phase II enzymes may provide, in part, the molecular basis for the effect of silymarin against B(a)P.
Collapse
Affiliation(s)
- PV Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Karthikeyan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - G Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Karutha Pandian
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
14
|
Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol 2012; 9:127-39. [PMID: 23216131 DOI: 10.1517/17425255.2013.739607] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In regulatory toxicological testing, both a rodent and non-rodent species are required. Historically, dogs and non-human primates (NHP) have been the species of choice of the non-rodent portion of testing. The pig is an appropriate option for these tests based on metabolic pathways utilized in xenobiotic biotransformation. AREAS COVERED This review focuses on the Phase I and Phase II biotransformation pathways in humans and pigs and highlights the similarities and differences of these models. This is a growing field and references are sparse. Numerous breeds of pigs are discussed along with specific breed differences in these enzymes that are known. While much available data are presented, it is grossly incomplete and sometimes contradictory based on methods used. EXPERT OPINION There is no ideal species to use in toxicology. The use of dogs and NHP in xenobiotic testing continues to be the norm. Pigs present a viable and perhaps more reliable model of non-rodent testing.
Collapse
Affiliation(s)
- Kristi L Helke
- Medical University South Carolina, Comparative Medicine, 114 Doughty St, Ste 648, MSC777, Charleston, SC 29425, USA.
| | | |
Collapse
|
15
|
Metabolic regulation of fatty acid esterification and effects of conjugated linoleic acid on glucose homeostasis in pig hepatocytes. Animal 2012; 6:254-61. [PMID: 22436183 DOI: 10.1017/s1751731111001613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Conjugated linoleic acids (CLAs) are geometric and positional isomers of linoleic acid (LA) that promote growth, alter glucose metabolism and decrease body fat in growing animals, although the mechanisms are poorly understood. A study was conducted to elucidate the effects of CLA on glucose metabolism, triglyceride (TG) synthesis and IGF-1 synthesis in primary culture of porcine hepatocytes. In addition, hormonal regulation of TG and IGF-1 synthesis was addressed. Hepatocytes were isolated from piglets (n = 5, 16.0 ± 1.98 kg average body weight) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Hepatocytes were cultured in William's E containing dexamethasone (10-8 and 10-7 M), insulin (10 and 100 ng/ml), glucagon (0 and 100 ng/ml) and CLA (1 : 1 mixture of cis-9, trans-11 and trans-10, cis-12 CLA, 0.05 and 0.10 mM) or LA (0.05 and 0.10 mM). Addition of CLA decreased gluconeogenesis (P < 0.05), whereas glycogen synthesis and degradation, TG synthesis and IGF-1 synthesis were not affected compared with LA. Increased concentration of fatty acids in the media decreased IGF-1 production (P < 0.001) and glycogen synthesis (P < 0.01), and increased gluconeogenesis (P < 0.001) and TG synthesis (P < 0.001). IGF-1 synthesis increased (P < 0.001) and TG synthesis decreased (P < 0.001) as dexamethasone concentration in the media rose. High insulin/glucagon increased TG synthesis. These results indicate that TG synthesis in porcine hepatocytes is hormonally regulated so that dexamethasone decreases and insulin/glucagon increases it. In addition, CLA decreases hepatic glucose production through decreased gluconeogenesis.
Collapse
|
16
|
Giantin M, Zancanella V, Lopparelli RM, Granato A, Carletti M, Vilei MT, Muraca M, Baratto C, Dacasto M. Effects of time culture and prototypical cytochrome P450 3A (CYP3A) inducers on CYP2B22, CYP2C, CYP3A and nuclear receptor (NR) mRNAs in long-term cryopreserved pig hepatocytes (CPHs). Drug Metab Pharmacokinet 2012; 27:495-505. [PMID: 22447117 DOI: 10.2133/dmpk.dmpk-11-rg-146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, transcriptional and post-translational effects of culturing time and prototypical cytochrome P450 3A (CYP3A) inducers on principal nuclear receptors (NRs), CYP2B22, 2C and 3A were investigated in long-term stored (~10 years) cryopreserved pig hepatocytes (CPHs). In the time-course study, a crush and rise effect was observed for pregnane X receptor (NR1I2) and constitutive androstane receptor (NR1I3) mRNAs, while a time-dependent increase of retinoid X receptor alpha (NR2B1) was noticed. Cytochrome P450 gene expression profiles were down-regulated as a function of time. In the induction study, an increase of NR1I2, NR1I3 and NR2B1 mRNAs was observed in dexamethasone-exposed CPHs. About CYPs, an overall up-regulation was seen in CPHs exposed to phenobarbital, while dexamethasone and rifampicin up-regulated only CYP3A. In both studies, transcriptional CYP results were confirmed at the post-translational level (immunoblotting and enzyme activities), except for CYP2B immunoblotting in the induction study. The present data demonstrate that long-term stored CPHs may be used to investigate mechanisms involved in CYPs regulation, expression and function; provide further info about NR regulation of CYPs, and confirm species-differences in these mechanisms of regulation; finally, they suggest the usefulness and relevance of gene expression profiling to early detect any modulation of CYP expression and bioactivity.
Collapse
Affiliation(s)
- Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Orman MA, Mattick J, Androulakis IP, Berthiaume F, Ierapetritou MG. Stoichiometry based steady-state hepatic flux analysis: computational and experimental aspects. Metabolites 2012; 2:268-91. [PMID: 24957379 PMCID: PMC3901202 DOI: 10.3390/metabo2010268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
: The liver has many complex physiological functions, including lipid, protein and carbohydrate metabolism, as well as bile and urea production. It detoxifies toxic substances and medicinal products. It also plays a key role in the onset and maintenance of abnormal metabolic patterns associated with various disease states, such as burns, infections and major traumas. Liver cells have been commonly used in in vitro experiments to elucidate the toxic effects of drugs and metabolic changes caused by aberrant metabolic conditions, and to improve the functions of existing systems, such as bioartificial liver. More recently, isolated liver perfusion systems have been increasingly used to characterize intrinsic metabolic changes in the liver caused by various perturbations, including systemic injury, hepatotoxin exposure and warm ischemia. Metabolic engineering tools have been widely applied to these systems to identify metabolic flux distributions using metabolic flux analysis or flux balance analysis and to characterize the topology of the networks using metabolic pathway analysis. In this context, hepatic metabolic models, together with experimental methodologies where hepatocytes or perfused livers are mainly investigated, are described in detail in this review. The challenges and opportunities are also discussed extensively.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - John Mattick
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi G Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Fukuda J, Nakazawa K. Hepatocyte spheroid arrays inside microwells connected with microchannels. BIOMICROFLUIDICS 2011; 5:22205. [PMID: 21799712 PMCID: PMC3145231 DOI: 10.1063/1.3576905] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/14/2011] [Indexed: 05/03/2023]
Abstract
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications.
