1
|
Long B, Gottlieb M. Emergency medicine updates: Management of sepsis and septic shock. Am J Emerg Med 2025; 90:179-191. [PMID: 39904062 DOI: 10.1016/j.ajem.2025.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Sepsis is a common condition associated with significant morbidity and mortality. Emergency physicians play a key role in the diagnosis and management of this condition. OBJECTIVE This paper evaluates key evidence-based updates concerning the management of sepsis and septic shock for the emergency clinician. DISCUSSION Sepsis is a life-threatening syndrome, and rapid diagnosis and management are essential. Antimicrobials should be administered as soon as possible, as delays are associated with increased mortality. Resuscitation targets include mean arterial pressure ≥ 65 mmHg, mental status, capillary refill time, lactate, and urine output. Intravenous fluid resuscitation plays an integral role in those who are fluid responsive. Balanced crystalloids and normal saline are both reasonable options for resuscitation. Early vasopressors should be initiated in those who are not fluid-responsive. Norepinephrine is the recommended first-line vasopressor, and if hypotension persists, vasopressin should be considered, followed by epinephrine. Administration of vasopressors through a peripheral 20-gauge or larger intravenous line is safe and effective. Steroids such as hydrocortisone and fludrocortisone should be considered in those with refractory septic shock. CONCLUSION An understanding of the recent updates in the literature concerning sepsis and septic shock can assist emergency clinicians and improve the care of these patients.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Li Q, Xu J, Zhao J, Chen D, Liu M, Yue J. Ultrasound-Guided Fluid Volume Management in Patients With Septic Shock: A Randomized Controlled Trial. J Trauma Nurs 2025; 32:90-99. [PMID: 40053551 DOI: 10.1097/jtn.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
BACKGROUND Ultrasound-guided fluid management is increasingly used in the intensive care unit, yet it's benefits in septic shock remains unknown. OBJECTIVE To evaluate the use of critical care ultrasound for individualized volume management in septic shock patients. METHODS A single-center, randomized controlled, prospective study was conducted on patients with septic shock admitted to the intensive care unit in Xi'an Daxing Hospital, Xi'an City, China, from September 2022 to December 2023. Upon intensive care unit admission, the patients were resuscitated according to the latest sepsis and septic shock guidelines and early goal-directed therapy. The study group additionally underwent critical care ultrasound examination to monitor and guide the adjustment of fluid resuscitation in real-time. The two groups' physiological and biochemical indexes and prognoses were compared before (T0) and 6 hours after (T6) fluid resuscitation. RESULTS A total of 113 patients with septic shock were selected and randomly allocated into study (n = 57) and control (n = 56) groups. The central venous oxygen saturation, heart rate, mean arterial pressure, blood lactate, and lactate clearance rate of the two groups at T6 were significantly improved compared to T0 (P < .05). At T6, the study group's blood lactate was significantly lower and the lactate clearance was significantly higher than the control group (P < .05). At T6, the incidence of pulmonary edema, incidence of left heart failure, Sequential Organ Failure Assessment (SOFA) score and length of the intensive care unit hospitalization in the study group were significantly lower than the control group (P < .05). CONCLUSION The application of critical care ultrasound improved the outcome and helped guide individualized management of patients with septic shock.
Collapse
Affiliation(s)
- Qing Li
- Author Affiliations: Department of Ultrasound Medicine, Xi'an Daxing Hospital, Xi'an City, Shaanxi Province, China (Drs Li, Zhao, Chen, and Yue); Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an City, Shaanxi Province, China (Dr Xu); and Department of Critical Care Medicine, Xi'an Daxing Hospital, Xi'an City, Shaanxi Province, China (Dr Liu)
| | | | | | | | | | | |
Collapse
|
3
|
Wiger CW, Ranheim T, Arnesen H, Vaage J, Pischke SE, Yndestad A, Stensløkken K, Torp M. TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes. Immun Inflamm Dis 2025; 13:e70133. [PMID: 39853914 PMCID: PMC11760985 DOI: 10.1002/iid3.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion. METHODS Isolated C57BL/6N male mouse hearts were perfused for 120 min, with either LPS, E. coli, with and without CLI-095 (TLR4 inhibitor). Primary adult mouse cardiomyocytes were treated with LPS or LPS + CLI-095. Isolated hearts, exposed to 35 min of global ischemia, were treated with either vehicle or CLI-095 during reperfusion. Infarct size was quantified by triphenyltetrazolium staining. Cytokine expression was analyzed with ELISA, western blot analysis, and qPCR. RESULTS In isolated hearts, E. coli increased the expression of proinflammatory cytokines (IL-6 and CXCL2), which was not attenuated with TLR4 inhibition. TLR4 inhibition reduced expression (p = 0.004) and release of IL-6 (p < 0.0001) in LPS-exposed isolated hearts. LPS activated the nuclear-factor κ-light-chain-enhancer of activated B cells signaling pathway (NF-κB) in primary adult cardiomyocytes. Moreover, TLR4 inhibition reduced LPS-induced mRNA expression and release of IL-6 in primary adult cardiomyocytes. Isolated hearts treated with CLI-095 during reperfusion after ischemia (induced DAMPs release) showed reduced infarct size (39 ± 17% to 26 ± 8%, p = 0.034) and decreased IL-6 release (p = 0.006). CONCLUSION Inhibition of TLR4 reduced proinflammatory signaling and cytokine release in LPS-treated and ischemia-reperfused isolated mouse hearts and in primary adult murine cardiomyocytes.
Collapse
Affiliation(s)
- Christine W. Wiger
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Henriette Arnesen
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Research and Innovation, Division of Emergencies and Critical CareOslo University HospitalOsloNorway
| | | | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Kåre‐Olav Stensløkken
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - May‐Kristin Torp
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Østfold Hospital TrustGrålumNorway
| |
Collapse
|
4
|
Park C, Ku NS, Park DW, Park JH, Ha TS, Kim DW, Park SY, Chang Y, Jo KW, Baek MS, Seo Y, Shin TG, Yu G, Lee J, Choi YJ, Jang JY, Jung YT, Jeong I, Cho HJ, Woo A, Kim S, Bae DH, Kang SW, Park SH, Suh GY, Park S. Early management of adult sepsis and septic shock: Korean clinical practice guidelines. Acute Crit Care 2024; 39:445-472. [PMID: 39622601 PMCID: PMC11617831 DOI: 10.4266/acc.2024.00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Despite recent advances and global improvements in sepsis recognition and supportive care, mortality rates remain high, and adherence to sepsis bundle components in Korea is low. To address this, the Korean Sepsis Alliance, affiliated with the Korean Society of Critical Care Medicine, developed the first sepsis treatment guidelines for Korea based on a comprehensive systematic review and meta-analysis. METHODS A de novo method was used to develop the guidelines. Methodologies included determining key questions, conducting a literature search and selection, assessing the risk of bias, synthesizing evidence, and developing recommendations. The certainty of evidence and the strength of recommendations were determined using the Grading of Recommendations, Assessment, Development, and Evaluations approach. Draft recommendations underwent internal and external review processes and public hearings. The development of these guidelines was supported by a research grant from the Korean Disease Control and Prevention Agency. RESULTS In these guidelines, we focused on early treatments for adult patients with sepsis and septic shock. Through the guideline development process, 12 key questions and their respective recommendations were formulated. These include lactate measurement, fluid therapies, target blood pressure, antibiotic administration, use of vasopressors and dobutamine, extracorporeal membrane oxygenation, and echocardiography. CONCLUSIONS These guidelines aim to support medical professionals in making appropriate decisions about treating adult sepsis and septic shock. We hope these guidelines will increase awareness of sepsis and reduce its mortality rate.
Collapse
Affiliation(s)
- Chul Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Nam Su Ku
- Division of Infective Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Won Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Joo Hyun Park
- Respiratory Medicine, Department of Internal Medicine, Seoul Metropolitan Seonam Hospital, Seoul, Korea
| | - Tae Sun Ha
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Do Wan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youjin Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Sanggye Paik Hospital, College of Medicine, Inje University Seoul, Korea
| | - Kwang Wook Jo
- Department of Neurosurgery, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Moon Seong Baek
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yijun Seo
- Department of Anesthesiology and Pain Medicine, and Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Gun Shin
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gina Yu
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jongmin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Jun Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Jang
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Yun Tae Jung
- Department of Surgery, Gangneung Asan Hospital, Gangneung, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ala Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sua Kim
- Department of Critical Care Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Dae-Hwan Bae
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Bucheon Sejong Hospital, Bucheon, Korea
| | - Sung Wook Kang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sun Hyo Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Gee Young Suh
- Department of Critical Care Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sunghoon Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
5
|
Maluleke TT, Manilall A, Shezi N, Baijnath S, Millen AME. Acute exposure to LPS induces cardiac dysfunction via the activation of the NLRP3 inflammasome. Sci Rep 2024; 14:24378. [PMID: 39420211 PMCID: PMC11487256 DOI: 10.1038/s41598-024-76066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic inflammation contributes to left ventricular (LV) dysfunction, however the role of the NLRP3 inflammasome in LV dysfunction in acute inflammatory conditions is unclear. This study investigated the role of the NLRP3 inflammasome in acute (24 h) cardiac structural and functional changes in vivo and in vitro in lipopolysaccharide (LPS)-induced inflammation. LPS-treated Sprague-Dawley (SD) rats showed increased LPS metabolite abundance in their LVs as measured by atmospheric pressure matrix-assisted laser desorption ionisation (AP-MALDI) mass spectrometry imaging (MSI). Echocardiography and histology showed that in LPS-exposed rats, LV internal diameter was decreased, with evidence of macrophage infiltration and oedema. However, there were no changes in LV wall thickness or collagen volume. Additionally, LPS-exposed rats exhibited impaired LV relaxation, potentially contributing to decreased stroke volume. While global systolic function was preserved, LPS exposure in SD rats resulted in impaired myocardial deformation assessed by speckle-tracking echocardiography. Exposure to LPS resulted in upregulation of the expression of components of the NLRP3 inflammasome in rodents. In vitro LPS exposure resulted in increased gene expression of NLRP3 and downstream cytokines IL-1β and IL-18, antioxidant SOD2, and elevated markers of pyroptosis (GSDMD) which were inhibited by treatment with a NLRP3 antagonist. However, LPS-induced increases in the gene expression of apoptosic markers (BAX/Bcl2) were not impacted by NLRP3 antagonism. These findings suggest that inflammation induced adverse cardiac structural and functional changes is, at least in part, mediated by the NLRP3 inflammasome in acute, high-grade inflammatory states. In addition, in vitro findings suggest that while the NLRP3 inflammasome mediates pyroptotic pathways, regulation of apoptosis that is independent of the inflammasome.
