1
|
Bielska B, Wrońska N, Kołodziejczyk-Czepas J, Mignani S, Majoral JP, Waczulikova I, Lisowska K, Bryszewska M, Miłowska K. Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing. Mol Pharm 2025; 22:927-939. [PMID: 39797813 PMCID: PMC11795522 DOI: 10.1021/acs.molpharmaceut.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing (in vitro). Therefore, the degree of toxicity of the tested compounds for human erythrocytes and the human fibroblast cell line (BJ) was determined, and it was found that at low concentrations, the tested compounds are compatible with blood. The influence of phosphorus dendrimers on plasma proteins (human serum albumin (HSA) and fibrinogen) was examined, with a lack of conformational changes in the structure of these proteins, suggesting that their physiological function was not disturbed. The effects on plasma coagulation cascade and fibrinolysis were also assessed, and it was found that phosphorus dendrimers in low concentrations are blood compatible and interfere neither with coagulation processes nor in clot breakdown. Skin injuries, especially chronic wounds, are also susceptible to infection; therefore, the antimicrobial potential of dendrimers was tested, and it was found that these dendrimers had antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest activity of the tested compounds was found for higher applied concentrations.
Collapse
Affiliation(s)
- Beata Bielska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Doctoral
School of Exact and Natural Sciences, University
of Lodz, 21/23 Jana Matejki
Street, 90-237 Lodz, Poland
| | - Natalia Wrońska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Joanna Kołodziejczyk-Czepas
- Department
of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Serge Mignani
- CQM-Centro
de Química da Madeira, Universidade
da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d’Etudes
et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination CNRS, 205 Route de Narbonne, Toulouse 31077, France
| | - Iveta Waczulikova
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia
| | - Katarzyna Lisowska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
2
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Cejas-Sánchez J, Caminade AM, Kajetanowicz A, Grela K, Sebastián RM. A water-soluble polyphosphorhydrazone Janus dendrimer built by "click" chemistry as support for Ru-complexes in catalysis. Dalton Trans 2024; 53:9120-9129. [PMID: 38738979 DOI: 10.1039/d3dt04376b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The field of supported catalysis has experienced increased attention with respect to the development of novel architectures for immobilizing catalytic species, aiming to maintain or enhance their activity while facilitating the easy recovery and reuse of the active moiety. Dendrimers have been identified as promising candidates capable of imparting such properties to catalysts through selective functionalization. The present study details the synthesis of two polyphosphorhydrazone (PPH) dendrons, each incorporating azide or acetylene groups at the core for subsequent coupling through "click" triazole chemistry. Employing this methodology, a novel PPH Janus dendrimer was successfully synthesized, featuring ten polyethylene glycol (PEG) chains on one side of the structure and ten Ru(p-cymene) derivatives on the other. This design was intended to confer dual properties, influencing solubility modulation, and allowing the presence of active catalytic moieties. The synthesized dendrimer underwent testing in the isomerization of allyl alcohols in organic solvents and biphasic solvent mixtures. The results demonstrated a positive dendritic effect compared with model monometallic and bimetallic species, providing a proof-of-concept for the first PPH Janus dendrimer with tested applications in catalysis.
Collapse
Affiliation(s)
- Joel Cejas-Sánchez
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, UPS, INPT, Toulouse CEDEX 4, France
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rosa María Sebastián
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain.
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
4
|
Firdaus S, Boye S, Janke A, Friedel P, Janaszewska A, Appelhans D, Müller M, Klajnert-Maculewicz B, Voit B, Lederer A. Advancing Antiamyloidogenic Activity by Fine-Tuning Macromolecular Topology. Biomacromolecules 2023; 24:5797-5806. [PMID: 37939018 DOI: 10.1021/acs.biomac.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Amyloid β peptide can aggregate into thin β-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aβ 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aβ peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aβ 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aβ 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shamila Firdaus
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Peter Friedel
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Polymer Science, Stellenbosch University, 7602 Matieland, South Africa
| |
Collapse
|
5
|
Cejas-Sánchez J, Kajetanowicz A, Grela K, Caminade AM, Sebastián RM. Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties. Molecules 2023; 28:5570. [PMID: 37513445 PMCID: PMC10383788 DOI: 10.3390/molecules28145570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities. The prevalent method for creating these structures involves the synthesis of dendrons that possess a core functionality that complements that of a second dendron, facilitating their coupling to generate the desired dendrimers. In this comprehensive review, various techniques employed in the fabrication of phosphorus-based Janus dendrimers are elucidated, displaying the different coupling methodologies employed between the two units. The advantages of phosphorus dendrimers over classic dendrimers will be shown, as the presence of at least one phosphorus atom in each generation allows for the easy monitoring of reactions and the confirmation of purity through a simple technique such as 31P NMR, as these structures typically exhibit easily interpretable patterns.