Collapse
|
19
|
Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. BIOMICROFLUIDICS 2011; 5:22212. [PMID: 21799718 PMCID: PMC3145237 DOI: 10.1063/1.3580753] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/29/2011] [Indexed: 05/04/2023]
Abstract
In this study, we propose a microfluidic cell culture device mimicking the microscopic structure in liver tissue called hepatic cords. The cell culture area of the device was designed to align hepatocytes in two lines in a similar way to hepatic cords. Thanks to the structural design together with a cell seeding procedure, rat primary hepatocytes were successfully aligned in two lines and cultured under perfusion condition. It is shown that aligned hepatocytes gradually self-organize and form bile canaliculi along the hepatic cord-like structure. The present technique to culture hepatocytes with functional bile canaliculi could be used as an alternative to animal testing in the field of drug discovery and toxicological studies, and also be beneficial to tissue engineering applications.
Collapse
|
20
|
Kim Y, Larkin AL, Davis RM, Rajagopalan P. The design of in vitro liver sinusoid mimics using chitosan-hyaluronic acid polyelectrolyte multilayers. Tissue Eng Part A 2010; 16:2731-41. [PMID: 20491586 DOI: 10.1089/ten.tea.2009.0695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interactions between hepatocytes and liver sinusoidal endothelial cells (LSECs) are essential for the development and maintenance of hepatic phenotypic functions. We report the assembly of three-dimensional liver sinusoidal mimics comprised of primary rat hepatocytes, LSECs, and an intermediate chitosan-hyaluronic acid polyelectrolyte multilayer (PEM). The height of the PEMs ranged from 30 to 55 nm and exhibited a shear modulus of approximately 100 kPa. Hepatocyte-PEM cellular constructs exhibited stable urea and albumin production over a 7-day period, and these values were either higher or similar to cells cultured in a collagen sandwich. This is of significance because the thickness of a collagen gel is approximately 1000-fold higher than the height of the chitosan-hyaluronic acid PEM. In the hepatocyte-PEM-LSEC liver-mimetic cellular constructs, LSEC phenotype was maintained, and these cultures exhibited stable urea and albumin production. CYP1A1/2 activity measured over a 7-day period was significantly higher in the hepatocyte-PEM-LSEC constructs than in collagen sandwich cultures. A 16-fold increase in CYP1A1/2 activity was observed for hepatocyte-PEM-10,000 LSEC samples, thereby suggesting that interactions between hepatocytes and LSECs are critical in enhancing the detoxification capability in hepatic cultures in vitro.
Collapse
Affiliation(s)
- Yeonhee Kim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
21
|
Kim Y, Rajagopalan P. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes. PLoS One 2010; 5:e15456. [PMID: 21103392 PMCID: PMC2980491 DOI: 10.1371/journal.pone.0015456] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 09/23/2010] [Indexed: 01/22/2023] Open
Abstract
Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro.
Collapse
Affiliation(s)
- Yeonhee Kim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 2010; 62:196-220. [DOI: 10.1016/j.vascn.2010.05.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 11/26/2022]
|
23
|
Lemley C, Wilson M. Effect of cytochrome P450 and aldo-keto reductase inhibitors on progesterone inactivation in primary bovine hepatic cell cultures. J Dairy Sci 2010; 93:4613-24. [DOI: 10.3168/jds.2010-3165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/07/2010] [Indexed: 01/30/2023]
|
24
|
Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, Lv G, Huang H, Chen Y, Li J, Li LJ. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 2010; 42:1899-1906. [PMID: 20620546 DOI: 10.1016/j.transproceed.2009.11.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 11/23/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND In light of the critical shortage of donor livers, xenogeneic sources offer the best alternative to human hepatocytes for the treatment of acute liver failure. This study investigated whether a combination of simian virus 40 large T antigen (SV40 LT) and human telomerase catalytic subunit (hTERT) genes could immortalize primary porcine hepatocytes that could reverse acute liver failure (ALF) in rats. METHODS We cotransfected SV40 LT and hTERT genes into primary porcine hepatocytes to examine the features of the transfected cell lines. We characterized the potentially therapeutic effect of immortalized porcine hepatocytes in a rat model of ALF induced by 90% hepatectomy. RESULTS An immortalized porcine hepatocyte cell line, HepLi, was expanded by >250 passages. HepLi cells maintained the defining characteristics of primary porcine hepatocytes, including porcine albumin secretion, urea production, and diazepam metabolism. Intrasplenic transplantation of HepLi cells significantly improved liver function, and significantly prolonging the survival of rats with ALF. CONCLUSIONS Cotransfection of SV40 LT and hTERT immortalized primary porcine hepatocytes without tumorigenicity in vitro. The Immortalized porcine hepatocytes served as a potential cell resource for xenotransplantation.
Collapse
Affiliation(s)
- X Pan
- First Affiliated Hospital, College of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Anderson K, Cooper JM, Haswell SJ, Marshall D, Yin H, Zhang X. Microfluidic-based measurements of cytochrome P450 enzyme activity of primary mammalian hepatocytes. Analyst 2010; 135:1282-7. [PMID: 20401410 DOI: 10.1039/c0an00031k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic-based system was developed for the in situ monitoring of the 7-ethoxyresorufin O-dealkylation (EROD) activity of primary rat hepatocytes by measuring the fluorescent intensity of both cells and their surrounding media. The microfluidic chip was designed to allow the cell suspension and test reagent to be introduced in a layer-by-layer flow format, thereby resulting in a short mixing time by diffusion. A good linear relationship was obtained between the resorufin concentration up to 30 microM and fluorescent intensity over the chip's circular chamber area. The EROD activity was determined with 3-methylcholanthrene (3-MC)-induced hepatocytes. The inhibition effect of alpha-naphthoflavone was also examined on EROD activity resulting in an IC(50) value of 12.98 microM.