Collapse
Affiliation(s)
- Tshiamo T Maluleke
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Ashmeetha Manilall
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Nandi Shezi
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Sooraj Baijnath
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Aletta M E Millen
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Chang X, Guo Y, Wang J, Liu J, Ma Y, Lu Q, Han Y. Heart-type fatty acid binding protein (H-FABP) as an early biomarker in sepsis-induced cardiomyopathy: a prospective observational study. Lipids Health Dis 2024; 23:283. [PMID: 39232765 PMCID: PMC11373395 DOI: 10.1186/s12944-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SICM) is a common and life-threatening complication of sepsis, significantly contributing to elevated mortality. This study aimed to identify crucial indicators for the prompt and early assessment of SICM. METHODS Patients diagnosed with sepsis or SICM within 24 h of intensive care unit (ICU) admission were enrolled in this prospective observational study. Patients were assigned to the training set, validation set and external test set. The primary endpoint was 7-day ICU mortality, and the secondary endpoint was 28-day ICU mortality. Three machine learning algorithms were utilized to identify relevant indicators for diagnosing SICM, incorporating 64 indicators including serum biomarkers associated with cardiac, renal, and liver function, lipid metabolism, coagulation, and inflammation. Internal and external validations were performed on the screening results. Patients were then stratified based on the cut-off value of the most diagnostically effective biomarker identified, and their prognostic outcomes were observed and analyzed. RESULTS A total of 270 patients were included in the training and validation set, and 52 patients were included in the external test set. Age, sex, and comorbidities did not significantly differ between the sepsis and SICM groups (P > 0.05). The support vector machine (SVM) algorithm identified six indicators with an accuracy of 84.5%, the random forest (RF) algorithm identified six indicators with an accuracy of 81.9%, and the logistic regression (LR) algorithm screened out seven indicators. Following rigorous selection, a diagnostic model for sepsis-induced cardiomyopathy was established based on heart-type fatty acid binding protein (H-FABP) (OR 1.308, 95% CI 1.170-1.462, P < 0.001) and retinol-binding protein (RBP) (OR 1.020, 95% CI 1.006-1.034, P < 0.05). H-FABP alone exhibited the highest diagnostic performance in both the internal (AUROC 0.689, P < 0.05) and external sets (AUROC 0.845, P < 0.05). Patients with SICM were further stratified based on an H-FABP diagnostic cut-off value of 8.335 ng/mL. Kaplan-Meier curve analysis demonstrated that elevated H-FABP levels at admission were associated with higher 7-day ICU mortality in patients with SICM (P < 0.05). CONCLUSIONS This study revealed that H-FABP concentrations measured within 24 h of patient admission could serve as a crucial biomarker for the early and rapid diagnosis and short-term prognostic evaluation of SICM.
Collapse
Affiliation(s)
- Xinyi Chang
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Yue Guo
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Jiawei Wang
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Jun Liu
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Yuanze Ma
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Qiulun Lu
- China Pharmaceutical University, 639 Longmian Avenue, Nanjing, China
| | - Yi Han
- Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Wen J, Li L, Yang Y, Ou D, Yang J, Xie J, Du W, Tong Y. Phytochemicals targeting ferroptosis in cardiovascular diseases: Recent advances and therapeutic perspectives. Phytother Res 2024; 38:4386-4405. [PMID: 38973263 DOI: 10.1002/ptr.8278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024]
Abstract
Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Dinglin Ou
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jiachen Xie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Wenya Du
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| |
Collapse
|
8
|
Zhong J, Zhang J, Lin Y, Ma D, Mo J, Ye X. Association between maximum norepinephrine dosage and mortality risk in neonates with septic shock. Sci Rep 2024; 14:14887. [PMID: 38937631 PMCID: PMC11211480 DOI: 10.1038/s41598-024-65744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
The high-dose usage of norepinephrine is thought to cause high mortality in patients with septic shock. This study aims to explores the correlation between the maximum norepinephrine (NE) dosage (MND) and mortality in neonates with septic shock. This retrospective cohort study included neonates with evidence of septic shock and those who received NE infusion. The study included 123 neonates, with 106 in the survival group and 17 in the death group. The death group exhibited significantly lower birth weight (p = 0.022), 1-min Apgar score (p = 0.005), serum albumin (p < 0.001), and base excess (BE) (p = 0.001) levels, but higher lactate (LAC) levels (p = 0.009) compared to the survival group. MND demonstrated an ROC area under the curve of 0.775 (95% CI 0.63-0.92, p < 0.001) for predicting mortality, with an optimal threshold of 0.3 µg/(kg·min), a sensitivity of 82.4%, and a specificity of 75.5%. Multivariate logistic regression indicated that an MND > 0.3 µg/(kg·min) (OR, 12.08, 95% CI 2.28-64.01) was associated with a significantly higher mortality risk. Spearman rank correlation showed a positive correlation between MND and LAC (r = 0.252, p = 0.005), vasoactive-inotropic score (VIS) (r = 0.836, p < 0.001), and a negative correlation with BE (r = - 0.311, p = 0.001). MND > 0.3 µg/(kg min) is a useful predictive marker of mortality in neonatal septic shock.
Collapse
Affiliation(s)
- Junjuan Zhong
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Zhang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yingyi Lin
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Dongju Ma
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Mo
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiuzhen Ye
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China.
| |
Collapse
|
9
|
Casper E, El Wakeel L, Sabri N, Khorshid R, Fahmy SF. Melatonin: A potential protective multifaceted force for sepsis-induced cardiomyopathy. Life Sci 2024; 346:122611. [PMID: 38580195 DOI: 10.1016/j.lfs.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Nagwa Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ramy Khorshid
- Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sarah F Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
10
|
Lu NF, Niu HX, Liu AQ, Chen YL, Liu HN, Zhao PH, Shao J, Xi XM. Types of Septic Cardiomyopathy: Prognosis and Influencing Factors - A Clinical Study. Risk Manag Healthc Policy 2024; 17:1015-1025. [PMID: 38680475 PMCID: PMC11055516 DOI: 10.2147/rmhp.s452803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Objective To explore the prognostic outcomes associated with different types of septic cardiomyopathy and analyze the factors that exert an influence on these outcomes. Methods The data collected within 24 hours of ICU admission included cardiac troponin I (cTnI), N-terminal pro-Brain Natriuretic Peptide (NT-proBNP); SOFA (sequential organ failure assessment) scores, and the proportion of vasopressor use. Based on echocardiographic outcomes, septic cardiomyopathy was categorized into left ventricular (LV) systolic dysfunction, LV diastolic dysfunction, and right ventricular (RV) systolic dysfunction. Differences between the mortality and survival groups, as well as between each cardiomyopathy subgroup and the non-cardiomyopathy group were compared, to explore the influencing factors of cardiomyopathy. Results A cohort of 184 patients were included in this study, with LV diastolic dysfunction having the highest incidence rate (43.5%). The mortality group had significantly higher SOFA scores, vasopressor use, and cTnI levels compared to the survival group; the survival group had better LV diastolic function than the mortality group (p < 0.05 for all). In contrast to the non-cardiomyopathy group, each subgroup within the cardiomyopathy category exhibited elevated levels of cTnI. The subgroup with left ventricular diastolic dysfunction demonstrated a higher prevalence of advanced age, hypertension, diabetes mellitus, coronary artery disease, and an increased mortality rate; the RV systolic dysfunction subgroup had higher SOFA scores and NT-proBNP levels, and a higher mortality rate (P < 0.05 for all); the LV systolic dysfunction subgroup had a similar mortality rate (P > 0.05). Conclusion Patients with advanced age, hypertension, diabetes mellitus, or coronary artery disease are more prone to develop LV diastolic dysfunction type of cardiomyopathy; cardiomyopathy subgroups had higher levels of cTnI. The RV systolic dysfunction cardiomyopathy subgroup had higher SOFA scores and NT-proBNP levels. The occurrence of RV systolic dysfunction in patients with sepsis significantly increased the mortality rate.