Collapse
Affiliation(s)
- Joel Cejas-Sánchez
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
| | - Anna Kajetanowicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
- Université de Toulouse, UPS, INPT, CEDEX 4, 31077 Toulouse, France
| | - Rosa María Sebastián
- Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
6
|
THIRUMALAI A, ELBOUGHDIRI N, HARINI K, GIRIGOSWAMI K, GIRIGOSWAMI A. Phosphorus-carrying cascade molecules: inner architecture to biomedical applications. Turk J Chem 2023; 47:667-688. [PMID: 38174062 PMCID: PMC10760543 DOI: 10.55730/1300-0527.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/25/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Cascade molecules are nearly uniform-sized macromolecules of small molecules or linear polymer cores built around symmetric branching units. A wide range of biological properties can be achieved with phosphorus-containing dendrimers, depending on their terminal functions, ranging from biomaterials to imaging, drug delivery, and acting as a drug by themselves. This feature article presents significant examples of phosphorus-containing dendrimers used to develop biochips, support cell cultures, carry or deliver biomacromolecules and drugs, bioimaging, and combinational benefits. Because of the thermal stability, ferrocene function, and physical and chemical properties of phosphorus, dendrimers show greater rigidity, mobility, and strength. These dendrimers will be discussed as having a favorable effect on cell growths, especially on neuronal cells, as well as human immune cells like natural killer cells and monocytes, which have a crucial part in preventing cancerous and viral infections. Several phosphorus dendrimers are effective as drugs by themselves (drug per se) and show their activity against neurodegenerative diseases, cancer, inflammation, ocular hypertension, and transmissible spongiform encephalopathies (TSEs) in both in vivo and in vitro. The present review discusses the synthetic route, fabrications, and biomedical applications of phosphorus-containing dendrimers. The toxicity of these dendrimers was also reported.
Collapse
Affiliation(s)
- Anbazhagan THIRUMALAI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Noureddine ELBOUGHDIRI
- Department of Chemical Engineering, College of Engineering, University of Hail, Hail,
Saudi Arabia
- Department of Chemical Engineering Process, National School of Engineers Gabes, University of Gabes, Gabes,
Tunisia
| | - Karthick HARINI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Koyeli GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Agnishwar GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| |
Collapse
|
7
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
8
|
Karpus A, Mignani S, Apartsin E, Zablocka M, Shi X, Majoral JP. Useful synthetic pathways to original, stable tunable neutral and anionic phosphorus dendrimers: new opportunities to expand dendrimer space. NEW J CHEM 2023; 47:2474-2478. [DOI: 10.1039/d2nj05157e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
High yield multistep synthesis of stable and diversely functionalized phosphorus dendrimers is reported.