Collapse
Affiliation(s)
- Keith Anderson
- LGC Limited, Queens Road, Teddington, Middlesex TW11 0LY, UK
| | | | | | | | | | | |
Collapse
|
26
|
Yagi H, Parekkadan B, Suganuma K, Soto-Gutierrez A, Tompkins RG, Tilles AW, Yarmush ML. Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure. Tissue Eng Part A 2010; 15:3377-88. [PMID: 19397469 DOI: 10.1089/ten.tea.2008.0681] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-based technologies to support/restore organ function represent one of the most promising avenues in the treatment of acute liver failure (ALF). Recently, mesenchymal stem cells (MSCs) have been reported as a new therapeutic for inflammatory conditions. Here, we demonstrate the efficacy of MSCs, when cocultured with hepatocytes, to provide combination hepatic and antiinflammatory therapy in the setting of ALF. MSCs were shown to have multiple beneficial effects in vitro that were relevant in a therapeutic context, including (1) hepatocellular functional support, (2) secretion of molecules that inhibit hepatocyte apoptosis, and (3) modulation of an acute phase response by hepatocytes cultured in ALF-induced serum. In addition, we show that the MSC secretome is dynamically changed in response to serum exposure from ALF rats. We then conducted a therapeutic trial of liver assist devices (LADs). LADs containing cocultures of MSCs and hepatocytes provided a greater survival benefit compared to other coculture and monocellular control LADs. Treatment with MSC-hepatocyte devices was associated with specific improvements in hepatic functional and histological parameters as well as decreasing inflammatory serum cytokine levels, validating a combined therapeutic effect. Moreover, MSC coculture reduced the overall cell mass of the device by an order of magnitude. These findings demonstrate the importance of nonparenchymal cells in the cellular composition of LADs, and strongly support the integration of MSCs into hepatocyte-coculture-based LADs as a potential destination therapy for ALF.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospitals for Children and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sysa AG, Kiselev PA, Zhabinskii VN, Khripach VA. Effect of the structure of the brassinosteroid side chain on monooxygenase activity of liver microsomes. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Niu M, Hammond P, Coger RN. The effectiveness of a novel cartridge-based bioreactor design in supporting liver cells. Tissue Eng Part A 2009; 15:2903-16. [PMID: 19271993 DOI: 10.1089/ten.tea.2008.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are a number of applications--ranging from temporary strategies for organ failure to pharmaceutical testing--that rely on effective bioreactor designs. The significance of these devices is that they provide an environment for maintaining cells in a way that allows them to perform key cellular and tissue functions. In the current study, a novel cartridge-based bioreactor was developed and evaluated. Its unique features include its capacity for cell support and the adaptable design of its cellular space. Specifically, it is able to accommodate functional and reasonably sized tissue (>2.0 x 10(8) cells), and can be easily modified to support a range of anchorage-dependent cells. To evaluate its efficacy, it was applied to liver support in the current study. This involved evaluating the performance of rat primary hepatocytes within the unique cartridges in culture--sans bioreactor--and after being loaded within the novel bioreactor. Compared to collagen sandwich culture functional controls, hepatocytes within the unique cartridge design demonstrated significantly higher albumin production and urea secretion rates when cultured under dynamic flow conditions--reaching peak values of 170 +/- 22 microg/10(6) cells/day and 195 +/- 18 microg/10(6) cells/day, respectively. The bioreactor's effectiveness in supporting live and functioning primary hepatocytes is also presented. Cell viability at the end of 15 days of culture in the new bioreactor was 84 +/- 18%, suggesting that the new design is effective in maintaining primary hepatocytes for at least 2 weeks in culture. Liver-specific functions of urea secretion, albumin synthesis, and cytochrome P450 activity were also assessed. The results indicate that hepatocytes are able to achieve good functional performance when cultured within the novel bioreactor. This is especially true in the case of cytochrome P450 activity, where by day 15 of culture, hepatocytes within the bioreactor reached values that were 56.6% higher than achieved by the collagen sandwich functional control cultures. The success of the novel cartridge-based bioreactor in supporting hepatocytes with good viability and functional performance suggests that it is an effective design for supporting anchorage-dependent cells.
Collapse
Affiliation(s)
- Mei Niu
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering Systems, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | | | | |
Collapse
|
29
|
Effect of β-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig. Toxicology 2009; 265:69-79. [DOI: 10.1016/j.tox.2009.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 12/30/2022]
|
30
|
Sakai Y, Tanaka T, Fukuda J, Nakazawa K. Alkoxyresorufin O-dealkylase assay using a rat hepatocyte spheroid microarray. J Biosci Bioeng 2009; 109:395-9. [PMID: 20226384 DOI: 10.1016/j.jbiosc.2009.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/28/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
Abstract
Hepatocyte multicellular aggregates (spheroids), which maintain high expression of liver functions, have been advocated as a useful culture technique for various cell-based assays. In this study, we investigated the drug metabolic function of a hepatocyte spheroid microarray (HSM) chip, which contained an array of 672 spheroids of primary rat hepatocytes within a 100-mm(2) region in the center of a poly(methylmethacrylate) plate (24 x 24 mm) and used an alkoxyresorufin (ethoxy-, methoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase assay system. Ethoxyresorufin O-dealkylase (EROD) activity of the HSM chip initiated by 3-methylcholanthrene (3-MC), an inducer of cytochrome P450 enzymes, was 5- to 10-fold higher than that of monolayer hepatocytes, with activity being maintained for at least 2 weeks. We also demonstrated that 3-MC induced EROD, methoxyresorufin O-dealkylase (MROD) and benzyloxyresorufin O-dealkylase (BROD) activities in the HSM chip, while sodium phenobarbital (P450 inducer) induced pentoxyresorufin O-dealkylase (PROD), BROD, EROD and MROD activities. Induction of these activities was confirmed by increased gene expression of the related P450 enzymes. These results showed that the HSM chip had a good response to P450 inducers and that function was maintained for long periods of time. The HSM chip therefore may be a promising cellular platform for drug metabolic assays using hepatocytes.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | | | | | | |
Collapse
|
31
|
Novik EI, Barminko J, Maguire TJ, Sharma N, Wallenstein EJ, Schloss RS, Yarmush ML. Augmentation of EB-directed hepatocyte-specific function via collagen sandwich and SNAP. Biotechnol Prog 2009; 24:1132-41. [PMID: 19194923 DOI: 10.1002/btpr.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of implantable engineered liver tissue constructs and ex vivo hepatocyte-based therapeutic devices are limited by an inadequate hepatocyte cell source. In our previous studies, embryoid body (EB)-mediated stem cell differentiation spontaneously yielded populations of hepatocyte lineage cells expressing mature hepatocyte markers such as albumin (ALB) and cytokeratin-18 (CK18). However, these cultures neither yielded a homogenous hepatocyte lineage population nor exhibited detoxification function typical of a more mature hepatocyte lineage cell. In this study, secondary culture configurations were used to study the effects of collagen sandwich culture and oncostatin-M (OSM) or S-nitroso-N-acetylpenicillamine (SNAP) supplementation of EB-derived hepatocyte-lineage cell function. Quantitative immunofluorescence and secreted protein analyses were used to provide insights into the long-term maintenance and augmentation of existing functions. The results of these studies suggest that SNAP, independent of the collagen supplementation, maintained the highest levels of ALB expression, however, mature liver-specific CK18 was only expressed in the presence of gel sandwich culture supplemented with SNAP. In addition, albumin secretion and cytochrome P450 detoxification studies indicated that this condition was the best for the augmentation of hepatocyte-like function. Maintenance and augmentation of hepatocyte-like cells isolated from heterogeneous EB cell populations will be a critical step in generating large numbers of functional differentiated cells for therapeutic use.