Collapse
Affiliation(s)
- Nian-Fang Lu
- Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Hong-Xia Niu
- Department of Emergency, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - An-Qi Liu
- Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Ya-Lei Chen
- Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Hu-Nan Liu
- Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Pei-Hong Zhao
- Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Jun Shao
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, People’s Republic of China
| | - Xiu-Ming Xi
- Department of Critical Care Medicine, Capital Medical University Fuxing Hospital, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Huang P, Guo Y, Hu X, Fang X, Xu X, Liu Q. Mechanism of Shenfu injection in suppressing inflammation and preventing sepsis-induced apoptosis in murine cardiomyocytes based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117599. [PMID: 38158102 DOI: 10.1016/j.jep.2023.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenfu injection(SFI), as a famous classical Chinese patent medicine injection for the treatment of sepsis, has achieved good curative effects in clinical practice. However, its specific ingredients and molecular mechanisms is still unclear. AIM OF THE STUDY To analyze the effective ingredients and molecular mechanisms of SFI in the treatment of sepsis via network pharmacology technology and experimental validation. MATERIALS AND METHODS A total of 198 mice were used in this experiment. Septic mice model was performed by cecal ligation and puncture (CLP). First, Survival rates were calculted to screen the dosage and the treatment time window of SFI. Cardiac function was evaluated by echocardiography. The potential targets and pathways of SFI in the treatment of sepsis were predicted by network pharmacology. Myocardial tissue samples were harvest from different groups after CLP surgery. Hematoxylin-eosin (H&E) and TUNEL staining were used to examine the injury of heart. Western-blot analysis was performed to determine the protein expression of apoptosis. Meanwhile, the structural changes and mitochondrial membrane potential in the mitochondria of cardiomyocytes were also observed by transmission electron microscopy. RESULTS The Kaplan-Meier survival analysis showed that SFI significantly improved the 7-day survival rate as compared with that of CLP mice (P < 0.05). Echocardiography analysis found that LVEF and FS were significantly reduced in CLP mice compared with Sham mice, while SFI significantly increased LVEF (P < 001). Network pharmacology analysis indicated that the potential targets with higher degrees include IL2, BCL2, BAX, CASP7, BID, CASP8. Pathways with higher degrees include apoptosis, TNF signaling pathway, mitochondrial pathway apoptosis, PI3K-AKT signaling pathway. SFI treatment markedly attenuated the quantity of apoptotic cells as compared with the CLP group (P < 0.01). Western blot analysis indicated that CLP surgery decreased the expression of Bcl-2 (anti-apoptotic) but improved the protein expression of Bid, t-Bid, Cyc (pro-apoptotic) as compared with the Sham group (P < 0.01). While, SFI treatment markedly prevent the expression of Bid, t-Bid, Cyc and Caspase-9. The myocardial mitochondrial membrane potential of CLP group decreased after CLP surgery, while the mitochondrial membrane potential of SFI group increased significantly. Compared with the CLP group, in SFI group, the Z-line of the sarcomere was clear and distinguishable, and swollen mitochondria were significantly improved. CONCLUSIONS The present study demonstrated that SFI improved survival rate and cardiac function of septic mice mainly by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Po Huang
- Beijing Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China
| | - Xiao Hu
- Beijing Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaolei Fang
- Beijing Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaolong Xu
- Beijing Institute of Traditional Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| |
Collapse
|
12
|
Wu R, Xu J, Zeng H, Fan Y, Li H, Peng T, Xiao F. Golden bifid treatment regulates gut microbiota and serum metabolites to improve myocardial dysfunction in cecal ligation and puncture-induced sepsis mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167049. [PMID: 38301856 DOI: 10.1016/j.bbadis.2024.167049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Myocardial damage is a major consequence and a significant contributor to death in cases of sepsis, a severe infection characterized by a distinct inflammatory response and a potential threat to the patient's life. Recently, the effects of intestinal microbiota and serum metabolites on sepsis have garnered increasing attention. Herein, the effects of golden bifid treatment upon cecal ligation and puncture (CLP)-induced sepsis in mice as a model for myocardial dysfunction were explored. Our results demonstrated that golden bifid treatment partially improved myocardial dysfunction and apoptosis, cardiac inflammation and oxidative stress, and intestinal mucosal permeability and barrier dysfunction in CLP-induced sepsis mice. The intestinal microbiota diversity and abundance were also altered within sepsis mice and improved by golden bifid treatment. Mucispirillum schaedleri, Acinetobacter baumannii and Lactobacullus intestinalis were significantly correlated with heart damage markers, inflammatory factors, or oxidative stress indicators. Serum differential metabolite levels were also significantly correlated with these parameters. Altogether, golden bifid treatment might be an underlying approach for treating sepsis-induced myocardial dysfunction and highlight the underlying effect of intestinal microbiota and serum metabolites on the pathogenesis and treatment of sepsis-triggered myocardial dysfunction.
Collapse
Affiliation(s)
- Rui Wu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hua Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tian Peng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
13
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
14
|
Geng H, Zhang H, Cheng L, Dong S. Sivelestat ameliorates sepsis-induced myocardial dysfunction by activating the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2024; 128:111466. [PMID: 38176345 DOI: 10.1016/j.intimp.2023.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cardioprotective role of sivelestat, a neutrophil elastase inhibitor, has already been demonstrated, but the underlying molecular mechanism remains unclear. This study aimed to explore the mechanism underlying the role of sivelestat in sepsis-induced myocardial dysfunction (SIMD). We found that sivelestat treatment remarkably improved the viability and suppressed the apoptosis of lipopolysaccharide (LPS)-stimulated H9c2 cells. In vivo, sivelestat treatment was associated with an improved survival rate; reduced serum cTnT, TNF-α, IL-1β levels and myocardial TNF-α and IL-1β levels; ameliorated cardiac function and structure; and reduced cardiomyocyte apoptosis. Moreover, sivelestat treatment substantially increased Bcl-2 expression and suppressed caspase-3 and Bax expression in LPS-induced H9c2 cells and in the heart tissues of septic rats. Furthermore, the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling pathway was activated both in vitro and in vivo. The protective effect of sivelestat against SIMD was reversed by the PI3K inhibitor LY294002. In summary, sivelestat can protect against SIMD by activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongyu Geng
- Department of Intensive Care Unit, Baoding First Central Hospital, Baoding, China
| | - Hongbo Zhang
- Department of General Surgery, Baoding First Central Hospital, Baoding, China
| | - Lianfang Cheng
- Department of Intensive Care Unit, Baoding First Central Hospital, Baoding, China
| | - Shimin Dong
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
15
|
Zhao C, Luo Q, Huang J, Su S, Zhang L, Zheng D, Chen M, Lin X, Zhong J, Li L, Ling K, Zhang S. Extracellular Vesicles Derived from Human Adipose-Derived Mesenchymal Stem Cells Alleviate Sepsis-Induced Acute Lung Injury through a MicroRNA-150-5p-Dependent Mechanism. ACS Biomater Sci Eng 2024; 10:946-959. [PMID: 38154081 DOI: 10.1021/acsbiomaterials.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI. The hADSC-EVs were isolated and subsequently cocultured with macrophages. It was established that hADSC-EVs transferred miR-150-5p to macrophages, where miR-150-5p targeted HMGA2 to inhibit its expression and, consequently, inactivated the MAPK pathway. This effect contributed to the promotion of M2 polarization of macrophages and the inhibition of proinflammatory cytokines. Further, mice were made septic by cecal ligation and puncture in vivo and treated with hADSC-EVs to elucidate the effect of hADSC-EVs on sepsis-induced ALI. The in vivo experimental results confirmed a suppressive role of hADSC-EVs in sepsis-induced ALI. Our findings suggest that hADSC-EV-mediated transfer of miR-150-5p may be a novel mechanism underlying the paracrine effects of hADSC-EVs on the M2 polarization of macrophages in sepsis-induced ALI.
Collapse
Affiliation(s)
- Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Qianhua Luo
- Department of Pharmacology, Guangdong Second Provincial General Hospital, Guangzhou 510317, P.R. China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510168, P.R. China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, P.R. China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Lijuan Zhang
- Department of Pharmacy, YueBei People's Hospital (YueBei People's Hospital affiliated to Shantou University Medical College), ShaoGuan 512000, P.R. China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Li Li
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Kai Ling
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| |
Collapse
|
16
|
Gonzalez FA, Santonocito C, Maybauer MO, Lopes LR, Almeida AG, Sanfilippo F. Diastology in the intensive care unit: Challenges for the assessment and future directions. Echocardiography 2024; 41:e15773. [PMID: 38380688 DOI: 10.1111/echo.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
Myocardial dysfunction is common in patients admitted to the intensive care unit (ICU). Septic disease frequently results in cardiac dysfunction, and sepsis represents the most common cause of admission and death in the ICU. The association between left ventricular (LV) systolic dysfunction and mortality is not clear for critically ill patients. Conversely, LV diastolic dysfunction (DD) seems increasingly recognized as a factor associated with poor outcomes, not only in sepsis but also more generally in critically ill patients. Despite recent attempts to simplify the diagnosis and grading of DD, this remains relatively complex, with the need to use several echocardiographic parameters. Furthermore, the current guidelines have several intrinsic limitations when applied to the ICU setting. In this manuscript, we discuss the challenges in DD classification when applied to critically ill patients, the importance of left atrial pressure estimates for the management of patients in ICU, and whether the study of cardiac dysfunction spectrum during critical illness may benefit from the integration of left ventricular and left atrial strain data to improve diagnostic accuracy and implications for the treatment and prognosis.
Collapse
Affiliation(s)
- Filipe A Gonzalez
- Intensive Care Department of Hospital Garcia de Orta, Almada, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Santonocito
- Department of Anesthesia and Intensive Care, "Policlinico-San Marco" University Hospital, Catania, Italy
| | - Marc O Maybauer
- Department of Anesthesiology, Division of Critical Care Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Luís Rocha Lopes
- Inherited Cardiac Disease Unit, Bart's Heart Centre St Bartholomew's Hospital London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Ana G Almeida
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filippo Sanfilippo
- Department of Anesthesia and Intensive Care, "Policlinico-San Marco" University Hospital, Catania, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
18
|
Ozcan MS, Savran M, Kumbul Doguc D, Kubra Dogan H, Altintas M, Cosan S. Dexpanthenol ameliorates lipopolysaccharide-induced cardiovascular toxicity by regulating the IL-6/HIF1α/VEGF pathway. Heliyon 2024; 10:e24007. [PMID: 38268590 PMCID: PMC10806266 DOI: 10.1016/j.heliyon.2024.e24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Introduction Lipopolysaccharide (Lps) is an essential component responsible for the virulence of gram-negative bacteria. Lps can cause damage to many organs, including the heart, kidneys, and lungs. Dexpanthenol (Dex) is an agent that exhibits anti-oxidative and anti-inflammatory effects and stimulates epithelialization. In this study, we aimed to investigate the effects of Dex on Lps-induced cardiovascular toxicity. Methods Rats were divided into four groups: control, Lps (5 mg/kg, intraperitoneal), Dex (500 mg/kg, intraperitoneal), and Lps + Dex. The control group received saline intraperitoneally (i.p.) once daily for three days. The Lps group received saline i.p. once daily for three days and a single dose of Lps i.p. was administered on the third day. The Dex group received Dex i.p. once daily for three days and saline on the third day. The Lps + Dex group received Dex i.p. once daily for three days and a single dose of Lps i.p. on the third day. Heart and aortic tissues were taken for biochemical, histopathological, immunohistochemical, and genetic analysis. Results Lps injection caused histopathological changes in both heart and aortic tissues and significantly increased total oxidant status and oxidative stress index levels. Interleukin-6, and Tumor necrosis factor-α mRNA expressions were significantly altered in heart and aorta, likely do to the anti-inflammatory and antioxidative effects of Dex. Furthermore, Dex affected Caspase-3 and Hypoxia-inducible factor 1-α staining patterns. Conclusions Our results show that Dex treatment has a protective effect on Lps-induced cardiac and endothelial damage in rats by reducing inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mustafa Soner Ozcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Duygu Kumbul Doguc
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Melike Altintas
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Samet Cosan
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
19
|
Tang F, Liu D, Wan F, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Ameliorative effect of anisodamine (654-1/654-2) against myocardial dysfunction induced by septic shock via the NF-κB/NLRP-3 or the PI3K-AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155277. [PMID: 38128396 DOI: 10.1016/j.phymed.2023.155277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Septic shock, an extremely dangerous condition that causes impairment of organ function, always largely contributes to mortality in intensive care units. The impact of septic shock-induced organ damage on morbidity and mortality is substantially influenced by myocardial dysfunction. However, it remains unclear whether and in what manner anisodamine (654-1/654-2) ameliorates myocardial dysfunction caused by septic shock. PURPOSE This study is the pioneering investigation and validation about the protective efficacy of anisodamine (654-1/654-2) against LPS-induced myocardial dysfunction in septic shock rats. It also aims to explore the differences in the underlying molecular mechanisms of both drugs. METHODS A septic shock model was established in SD rats by after tail vein administration of LPS. 64 rats were distributed into eight groups, such as LPS group, control group, LPS+654-1 group (1.25, 2.5, and 5 mg/kg), and LPS+654-2 group (1.25, 2.5, and 5 mg/kg). The hemodynamics, echocardiography, immunohistochemical analysis, TEM, TUNEL assay, and H&E staining were utilized to assess the septic shock model and myocardial function. Lactic acid, inflammatory markers (IL-1β, IL-6, and TNF-α), endothelial injure markers (SDC-1, HS and TM) and myocardial injury markers (CK, c-TNT and NT-pro BNP) were assessed using ELISA or biochemical kits. Additionally, the mechanisms of 654-1/654-2 were analyzed using RNA-seq and bioinformatics, and validated using western blotting and RT-PCR. RESULTS Administration of 654-1/654-2 significantly restored hemodynamics and improved myocardial and endothelial glycocalyx injury in septic shock rats. Furthermore, 654-1/654-2 dose-dependently reduced plasma levels of lactic acid, inflammatory cytokines, and markers of endothelial and myocardial injury. Analyses using RNA-seq, WB and RT-PCR techniques indicated that 654-1/654-2 could mitigate myocardial and endothelial injury by inhibiting the NF-κB and NLRP-3 pathways, and activating the PI3K-AKT pathway. CONCLUSIONS These findings demonstrated that 654-1/654-2 could alleviate myocardial damage in septic shock rats. Specifically, 654-1 inhibited the NF-κB/NLRP-3 pathway, whereas 654-2 promoted the PI3K-AKT pathway and inhibited the NF-κB pathway, effectively mitigating the inflammatory response and cell apoptosis.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Harden Waibel B, Kamien AJ. Resuscitation and Preparation of the Emergency General Surgery Patient. Surg Clin North Am 2023; 103:1061-1084. [PMID: 37838456 DOI: 10.1016/j.suc.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Traditionally, the workflow surrounding a general surgery patient allows for a period of evaluation and optimization of underlying medical issues to allow for risk modification; however, in the emergency, this optimization period is largely condensed because of its time-dependent nature. Because the lack of optimization can lead to complications, the ability to rapidly resuscitate the patient, proceed to procedural intervention to control the situation, and manage common medical comorbidities is paramount. This article provides an overview on these subjects.