Collapse
Affiliation(s)
- A. Karpus
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| | - S. Mignani
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Caen 14032, France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - E. Apartsin
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| | - M. Zablocka
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, Lodz 90001, Poland
| | - X. Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - J. P. Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| |
Collapse
|
9
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
10
|
Chen L, Cao L, Zhan M, Li J, Wang D, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules 2022; 23:2827-2837. [PMID: 35694854 DOI: 10.1021/acs.biomac.2c00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, Paris 75006, France.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| |
Collapse
|
11
|
Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. Int J Mol Sci 2022; 23:ijms23084391. [PMID: 35457211 PMCID: PMC9024777 DOI: 10.3390/ijms23084391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D-aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
Collapse
|
12
|
Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res 2022; 392:349-365. [PMID: 35307792 DOI: 10.1007/s00441-022-03604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are caused by the accumulation of abnormal isoforms of the prion protein (scrapie isoform of the prion protein, PrPSc) in the central nervous system. Many compounds with anti-prion activities have been found using in silico screening, in vitro models, persistently prion-infected cell models, and prion-infected rodent models. Some of these compounds include several types of polymers. Although the inhibition or removal of PrPSc production is the main target of therapy, the unique features of prions, namely protein aggregation and assembly accompanied by steric structural transformation, may require different strategies for the development of anti-prion drugs than those for conventional therapeutics targeting enzyme inhibition, agonist ligands, or modulation of signaling. In this paper, we first overview the history of the application of polymers to prion disease research. Next, we describe the characteristics of each type of polymer with anti-prion activity. Finally, we discuss the common features of these polymers. Although drug delivery of these polymers to the brain is a challenge, they are useful not only as leads for therapeutic drugs but also as tools to explore the structure of PrPSc and are indispensable for prion disease research.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
13
|
Mignani S, Shi X, Bryszewska M, Shcharbin D, Majoral JP. Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:50-61. [PMID: 36046355 PMCID: PMC9402398 DOI: 10.37349/etat.2022.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022] Open
Abstract
During the past two decades, tremendous progress has been made in the dendrimer-based delivery of therapeutic molecules including, for instance, small molecules, macromolecules, and genes. This review deals with recent successes in the development of promising biocompatible phosphorus dendrimers, a specific type of dendrimer, to deliver genes to treat cancers.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Correspondence: Serge Mignani, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Xiangyang Shi, CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
- Jean-Pierre Majoral, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France; Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France.
| |
Collapse
|
14
|
Karpus A, Mignani S, Zablocka M, Majoral JP. Crown Macromolecular Derivatives: Stepwise Design of New Types of Polyfunctionalized Phosphorus Dendrimers. J Org Chem 2022; 87:3433-3441. [PMID: 35142502 DOI: 10.1021/acs.joc.1c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorus dendrimers are used for many applications in different domains including nanomedicine as cargo of drugs or as species active per se but also in a variety of other fields ranging from nanoscience to catalysis. Their properties depend on the nature of their internal structure and mainly of the diversity and versatility of the functional groups located on their outer shell. Therefore, there is a need to diversify their structure in order to use them for new applications and to propose alternative synthetic pathways to be built easily, at each step and in high yield a family of original stable phosphorus dendrimers of different generations. Such a goal is illustrated in this report with the original synthesis of 14 new phosphorus dendrimers of generation 0 to 2 and the possibility to modify at will their internal structure and the nature of their functional end groups.
Collapse
Affiliation(s)
- Andrii Karpus
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, Toulouse Cedex 4 31077, France.,LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, Paris 75006, France.,CQM─Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - Maria Zablocka
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, Lodz 90001, Poland
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, Toulouse Cedex 4 31077, France.,LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| |
Collapse
|
15
|