Collapse
Affiliation(s)
- Eric I Novik
- Dept of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Jindal R, Nahmias Y, Tilles AW, Berthiaume F, Yarmush ML. Amino acid-mediated heterotypic interaction governs performance of a hepatic tissue model. FASEB J 2009; 23:2288-98. [PMID: 19246486 DOI: 10.1096/fj.08-114934] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue-engineered models that mimic in vivo tissue organization offer the potential of capturing complex signaling pathways in vitro. In the liver, hepatocytes and endothelial cells are closely associated but separated by the extracellular matrix of the space of Disse. This unique configuration was mimicked by embedding primary hepatocytes in collagen gel and overlaying the matrix with endothelial cells. We demonstrate that during the first few days of culture, the secretion of albumin and fibrinogen was 2-fold higher in cocultures compared to hepatocytes alone. Hepatocyte function in both cultures stabilized to a similar level during the second week, suggesting that endothelial cells can induce the early recovery of hepatocytes after isolation and seeding. Endothelial cell-conditioned medium reproduced the effect of coculture in a dose-dependent fashion, suggesting a role for endothelial cell-derived soluble factors. Endothelial cell-conditioned medium increased mRNA levels of various acute-phase proteins such as albumin, fibrinogen, transferrin, and alpha-macroglobulin in hepatocytes. Surprisingly, the effect of endothelial cell-conditioned medium was not mediated by growth factors or cytokines, or by secreted extracellular matrix, but by the release of the amino acid proline, which mediates endogenous collagen synthesis by hepatocytes. These findings suggest an important role for proline secretion by endothelial cells as a paracrine factor regulating hepatocyte function.
Collapse
Affiliation(s)
- Rohit Jindal
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
33
|
Schmelzer E, Acikgoez A, Frühauf NR, Crome O, Klempnauer J, Christians U, Bader A. Biotransformation of cyclosporin in primary rat, porcine and human liver cell co-cultures. Xenobiotica 2008; 36:693-708. [PMID: 16891250 DOI: 10.1080/00498250600674410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the species-specific cyclosporin biotransformation in primary rat, human, and porcine liver cell cultures, and to investigate the suitability of a modified sandwich culture technique with non-purified liver cell co-cultures for drug metabolism studies. A sandwich culture was found to enhance hepatocellular metabolic activity and improve cellular morphology and ultrastructure. The cyclosporin metabolites AM9 and AM1 were formed in porcine and human liver cell sandwich co-cultures at levels corresponding to the respective in vivo situations. In contrast, metabolite profiles in rat hepatocytes were at variance with the in vivo situation. However, for all cell types, the overall metabolic activity was positively influenced by sandwich co-culture. The initial levels of albumin synthesis were higher in sandwich cultures than in those without matrix overlay. It is hypothesized that the sandwich culture system provides an improved microenvironment and is, therefore, an advantageous tool for in vitro studies of drug metabolism.
Collapse
Affiliation(s)
- E Schmelzer
- Department of Cell Technology and Applied Stem Cell Biology, Biomedical and Biotechnology Centre (BBZ), University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Dvir-Ginzberg M, Elkayam T, Cohen S. Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J 2007; 22:1440-9. [PMID: 18070820 DOI: 10.1096/fj.07-9277com] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work explores cell cultivation in macroporous alginate scaffolds as a means to reproduce hepatocyte terminal differentiation in vitro. Newborn rat liver cell isolates, consisting of proliferating hepatocytes and progenitors, were seeded at high cell density of 125 x 10(6)/cm(3) within the scaffold and then cultivated for 6 wk in chemically defined medium. Within 3 days, the alginate-seeded cells expressed genes for mature liver enzymes, such as tryptophan oxygenase, secreted a high level of albumin, and performed phase I drug metabolism. The cells formed compacted spheroids, establishing homotypic and heterotypic cell-to-cell interactions. By 6 wk, the spheroids developed into organoids, with an external mature hepatocyte layer covered by a laminin layer encasing inner vimentin-positive cells within a laminin-rich matrix also containing collagen. The hepatocytes presented a distinct apical surface between adjacent cells and a basolateral surface with microvilli facing extracellular matrix deposits. By contrast, viable adherent cells within collagen scaffolds presenting the identical porous structure did not express adult liver enzymes or secrete albumin after 6 wk. This study thus illustrates the benefits of cell cultivation in macroporous alginate scaffolds as an effective promoter for the maturation of newborn liver cells into functional hepatic tissue, capable of maintaining prolonged hepatocellular functions.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Ben-Gurion University of the Negev, Department of Biotechnology Engineering, P.O. 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
35
|
Nahmias Y, Odde DJ. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc 2007; 1:2288-96. [PMID: 17406470 DOI: 10.1038/nprot.2006.386] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we describe a simple protocol for the design and construction of a laser-guided direct writing (LGDW) system able to micropattern the self-assembly of liver sinusoid-like structures with micrometer resolution in vitro. To the best of our knowledge, LGDW is the only technique able to pattern cells "on the fly" with micrometer precision on arbitrary matrices, including soft gels such as Matrigel. By micropatterning endothelial cells on Matrigel, one can control the self-assembly of vascular structures and associated liver tissue. LGDW is therefore uniquely suited for studying the role of tissue architecture and mechanical properties at the single-cell resolution, and for studying the effects of heterotypic cell-cell interactions underlying processes such as liver morphogenesis, differentiation and angiogenesis. The total time required to carry out this protocol is typically 7 h.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, 51 Blossom Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
36
|
Chua KN, Tang YN, Quek CH, Ramakrishna S, Leong KW, Mao HQ. A dual-functional fibrous scaffold enhances P450 activity of cultured primary rat hepatocytes. Acta Biomater 2007; 3:643-50. [PMID: 17532276 DOI: 10.1016/j.actbio.2007.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/30/2022]
Abstract
We have designed a novel dual-functional electrospun fibrous scaffold comprising two fiber mesh layers that were modified differently to induce two separate biological responses from hepatocytes. The first fiber layer was galactosylated on the surface to mediate hepatocyte attachment, while the second layer was loaded with 3-methylcholanthrene (3-Mc) to enhance cytochrome P450 activity of hepatocytes. Primary rat hepatocytes cultured on the galactosylated fibrous scaffolds loaded with different concentrations of 3-Mc were compared for their cell attachment efficiency, albumin secretion activity and cytochrome P450-dependent 7-ethoxycoumarin O-deethylase activity. This hybrid fibrous scaffold mediated hepatocyte attachment with slightly lower efficiency (76+/-2.3%) than a single-layer galactosylated fibrous scaffold (84+/-3.5%). More importantly, the cytochrome P450 activity of the hepatocytes cultured on the hybrid scaffold correlated well with the 3-Mc loading level. The results also showed that transfer of 3-Mc to hepatocytes through direct cell-fiber contact was the dominant transport route, with the induced cytochrome P450 activity being 1.9- to 4.8-fold higher than that of transfer of 3-Mc to hepatocytes via dissolution from fibers to medium. This study demonstrates the feasibility of creating multi-functional fibrous scaffolds that serve both as an adhesive substrate and as a delivery vehicle for bioactive molecules.