Collapse
Affiliation(s)
- Brett Harden Waibel
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198-3280, USA.
| | - Andrew James Kamien
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198-3280, USA
| |
Collapse
|
21
|
Jia L, Wang P, Li C, Xie J. THE EFFICACY AND SAFETY OF VASOPRESSORS FOR SEPTIC SHOCK PATIENTS: A SYSTEMIC REVIEW AND NETWORK META-ANALYSIS. Shock 2023; 60:746-752. [PMID: 37548686 DOI: 10.1097/shk.0000000000002193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
ABSTRACT Background: Septic shock is a distributive shock with decreased systemic vascular resistance and MAP. Septic shock contributes to the most common causes of death in the intensive care unit (ICU). Current guidelines recommend the use of norepinephrine as the first-line vasopressor, whereas adrenergic agonists and vasopressin analogs are also commonly used by physicians. To date, very few studies have synthetically compared the effects of multiple types of vasoactive medications. The aim of this study was to systemically evaluate the efficacy of vasoactive agents both individually and in combination to treat septic shock. Methods: The PubMed, MEDLINE, Embase, Web of Science, and Cochrane Central Register for Controlled Trials (CENTRAL) were searched up to May 12, 2022, to identify relevant randomized controlled trials. A network meta-analysis was performed to evaluate the effect of different types of vasopressors. The primary outcome was 28-day all-cause mortality. The secondary outcome was the ICU length of stay. Adverse events are defined as any undesirable outcomes, including myocardial infarction, cardiac arrhythmia, peripheral ischemia, or stroke and cerebrovascular events. Findings: Thirty-three randomized controlled trials comprising 4,966 patients and assessing 8 types of vasoactive treatments were included in the network meta-analysis. The surface under the cumulative ranking curve provided a ranking of vasoactive medications in terms of 28-day all-cause mortality from most effective to least effective: norepinephrine plus dobutamine, epinephrine, vasopressin, terlipressin, norepinephrine, norepinephrine plus vasopressin, dopamine, and dobutamine. Dopamine was associated with a significantly shorter ICU stay than norepinephrine, terlipressin, and vasopressin, whereas other vasoactive medications showed no definite difference in ICU length of stay. Regarding adverse events, norepinephrine was associated with the highest incidences of myocardial infarction and peripheral ischemia. Dopamine was associated with the highest incidence of cardiac arrhythmia. Epinephrine and terlipressin were associated with the highest incidences of myocardial infarction and peripheral ischemia. Interpretation: The results of this network meta-analysis suggest that norepinephrine plus dobutamine is associated with a lower risk of 28-day mortality in septic shock patients than other vasoactive medications, and the use of dopamine is associated with a higher risk of 28-day mortality due to septic shock than norepinephrine, terlipressin, and vasopressin.
Collapse
Affiliation(s)
- Lu Jia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
22
|
Zhang H, Liao J, Jin L, Lin Y. NLRP3 inflammasome involves in the pathophysiology of sepsis-induced myocardial dysfunction by multiple mechanisms. Biomed Pharmacother 2023; 167:115497. [PMID: 37741253 DOI: 10.1016/j.biopha.2023.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is one of the serious health-affecting problems worldwide. At present, the mechanisms of SIMD are still not clearly elucidated. The NOD-like receptor protein 3 (NLRP3) inflammasome has been assumed to be involved in the pathophysiology of SIMD by regulating multiple biological processes. NLRP3 inflammasome and its related signaling pathways might affect the regulation of inflammation, autophagy, apoptosis, and pyroptosis in SIMD. A few molecular specific inhibitors of NLRP3 inflammasome (e.g., Melatonin, Ulinastatin, Irisin, Nifuroxazide, and Ginsenoside Rg1, etc.) have been developed, which showed a promising anti-inflammatory effect in a cellular or animal model of SIMD. These experimental findings indicated that NLRP3 inflammasome could be a promising therapeutic target for SIMD treatment. However, the clinical translation of NLRP3 inhibitors for treating SIMD still requires robust in vivo and preclinical trials.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Litong Jin
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yan Lin
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
23
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH, Hwa J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol 2023; 69:101809. [PMID: 37478801 PMCID: PMC10528349 DOI: 10.1016/j.smim.2023.101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1β, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Meiling Su
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, the Hong Kong Special Administrative Region of China
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Thockchom N, Bairwa M, Kant R, Kumar B, Bahurupi Y, Goyal B. Prognostic Significance of Diastolic Dysfunction in Type 2 Diabetes Mellitus Patients With Sepsis and Septic Shock: Insights From a Longitudinal Tertiary Care Study. Cureus 2023; 15:e45894. [PMID: 37885490 PMCID: PMC10599194 DOI: 10.7759/cureus.45894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading contributors to global mortality and morbidity, causing multi-organ failure, mainly involving cardiovascular failure, both systolic and diastolic dysfunction, leading to adverse clinical outcomes. There is little clinical data on the correlation with the mortality of patients with type 2 diabetes mellitus (T2DM) with sepsis and septic shock and left ventricular diastolic dysfunction. Our study sought to assess whether the severity of diastolic dysfunction could predict 28-day mortality. METHODOLOGY The study included T2DM patients admitted to the intensive care unit (ICU) with sepsis and septic shock defined according to the Third International Consensus Definitions for Sepsis and Septic Shock at a tertiary care center in northern India. A total of 132 patients (age = 61.01 ± 13.12 years; 62% male; mean APACHE II (Acute Physiology and Chronic Health Evaluation II) score = 25.74 ± 4.79; Sequential Organ Failure Assessment (SOFA) score = 12.34 ± 3.36) underwent transthoracic echocardiography within two hours of ICU admission till 28 days of admission or till mortality occurred. Clinical variables (APACHE II and SOFA score) and cardiac biomarkers, such as N-terminal pro-B-type natriuretic peptide (NT-pro-BNP), troponin I, and creatine phosphokinase-MB, were measured at the time of admission and after 72 hours to compare with mortality. Diastolic dysfunction was defined according to the American Society of Echocardiography (ASE) 2009 guidelines, classifying subjects into grade 0 (normal), if early diastolic velocity (e') ≥ 8 cm/s; grade 1 (impaired relaxation), if e' < 8 cm/s and early (E) to late (A) ventricular filling velocities (E/A) ratio < 0.8; grade 2 (pseudo normal), if e' < 8 cm/s, E/A = 0.8-1.5, and peak E-wave velocity by the peak e' velocity (E/e') ratio = 9-12; and grade 3 (restrictive), if e' < 8 cm/s, E/A > 2, deceleration time (DT) < 160 ms, and E/e' ≥ 13. RESULTS Thirty-seven (40.65%) out of 132 patients had diastolic dysfunction on initial echocardiography, while 54 (59.34%) had diastolic dysfunction on at least subsequent echocardiography. Total mortality was 68.93% with the highest mortality (100%) observed among those with grade 3 diastolic dysfunction. The 28-day mortality with diastolic dysfunction in sepsis and septic shock patients showed significant results (p < 0.001), indicating that with a higher E/A ratio or higher grade of diastolic dysfunction with the increase in SOFA score, the early ICU mortality is the highest and have the shortest duration of ICU stay with mean ± SD = 6.2 ± 2.48, as compared to other grades with 100% mortality. Also, the cardiac biomarker NT-pro-BNP was markedly elevated with a mean ± SD value of 503 ± 269.3 pg/ml, indicating early predicted mortality. No correlation was detected between mortality and the mean levels of fasting blood sugar, postprandial blood sugar, and glycosylated hemoglobin. CONCLUSION Our study concluded that diastolic dysfunction is an important and strongest independent mortality predictor in patients with T2DM with severe sepsis and septic shock, and the higher the grade of diastolic dysfunction, the higher the mortality with the lowest mean ICU stay.
