1
|
Maruthupandy M, Rajivgandhi G, Muneeswaran T, Vasantharaj S, Sandoval-Hevia G, Muneeswaran M, Radzi NABM. Cross-linked graphene with chitosan nanocomposites for efficient photocatalytic degradation of bromothymol blue, bromophenol blue dye molecules. Int J Biol Macromol 2025; 307:142132. [PMID: 40090656 DOI: 10.1016/j.ijbiomac.2025.142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
The pervasive occurrence of various organic contaminants, primarily dye molecules, in water bodies was caused by multiple dye industrial wastes, which recently sparked great scientific concern and public awareness due to their potential to spread these contaminants' resistant genes and pose a risk to humans. Cross-linking graphene in chitosan resulted in nanocomposites with varied morphology, increased surface area, and improved photocatalytic removal of bromothymol blue and bromophenol blue. The degradation capacity of photocatalysts at various concentrations (25 and 50 mg) was 96.2 % (170 min) and 99.2 % (80 min) with bromothymol blue, revealing a two-fold variation based on the Gr/Cts NCs concentrations. Similar to bromophenol blue dye molecules, which showed a two-fold enhancement of degradation based on graphene/chitosan nanocomposites concentration, bromophenol blue dye molecules were 95.3 % and 98.6 % at 240 and 120 min time intervals. The bromophenol blue and bromothymol blue dyes degraded according to the Langmuir adsorption model. Furthermore, the minimal cytotoxicity of graphene/chitosan nanocomposites to the human lung epithelial cell line and the human macrophage-like cell line indicates that the material is safe. This study reveals that the degrading properties of graphene/chitosan nanocomposites significantly improve as the concentration increases.
Collapse
Affiliation(s)
- Muthuchamy Maruthupandy
- Institute of Power Engineering, Department of Electrical Electronics, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-UNITEN, 43000 Kajang, Malaysia.
| | - Govindan Rajivgandhi
- Departamento de Ingenieria Quimica, Biotecnologia y Materiales, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Thillaichidambaram Muneeswaran
- Departamento de Ingenieria Quimica, Biotecnologia y Materiales, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Seerangaraj Vasantharaj
- Departamento de Ingenieria Quimica, Biotecnologia y Materiales, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Gabriela Sandoval-Hevia
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Chile
| | - Muniyandi Muneeswaran
- Department of Physics, School of Advanced Sciences, VIT-AP University, Amaravati 522 241, India
| | - Nurul Asyikin Binti Mohamed Radzi
- Institute of Power Engineering, Department of Electrical Electronics, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-UNITEN, 43000 Kajang, Malaysia.
| |
Collapse
|
2
|
Thomas MR, Badekila AK, Pai V, S N, Bhandary Y, Rai A, Kini S. Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. Adv Healthc Mater 2025; 14:e2403107. [PMID: 39840497 DOI: 10.1002/adhm.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.
Collapse
Affiliation(s)
- Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Nijil S
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Yashodhar Bhandary
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Ankit Rai
- Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| |
Collapse
|
3
|
Dhankhar S, Garg N, Chauhan S, Saini M. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery. CURRENT NANOSCIENCE 2025; 21:470-480. [DOI: 10.2174/0115734137299120240312044808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2025]
Abstract
The remarkable physicochemical properties of Graphene oxide (GO), a graphene
derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic
nature is the source of its biological flexibility. The transportation of genes and small
molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial
use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer
are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials
opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility
makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles,
and micelles. This review aims to compile the existing body of knowledge regarding
the use of GO in drug delivery by delving into its many potential uses, obstacles, and future
developments.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Monika Saini
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133-207, Ambala, Haryana, India
| |
Collapse
|
4
|
Parihar A, Gaur K, Sarbadhikary P. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Adv Biol (Weinh) 2025; 9:e2400441. [PMID: 39543015 DOI: 10.1002/adbi.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Kritika Gaur
- Central Sheep and wool research institute, ICAR- Indian Council of Agricultural Research, Avikanagr, Malpura, Rajasthan, 304501, India
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
5
|
Hong H, Nowack B. Form-Specific Prospective Environmental Risk Assessment of Graphene-Based Materials in European Freshwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21750-21759. [PMID: 39602348 PMCID: PMC11636196 DOI: 10.1021/acs.est.4c05153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
As graphene-based materials (GBMs) such as pristine graphene, graphene oxide, and reduced graphene oxide show great potential to be integrated in various applications, the need for environmental risk assessments grows, aiming to navigate the environmental fate and potential risk of the different forms of GBM. This study used dynamic probabilistic material flow analysis (DPMFA) to ascertain the prospective production volumes and distribution of GBMs within European freshwaters. The hazard assessment leveraged 113 data sets from peer-reviewed studies, addressing aquatic ecotoxicity across 26 species, by performing probabilistic species sensitivity distributions (SSD). Our findings reveal distinct environmental distribution patterns for GBM forms with predicted environmental concentrations in European freshwaters by 2030 of approximately 0.67 ng/L (SD = 0.24 ng/L) for pristine graphene and 0.33 ng/L (SD = 0.10 ng/L) for both graphene oxide and reduced graphene oxide, suggesting not only similar but notably minimal exposure levels. The risk characterization ratios (RCRs) for all forms of GBM were significantly below 1, indicating a negligible environmental risk within the scenarios assessed. Through detailed analysis considering the forms of the material, this research can inform regulatory decisions, support sustainable material design, and provide a solid foundation for a further investigation considering the environmental fate of GBM.