Milowska K, Rodacka A, Melikishvili S, Buczkowski A, Pałecz B, Waczulikova I, Hianik T, Majoral JP, Ionov M, Bryszewska M. Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Sci Rep 2021; 11:16810. [PMID: 34413368 PMCID: PMC8376938 DOI: 10.1038/s41598-021-96194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to evaluate the nature and mechanisms of interaction between HIV peptide/dendrimer complexes (dendriplex) and artificial lipid membranes, such as large unilayered vesicles (LUV) and lipid monolayers in the air-water interface. Dendriplexes were combined as one of three HIV-derived peptides (Gp160, P24 and Nef) and one of two cationic phosphorus dendrimers (CPD-G3 and CPD-G4). LUVs were formed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) or of a mixture of DMPC and dipalmitoyl-phosphatidylglycerol (DPPG). Interactions between dendriplexes and vesicles were characterized by dynamic light scattering (DLS), fluorescence anisotropy, differential scanning calorimetry (DSC) and Langmuir-Blodgett methods. The morphology of formed systems was examined by transmission electron microscopy (TEM). The results suggest that dendriplexes interact with both hydrophobic and hydrophilic regions of lipid bilayers. The interactions between dendriplexes and negatively charged lipids (DMPC-DPPG) were stronger than those between dendriplexes and liposomes composed of zwitterionic lipids (DMPC). The former were primarily of electrostatic nature due to the positive charge of dendriplexes and the negative charge of the membrane, whereas the latter can be attributed to disturbances in the hydrophobic domain of the membrane. Obtained results provide new information about mechanisms of interaction between lipid membranes and nanocomplexes formed with HIV-derived peptides and phosphorus dendrimers. These data could be important for the choosing the appropriate antigen delivery vehicle in the new vaccines against HIV infection.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Sophie Melikishvili
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Bartlomiej Pałecz
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
16
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
17
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021; 219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, CNRS UMR 860, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
18
|
Białkowska K, Miłowska K, Michlewska S, Sokołowska P, Komorowski P, Lozano-Cruz T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. Int J Mol Sci 2021; 22:ijms22137097. [PMID: 34281151 PMCID: PMC8269323 DOI: 10.3390/ijms22137097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The application of siRNA in gene therapy is mainly limited because of the problems with its transport into cells. Utilization of cationic dendrimers as siRNA carriers seems to be a promising solution in overcoming these issues, due to their positive charge and ability to penetrate cell membranes. The following two types of carbosilane dendrimers were examined: CBD-1 and CBD-2. Dendrimers were complexed with pro-apoptotic siRNA (Mcl-1 and Bcl-2) and the complexes were characterized by measuring their zeta potential, circular dichroism and fluorescence of ethidium bromide associated with dendrimers. CBD-2/siRNA complexes were also examined by agarose gel electrophoresis. Both dendrimers form complexes with siRNA. Moreover, the cellular uptake and influence on the cell viability of the dendrimers and dendriplexes were evaluated using microscopic methods and XTT assay on MCF-7 cells. Microscopy showed that both dendrimers can transport siRNA into cells; however, a cytotoxicity assay showed differences in the toxicity of these dendrimers.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Correspondence:
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland;
| | - Paulina Sokołowska
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego St. 7/9, 90-752 Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
19
|
Mignani S, Bignon J, Shi X, Majoral JP. First-in-Class Phosphorus Dendritic Framework, a Wide Surface Functional Group Palette Bringing Noteworthy Anti-Cancer and Anti-Tuberculosis Activities: What Lessons to Learn? Molecules 2021; 26:molecules26123708. [PMID: 34204564 PMCID: PMC8234563 DOI: 10.3390/molecules26123708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Based on phenotypic screening, the major advantages of phosphorus dendrimers and dendrons as drugs allowed the discovery of new therapeutic applications, for instance, as anti-cancer and anti-tuberculosis agents. These biological activities depend on the nature of the chemical groups (neutral or cationic) on their surface as well as their generation. As lessons to learn, in the oncology domain, the increase in the generation of metallo-dendrimers is in the same direction as the anti-proliferative activities, in contrast to the development of polycationic dendrimers, where the most potent anti-tuberculosis phosphorus dendrimer was observed to have the lowest generation (G0). The examples presented in this original analysis of phosphorus dendrimers and dendrons provide support for the lessons learned and for the development of new nanoparticles in nanomedicine.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, PRES Sorbonne Paris Cité, CNRS UMR 860, Université Paris Descartes, 45, Rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 91198 Avenue de la Terrasse, CEDEX, Gif-sur-Yvette, 91190 Paris, France;
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| |
Collapse
|
20
|