Collapse
Affiliation(s)
- Nonita Thockchom
- Internal Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Mukesh Bairwa
- Internal Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Ravi Kant
- General Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Barun Kumar
- Cardiology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Yogesh Bahurupi
- Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Bela Goyal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
25
|
Murgolo F, Mussi RD, Messina A, Pisani L, Dalfino L, Civita A, Stufano M, Gianluca A, Staffieri F, Bartolomeo N, Spadaro S, Brienza N, Grasso S. Subclinical cardiac dysfunction may impact on fluid and vasopressor administration during early resuscitation of septic shock. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2023; 3:29. [PMID: 37641139 PMCID: PMC10463881 DOI: 10.1186/s44158-023-00117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND According to the Surviving Sepsis Campaign (SSC) fluids and vasopressors are the mainstays of early resuscitation of septic shock while inotropes are indicated in case of tissue hypoperfusion refractory to fluids and vasopressors, suggesting severe cardiac dysfunction. However, septic cardiac disfunction encompasses a large spectrum of severities and may remain "subclinical" during early resuscitation. We hypothesized that "subclinical" cardiac dysfunction may nevertheless influence fluid and vasopressor administration during early resuscitation. We retrospectively reviewed prospectically collected data on fluids and vasoconstrictors administered outside the ICU in patients with septic shock resuscitated according to the SSC guidelines that had reached hemodynamic stability without the use of inotropes. All the patients were submitted to transpulmonary thermodilution (TPTD) hemodynamic monitoring at ICU entry. Subclinical cardiac dysfunction was defined as a TPTD-derived cardiac function index (CFI) ≤ 4.5 min-1. RESULTS At ICU admission, subclinical cardiac dysfunction was present in 17/40 patients (42%; CFI 3.6 ± 0.7 min-1 vs 6.6 ± 1.9 min-1; p < 0.01). Compared with patients with normal CFI, these patients had been resuscitate with more fluids (crystalloids 57 ± 10 vs 47 ± 9 ml/kg PBW; p < 0.01) and vasopressors (norepinephrine 0.65 ± 0.25 vs 0.43 ± 0.29 mcg/kg/min; p < 0.05). At ICU admission these patients had lower cardiac index (2.2 ± 0.6 vs 3.6 ± 0.9 L/min/m2, p < 0.01) and higher systemic vascular resistances (2721 ± 860 vs 1532 ± 480 dyn*s*cm-5/m2, p < 0.01). CONCLUSIONS In patients with septic shock resuscitated according to the SSC, we found that subclinical cardiac dysfunction may influence the approach to fluids and vasopressor administration during early resuscitation. Our data support the implementation of early, bedside assessment of cardiac function during early resuscitation of septic shock.
Collapse
Affiliation(s)
- Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Rossella di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Messina
- Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Humanitas University, Pieve Emanuele-Milano, Italy
| | - Luigi Pisani
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Lidia Dalfino
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Civita
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Monica Stufano
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Altamura Gianluca
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Staffieri
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Bartolomeo
- Interdisciplinary department of medicine, University of Bari, Bari, Italy
| | - Savino Spadaro
- Department of translation medicine, University of Ferrara, Ferrara, Italy
| | - Nicola Brienza
- Interdisciplinary department of medicine, University of Bari, Bari, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
26
|
Sun F, Xu K, Zhou J, Zhang W, Duan G, Lei M. Allicin protects against LPS-induced cardiomyocyte injury by activating Nrf2-HO-1 and inhibiting NLRP3 pathways. BMC Cardiovasc Disord 2023; 23:410. [PMID: 37596540 PMCID: PMC10439633 DOI: 10.1186/s12872-023-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Allicin is a bioactive compound with potent antioxidative activity and plays a protective effect in myocardial damage and fibrosis. The role and mechanism of Allicin in septic cardiomyopathy are unclear. In this study, we investigated the effects and underlying mechanisms of Allicin on lipopolysaccharide (LPS) induced injury in H9c2 cardiomyocytes. METHODS H9c2 cardiomyocyte cells were pretreated with Allicin (0, 25, 50, and 100 µM) for 2 h, followed by incubation with LPS (10 µg/mL) for 24 h at 37 °C. Cell viability (cell counting kit-8 [CCK-8]), apoptosis (TUNEL staining), oxidative stress (malondialdehyde [MDA] and superoxide dismutase [SOD]), and cytokines release (Interleukin beta [IL-β], Interleukin 6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) were determined. The mRNA and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NLR family pyrin domain containing 3 (NLRP3) signaling pathway molecules were quantified by real-time quantitative PCR (RT-qPCR) and western blot, respectively. RESULTS Allicin had no effect on H9c2 cell viability but attenuated LPS-induced injury, with increased cell viability, reduction in inflammatory cytokines release, apoptosis, reduced MDA, and increased SOD (P < 0.05). Additionally, Allicin increased Nrf2 and cellular HO-1 expressions in LPS-treated H9c2 cells. Moreover, Allicin modulated the NLRP3 inflammasome, increased the cleaved caspase-1 (p10) protein, and attenuated the LPS-induced increase in NLRP3, pro-IL-1β, and IL-1β proteins. Silencing of Nrf2 by siRNA (siNrf2) significantly attenuated Allicin-induced increase in cell viability and HO-1 and decrease in NLRP3 protein in LPS-stimulated H9c2 cells. CONCLUSIONS Allicin protects cardiomyocytes against LPS‑induced injury through activation of Nrf2/HO-1 and inhibition of NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Fangyuan Sun
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Kailiang Xu
- Department of Critical Care Medicine, The Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China
| | - Jiayi Zhou
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Wei Zhang
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Guihe Duan
- Department of Critical Care Medicine, The Shache County People's Hospital of Xinjiang Kashgar Prefecture, Xinjiang, 844710, China
| | - Ming Lei
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No.358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
27
|
Zhang J, Zhu J, Xie T, Sun F, Wang N, Guo FM. Quantitative evaluation of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography in septic patients. BMC Anesthesiol 2023; 23:271. [PMID: 37568093 PMCID: PMC10416394 DOI: 10.1186/s12871-023-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/18/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Although global longitudinal strain (GLS) is proven to be reduced and associated with adverse outcomes in septic patients, it has not been elucidated whether or not layer-specific strains are reduced. We aimed to explore the layer-specific strains of left ventricular (LV) for assessing myocardial dysfunction in septic patients. METHODS A prospective observational study of patients with sepsis was conducted in a tertiary hospital in China. Routine two-dimensional speckle tracking echocardiography was performed within 24 h of enrollment. Demographic data, laboratory values, and clinical outcomes were collected. RESULTS We recruited 79 septic patients finally. The mean age of septic patients was 59.4 years old and 45 (57.0%) were male. The median Acute Physiology Age and Chronic Health Evaluation (APACHE II) score, and mean sequential organ failure assessment (SOFA) score of all patients were 19.0 and 7.7, respectively. According to the left ventricular ejection fraction (LVEF) value of 50%, the patients were categorized into two groups: SICM (sepsis-induced cardiomyopathy, LVEF < 50%, n = 22) and non-SICM group ( LVEF ≥ 50%, n = 57). The median LVEF of SICM and non-SICM patients were 41.9% and 58.7%, and SICM patients had less negative layer-specific strain and global strain than that of non-SICM patients. The echocardiographic comparison of non-SICM and healthy controls was conducted to explore the myocardial injuries of non-SICM patients and the non-SICM had worse LS-epi than that of controls (-18.5% vs. -21.4%, p = 0.024). CONCLUSION There were 72.2% (57) septic patients presented with non-SICM (LVEF ≥ 50%), and the strain value of epicardium of them was less negative than healthy controls.
Collapse
Affiliation(s)
- Jin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jing Zhu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Tian Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fan Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ni Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Feng-Mei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROMOTES AUTOPHAGY THROUGH PGC-1Α IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 60:227-237. [PMID: 37249064 DOI: 10.1097/shk.0000000000002152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT As a multifunctional protein, nucleolin can participate in a variety of cellular processes. Nucleolin also has multiple protective effects on heart disease. Previous studies have shown that nucleolin could not only resist oxidative stress damage and inflammatory damage, but also regulate autophagy to play a protective role in cardiac ischemia. However, the specific mechanism has not been fully elucidated in LPS-induced myocardial injury. Therefore, the aim of this study is to explore the underlying mechanism by which nucleolin regulates autophagy to protect against LPS-induced myocardial injury in vivo and in vitro . In our study, we found that nucleolin could bind to PGC-1α, and we predicted that this interaction could promote autophagy and played a role in inhibiting cardiomyocyte apoptosis. Downregulation of nucleolin in H9C2 cells resulted in decreased autophagy and increased cell apoptosis during LPS-induced myocardial injury, while upregulation of PGC-1α had the opposite protective effect. Upregulation of nucleolin expression in cardiomyocytes could increase the level of autophagy during LPS-induced myocardial injury. In contrast, interference with PGC-1α expression resulted in a decrease in the protective effect of nucleolin, leading to reduced autophagy and thus increasing apoptosis. By using tandem fluorescent-tagged LC3 autophagic flux detection system, we observed autophagic flux and determined that PGC-1α interference could block autophagic lysosomal progression. We further tested our hypothesis in the nucleolin cardiac-specific knockout mice. Finally, we also found that inhibition of autophagy can reduce mitochondrial biogenesis as well as increase apoptosis, which demonstrated the importance of autophagy. Therefore, we can speculate that nucleolin can protect LPS-induced myocardial injury by regulating autophagy, and this protective effect may be mediated by the interaction with PGC-1α, which can positively regulate the ULK1, an autophagy-related protein. Our study provides a new clue for the cardioprotective effect of nucleolin, and may provide new evidence for the treatment of LPS-induced myocardial injury through the regulation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
30
|
Dugar S, Siuba MT, Sacha GL, Sato R, Moghekar A, Collier P, Grimm RA, Vachharajani V, Bauer SR. Echocardiographic profiles and hemodynamic response after vasopressin initiation in septic shock: A cross-sectional study. J Crit Care 2023; 76:154298. [PMID: 37030157 PMCID: PMC10239343 DOI: 10.1016/j.jcrc.2023.154298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE Vasopressin, used as a catecholamine adjunct, is a vasoconstrictor that may be detrimental in some hemodynamic profiles, particularly left ventricular (LV) systolic dysfunction. This study tested the hypothesis that echocardiographic parameters differ between patients with a hemodynamic response after vasopressin initiation and those without a response. METHODS This retrospective, single-center, cross-sectional study included adults with septic shock receiving catecholamines and vasopressin with an echocardiogram performed after shock onset but before vasopressin initiation. Patients were grouped by hemodynamic response, defined as decreased catecholamine dosage with mean arterial pressure ≥ 65 mmHg six hours after vasopressin initiation, with echocardiographic parameters compared. LV systolic dysfunction was defined as LV ejection fraction (LVEF) <45%. RESULTS Of 129 included patients, 72 (56%) were hemodynamic responders. Hemodynamic responders, versus non-responders, had higher LVEF (61% [55%,68%] vs. 55% [40%,65%]; p = 0.02) and less-frequent LV systolic dysfunction (absolute difference -16%; 95% CI -30%,-2%). Higher LVEF was associated with higher odds of hemodynamic response (for each LVEF 10%, response OR 1.32; 95% CI 1.04-1.68). Patients with LV systolic dysfunction, versus without LV systolic dysfunction, had higher mortality risk (HR(t) = e[0.81-0.1*t]; at t = 0, HR 2.24; 95% CI 1.08-4.64). CONCLUSIONS Pre-drug echocardiographic profiles differed in hemodynamic responders after vasopressin initiation versus non-responders.