Collapse
Affiliation(s)
- Hyunjoo Hong
- Empa, Swiss Federal Laboratories
for Materials Science and Technologies, Technology and Society Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories
for Materials Science and Technologies, Technology and Society Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
6
|
Cuadrado CF, Lagos KJ, Stringasci MD, Bagnato VS, Romero MP. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of cancer. Photodiagnosis Photodyn Ther 2024; 50:104387. [PMID: 39490802 DOI: 10.1016/j.pdpdt.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have demonstrated great potential to diagnose and combat localized cancers. As a matter of fact, these techniques are less invasive and have fewer side effects than traditional cancer treatments like surgery, chemotherapy or radiotherapy. This review summarizes the clinical progress in the theranostics (diagnosis and treatment) of various types of regional cancers using these two light stimuli techniques, PDT and PTT. Therefore, clinical advances in cancer diagnosis based on PDT are detailed, including fluorescence-guided PDT for intraoperative cancer detection, optical coherence tomography (OCT)-guided PDT for early cancer detection, and imaging by magnetic resonance imaging (MRI) or computed tomography (CT) assisted through PDT/PTT. Moreover, clinical studies of breast, prostate, skin, gynecologic, head, neck and other varieties of cancer have been addressed to compare the main conditions of these treatments. This work also discussed the principal advantages and drawbacks of PDT and PTT in tumor targeting and cancer therapy. Finally, the usage of nanoparticles as photosensitizers (PSs) and photothermal agents (PAs) have been analyzed. In this manner, the authors have compiled relevant updated studies so that researchers interested in these areas can access it speedily.
Collapse
Affiliation(s)
| | - Karina J Lagos
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador
| | | | | | - María Paulina Romero
- New Materials Laboratory, Department of Materials, National Polytechnic School, Quito, Ecuador.
| |
Collapse
|
7
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
8
|
Chesnyak V, Perilli D, Panighel M, Namar A, Markevich A, Bui TA, Ugolotti A, Farooq A, Stredansky M, Kofler C, Cepek C, Comelli G, Kotakoski J, Di Valentin C, Africh C. Scalable bottom-up synthesis of Co-Ni-doped graphene. SCIENCE ADVANCES 2024; 10:eado8956. [PMID: 39514660 PMCID: PMC11546814 DOI: 10.1126/sciadv.ado8956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Introducing heteroatoms into graphene is a powerful strategy to modulate its catalytic, electronic, and magnetic properties. At variance with the cases of nitrogen (N)- and boron (B)-doped graphene, a scalable method for incorporating transition metal atoms in the carbon (C) mesh is currently lacking, limiting the applicative interest of model system studies. This work presents a during-growth synthesis enabling the incorporation of cobalt (Co) alongside nickel (Ni) atoms in graphene on a Ni(111) substrate. Single atoms are covalently stabilized within graphene double vacancies, with a Co load ranging from 0.07 to 0.22% relative to C atoms, controllable by synthesis parameters. Structural characterization involves variable-temperature scanning tunneling microscopy and ab initio calculations. The Co- and Ni-codoped layer is transferred onto a transmission electron microscopy grid, confirming stability through scanning transmission electron microscopy and electron energy loss spectroscopy. This method holds promise for applications in spintronics, gas sensing, electrochemistry and catalysis, and potential extension to graphene incorporation of similar metals.
Collapse
Affiliation(s)
- Valeria Chesnyak
- Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Daniele Perilli
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| | - Mirco Panighel
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Alessandro Namar
- Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy
| | - Alexander Markevich
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Thuy An Bui
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Aldo Ugolotti
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| | - Ayesha Farooq
- Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Matus Stredansky
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Clara Kofler
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Cinzia Cepek
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Giovanni Comelli
- Physics Department, University of Trieste, via A. Valerio 2, Trieste 34127, Italy
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Jani Kotakoski
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| | - Cristina Africh
- CNR-Istituto Officina dei Materiali (IOM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
| |
Collapse
|
9
|
Joynal Abedin FN, Fizal ANS, Alkarkhi AFM, Khalil NA, Ahmad Yahaya AN, Hossain MS, Safie SI, Ismail NA, Zulkifli M. Synergistic Reinforcement with SEBS-g-MAH for Enhanced Thermal Stability and Processability in GO/rGO-Filled PC/ABS Composites. Polymers (Basel) 2024; 16:2554. [PMID: 39339018 PMCID: PMC11434758 DOI: 10.3390/polym16182554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The integration of compatibilisers with thermoplastics has revolutionised the field of polymer composites, enhancing their mechanical, thermal, and rheological properties. This study investigates the synergistic effects of incorporating SEBS-g-MAH on the mechanical, thermal, and rheological properties of polycarbonate/acrylonitrile-butadiene-styrene/graphene oxide (PC/ABS/GO) (PAGO) and the properties of polycarbonate/acrylonitrile-butadiene-styrene/graphene oxide (PC/ABS/rGO) (PArGO) composites through the melt blending method. The synergistic effects on thermal stability and processability were analysed by using thermogravimetry (TGA), melt flow index (MFI), and Fourier-transform infrared spectroscopy (FTIR). The addition of SEBS-g-MAH improved the elongation at break (EB) of PAGO and PArGO up to 33% and 73%, respectively, compared to the uncompatibilised composites. The impact strength of PAGO was synergistically enhanced by 75% with the incorporation of 5 phr SEBS-g-MAH. A thermal analysis revealed that SEBS-g-MAH improved the thermal stability of the composites, with an increase in the degradation temperature (T80%) of up to 17% for PAGO at 1 phr SEBS-g-MAH loading. The compatibilising effect of SEBS-g-MAH was confirmed by FTIR analysis, which indicated interactions between the maleic anhydride groups and the PC/ABS matrix and GO/rGO fillers. The rheological measurements showed that the incorporation of SEBS-g-MAH enhanced the melt flowability (MFI) of the composites, with a maximum increase of 38% observed for PC/ABS. These results demonstrate the potential of SEBS-g-MAH as a compatibiliser for improving the unnotched impact strength (mechanical), thermal, and rheological properties of PC/ABS/GO and PC/ABS/rGO composites, achieving a synergistic effect.