Mignani S, Tripathi VD, Soam D, Tripathi RP, Das S, Singh S, Gandikota R, Laurent R, Karpus A, Caminade AM, Steinmetz A, Dasgupta A, Srivastava KK, Majoral JP. Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of Mycobacterium tuberculosis: A New Therapy to Take Down Tuberculosis. Biomacromolecules 2021; 22:2659-2675. [PMID: 33970615 DOI: 10.1021/acs.biomac.1c00355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The long-term treatment of tuberculosis (TB) sometimes leads to nonadherence to treatment, resulting in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Inadequate bioavailability of the drug is the main factor for therapeutic failure, which leads to the development of drug-resistant cases. Therefore, there is an urgent need to design and develop novel antimycobacterial agents minimizing the period of treatment and reducing the propagation of resistance at the same time. Here, we report the development of original and noncytotoxic polycationic phosphorus dendrimers essentially of generations 0 and 1, but also of generations 2-4, with pyrrolidinium, piperidinium, and related cyclic amino groups on the surface, as new antitubercular agents active per se, meaning with intrinsic activity. The strategy is based on the phenotypic screening of a newly designed phosphorus dendrimer library (generations 0-4) against three bacterial strains: attenuated Mycobacterium tuberculosis H37Ra, virulent M. tuberculosis H37Rv, and Mangora bovis BCG. The most potent polycationic phosphorus dendrimers 1G0,HCl and 2G0,HCl are active against all three strains with minimum inhibitory concentrations (MICs) between 3.12 and 25.0 μg/mL. Both are irregularly shaped nanoparticles with highly mobile branches presenting a radius of gyration of 7 Å, a diameter of maximal 25 Å, and a solvent-accessible surface area of dominantly positive potential energy with very localized negative patches arising from the central N3P3 core, which steadily interacts with water molecules. The most interesting is 2G0,HCl, showing relevant efficacy against single-drug-resistant (SDR) M. tuberculosis H37Rv, resistant to rifampicin, isoniaid, ethambutol, or streptomycin. Importantly, 2G0,HCl displayed significant in vivo efficacy based on bacterial counts in lungs of infected Balb/C mice at a dose of 50 mg/kg oral administration once a day for 2 weeks and superior efficacy in comparison to ethambutol and rifampicin. This series of polycationic phosphorus dendrimers represents first-in-class drugs to treat TB infection, could fulfill the clinical candidate pipe of this high burden of infectious disease, and play a part in addressing the continuous demand for new drugs.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, PRES Sorbonne Paris Cité, CNRS UMR 860, Université Paris Descartes, 45, rue des Saints Pères, 75006 Paris, France.,CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Vishwa Deepak Tripathi
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Dheerj Soam
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-CDRI, 226031 Lucknow, India
| | - Swetarka Das
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Shriya Singh
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Ramakrishna Gandikota
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Anke Steinmetz
- Sanofi R&D, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, 94403 Vitry-sur-Seine Cedex, France
| | - Arunava Dasgupta
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Janakipuram Extension, Sitapur Road, 226031 Lucknow, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Janakipuram Extension, Sitapur Road, 226031 Lucknow, India
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
21
|
Dubey SK, Salunkhe S, Agrawal M, Kali M, Singhvi G, Tiwari S, Saraf S, Saraf S, Alexander A. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs. Curr Drug Targets 2021; 21:528-540. [PMID: 31670619 DOI: 10.2174/1389450120666191031092259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Dendrimers are emerging class of nanoparticles used in targeted drug delivery systems. These are radially symmetric molecules with well-defined, homogeneous, and monodisperse structures. Due to the nano size, they can easily cross the biological membrane and increase bioavailability. The surface functionalization facilitates targeting of the particular site of action, assists the high drug loading and improves the therapeutic efficiency of the drug. These properties make dendrimers advantageous over conventional drug delivery systems. This article explains the features of dendrimers along with their method of synthesis, such as divergent growth method, convergent growth method, double exponential and mixed method, hyper-core and branched method. Dendrimers are effectively used in anticancer delivery and can be targeted at the site of tumor either by active or passive targeting. There are three mechanisms by which drugs interact with dendrimers, and they are physical encapsulation, electrostatic interaction, chemical conjugation of drug molecules. Drug releases from dendrimer either by in vivo cleavage of the covalent bond between drugdendrimer complexes or by physical changes or stimulus like pH, temperature, etc.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Shubham Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, 490024, India
| | - Maithili Kali
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sanjay Tiwari
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat, Gujarat, 394350, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| |
Collapse
|
22
|
Qiu J, Chen L, Zhan M, Laurent R, Bignon J, Mignani S, Shi X, Caminade AM, Majoral JP. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjug Chem 2021; 32:339-349. [PMID: 33522223 DOI: 10.1021/acs.bioconjchem.0c00716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed and synthesized several families of novel amphiphilic fluorescent phosphorus dendron-based micelles showing relevant antiproliferative activities for use in the field of theranostic nanomedicine. Based on straightforward synthesis pathways, 12 amphiphilic phosphorus dendrons bearing 10 protonated cyclic amino groups (generation one), or 20 protonated amino groups (generation two), and 1 hydrophobic chain carrying 1 fluorophore moiety were created. The amphiphilic dendron micelles had the capacity to aggregate in solution using hydrophilic/hydrophobic interactions, which promoted the formation of polymeric micelles. These dendron-based micelles showed moderate to high antiproliferative activities against a panel of tumor cell lines. This paper presents for the first time the synthesis and our first investigations of new phosphorus dendron-based micelles for cancer therapy applications.