Collapse
Affiliation(s)
- Kian-Ngiap Chua
- Division of Bioengineering and NUS Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Nahmias Y, Kramvis Y, Barbe L, Casali M, Berthiaume F, Yarmush ML. A novel formulation of oxygen‐carrying matrix enhances liver‐specific function of cultured hepatocytes. FASEB J 2006; 20:2531-3. [PMID: 17077286 DOI: 10.1096/fj.06-6192fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxygen is an important component of the cellular microenvironment, mediating cell survival, differentiation, and function. Oxygen supply is a limiting factor during culture of highly metabolic cells such as hepatocytes. Here we present a simple formulation of a fluorocarbon-based oxygen carrier embedded in collagen gel that increases oxygen concentration in culture 6-fold. Rat hepatocytes cultured on oxygen carrier-collagen showed a significant increase in viability and function. Cytochrome P450IA1 activity was increased by 140% in serum-free cultures and by 820% in serum-containing cultures. The significantly higher hepatocellular function on oxygen carrier-collagen matrix persisted and increased during long-term culture. Long-term albumin secretion was increased by 350% in serum-free cultures and by 166% in serum-containing culture. Long-term urea secretion was increased by 79% in serum-free cultures and by 76% in serum-containing cultures. We conclude that oxygen supply may limit hepatocyte function in vitro. This limitation can be overcome by addition of an oxygen carrier to the extracellular matrix. Culture of hepatocytes on oxygen-carrying matrix mimics the oxygen-rich environment of the liver and provides a simple method for enhanced long-term function.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 103:309-29. [PMID: 17195468 DOI: 10.1007/10_029] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | | | | |
Collapse
|
39
|
Shinoda M, Tilles AW, Wakabayashi G, Takayanagi A, Harada H, Obara H, Suganuma K, Berthiaume F, Shimazu M, Shimizu N, Kitajima M, Tompkins RG, Toner M, Yarmush ML. Treatment of fulminant hepatic failure in rats using a bioartificial liver device containing porcine hepatocytes producing interleukin-1 receptor antagonist. ACTA ACUST UNITED AC 2006; 12:1313-23. [PMID: 16771644 PMCID: PMC3202215 DOI: 10.1089/ten.2006.12.1313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fulminant hepatic failure (FHF) is a serious clinical condition that is associated with high mortality. There is evidence that FHF is an inflammatory disease, which is supported clinically by elevated serum levels of cytokines. In an effort to develop hepatocytes with additional functions for use in our bioartificial liver (BAL) device, we focused on interleukin-1 (IL-1) blockade as a therapeutic modality. Primary porcine hepatocytes were isolated from the livers of miniature swine and then transfected with an adenoviral vector encoding human interleukin-1 receptor antagonist (AdIL-1Ra). The transfected hepatocytes secreted human IL-1Ra. These transfected hepatocytes were incorporated into a flat-plate BAL device to evaluate their efficacy in treating D-galactosamine (GalN)- induced FHF in a rat model. After extracorporeal perfusion with the BAL device containing the transfected hepatocytes, there were significant reductions in the plasma levels of hepatic enzymes (aspartate aminotransferase and alanine aminotransferase) and cytokines (IL-1 and IL-6), indicating a beneficial effect. Animal survival was significantly improved in the treated group compared to the control group. These experiments demonstrate that combining inflammatory cytokine blockade with a functional BAL device may be an effective therapeutic option in the treatment of FHF.
Collapse
Affiliation(s)
- Masahiro Shinoda
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lykkeberg AK, Cornett C, Halling-Sørensen B, Hansen SH. Isolation and structural elucidation of tiamulin metabolites formed in liver microsomes of pigs. J Pharm Biomed Anal 2006; 42:223-31. [PMID: 16725295 DOI: 10.1016/j.jpba.2006.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/13/2006] [Accepted: 03/18/2006] [Indexed: 11/16/2022]
Abstract
Although the antimicrobial tiamulin is extensively metabolized in pigs, the metabolism is not well investigated. In this work the NADPH dependent metabolism of tiamulin in liver microsomes from pigs has been studied. The tiamulin metabolites formed in the incubations were analysed using LC-MS, and three major metabolites were isolated using solid phase extraction and preparative HPLC. The final structure elucidations were performed by tandem mass spectrometry and (1)H and (13)C NMR. The structures of the metabolites were found to be 2beta-hydroxy-tiamulin, 8alpha-hydroxy-tiamulin and N-deethyl-tiamulin. In addition, the LC-MS chromatograms revealed two other minor metabolites. From their chromatography and from MS(2) analysis the structures were estimated to be 2beta-hydroxy-N-deethyl-tiamulin and 8alpha-hydroxy-N-deethyl-tiamulin, but the structures were not confirmed by NMR. In these studies approximately 20% of tiamulin was deethylated, 10% was hydroxylated in the 2beta-position and 7% was hydroxylated in the 8alpha-position. About 40% of tiamulin was metabolized during the incubation conditions used. The protein precipitation in the incubations was performed using perchloric acid, and the preparative purification was performed under alkaline conditions. Therefore, the stability of the metabolites under these conditions was studied. The metabolites were found to be stable in the acid solution, but under alkaline conditions, particularly at room temperature, the stability of especially 8alpha-hydroxy-tiamulin was considerably reduced (40% loss after 1 week).