Collapse
Affiliation(s)
- Fatin Najwa Joynal Abedin
- Malaysian Institute of Chemical and Bioengineering Technology, University Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia
| | - Ahmad Noor Syimir Fizal
- Centre for Sustainability of Mineral and Resource Recovery Technology (SMaRRT) (Pusat ALAM), Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Gambang 26300, Pahang, Malaysia
| | - Abbas F M Alkarkhi
- Universiti Kuala Lumpur Business School, Kampung Datuk Keramat, Kuala Lumpur 54000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Nor Afifah Khalil
- Malaysian Institute of Chemical and Bioengineering Technology, University Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia
| | - Ahmad Naim Ahmad Yahaya
- Malaysian Institute of Chemical and Bioengineering Technology, University Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Sairul Izwan Safie
- Plant Engineering Technology Section, UniKL Malaysian Institute of Industrial Technology, Jalan Persiaran Ilmu, Bandar Seri Alam, Johor Bahru 81750, Johor, Malaysia
| | - Nurul Ain Ismail
- Centre for Sustainability of Mineral and Resource Recovery Technology (SMaRRT) (Pusat ALAM), Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Gambang 26300, Pahang, Malaysia
| | - Muzafar Zulkifli
- Green Chemistry and Sustainability Cluster, Branch Campus, Malaysian Institute of Chemical and Bioengineering Technology, University Kuala Lumpur, Alor Gajah 78000, Melaka, Malaysia
| |
Collapse
|
10
|
Mohanaraman SP, Chidambaram R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 2024; 10:e35760. [PMID: 39220916 PMCID: PMC11365325 DOI: 10.1016/j.heliyon.2024.e35760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.
Collapse
Affiliation(s)
- Shanmuga Priya Mohanaraman
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
12
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
13
|
Yadav PK, Kumar A, Upadhyay S, Kumar A, Srivastava A, Srivastava M, Srivastava SK. 2D material-based surface plasmon resonance biosensors for applications in different domains: an insight. Mikrochim Acta 2024; 191:373. [PMID: 38842697 DOI: 10.1007/s00604-024-06442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.
Collapse
Affiliation(s)
- Prateek Kumar Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
15
|
Antonova IV, Ivanov AI, Shavelkina MB, Poteryayev DA, Buzmakova AA, Soots RA. Engineering of graphene-based composites with hexagonal boron nitride and PEDOT:PSS for sensing applications. Phys Chem Chem Phys 2024; 26:7844-7854. [PMID: 38376373 DOI: 10.1039/d3cp05953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.
Collapse
Affiliation(s)
- Irina V Antonova
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Artem I Ivanov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| | - Marina B Shavelkina
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13 Bd.2, Moscow 125412, Russia
| | - Dmitriy A Poteryayev
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Anna A Buzmakova
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Regina A Soots
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| |
Collapse
|
16
|
Van On V, Guerrero-Sanchez J, Hoat DM. Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer via vacancies and doping. Phys Chem Chem Phys 2024; 26:3587-3596. [PMID: 38214549 DOI: 10.1039/d3cp04977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In this work, the effects of vacancies and doping on the electronic and magnetic properties of the stable scandium nitride (ScN) monolayer are investigated using first-principles calculations. The pristine monolayer is a two-dimensional (2D) indirect-gap semiconductor material with an energy gap of 1.59(2.84) eV as calculated using the GGA-PBE (HSE06) functional. The projected density of states, charge distribution, and electron localization function assert its ionic character generated by the charge transfer from the Sc atoms to the N atoms. The monolayer is magnetized by a single Sc vacancy with a total magnetic moment of 3.00μB, while a single N vacancy causes a weaker magnetization with a total magnetic moment of 0.52μB. In both cases, the magnetism originates mainly from the atoms closest to the defect site. Significant magnetization is also reached by doping with acceptor impurities. Specifically, a total magnetic moment of 2.00μB is obtained by doping with alkali metals (Li and Na) in the Sc sublattice and with B in the N sublattice. Doping with alkaline earth metals (Be and Mg) in the Sc sublattice and with C in the N sublattice induces a value of 1.00μB. In these cases, either magnetic semiconducting or half-metallicity characteristics arise in the ScN monolayer, making it a prospective 2D spintronic material. In contrast, no magnetism is induced by doping with donor impurities (O and F atoms) in the N sublattice. An O impurity metallizes the monolayer; meanwhile, F doping leads to a large band-gap reduction of the order of 82%, widening the working regime of the monolayer in optoelectronic devices. The results presented herein may introduce efficient methods to functionalize the ScN monolayer for optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Vo Van On
- Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Código Postal 22800, Baja California, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
17
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
18
|
Pawelski D, Plonska-Brzezinska ME. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6549. [PMID: 37834689 PMCID: PMC10573823 DOI: 10.3390/ma16196549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this review, we focus on a small section of the literature that deals with the materials containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only those topics that focus on structural defects related to introducing perturbation into the surface topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size, and location, which significantly modifies the physical and chemical properties of CNs or their hybrid combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility of conducting the reaction in solvents and solid phases, and the presence of components of different chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating and indicate the influence of the structure of the obtained materials on their physical and chemical properties. It is the first review paper that comprehensively summarizes research in the context of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating defects in CNs and the implications in designing their properties and applications. The presented review is a valuable source summarizing the achievements of scientists in this area of research.