Collapse
Affiliation(s)
- Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Liang Chen
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mengsi Zhan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 1, avenue de la Terrasse, 91198 Paris, Gif-sur-Yvette Cedex, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| |
Collapse
|
23
|
Majoral JP, Zablocka M, Ciepluch K, Milowska K, Bryszewska M, Shcharbin D, Katir N, El Kadib A, Caminade AM, Mignani S. Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Org Chem Front 2021; 8:4607-4622. [DOI: 10.1039/d1qo00511a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Design of new families of dendritic soft nanoparticles constituted of phosphorus, viologen and carbosilane fragments and their properties as nanomaterials and applications in biology.
Collapse
Affiliation(s)
- Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination
- CNRS
- UPR 8241
- 31077 Toulouse CEDEX 4
- France
| | - Maria Zablocka
- Center of Molecular and Macromolecular Studies
- Polish Academy of Science
- 90001 Lodz
- Poland
| | - Karol Ciepluch
- Division of Medical Biology
- Jan Kochanowski University
- Kielce
- Poland
| | - Katarzyna Milowska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | - Maria Bryszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | | | - Nadia Katir
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Fès
- Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Fès
- Morocco
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination
- CNRS
- UPR 8241
- 31077 Toulouse CEDEX 4
- France
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Université Paris Descartes
- PRES Sorbonne Paris Cité
- CNRS UMR 860
- 75006 Paris
| |
Collapse
|
24
|
Mignani S, Shi X, Ceña V, Shcharbin D, Bryszewska M, Majoral JP. In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discov Today 2020; 26:677-689. [PMID: 33285297 DOI: 10.1016/j.drudis.2020.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid, Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
25
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https:/doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
26
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020; 31:2060-2071. [PMID: 32786368 DOI: 10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
27
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
28
|
Mignani S, Shi X, Rodrigues J, Roy R, Muñoz-Fernández Á, Ceña V, Majoral JP. Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjug Chem 2020. [DOI: https://doi.org/10.1021/acs.bioconjchem.0c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Xiangyang Shi
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - João Rodrigues
- CQM - Centro de Quı́mica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec Canada H3J 1S6
| | - Ángeles Muñoz-Fernández
- Sección Inmunologı́a, Laboratorio InmunoBiologı́a Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain, Spanish HIV HGM BioBank, Madrid, Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid; Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
29
|
Phosphorus Dendrimers as Nanotools against Cancers. Molecules 2020; 25:molecules25153333. [PMID: 32708025 PMCID: PMC7435762 DOI: 10.3390/molecules25153333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer “drugs”, which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.
Collapse
|
30
|
Hussein Kamareddine M, Ghosn Y, Tawk A, Elia C, Alam W, Makdessi J, Farhat S. Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia. Technol Cancer Res Treat 2020; 18:1533033819879902. [PMID: 31865865 PMCID: PMC6928535 DOI: 10.1177/1533033819879902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm that occurs more prominently in the older population, with a peak incidence at ages 45 to 85 years and a median age at diagnosis of 65 years. This disease comprises roughly 15% of all leukemias in adults. It is a clonal stem cell disorder of myeloid cells characterized by the presence of t(9;22) chromosomal translocation, also known as the Philadelphia chromosome, or its byproducts BCR-ABL fusion protein/messenger RNA, leading to the expression of a protein with enhanced tyrosine kinase activity. This fusion protein has become the main therapeutic target in chronic myeloid leukemia therapy, with imatinib displaying superior antileukemic effects, placing it at the forefront of current treatment protocols and displaying great efficacy. Alternatively, nanomedicine and employing nanoparticles as drug delivery systems may represent new approaches in future anticancer therapy. This review focuses primarily on the use of organic nanoparticles aimed at chronic myeloid leukemia therapy in both in vitro and in vivo settings, by going through a thorough survey of published literature. After a brief introduction on the pathogenesis of chronic myeloid leukemia, a description of conventional, first- and second-line, treatment modalities of chronic myeloid leukemia is presented. Finally, some of the general applications of nanostrategies in medicine are presented, with a detailed focus on organic nanocarriers and their constituents used in chronic myeloid leukemia treatment from the literature.