Collapse
Affiliation(s)
- Anne Kruse Lykkeberg
- Department of Pharmaceutics and Analytical Chemistry, The Danish University of Pharmaceutical Science, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
41
|
Nakazawa K, Izumi Y, Fukuda J, Yasuda T. Hepatocyte spheroid culture on a polydimethylsiloxane chip having microcavities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2006; 17:859-73. [PMID: 17024877 DOI: 10.1163/156856206777996853] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A two-dimensional microarray technique of spherical multicellular aggregates (spheroids) using a microfabricated polydimethylsiloxane (PDMS) chip and the expression of liver-specific functions of primary rat hepatocytes on the chip were investigated. The PDMS chip, which was fabricated by a photolithography-based technique, consisted of approximately 2500 cylindrical microcavities (approximately 1100 cavities/cm2) in a triangular arrangement of 330 microm pitch on a PDMS plate (20 x 20 mm); each cavity measured 300 microm in diameter and 100 microm in depth. Most hepatocytes on the PDMS chip gradually gathered and subsequently formed a single spheroid in each cavity until 3 days of culture. A part of the spheroid was attached to the bottom or wall surface of the microcavity, and the spheroid configuration was maintained for at least 14 days of culture. Albumin secretion, ammonia removal and ethoxyresorufin O-dealkylase (EROD) activity, which is a cytochrome P-450-dependent reaction, of hepatocytes on the PDMS chip were higher than those of a monolayer dish or a flat PDMS dish without microcavities, and were maintained for at least 10 days of culture. The spheroid microarray technique appears to be promising in the development of cell chips and microbioreactors.
Collapse
Affiliation(s)
- Kohji Nakazawa
- Department of Chemical Processes and Environments, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | | | | | | |
Collapse
|
42
|
Rajagopalan P, Berthiaume F, Tilles AW, Toner M, Yarmush ML. Selective enhancement of cytochrome p-450 activity in rat hepatocytes by in vitro heat shock. ACTA ACUST UNITED AC 2005; 11:1527-34. [PMID: 16259607 DOI: 10.1089/ten.2005.11.1527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the effect of heat shock on cytochrome P-450 activity in rat hepatocytes and report a significant, selective, and time-dependent enhancement of cytochrome P-450 activity in heatshocked hepatocytes. Stable long-term cultures of rat hepatocytes were heat shocked (42.5 degrees C) for 1 to 3 h and allowed to recover at 37 degrees C. Cytochrome P-450-dependent ethoxyresorufin O-dealkylase (EROD) and benzyloxyresorufin O-dealkylase (BROD) activities were measured up to 48 h after heat shock treatment. In general, the optimal heat shock exposure time was between 2 and 3 h. BROD activity (induced by sodium phenobarbital) increased approximately 6-fold in hepatocytes heat shocked for 3 h in comparison with hepatocytes maintained at 37 degrees C. EROD activity (induced by 3-methylcholanthrene) increased 2-fold on exposure to heat shock for 2 h. The expression of inducible heat shock proteins Hsp70 and Hsp32 was verified by Western immunoblot analyses. In the absence of the appropriate inducer, heat shock treatment did not enhance cytochrome P-450 activity. Furthermore, enhanced P-450 enzyme activity was delayed for heat-shocked hepatocytes. It is hypothesized that heat shock treatment attenuates the negative effects triggered by the addition of the toxic inducers and possibly stabilizes the levels of cytochrome P-450 proteins. These results suggest that heat shock treatment may be used to enhance the functionality of hepatocytes, specifically, in bioartificial liver assist devices.
Collapse
Affiliation(s)
- Padmavathy Rajagopalan
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
43
|
Chen AA, Derfus AM, Khetani SR, Bhatia SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 2005; 33:e190. [PMID: 16352864 PMCID: PMC1312364 DOI: 10.1093/nar/gni188] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A critical issue in using RNA interference for identifying genotype/phenotype correlations is the uniformity of gene silencing within a cell population. Variations in transfection efficiency, delivery-induced cytotoxicity and ‘off target’ effects at high siRNA concentrations can confound the interpretation of functional studies. To address this problem, we have developed a novel method of monitoring siRNA delivery that combines unmodified siRNA with seminconductor quantum dots (QDs) as multi color biological probes. We co-transfected siRNA with QDs using standard transfection techniques, thereby leveraging the photostable fluorescent nanoparticles to track delivery of nucleic acid, sort cells by degree of transfection and purify homogenously-silenced subpopulations. Compared to alternative RNAi tracking methods (co-delivery of reporter plasmids and end-labeling the siRNA), QDs exhibit superior photostability and tunable optical properties for an extensive selection of non-overlapping colors. Thus this simple, modular system can be extended toward multiplexed gene knockdown studies, as demonstrated in a two color proof-of-principle study with two biological targets. When the method was applied to investigate the functional role of T-cadherin (T-cad) in cell–cell communication, a subpopulation of highly silenced cells obtained by QD labeling was required to observe significant downstream effects of gene knockdown.