Collapse
Affiliation(s)
| | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| |
Collapse
|
19
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Gollapalli R, Phillips J, Paul P. Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:5590. [PMID: 37420756 DOI: 10.3390/s23125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 07/09/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and it is well known that an early detection of cancer in a human body will provide an opportunity to cure the cancer. Early detection of cancer depends on the sensitivity of the measuring device and method, where the lowest detectable concentration of the cancerous cell in a test sample becomes a matter of high importance. Recently, Surface Plasmon Resonance (SPR) has proven to be a promising method to detect cancerous cells. The SPR method is based on the detection of changes in refractive indices of samples under testing and the sensitivity of such a SPR based sensor is related to the smallest detectable change in the refractive index of the sample. There exist many techniques where different combinations of metals, metal alloys and different configurations have been shown to lead to high sensitivities of the SPR sensors. Based on the difference in the refractive index between a normal healthy cell and a cancerous cell, recently, SPR method has been shown to be applicable to detect different types of cancers. In this work, we propose a new sensor surface configuration that comprises of gold-silver-graphene-black phosphorus to detect different cancerous cells based on the SPR method. Additionally, recently we proposed that the application of electric field across gold-graphene layers that form the SPR sensor surface can provide enhanced sensitivity than that is possible without the application of electrical bias. We utilized the same concept and numerically studied the impact of electrical bias across the gold-graphene layers combined with silver and black Phosphorus layers which forms the SPR sensor surface. Our numerical results have shown that electrical bias across the sensor surface in this new heterostructure can provide enhanced sensitivity compared to the original unbiased sensor surface. Not only that, our results have shown that as the electrical bias increases, the sensitivity increases up to a certain value and stabilizes at a still improved sensitivity value. Such dependence of sensitivity on the applied bias provides a dynamic tunability of the sensitivity and figure-of-merit (FOM) of the sensor to detect different types of cancer. In this work, we used the proposed heterostructure to detect six different types of cancers: Basal, Hela, Jurkat, PC12, MDA-MB-231, and MCF-7. Comparing our results to work published recently, we were able to achieve an enhanced sensitivity ranging from 97.2 to 1851.4 (deg/RIU) and FOM values ranging from 62.13 to 89.81 far above the values presented recently by other researchers.
Collapse
Affiliation(s)
- Ravi Gollapalli
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| | - Jonathan Phillips
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| | - Puneet Paul
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| |
Collapse
|
21
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Bhatt S, Punetha VD, Pathak R, Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 2023; 226:113323. [PMID: 37116377 DOI: 10.1016/j.colsurfb.2023.113323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Graphene-based nanomaterials possess potent antibacterial activity and have engrossed immense interest among researchers as an active armour against pathogenic microbes. A comprehensive perception of the antibacterial activity of these nanomaterials is critical to the fabrication of highly effective antimicrobial nanomaterials, which results in highly efficient and enhanced activity. These materials owing to their antimicrobial activity are utilized as nanomedicine against various pathogenic microbes. The present article reviews the antimicrobial activity of graphene and its analogs such as graphene oxide, reduced graphene oxide as well as metal, metal oxide and polymeric composites. The review draws emphasis on the effect of various nano-bio factors on the antibacterial capability. It also provides an insight into the antibacterial properties of these materials along with a brief discussion on the discrepancies in their activities as evidenced by the scientific communities. In this way, the review is expected to shed light on future research and development in graphene-based nanomedicine.
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India.
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, P P Savani University, NH-8, Surat, Gujarat 394125, India
| |
Collapse
|
23
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
24
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Khabisi MA, Shirini F, Shirini K, Khorsand H, Marian M, Rosenkranz A. Additively Manufactured MAX- and MXene-Composite Scaffolds for Bone Regeneration- Recent Advances and Future Perspectives. Colloids Surf B Biointerfaces 2023; 225:113282. [PMID: 37003247 DOI: 10.1016/j.colsurfb.2023.113282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Human bones can suffer from various injuries, such as fractures, bone cancer, among others, which has initiated research activities towards bone replacement using advanced bio-materials. However, it is still challenging to design bio-scaffolds with bone-inducing agents to regenerate bone defects. In this regard, MAX-phases and MXenes (early transition metal carbides and/or nitrides) have gained notable attention due to their unique hydrophilicity, bio-compatibility, chemical stability, and photothermal properties. They can be used in bone tissue engineering as a suitable replacement or reinforcement for common bio-materials (polymers, bio-glasses, metals, or hydroxyapatite). To fabricate bio-scaffolds, additive manufacturing is prospective due to the possibility of controlling porosity and creating complex shapes with high resolution. Until now, no comprehensive article summarizing the existing state-of-the-art related to bone scaffolds reinforced by MAX-phases and MXenes fabricated by additive manufacturing has been published. Therefore, our article addresses the reasons for using bone scaffolds and the importance of choosing the most suitable material. We critically discuss the recent developments in bone tissue engineering and regenerative medicine using MAX-phases and MXenes with a particular emphasis on manufacturing, mechanical properties, and bio-compatibility. Finally, we discuss the existing challenges and bottlenecks of bio-scaffolds reinforced by MAX-phases and MXenes before deriving their future potential.