Collapse
Affiliation(s)
- Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew T Siuba
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ryota Sato
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ajit Moghekar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Patrick Collier
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, USA
| | - Richard A Grimm
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, USA
| | - Vidula Vachharajani
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, USA
| | - Seth R Bauer
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacy, Cleveland Clinic, USA.
| |
Collapse
|
31
|
Wu Z, Xia Y, Wang C, Lu W, Zuo H, Wu D, Li Y, Guo R, Lu J, Zhang L. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve. Biomed Pharmacother 2023; 162:114600. [PMID: 36996679 DOI: 10.1016/j.biopha.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yiqiu Xia
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaofan Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Wenjun Lu
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Han Zuo
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yu Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Rui Guo
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| |
Collapse
|
32
|
Bansal M, Mehta A, Machanahalli Balakrishna A, Kalyan Sundaram A, Kanwar A, Singh M, Vallabhajosyula S. RIGHT VENTRICULAR DYSFUNCTION IN SEPSIS: AN UPDATED NARRATIVE REVIEW. Shock 2023; 59:829-837. [PMID: 36943772 DOI: 10.1097/shk.0000000000002120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ABSTRACT Sepsis is a multisystem disease process, which constitutes a significant public health challenge and is associated with high morbidity and mortality. Among other systems, sepsis is known to affect the cardiovascular system, which may manifest as myocardial injury, arrhythmias, refractory shock, and/or septic cardiomyopathy. Septic cardiomyopathy is defined as the reversible systolic and/or diastolic dysfunction of one or both ventricles. Left ventricle dysfunction has been extensively studied in the past, and its prognostic role in patients with sepsis is well documented. However, there is relatively scarce literature on right ventricle (RV) dysfunction and its role. Given the importance of timely detection of septic cardiomyopathy and its bearing on prognosis of patients, the role of RV dysfunction has come into renewed focus. Hence, through this review, we sought to describe the pathophysiology of RV dysfunction in sepsis and what have we learnt so far about its multifactorial nature. We also elucidate the roles of different biomarkers for its detection and prognosis, along with appropriate management of such patient population.
Collapse
Affiliation(s)
- Mridul Bansal
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Aryan Mehta
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Arvind Kalyan Sundaram
- Section of Cardiovascular Medicine, Department of Medicine, UMass Chan-Baystate Medical Center, Springfield, Massachusetts
| | | | - Mandeep Singh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
33
|
Thirunavukkarasu M, Swaminathan S, Kemerley A, Pradeep SR, Lim ST, Accorsi D, Wilson R, Campbell J, Saad I, Yee SP, Palesty JA, McFadden DW, Maulik N. Role of Pellino-1 in Inflammation and Cardioprotection following Severe Sepsis: A Novel Mechanism in a Murine Severe Sepsis Model †. Cells 2023; 12:1527. [PMID: 37296648 PMCID: PMC10252528 DOI: 10.3390/cells12111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES Intra-abdominal sepsis is commonly diagnosed in the surgical population and remains the second most common cause of sepsis overall. Sepsis-related mortality remains a significant burden in the intensive care unit despite advances in critical care. Nearly a quarter of the deaths in people with heart failure are caused by sepsis. We have observed that overexpression of mammalian Pellino-1 (Peli1), an E3 ubiquitin ligase, causes inhibition of apoptosis, oxidative stress, and preservation of cardiac function in a myocardial infarction model. Given these manifold applications, we investigated the role of Peli1 in sepsis using transgenic and knockout mouse models specific to this protein. Therefore, we aimed to explore further the myocardial dysfunction seen in sepsis through its relation to the Peli 1 protein by using the loss of function and gain-of-function strategy. METHODS A series of genetic animals were created to understand the role of Peli1 in sepsis and the preservation of heart function. Wild-type, global Peli1 knock out (Peli1-/-), cardiomyocyte-specific Peli1 deletion (CP1KO), and cardiomyocyte-specific Peli1 overexpressing (alpha MHC (αMHC) Peli1; AMPEL1Tg/+) animals were divided into sham and cecal ligation and puncture (CLP) surgical procedure groups. Cardiac function was determined by two-dimensional echocardiography pre-surgery and at 6- and 24-h post-surgery. Serum IL-6 and TNF-alpha levels (ELISA) (6 h), cardiac apoptosis (TUNEL assay), and Bax expression (24 h) post-surgery were measured. Results are expressed as mean ± S.E.M. RESULTS AMPEL1Tg/+ prevents sepsis-induced cardiac dysfunction assessed by echocardiographic analysis, whereas global and cardiomyocyte-specific deletion of Peli1 shows significant deterioration of cardiac functions. Cardiac function was similar across the sham groups in all three genetically modified mice. ELISA assay displayed how Peli 1 overexpression decreased cardo-suppressive circulating inflammatory cytokines (TNF-alpha, IL-6) compared to both the knockout groups. The proportion of TUNEL-positive cells varied according to Peli1 expression, with overexpression (AMPEL1Tg/+) leading to a significant reduction and Peli1 gene knockout (Peli1-/- and CP1KO) leading to a significant increase in their presence. A similar trend was also observed with Bax protein expression. The improved cellular survival associated with Peli1 overexpression was again shown with the reduction of oxidative stress marker 4-Hydroxy-2-Nonenal (4-HNE). CONCLUSION Our results indicate that overexpression of Peli1 is a novel approach that not only preserved cardiac function but reduced inflammatory markers and apoptosis following severe sepsis in a murine genetic model.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Santosh Swaminathan
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Andrew Kemerley
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Seetur R. Pradeep
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Sue Ting Lim
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Diego Accorsi
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Rickesha Wilson
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Jacob Campbell
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ibnalwalid Saad
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health School of Medicine, Farmington, CT 06032, USA
| | - J. Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - David W. McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| |
Collapse
|
34
|
Wang Y, Liu R, Wu K, Yang G, Wang Y, Wang H, Rui T. Stress granule activation attenuates lipopolysaccharide-induced cardiomyocyte dysfunction. BMC Cardiovasc Disord 2023; 23:277. [PMID: 37312024 DOI: 10.1186/s12872-023-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Sepsis is the leading cause of death in intensive care units. Sepsis-induced myocardial dysfunction, one of the most serious complications of sepsis, is associated with higher mortality rates. As the pathogenesis of sepsis-induced cardiomyopathy has not been fully elucidated, there is no specific therapeutic approach. Stress granules (SG) are cytoplasmic membrane-less compartments that form in response to cellular stress and play important roles in various cell signaling pathways. The role of SG in sepsis-induced myocardial dysfunction has not been determined. Therefore, this study aimed to determine the effects of SG activation in septic cardiomyocytes (CMs). METHODS Neonatal CMs were treated with lipopolysaccharide (LPS). SG activation was visualized by immunofluorescence staining to detect the co-localization of GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and T cell-restricted intracellular antigen 1 (TIA-1). Eukaryotic translation initiation factor alpha (eIF2α) phosphorylation, an indicator of SG formation, was assessed by western blotting. Tumor necrosis factor alpha (TNF-α) production was assessed by PCR and enzyme-linked immunosorbent assays. CMs function was evaluated by intracellular cyclic adenosine monophosphate (cAMP) levels in response to dobutamine. Pharmacological inhibition (ISRIB), a G3BP1 CRISPR activation plasmid, and a G3BP1 KO plasmid were employed to modulate SG activation. The fluorescence intensity of JC-1 was used to evaluate mitochondrial membrane potential. RESULTS LPS challenge in CMs induced SG activation and resulted in eIF2α phosphorylation, increased TNF-α production, and decreased intracellular cAMP in response to dobutamine. The pharmacological inhibition of SG (ISRIB) increased TNF-α expression and decreased intracellular cAMP levels in CMs treated with LPS. The overexpression of G3BP1 increased SG activation, attenuated the LPS-induced increase in TNF-α expression, and improved CMs contractility (as evidenced by increased intracellular cAMP). Furthermore, SG prevented LPS-induced mitochondrial membrane potential dissipation in CMs. CONCLUSION SG formation plays a protective role in CMs function in sepsis and is a candidate therapeutic target.
Collapse
Affiliation(s)
- Yaqiao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Runmin Liu
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kehan Wu
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Gaowei Yang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yusheng Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
35
|
Zhu MY, Tang XK, Gao Y, Xu JJ, Gong YQ. Impact of heart failure on outcomes in patients with sepsis: A systematic review and meta-analysis. World J Clin Cases 2023; 11:3511-3521. [PMID: 37383893 PMCID: PMC10294198 DOI: 10.12998/wjcc.v11.i15.3511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) often affects the progress of sepsis patients, although its impact on outcomes is inconsistent and inconclusive.
AIM To conduct a systematic review and meta-analysis of the impact of HF on mortality in patients with sepsis.
METHODS PubMed, Embase, Web of Science, and the Cochrane Library databases were searched to compare the outcomes of sepsis patients with HF. A random effect model was used to summarize the mortality data, and the odds ratio (OR) and 95% confidence interval (CI) were calculated as effect indicators.