Collapse
Affiliation(s)
- Alice A. Chen
- Harvard-M.I.T. Division of Health Sciences and Technology/Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyMA, USA
| | - Austin M. Derfus
- Department of Bioengineering, University of California at San DiegoCA, USA
| | - Salman R. Khetani
- Harvard-M.I.T. Division of Health Sciences and Technology/Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyMA, USA
- Department of Bioengineering, University of California at San DiegoCA, USA
| | - Sangeeta N. Bhatia
- Harvard-M.I.T. Division of Health Sciences and Technology/Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyMA, USA
- Department of Bioengineering, University of California at San DiegoCA, USA
- Division of Medicine, Brigham & Women's HospitalBoston, MA, USA
- To whom correspondence should be addressed at Laboratory for Multiscale Regenerative Technologies, 77 Massachusetts Avenue, E19-502D, Cambridge, MA 02139, USA. Tel: +617 324 0221; Fax: +617 324 0740;
| |
Collapse
|
44
|
Savlík M, Polásková P, Szotáková B, Lamka J, Skálová L. The effects of flubendazole and mebendazole on cytochromes P4501A in pheasant hepatocytes. Res Vet Sci 2005; 79:139-47. [PMID: 15924931 DOI: 10.1016/j.rvsc.2004.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 10/14/2004] [Accepted: 10/29/2004] [Indexed: 11/29/2022]
Abstract
Many benzimidazoles are known inducers of cytochromes P4501A (CYP1A) in laboratory animals and cell lines. As flubendazole and mebendazole are benzimidazole anthelmintics often used in a pheasant, in the present study an effect of these drugs in primary cultures of pheasant (Phasianus colchicus) hepatocytes was investigated. After 48 h incubation of the hepatocytes with the benzimidazoles (0.2-5 microM), CYP1A activities -- ethoxyresorufin O-deethylation (EROD) and methoxyresorufin O-demethylation (MROD) activities were measured and the CYP1A protein levels were determined by Western blotting. None of the tested benzimidazoles influenced the CYP1A protein content. No pharmacologically significant enhancement of CYP1A after exposure of the hepatocytes to flubendazole and mebendazole was found. Inhibition of the EROD/MROD activities caused by both tested substances was observed only at the highest concentration (5 microM). From a point of view of CYP1A induction or inhibition, the treatment of pheasants by both anthelmintics tested seems to be safe. Our study demonstrates the inter-species differences in CYP1A inducibility and the importance of induction/inhibition studies on target animals.
Collapse
Affiliation(s)
- M Savlík
- Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
45
|
Sosef MN, Baust JM, Sugimachi K, Fowler A, Tompkins RG, Toner M. Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function. Ann Surg 2005; 241:125-33. [PMID: 15622000 PMCID: PMC1356855 DOI: 10.1097/01.sla.0000149303.48692.0f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the long-term effect of cryopreservation on hepatocyte function, as well as attempt to improve cell viability and function through the utilization of the hypothermic preservation solution, HypoThermosol (HTS), as the carrier solution. SUMMARY BACKGROUND DATA Advances in the field of bioartificial liver support have led to an increasing demand for successful, efficient means of cryopreservation of hepatocytes. METHODS Fresh rat hepatocytes were cryopreserved in suspension in culture media (Media-cryo group) or HTS (HTS-cryo group), both supplemented with 10% DMSO. Following storage up to 2 months in liquid nitrogen, cells were thawed and maintained in a double collagen gel culture for 14 days. Hepatocyte yield and viability were assessed up to 14 days postthaw. Serial measurements of albumin secretion, urea synthesis, deethylation of ethoxyresorufin (CYT P450 activity), and responsiveness to stimulation with interleukin-6 (IL-6) were performed. RESULTS Immediate postthaw viability was 60% in Media-cryo and 79% in HTS-cryo, in comparison with control (90%). Albumin secretion, urea synthesis and CYT P450 activity yielded 33%, 55%, and 59% in Media-cryo and 71%, 80%, and 88% in HTS-cryo, respectively, compared with control (100%). Assessment of cellular response to IL-6 following cryopreservation revealed a similar pattern of up-regulation in fibrinogen production and suppression of albumin secretion compared with nonfrozen controls. CONCLUSIONS This study demonstrates that isolated rat hepatocytes cryopreserved using HTS showed high viability, long-term hepatospecific function, and response to cytokine challenge. These results may represent an important step forward to the utilization of cryopreserved isolated hepatocytes in bioartificial liver devices.
Collapse
Affiliation(s)
- Meindert N Sosef
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
46
|
Schaeffner I, Petters J, Aurich H, Frohberg P, Christ B. A Microtiterplate-Based Screening Assay to Assess Diverse Effects on Cytochrome P450 Enzyme Activities in Primary Rat Hepatocytes by Various Compounds. Assay Drug Dev Technol 2005; 3:27-38. [PMID: 15798393 DOI: 10.1089/adt.2005.3.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the development of potential drugs it is useful to identify pharmacological and/or toxicological side effects of a compound as early as possible in order to exclude them from further development for reasons of time and cost. Activation or inactivation of members of the cytochrome P450-dependent monooxygenase system (CYP450) might indicate potential undesired effects of a given compound. However, results using CYP450 assay systems are often inconsistent because of different experimental settings. Therefore, it was the goal of the present study to optimize the CYP450 assay in primary rat hepatocytes with respect to the time point of addition of and duration of exposure to alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) as well as trans-resveratrol (RES), which have well-described stimulatory and inhibitory effects on CYP450 enzymes of the 1A and 2B family, respectively. Hepatocytes were also treated with putative lipoxygenase (LOX)/cyclooxygenase (COX) inhibitors with unknown impact on CYP450 enzyme activity in order to detect potential side effects. Cells were cultured for up to 7 days on 96-well microtiter plates, and enzyme activity was determined by a conventional fluorescence spectroscopy assay. ANF and BNF, given to the cells after 4 days of culture, stimulated CYP1A and 2B activities significantly in a concentration-dependent fashion after long-term exposure for at least 1 day. However, during short-term exposure for 1-6 h, CYP1A activity was inhibited, while CYP2B was increased weakly by ANF but not BNF. RES inhibited CYP1A activity during short- and long-term exposure without affecting CYP2B activity. From the results it was concluded that primary rat hepatocytes should be cultured for at least 3-4 days but no longer prior to the assay. The assay should be performed at two different time points of exposure, i.e., 6 h for short-term and 24 h for long-term exposure. The compounds under investigation should be applied at two different concentrations, e.g., at one time and 10 times higher concentrations, which should be oriented to the ED50, provided it is known for the respective substance. Under these assay conditions the LOX/COX inhibitors tested activated CYP1A enzyme activity in long-term but instead inhibited it in short-term experiments. CYP2B activity was stimulated during short- and long-term exposure. These results indicated drug side effects recommending exclusion of the compounds from the drug developmental process. Hence, in order to assess the pharmacological potential of novel compounds it is adequate to perform both short- and long-term experiments to concisely describe the effect of a compound on the CYP450 system.