Collapse
|
26
|
Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int J Biomater 2023; 2023:8803283. [PMID: 36819211 PMCID: PMC9929215 DOI: 10.1155/2023/8803283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Graphene-based materials have been shown to have advantageous properties in biomedical and dental applications due to their high mechanical, physiochemical, antibacterial, and stem cell differentiating properties. Although graphene-based materials have displayed appropriate biocompatible properties when used in implant materials for orthopedic applications, little research has been performed to specifically test the biocompatibility of graphene for dental applications. The oral environment, compared to the body, varies greatly and must be considered when evaluating biocompatibility requirements for dental applications. This review will discuss in vitro and in vivo studies that assess graphene's cytotoxicity, antibacterial properties, and cell differentiation ability to evaluate the overall biocompatibility of graphene-based materials for dental applications. Particle shape, size, and concentration were found to be major factors that affected overall biocompatibility of graphene.
Collapse
|
27
|
Synthesis, characterization, antimicrobial activity and DNA/BSA interaction of functionalized graphene oxide nanoparticles with 2-(ferrocenylmethylamino) benzonitrile. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Rouhi N, Akhgari A, Orouji N, Nezami A, Rahimzadegan M, Kamali H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimer's biomarkers. J Pharm Biomed Anal 2023; 222:115084. [DOI: 10.1016/j.jpba.2022.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022]
|
29
|
Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Chen C, Wang K, Luo L. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer ranks as a leading cause of death and a huge obstacle to rising life expectancy. If cancers are spotted early there's a high chance of survival. The conventional methods relying on the phenotypic features of the tumor are not powerful to the early screening of cancer. Cancer biomarkers are capable of indicating specific cancer states. Current biochemical assay suffers from time and reagents consuming and discontinuous monitoring. Surface plasmon resonance (SPR) technology, a refractive index-based optical biosensor, has significant promise in biomarker detection because of its outstanding features of label-free, sensitivity, and reliability. The nanomaterial features exotic physical and chemical property work on the process of transferring biorecognition event into SPR signal and hence is functioned as signal enhancer. In this review, we mainly discussed the mechanism of gold nanoparticles (AuNPs) and two-dimensional (2D) functional nanomaterial for improving the SPR signal. We also introduced AuNPs and 2D nanomaterial assisted SPR technology in determining cancer biomarker. Last but not least, we discussed the challenges and outlooks of the aforementioned reformative SPR technology for cancer biomarker determination in the clinical trial.
Collapse
|
31
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
32
|
Ratre P, Jain B, Kumari R, Thareja S, Tiwari R, Srivastava RK, Goryacheva IY, Mishra PK. Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS OMEGA 2022; 7:39586-39602. [PMID: 36385871 PMCID: PMC9648045 DOI: 10.1021/acsomega.2c05414] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 05/09/2023]
Abstract
Graphene quantum dots (GQDs) are carbonaceous nanodots that are natural crystalline semiconductors and range from 1 to 20 nm. The broad range of applications for GQDs is based on their unique physical and chemical properties. Compared to inorganic quantum dots, GQDs possess numerous advantages, including formidable biocompatibility, low intrinsic toxicity, excellent dispensability, hydrophilicity, and surface grating, thus making them promising materials for nanophotonic applications. Owing to their unique photonic compliant properties, such as superb solubility, robust chemical inertness, large specific surface area, superabundant surface conjugation sites, superior photostability, resistance to photobleaching, and nonblinking, GQDs have emerged as a novel class of probes for the detection of biomolecules and study of their molecular interactions. Here, we present a brief overview of GQDs, their advantages over quantum dots (QDs), various synthesis procedures, and different surface conjugation chemistries for detecting cell-free circulating nucleic acids (CNAs). With the prominent rise of liquid biopsy-based approaches for real-time detection of CNAs, GQDs-based strategies might be a step toward early diagnosis, prognosis, treatment monitoring, and outcome prediction of various non-communicable diseases, including cancers.