RESULTS Among 18001 records retrieved in the literature search, 35712 patients from 10 separate studies were included. The results showed that sepsis patients with HF were associated with increased total mortality (OR = 1.80, 95%CI: 1.34-2.43; I2 = 92.1%), with high heterogeneity between studies. Significant subgroup differences according to age, geographical location, and HF patient sample were observed. HF did not increase the 1-year mortality of patients (OR = 1.11, 95%CI: 0.75-1.62; I2 = 93.2%), and the mortality of patients with isolated right ventricular dysfunction (OR=2.32, 95%CI: 1.29-4.14; I2 = 91.5%) increased significantly.
CONCLUSION In patients with sepsis, HF is often associated with adverse outcomes and mortality. Our results call for more high-quality research and strategies to improve outcomes for sepsis patients with HF.
Collapse
Affiliation(s)
- Ming-Yu Zhu
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Kai Tang
- Department of the Orthopaedic, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Gao
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Jing Xu
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yuan-Qi Gong
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
36
|
Liu Q, Zhu J, Kong B, Shuai W, Huang H. Tirzepatide attenuates lipopolysaccharide-induced left ventricular remodeling and dysfunction by inhibiting the TLR4/NF-kB/NLRP3 pathway. Int Immunopharmacol 2023; 120:110311. [PMID: 37196559 DOI: 10.1016/j.intimp.2023.110311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUNDS Sepsis-induced cardiac dysfunction is a leading cause of mortality in intensive care units. Tirzepatide, a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist, possess cardio-protective, their effects on sepsis-induced cardiomyopathy remain unknown. METHODS C57BL/6 mice received subcutaneous injections of tirzepatide once a day for 14 days before subjected to LPS challenge for 12 h. LPS-induced cardiac dysfunction and its potential mechanisms were estimated by pathological analysis, echocardiographic measurement, electrocardiography, langendorff-perfused heart and molecular analysis. RESULTS Pretreatment with tirzepatide attenuates LPS-induced cardiac dysfunction. tirzepatide remarkably reduces LPS-mediated inflammatory responses by inhibiting the cardiac protein levels of TNF-α, IL-6, and IL-1B in mice. Interestingly, tirzepatide administration also improves cardiomyocytes apoptosis caused by LPS treatment. Furthermore, the protective roles of irzepatide against LPS-mediated increased inflammatory responses and decreased cardiomyocytes apoptosis are partially blunted by inhibiting TLR4/NF-kB/NLRP3 inflammation signaling. In addition, tirzepatide reduce the susceptibility ventricular arrhythmia in LPS-treated mice. CONCLUSION In brief, tirzepatide attenuates LPS-induced left ventricular remodeling and dysfunction by inhibiting the TLR4/NF-kB/NLRP3 pathway.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Jun Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
37
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
38
|
Liao J, Su X, Wang M, Jiang L, Chen X, Liu Z, Tang G, Zhou L, Li H, Lv X, Yin J, Wang H, Wang Y. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res 2023; 255:50-65. [PMID: 36400309 DOI: 10.1016/j.trsl.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiac dysfunction has been recognized as a major contributor to mortality in sepsis, which is closely associated with inflammatory reactions. The carboxy terminus of Hsc70-interacting protein (CHIP), a U-box E3 ubiquitin ligase, defends against cardiac injury caused by other factors, but its role in sepsis-induced cardiac dysfunction has yet to be determined. The present study was designed to investigate the effects of CHIP on cardiac dysfunction caused by sepsis and the molecular mechanisms underlying these processes. We discovered that the CHIP level decreased gradually in the heart at different time points after septic model construction. The decline in CHIP expression of lipopolysaccharide (LPS)-stimulated cardiomyocytes was related to c-Jun activation that inhibited the transcription of CHIP. Functional biology experiments indicated that CHIP bound directly to karyopherin-α 2 (KPNA2) and promoted its degradation through polyubiquitination in cardiomyocytes. CHIP overexpression in cardiomyocytes obviously inhibited LPS-initiated release of TNF-α and IL-6 by promoting KPNA2 degradation, reducing NF-κB translocation into the nucleus. Consistent with the in vitro results, data obtained from animal experiments indicated that septic transgenic mice with heart-specific CHIP overexpression showed a weaker proinflammatory response and reduced cardiac dysfunction than septic control mice. Furthermore, we found that the therapeutic effect of compound YL-109 on cardiac dysfunction in septic mice was due to the upregulation of myocardial CHIP expression. These findings demonstrated that sepsis-initiated the activation of c-Jun suppressed CHIP transcription. CHIP directly promoted ubiquitin-mediated degradation of KPNA2, which reduced the production of proinflammatory cytokines by inhibiting the translocation of NF-κB from the cytoplasm into the nucleus in myocardium, thereby attenuating sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingyu Su
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Miao Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Zixi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guoqing Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
He D, Hu H, Hong L, Zhang L, Lu X, Gu WJ, Lyu J, Yin H. Norepinephrine combined with phenylephrine versus norepinephrine in patients with septic shock: a retrospective cohort study. BMC Infect Dis 2023; 23:221. [PMID: 37029365 PMCID: PMC10082526 DOI: 10.1186/s12879-023-08142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Phenylephrine (PE) and norepinephrine (NE) may be used to maintain adequate blood pressure and tissue perfusion in patients with septic shock, but the effect of NE combined with PE (NE-PE) on mortality remains unclear. We hypothesized that NE-PE would not inferior to NE alone for all-cause hospital mortality in patients with septic shock. METHODS This single-center, retrospective cohort study included adult patients with septic shock. According to the infusion type, patients were divided into the NE-PE or NE group. Multivariate logistic regression, propensity score matching and doubly robust estimation were used to analyze the differences between groups. The primary outcome was the all-cause hospital mortality rate after NE-PE or NE infusion. RESULTS Among 1, 747 included patients, 1, 055 received NE and 692 received NE-PE. For the primary outcome, the hospital mortality rate was higher in patients who received NE-PE than in those who received NE (49.7% vs. 34.5%, p < 0.001), and NE-PE was independently associated with higher hospital mortality (odds ratio = 1.76, 95% confidence interval = 1.36-2.28, p < 0.001). Regarding secondary outcomes, patients in the NE-PE group had longer lengths of stay in ICU and hospitals. Patients in the NE-PE group also received mechanical ventilation for longer durations. CONCLUSIONS NE combined with PE was inferior to NE alone in patients with septic shock, and it was associated with a higher hospital mortality rate.
Collapse
Grants
- (82072232, 81871585) National Natural Science Foundation of China
- (82072232, 81871585) National Natural Science Foundation of China
- (82072232, 81871585) National Natural Science Foundation of China
- (82072232, 81871585) National Natural Science Foundation of China
- (82072232, 81871585) National Natural Science Foundation of China
- (82072232, 81871585) National Natural Science Foundation of China
- JNU1AF-CFTP-2022-a01235 Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China
- JNU1AF-CFTP-2022-a01235 Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China
- JNU1AF-CFTP-2022-a01235 Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China
- JNU1AF-CFTP-2022-a01235 Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China
- JNU1AF-CFTP-2022-a01235 Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China
- 202201020054 Science and Technology Projects in Guangzhou, China
- 202201020054 Science and Technology Projects in Guangzhou, China
- 202201020054 Science and Technology Projects in Guangzhou, China
- 202201020054 Science and Technology Projects in Guangzhou, China
- 202201020054 Science and Technology Projects in Guangzhou, China
- 202218015798 Appropriate Technology of Hunan Health Commission, China
Collapse
Affiliation(s)
- Dan He
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Anesthesiology, Hengyang Maternal and Child Health Hospital, Hengyang, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hai Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liang Hong
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuehao Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wan-Jie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China.
| | - Haiyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
40
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
41
|
Petros S. [Fluid and vasopressor therapy in sepsis]. Med Klin Intensivmed Notfmed 2023; 118:163-171. [PMID: 36598519 DOI: 10.1007/s00063-022-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/05/2023]
Abstract
Sepsis is one of the most common and lethal conditions in intensive care medicine. Besides adequate treatment of the infection, timely hemodynamic management is essential to treat tissue hypoperfusion due to sepsis. Adequate fluid resuscitation plays a central role, and this should be carried out with dynamic monitoring of the hemodynamic response. However, a positive fluid balance is associated with poor outcome. Vasopressor therapy is required in case of inadequate response to fluid resuscitation, with norepinephrine considered the first choice. With increasing norepinephrine dose, addition of hydrocortisone or vasopressin may contribute to maintaining the hemodynamic state, although the prognostic advantage of these drugs has not been demonstrated. While dobutamine may be considered in patients with septic cardiomyopathy, the evidence for inotropic therapy in sepsis is limited.
Collapse
Affiliation(s)
- Sirak Petros
- Interdisziplinäre Internistische Intensivmedizin, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| |
Collapse
|
42
|
Abrams ST, Alhamdi Y, Zi M, Guo F, Du M, Wang G, Cartwright EJ, Toh CH. Extracellular Histone-Induced Protein Kinase C Alpha Activation and Troponin Phosphorylation Is a Potential Mechanism of Cardiac Contractility Depression in Sepsis. Int J Mol Sci 2023; 24:ijms24043225. [PMID: 36834636 PMCID: PMC9967552 DOI: 10.3390/ijms24043225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and βII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCβII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCβII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.