Collapse
Affiliation(s)
- I Schaeffner
- Molecular Hepatology Lab, First Department of Medicine, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
47
|
Allen JW, Johnson RS, Bhatia SN. Hypoxic inhibition of 3-methylcholanthrene-induced CYP1A1 expression is independent of HIF-1alpha. Toxicol Lett 2005; 155:151-9. [PMID: 15585370 DOI: 10.1016/j.toxlet.2004.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 11/29/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) and aryl hydrocarbon receptor (AhR) both require dimerization with AhR nuclear translocator (ARNT) to initiate transcription of their respective target genes. It has been proposed that competition for ARNT results in decreased targeting of AhR to cytochrome P450 1A1 (CYP1A1) under hypoxia. We established primary cultures of HIF-1alpha null hepatocytes to examine the interaction between HIF-1alpha and AhR signaling. Gene expression of known HIF targets phosphoglycerate kinase (PGK), vascular endothelial growth factor (VEGF) and glucose transporter-1 (GLUT-1) increased under hypoxia, but was reduced in the HIF null cultures. Concomitant treatment of cultures with hypoxia (1% O2) and 3-methylcholanthrene (an AhR ligand) did not significantly alter HIF target gene expression. Furthermore, enzymatic activity and transcription of CYP1A1 was inhibited by hypoxia in HIF-1alpha null cultures, indicating that HIF-1alpha is not directly involved in negative regulation of AhR signaling.
Collapse
Affiliation(s)
- Jared W Allen
- Division of Biological Sciences, Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
48
|
Meijer LA, Verstegen JCM, Bull S, Fink-Gremmels J. Metabolism of bromhexine in pig hepatocyte cultures. J Vet Pharmacol Ther 2004; 27:219-25. [PMID: 15305850 DOI: 10.1111/j.1365-2885.2004.00584.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolism of bromhexine [N-cyclohexyl-N-methyl-2-(2-amino-3,5-di-bromo-benzyl)-amine] was studied using pig hepatocyte cultures and LC/MS/MS techniques. Phase I 'single-step' reactions, i.e. hydroxylation and demethylation occurred the fastest whereas the formation of hydroxylated/demethylated and aminal hydroxylated metabolites, which can be considered as multiple-step reactions, occurred more slowly. Phase II conjugates were detected for all hydroxylated metabolites. The glucuronides of the hydroxylated/demethylated components tended to accumulate. In addition to metabolites known to be formed in vivo, three unknown components related to bromhexine were detected. Two of these metabolites accumulated during incubation. Based on the fragmentation patterns, a possible molecular structure is proposed for these components.
Collapse
Affiliation(s)
- L A Meijer
- Dopharma Research, Zalmweg 24, 4941 VX Raamsdonksveer, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Fernández-Fígares I, Shannon AE, Wray-Cahen D, Caperna TJ. The role of insulin, glucagon, dexamethasone, and leptin in the regulation of ketogenesis and glycogen storage in primary cultures of porcine hepatocytes prepared from 60 kg pigs. Domest Anim Endocrinol 2004; 27:125-40. [PMID: 15219932 DOI: 10.1016/j.domaniend.2004.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 02/13/2004] [Indexed: 10/26/2022]
Abstract
A study was conducted to elucidate hormonal control of ketogenesis and glycogen deposition in primary cultures of porcine hepatocytes. Hepatocytes were isolated from pigs (54-68 kg) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Monolayers were established in medium containing fetal bovine serum for 1 day and switched to a serum-free medium for the remainder of the culture period. Hepatocytes were maintained in DMEM/M199 containing 1% DMSO, dexamethasone (10(-6) or 10(-7) M), linoleic acid (3.4 x 10(-5) M), and carnitine (10(-3) M) for 3 days. On the first day of serum-free culture, insulin was added at 1 or 100 ng/ml and glucagon was added at 0, 1, or 100 ng/ml. Recombinant human leptin (200 ng/ml) was added during the final 24 h; medium and all cells were harvested on the third day. Concentrations of acetoacetate and beta-hydroxybutyrate (ketone bodies) in media and glycogen deposition in the cellular compartment were determined. Ketogenesis was highly stimulated by glucagon (1 and 100 ng/ml) and inhibited by insulin. In contrast, glycogen deposition was stimulated by insulin and attenuated by glucagon; high insulin was also associated with a reduction in the ketone body ratio (acetoacetate:beta-hydroxybutyrate). High levels of dexamethasone stimulated ketogenesis, but inhibited glycogen deposition at low insulin. Culture of cells with leptin for 24 h, over the range of insulin, glucagon, and dexamethasone concentrations had no effect on either glycogen deposition or ketogenesis. These data suggest that while adult porcine hepatocytes are indeed sensitive to hormonal manipulation, leptin has no direct influence on hepatic energy metabolism in swine.
Collapse
Affiliation(s)
- I Fernández-Fígares
- Growth Biology Laboratory, Animal and Natural Resources Institute, Beltsville Agricultural Research Center-East, USDA/ARS, Building 200, Room no. 202, USDA, MD 20705, USA
| | | | | | | |
Collapse
|
50
|
Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S. Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. ACTA ACUST UNITED AC 2004; 9:757-66. [PMID: 13678452 DOI: 10.1089/107632703768247430] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering with three-dimensional biomaterials represents a promising approach for developing hepatic tissue to replace the function of a failing liver. Herein, we address cell seeding and distribution within porous alginate scaffolds, which represent a new type of porous biomaterial for tissue engineering. The hydrophilic nature of the alginate scaffold as well as its pore structure and interconnectivity enabled the efficient seeding of hepatocytes into the scaffolds, that is, 70-90% of the initial cells depending on the seeding method. Utilization of centrifugal force during seeding enhanced cell distribution in the porous scaffolds, consequently enabling the seeding of concentrated cell suspensions (>1 x 10(7) cells/mL). Cell density in scaffolds affected hepatocyte viability as judged by MTT assay. At a cell density of 0.28 x 10(6) cells/cm3 scaffold, the number of viable hepatocytes decreased to 33% of its initial value within 7 days, whereas at the denser cultures, 5.7 x 10(6) cells/cm3 scaffold and higher, the cells maintained higher viability while forming a network of connecting spheroids. In the high-density cellular constructs, hepatocellular functions such as albumin and urea secretion, and detoxification (cytochrome P-450 and phase II conjugating enzyme activities), remained high during the 7-day culture. Collectively, the results of the present study highlight the importance of cell density on the hepatocellular functions of three-dimensional hepatocyte constructs as well as the advantages of alginate matrices as scaffoldings.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheeva, Israel
| | | | | | | |
Collapse
|