Collapse
Affiliation(s)
- Pooja Ratre
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Bulbul Jain
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Roshani Kumari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Suresh Thareja
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Rajnarayan Tiwari
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| | - Rupesh Kumar Srivastava
- Department
of Biotechnology, All India Institute of
Medical Sciences, New Delhi, 110029, India
| | - Irina Yu Goryacheva
- Department
of General and Inorganic Chemistry, Institute
of Chemistry, Saratov State University, Saratov, 410012, Russia
| | - Pradyumna Kumar Mishra
- Department
of Molecular Biology, ICMR-National Institute
for Research in Environmental Health, Bhopal, 462030, India
| |
Collapse
|
33
|
Synthesis and characterization of clay graphene oxide iron oxide (clay/GO/Fe2O3)-nanocomposite for adsorptive removal of methylene blue dye from wastewater. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Jeong JO, Lim YM, Young Lee J, Park JS. Polyvinylpyrrolidone based graphene oxide hydrogels by radiation crosslinking for Conductive Microneedle Patches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Adekoya O, Adekoya GJ, Sadiku RE, Hamam Y, Ray SS. Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS OMEGA 2022; 7:33808-33820. [PMID: 36188269 PMCID: PMC9520710 DOI: 10.1021/acsomega.2c02347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/26/2022] [Indexed: 05/13/2023]
Abstract
In this paper, density functional theory (DFT) simulations are used to evaluate the possible use of a graphene oxide-based poly(ethylene glycol) (GO/PEG) nanocomposite as a drug delivery substrate for cephalexin (CEX), an antibiotic drug employed to treat wound infection. First, the stable configuration of the PEGylated system was generated with a binding energy of -25.67 kcal/mol at 1.62 Å through Monte Carlo simulation and DFT calculation for a favorable adsorption site. The most stable configuration shows that PEG interacts with GO through hydrogen bonding of the oxygen atom on the hydroxyl group of PEG with the hydrogen atom of the carboxylic group on GO. Similarly, for the interaction of the CEX drug with the GO/PEG nanocomposite excipient system, the adsorption energies are computed after determining the optimal and thermodynamically favorable configuration. The nitrogen atom from the amine group of the drug binds with a hydrogen atom from the carboxylic group of the GO/PEG nanocomposite at 1.75 Å, with an adsorption energy of -36.17 kcal/mol, in the most stable drug-excipient system. Drug release for tissue regeneration at the predicted target cell is more rapid in moist conditions than in the gas phase. The solubility of the suggested drug in the aqueous media around the open wound is shown by the magnitude of the predicted solvation energy. The findings from this study theoretically validate the potential use of a GO/PEG nanocomposite for wound treatment application as a drug carrier for sustained release of the CEX drug.
Collapse
Affiliation(s)
- Oluwasegun
Chijioke Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Gbolahan Joseph Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Rotimi Emmanuel Sadiku
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Yskandar Hamam
- Department
of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 001, South Africa
- École
Supérieure d’Ingénieurs en Électrotechnique
et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, Paris 93160, France
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornforntein, Johannesburg 2028, South
Africa
- , ,
| |
Collapse
|
36
|
Nizami MZI, Yin IX, Lung CYK, Niu JY, Mei ML, Chu CH. In Vitro Studies of Graphene for Management of Dental Caries and Periodontal Disease: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14101997. [PMID: 36297434 PMCID: PMC9611330 DOI: 10.3390/pharmaceutics14101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Graphene is a single-layer two-dimensional carbon-based nanomaterial. It presents as a thin and strong material that has attracted many researchers’ attention. This study provides a concise review of the potential application of graphene materials in caries and periodontal disease management. Pristine or functionalized graphene and its derivatives exhibit favorable physicochemical, mechanical, and morphological properties applicable to biomedical applications. They can be activated and functionalized with metal and metal nanoparticles, polymers, and other small molecules to exhibit multi-differentiation activities, antimicrobial activities, and biocompatibility. They were investigated in preventive dentistry and regenerative dentistry. Graphene materials such as graphene oxide inhibit cariogenic microbes such as Streptococcus mutans. They also inhibit periodontal pathogens that are responsible for periodontitis and root canal infection. Graphene-fluorine promotes enamel and dentin mineralization. These materials were also broadly studied in regenerative dental research, such as dental hard and soft tissue regeneration, as well as periodontal tissue and bone regeneration. Graphene oxide-based materials, such as graphene oxide-fibroin, were reported as promising in tissue engineering for their biocompatibility, bioactivity, and ability to enhance cell proliferation properties in periodontal ligament stem cells. Laboratory research showed that graphene can be used exclusively or by incorporating it into existing dental materials. The success of laboratory studies can translate the application of graphene into clinical use.
Collapse
Affiliation(s)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
- Correspondence:
| |
Collapse
|
37
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
38
|
Srivastava D, Shukla RK, Mishra SK, Gangwar C, Kumar I, Naik RM, Singh SK. Fabrication of Polyaniline/graphene oxide composites for implementing it in humidity sensing. LUMINESCENCE 2022. [PMID: 36000366 DOI: 10.1002/bio.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Abstract
This work reports the measurement of impedance variations under various humidity conditions at frequency ranges between 100 Hz to 5 MHz. The electrochemical polymerization process has been used to synthesize by varying the mass ratios of graphene oxide (GO) in polyaniline (PAni). The electrochemical deposition method has been used to make samples film on an Indium Tin Oxide (ITO) glass slide. The percentage relative humidity (RH) of the samples was estimated to be 20 to 90%. It has been found that impedance and humidity show an inverse relation, i.e., the impedance value decreases with an increase in humidity. In contrast with platitudinous capacitive humidity sensors (PC-HS), the GO-based humidity sensor has a sensitivity of 75 to 99%, which is approximately ten times more elevated than traditional sensors. It has been observed with three different paraments weight % of GO; the frequency ranges between 100 Hz to 5 MHz and RH % between 20 to 90%. Moreover, it has been demonstrated that the humidity sensor shows a fast response and recovery time. Therefore, GO appears to be a consummate material for building a humidity sensor with high sensing for a comprehensive approach.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Department of Physics, University of Lucknow, Lucknow, India.,Faculty of Physical Sciences, INSH, Shri Ramswaroop Memorial University, Barabanki, India