Collapse
Affiliation(s)
- Simon T. Abrams
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Yasir Alhamdi
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Min Zi
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Fengmei Guo
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- The Medical School, Southeast University, Nanjing 210009, China
| | - Min Du
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Guozheng Wang
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Coagulation Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Centre for Cardiac Research, University of Manchester, Manchester M13 9PT, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence: (G.W.); (C.-H.T.)
| |
Collapse
|
43
|
Morris DC, Zhang ZG, Jaehne AK, Zhang J, Rivers EP. CLINICAL, MOLECULAR, AND EXOSOMAL MECHANISMS OF CARDIAC AND BRAIN DYSFUNCTION IN SEPSIS. Shock 2023; 59:173-179. [PMID: 36731014 DOI: 10.1097/shk.0000000000002015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Sepsis is a complex disease resulting from a dysregulated inflammatory response to an infection. Initiation of sepsis occurs from a localized infection that disseminates to the bloodstream placing all organ systems at risk. Septic shock is classically observed to manifest itself as systemic hypotension with hyporesponsiveness to vasopressor agents. Myocardial dysfunction occurs resulting in an inability to perfuse major organ systems throughout the body. Most importantly, the brain is hypoperfused creating an ischemic and inflammatory state resulting in the clinical observation of acute mental status changes and cognitive dysfunction commonly known as sepsis-associated encephalopathy. This short review describes the inflammatory molecular mechanisms of myocardial dysfunction, discusses the evidence of the dual roles of the microglia resulting in blood-brain barrier disruption, and suggests that septic-derived exosomes, endosome-derived lipid bilayer spheroids released from living cells, influence cardiac and neurological cellular function.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health, Detroit, Michigan
| | - Zheng Gang Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Health, Detroit, Michigan
| | - Jing Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan
| | | |
Collapse
|
44
|
Jentzer JC, Lawler PR, Van Houten HK, Yao X, Kashani KB, Dunlay SM. Cardiovascular Events Among Survivors of Sepsis Hospitalization: A Retrospective Cohort Analysis. J Am Heart Assoc 2023; 12:e027813. [PMID: 36722388 PMCID: PMC9973620 DOI: 10.1161/jaha.122.027813] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Sepsis is associated with an elevated risk of late cardiovascular events among hospital survivors. Methods and Results We included OptumLabs Data Warehouse patients from 2009 to 2019 who survived a medical/nonsurgical hospitalization lasting at least 2 nights. The association between sepsis during hospitalization, based on explicit and implicit discharge International Classification of Diseases, Ninth Revision (ICD-9)/Tenth Revision (ICD-10) diagnosis codes, with subsequent death and rehospitalization was analyzed using Kaplan-Meier survival analysis and multivariable Cox proportional-hazards models. The study population included 2 258 464 survivors of nonsurgical hospitalization (5 396 051 total patient-years of follow-up). A total of 808 673 (35.8%) patients had a sepsis hospitalization, including implicit sepsis only in 448 644, explicit sepsis only in 124 841, and both in 235 188. Patients with sepsis during hospitalization had an elevated risk of all-cause mortality (adjusted hazard ratio [HR], 1.27 [95% CI, 1.25-1.28]; P<0.001), all-cause rehospitalization (adjusted HR, 1.38 [95% CI, 1.37-1.39]; P<0.001), and cardiovascular hospitalization (adjusted HR, 1.43 [95% CI, 1.41-1.44]; P<0.001), especially heart failure hospitalization (adjusted HR, 1.51 [95% CI, 1.49-1.53]). Patients with implicit sepsis had higher risk than those with explicit sepsis. A sensitivity analysis using the first hospitalization yielded concordant results for cardiovascular hospitalization (adjusted HR, 1.78 [95% CI, 1.76-1.78]; P<0.001), as did a propensity-weighted analysis (adjusted HR, 1.52 [95% CI, 1.50-1.54]; P<0.001). Conclusions Survivors of sepsis hospitalization are at elevated risk of early and late post-discharge death as well as cardiovascular and non-cardiovascular rehospitalization. This hazard spans the spectrum of cardiovascular events and may suggest that sepsis is an important cardiovascular risk factor.
Collapse
Affiliation(s)
- Jacob C. Jentzer
- Department of Cardiovascular MedicineMayo ClinicRochesterMN,Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo ClinicRochesterMN
| | - Patrick R. Lawler
- Peter Munk Cardiac Centre, University Health NetworkTorontoOntarioCanada,Interdepartmental Division of Critical Care Medicine and Division of CardiologyUniversity of TorontoTorontoOntarioCanada
| | - Holly K. Van Houten
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo ClinicRochesterMN
| | - Xiaoxi Yao
- Department of Cardiovascular MedicineMayo ClinicRochesterMN,Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo ClinicRochesterMN
| | - Kianoush B. Kashani
- Division of Pulmonary and Critical Care MedicineMayo ClinicRochesterMN,Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | - Shannon M. Dunlay
- Department of Cardiovascular MedicineMayo ClinicRochesterMN,Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo ClinicRochesterMN
| |
Collapse
|
45
|
Yao H, Liu S, Zhang Z, Xiao Z, Li D, Yi Z, Huang Y, Zhou H, Yang Y, Zhang W. A bibliometric analysis of sepsis-induced myocardial dysfunction from 2002 to 2022. Front Cardiovasc Med 2023; 10:1076093. [PMID: 36793476 PMCID: PMC9922860 DOI: 10.3389/fcvm.2023.1076093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis-induced myocardial dysfunction (SIMD) has a significant contribution to sepsis-caused death in critically ill patients. In recent years, the number of published articles related to SIMD has increased rapidly. However, there was no literature that systematically analyzed and evaluated these documents. Thus, we aimed to lay a foundation for researchers to quickly understand the research hotspots, evolution processes and development trends in the SIMD field via a bibliometric analysis. Methods Articles related to SIMD were retrieved and extracted from the Web of Science Core Collection on July 19th, 2022. CiteSpace (version 6.1.R2) and VOSviewer (version 1.6.18) were used for performing visual analysis. Results A total of 1,076 articles were included. The number of SIMD-related articles published each year has increased significantly. These publications mainly came from 56 countries, led by China and the USA, and 461 institutions, but without stable and close cooperation. As authors, Li Chuanfu published the most articles, while Rudiger Alain had the most co-citations. Shock was the journal with the most studies, and Critical Care Medicine was the most commonly cited journal. All keywords were grouped into six clusters, some of which represented the current and developing research directions of SIMD as the molecular mechanisms. Conclusion Research on SIMD is flourishing. It is necessary to strengthen cooperation and exchanges between countries and institutions. The molecular mechanisms of SIMD, especially oxidative stress and regulated cell death, will be critical subjects in the future.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyu Zhang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongping Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuyang Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Weizhi Zhang,
| |
Collapse
|
46
|
Du Y, Zhong Y, Ding R, Wang X, Xia F, Zhang Q, Peng Q. New insights of necroptosis and immune infiltration in sepsis-induced myocardial dysfunction from bioinformatics analysis through RNA-seq in mice. Front Cell Infect Microbiol 2022; 12:1068324. [PMID: 36619743 PMCID: PMC9811394 DOI: 10.3389/fcimb.2022.1068324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host immune response to infection. Sepsis-induced myocardial dysfunction (SIMD) is a common complication in patients with severe sepsis and is associated with increased mortality. The molecular mechanisms underlying SIMD are complex and not well characterized. Excessive inflammation due to impaired regulation of immune response is one of the major causes of SIMD. Necroptosis is a novel type of cell death that is closely related to tissue injury and inflammation. However, the role of necroptosis in SIMD is not known. Therefore, in this study, we performed an in-depth bioinformatics analysis to investigate the relationship between necroptosis and SIMD using a mouse model generated by intraperitoneal injection of lipopolysaccharide (LPS) and the underlying mechanisms. Myocardial function was assessed by echocardiography. Histopathological changes in SIMD were analyzed by hematoxylin and eosin (H&E) staining. Gene expression profiles of the heart tissues from the SIMD and control mice were analyzed by bioinformatics analysis. Transcriptome sequencing demonstrated significant differences in the expression levels of 3654 genes in the heart tissues of SIMD mice including 1810 up-regulated and 1844 down-regulated genes. The necroptosis pathway genes were significantly enriched in the heart tissues from the SIMD group mice. We identified 35 necroptosis-related differentially expressed genes (NRDEGs) including MLKL and RIPK3. Cardiomyocyte necroptosis was confirmed by qRT-PCR and western blot analysis. The expression levels of most NRDEGs showed positive correlation with the infiltration levels of mast cells, macrophages, and neutrophils, and negative correlation with the infiltration levels of B cells and plasma cells in the heart tissues of the SIMD group mice. In conclusion, this study demonstrated that necroptosis was associated with changes in the infiltration levels of several immune cell types in the heart tissues of the SIMD model mice. This suggested that necroptosis influenced SIMD development by modulating the immune microenvironment. This suggested that NRDEGs are potential diagnostic biomarkers and therapeutic targets for patients with SIMD.
Collapse
Affiliation(s)
- Yan Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaojie Wang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fenfen Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Zhang
- Department of Infectious Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Qian Zhang, ; Qing Peng,
| | - Qing Peng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Qian Zhang, ; Qing Peng,
| |
Collapse
|
47
|
Potential Antioxidant Multitherapy against Complications Occurring in Sepsis. Biomedicines 2022; 10:biomedicines10123088. [PMID: 36551843 PMCID: PMC9775396 DOI: 10.3390/biomedicines10123088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Septic shock currently represents one of the main causes of mortality in critical patient units with an increase in its incidence in recent years, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Currently, despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology. However, more studies are required to demonstrate the efficacy of these therapies. Taking into account the multifactorial features of the pathophysiology of sepsis, we put forward the hypothesis that a supplementation based on the association of more than one antioxidant compound should result in a synergistic or additive effect, thus improving the beneficial effects of each of them alone, potentially serving as a pharmacological adjunct resource to standard therapy to reduce sepsis complications. Therefore, in this review, it is proposed that the use of combined antioxidant therapies could lead to a better clinical outcome of patients with sepsis or septic shock, given the relevance of oxidative stress in the pathogenesis of this multi-organ dysfunction.
Collapse
|
48
|
Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. Astragaloside IV ameliorates sepsis-induced myocardial dysfunction by regulating NOX4/JNK/BAX pathway. Life Sci 2022; 310:121123. [DOI: 10.1016/j.lfs.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
49
|
Silencing of Long Noncoding RNA MIAT Contributes to Relieving Sepsis-Induced Myocardial Depression via the NF-κB Axis. J Surg Res 2022; 278:282-292. [PMID: 35636204 DOI: 10.1016/j.jss.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
|
50
|
Xue W, Pang J, Liu J, Wang H, Guo H, Chen Y. Septic cardiomyopathy: characteristics, evaluation, and mechanism. EMERGENCY AND CRITICAL CARE MEDICINE 2022; 2:135-147. [DOI: 10.1097/ec9.0000000000000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Sepsis is a common clinical disease; if there is no early active treatment, it is likely to develop into multiple organ dysfunction syndrome and even cause death. Septic cardiomyopathy is a complication of sepsis-related cardiovascular failure, characterized by reversible left ventricular dilatation and decreased ventricular systolic and/or diastolic function. At present, echocardiography and biomarkers are often used to screen septic cardiomyopathy in clinics. Although there is still a lack of clear diagnostic criteria for septic cardiomyopathy, according to existing studies, the pathogenesis of several septic cardiomyopathy has been clarified, such as immune response caused by infection and mitochondrial dysfunction. This review summarizes the characteristics, pathophysiology, and diagnosis of septic cardiomyopathy and focuses on the mechanisms of infection immunity and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|