| | | | - Sheo K Mishra
- Department of Physics, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Chinky Gangwar
- Department of Chemistry, Lucknow University, Lucknow, India
| | - Indresh Kumar
- Department of Chemistry, Lucknow University, Lucknow, India
| | | | | |
Collapse
|
39
|
Mostufa S, Akib TBA, Rana MM, Islam MR. Highly Sensitive TiO 2/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. BIOSENSORS 2022; 12:bios12080603. [PMID: 36004999 PMCID: PMC9405676 DOI: 10.3390/bios12080603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
In this article, a hybrid TiO2/Au/graphene layer-based surface plasmon resonance (SPR) sensor with improved sensitivity and capability for cancer detection is presented. The finite element method (FEM) was used for numerical analysis. The proposed SPR biosensor was structured based on the angular analysis of the attenuated total reflection (ATR) method for the detection of various types of cancer using the refractive index component. The resonance angle shifted owing to the increment of normal and cancerous cells' refractive index, which varied between 1.36 and 1.401 for six different types of normal and cancerous cells. According to numerical results, the obtained sensitivities for skin (basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) cancer cells were 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU, and 278.57 deg/RIU, respectively. Furthermore, the detection accuracy (DA), figure of merits (FOM), and signal-to-noise ratio (SNR) were also obtained, with values of 0.263 deg-1, 48.02 RIU-1, and 3.84, respectively. Additionally, the distribution of the electric field and the propagation of the magnetic field for resonant and non-resonant conditions of the proposed structure were illustrated. It was found that an enhanced field was exhibited on the surface of the plasmonic material for resonant conditions. We also measured the penetration depth of 180 nm using decayed electric field intensity. Furthermore, the impact of using a TiO2/Au/graphene layer was demonstrated. We further conducted analyses of the effects of the thickness of the gold layer and the effects of additional graphene layers on overall sensitivities for six different types of cancer. The proposed TiO2/Au/graphene layered structure exhibited the highest overall sensitivity in terms of detecting cancerous cells from healthy cells. Moreover, the proposed sensor was numerically analyzed for a wide range of biological solutions (refractive index 1.33-1.41), and the sensor linearity was calculated with a linear regression coefficient (R2) of 0.9858. Finally, numerical results obtained in this manuscript exhibited high sensitivity in comparison with previously reported studies.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Tarik Bin Abdul Akib
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md. Masud Rana
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md. Rabiul Islam
- School of Electrical, Computer and Telecommfiunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
40
|
Punset M, Brizuela A, Pérez-Pevida E, Herrero-Climent M, Manero JM, Gil J. Mechanical Characterization of Dental Prostheses Manufactured with PMMA-Graphene Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155391. [PMID: 35955326 PMCID: PMC9369515 DOI: 10.3390/ma15155391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/12/2023]
Abstract
The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young’s modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene’s morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10−7 for PMMA and 1.33 × 10−7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.
Collapse
Affiliation(s)
- Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Technical University of Catalonia (UPC), C. Jordi Girona 3-1, 08034 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Esteban Pérez-Pevida
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | | | - José Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Josep Trueta s/n., 08195 Barcelona, Spain
| |
Collapse
|
41
|
Chattopadhyay S, Choudhary M, Singh H. Carbon dots and graphene oxide based FRET immunosensor for sensitive detection of Helicobacter pylori. Anal Biochem 2022; 654:114801. [DOI: 10.1016/j.ab.2022.114801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
|
42
|
Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022; 110:1695-1721. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Graphene-based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self-lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene-based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene-based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Collapse
Affiliation(s)
- Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Yousef Rasmi
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
43
|
Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials. BIOSENSORS 2022; 12:bios12070460. [PMID: 35884263 PMCID: PMC9312944 DOI: 10.3390/bios12070460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted.
Collapse
|
44
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
45
|
Hassan EM, Zou S. Novel nanocarriers for silencing anti-phagocytosis CD47 marker in acute myeloid leukemia cells. Colloids Surf B Biointerfaces 2022; 217:112609. [PMID: 35667200 DOI: 10.1016/j.colsurfb.2022.112609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/02/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML), a malignant disorder of Hematopoietic stem cells, can escape immunosurveillance by over expression of the cluster of differentiation 47 (CD47) marker, which functions as an inhibitory signal, suppressing phagocytosis by binding to signal regulatory protein α (SIRPα) on macrophages. AML is treated mainly by chemotherapy, which has drastic side effects and poor outcomes for the patients. Most AML patients develop drug resistance, so other methods to treat AML are highly required. Small interfering RNA (siRNA) is considered as an antitumor therapeutic due to its ability to silence genes associated with the overexpressed cancer markers and subsequently re-sensitize cancer cells. However, delivering siRNA into cells faces challenges, and the development of an effective delivery system is desired for successful silencing at the gene level. Herein, we report the usage of different formulations of graphene oxide (GO) as carriers for the delivery of CD47_siRNA (siRNA against CD47) into AML cells in vitro. The polyethylene glycol (PEG) and dendrimers (PAMAM) modified GO with small flake sizes achieved the highest silencing efficiency of the anti-phagocytosis marker CD47 gene, resulted CD47 protein down-regulation in AML cells. Moreover, the concentration at which the GO-based formulations was used has shown no cytotoxicity in AML cells or normal blood cells, which could be used to screen potential drugs for targeted gene therapy in AML.
Collapse
Affiliation(s)
- Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, Ottawa K1A 0R6, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, Ottawa K1A 0R6, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
46
|
Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022; 15:100318. [PMID: 35734197 PMCID: PMC9207581 DOI: 10.1016/j.mtbio.2022.100318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 10/26/2022] Open
Abstract
Bone tumor patients often face the problems with cancer cell residues and bone defects after the operation. Therefore, researchers have developed many bifunctional scaffolds with both tumor treatment and bone repair functions. Therapeutic agents are usually combined with bioactive scaffolds to achieve the "bifunctional". However, the synergistic effect of bifunctional scaffolds on tumor therapy and bone repair, as well as the interplay between therapeutic agents and scaffold materials in bifunctional scaffolds, have not been emphasized and discussed. This review proposes a promising design scheme for bifunctional scaffolds: the synergistic effect and interplay between the therapeutic agents and scaffold materials. This review summarizes the latest research progress in bifunctional scaffolds for therapeutic applications and regeneration. In particular, it summarizes the role of tumor therapeutic agents in bone regeneration and the role of scaffold materials in tumor treatment. Finally, a perspective on the future development of bifunctional scaffolds for tumor therapy and bone regeneration is discussed.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Vasanthakumar A, Rejeeth C, Vivek R, Ponraj T, Jayaraman K, Anandasadagopan SK, Vinayaga Moorthi P. Design of Bio-Graphene-Based Multifunctional Nanocomposites Exhibits Intracellular Drug Delivery in Cervical Cancer Treatment. ACS APPLIED BIO MATERIALS 2022; 5:2956-2964. [PMID: 35620928 DOI: 10.1021/acsabm.2c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advent of bio-nanotechnology has revolutionized nanodrug delivery by improving drug efficacy and safety. Nevertheless, acceptable carriers for therapeutic molecules are one of the most difficult challenges in drug delivery. Graphene material-based (GMB) and polymer-based drug-loaded nanocarriers have both demonstrated clinical advantages in delivering drugs of interest in vitro/in vivo. Cisplatin (CDDP) is an inorganic chemotherapeutic drug that is commonly used to treat a variety of cancers. However, its clinical use is associated with drug resistance and few side effects, which reduces its antitumor effects. Therefore, we developed a CDDP-loaded chitosan-functionalized graphene oxide nanocomposite (CDDP@CS-GO NC)-based nanodrug delivery system (NDDS). Flow cytometry and confocal imaging show that the CDDP@CS-GO NCs lead to significantly increased intracellular drug accumulation in tumor cells. Cancer cells take up the nanocomposite via endocytosis and can generate intracellular reactive oxygen species (ROS) to increase mitochondrial membrane potential loss (Δψm) and enable cytochrome-c release, followed by the dysregulation of Bcl-2 into the cytosol and activation of caspase-3 to induce cancer cell apoptosis. In vitro experiments demonstrated the excellent cancer therapeutic effect with few side effects of the carriers. CDDP@CS-GO NCs are expected to play an important role in responsive NDDSs for cancer therapy.
Collapse
Affiliation(s)
- Alagarsamy Vasanthakumar
- Bio-materials and Nanomedicine Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chandrababu Rejeeth
- Molecular Therapeutic Laboratory, Department of Biochemistry, Periyar University, Salem 636011, Tamil Nadu, India
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Thondhi Ponraj
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karunyadevi Jayaraman
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Suresh Kumar Anandasadagopan
- Department of Biochemistry and Biotechnology, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, Tamil Nadu, India
| | - Puthamohan Vinayaga Moorthi
- Bio-materials and Nanomedicine Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
48
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
49
|
N. R. D, B. RB, S. A, M. A, R. J. A simple method for functionalization of polypyrrole-coated cotton fabrics by reduced graphene oxide for UV screening. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2067178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dhineshbabu N. R.
- Centre for Nano Science and Technology, Anna University, Chennai, India
- Department of Electronics and Communication Engineering, Aditya Engineering College, Surampalem, Andhra Pradesh, India
| | | | - Arunmetha S.
- Department of Electronics and Communication Engineering, KLEF (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Arivanandan M.
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Jayavel R.
- Centre for Nano Science and Technology, Anna University, Chennai, India
| |
Collapse
|
50
|
Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, Khassi K, Janfaza S, Tasnim N, Hoorfar M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. BIOSENSORS 2022; 12:bios12050269. [PMID: 35624570 PMCID: PMC9138779 DOI: 10.3390/bios12050269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/09/2023]
Abstract
Cancer is one of the deadliest diseases worldwide, and there is a critical need for diagnostic platforms for applications in early cancer detection. The diagnosis of cancer can be made by identifying abnormal cell characteristics such as functional changes, a number of vital proteins in the body, abnormal genetic mutations and structural changes, and so on. Identifying biomarker candidates such as DNA, RNA, mRNA, aptamers, metabolomic biomolecules, enzymes, and proteins is one of the most important challenges. In order to eliminate such challenges, emerging biomarkers can be identified by designing a suitable biosensor. One of the most powerful technologies in development is biosensor technology based on nanostructures. Recently, graphene and its derivatives have been used for diverse diagnostic and therapeutic approaches. Graphene-based biosensors have exhibited significant performance with excellent sensitivity, selectivity, stability, and a wide detection range. In this review, the principle of technology, advances, and challenges in graphene-based biosensors such as field-effect transistors (FET), fluorescence sensors, SPR biosensors, and electrochemical biosensors to detect different cancer cells is systematically discussed. Additionally, we provide an outlook on the properties, applications, and challenges of graphene and its derivatives, such as Graphene Oxide (GO), Reduced Graphene Oxide (RGO), and Graphene Quantum Dots (GQDs), in early cancer detection by nanobiosensors.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Homayoon Soleimani Dinani
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Kajal Khassi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran;
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Correspondence:
| |
Collapse
|