Collapse
Affiliation(s)
| | - Youssef Ghosn
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Antonios Tawk
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, El-Koura, Lebanon
| | - Walid Alam
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- Department of Hematology-Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
31
|
Chen L, Li J, Fan Y, Qiu J, Cao L, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules 2020; 21:2502-2511. [DOI: 10.1021/acs.biomac.0c00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- Universite′ Paris Descartes, PRES Sorbonne Paris Cite′, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
32
|
Abdulrahman BA, Tahir W, Doh-Ura K, Gilch S, Schatzl HM. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2020; 13:185-196. [PMID: 31578923 PMCID: PMC6779372 DOI: 10.1080/19336896.2019.1670928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
33
|
Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm 2019; 573:118814. [PMID: 31759101 DOI: 10.1016/j.ijpharm.2019.118814] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023]
Abstract
Dendrimers are globular structures, presenting an initiator core, repetitive layers starting radially from the core and terminal groups on the surface, resembling tree architecture. These structures have been studied in many biological applications, as drug, DNA, RNA and proteins delivery, as well as imaging and radiocontrast agents. With reference to that, this review focused in providing examples of dendrimers used in nanomedicine. Although most studies emphasize cancer, there are others which reveal action in the neurosystem, reducing either neuroinflammation or protein aggregation. Dendrimers can carry bioactive compounds by covalent bond (dendrimer prodrug), or by ionic interaction or adsortion in the internal space of the nanostructure. Additionally, dendrimers can be associated with other polymers, as PEG (polyethylene glycol), and with targeting structures as aptamers, antibodies, folic acid and carbohydrates. Their products in preclinical/clinical trial and those in the market are also discussed, with a total of six derivatives in clinical trials and seven products available in the market.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - João Vitor da Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Omar El Seoud
- Department of Organic Chemistry, Institute of Chemistry, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|
34
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Bender H, Noyes N, Annis JL, Hitpas A, Mollnow L, Croak K, Kane S, Wagner K, Dow S, Zabel M. PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One 2019; 14:e0219995. [PMID: 31329627 PMCID: PMC6645518 DOI: 10.1371/journal.pone.0219995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022] Open
Abstract
Prion diseases are members of neurodegenerative protein misfolding diseases (NPMDs) that include Alzheimer's, Parkinson's and Huntington diseases, amyotrophic lateral sclerosis, tauopathies, traumatic brain injuries, and chronic traumatic encephalopathies. No known therapeutics extend survival or improve quality of life of humans afflicted with prion disease. We and others developed a new approach to NPMD therapy based on reducing the amount of the normal, host-encoded protein available as substrate for misfolding into pathologic forms, using RNA interference, a catabolic pathway that decreases levels of mRNA encoding a particular protein. We developed a therapeutic delivery system consisting of small interfering RNA (siRNA) complexed to liposomes and addressed to the central nervous system using a targeting peptide derived from rabies virus glycoprotein. These liposome-siRNA-peptide complexes (LSPCs) cross the blood-brain barrier and deliver PrP siRNA to neuronal cells to decrease expression of the normal cellular prion protein, PrPC, which acts as a substrate for prion replication. Here we show that LSPCs can extend survival and improve behavior of prion-infected mice that remain immunotolerant to treatment. LSPC treatment may be a viable therapy for prion and other NPMDs that can improve the quality of life of patients at terminal disease stages.
Collapse
Affiliation(s)
- Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Noelle Noyes
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Jessica L. Annis
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Amanda Hitpas
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kendra Croak
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Sarah Kane
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kaitlyn Wagner
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Steven Dow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mark Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
36
|
Caminade A. Inorganic Dendrimers and Their Applications. SMART INORGANIC POLYMERS 2019:277-315. [DOI: 10.1002/9783527819140.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Sourdon A, Gary-Bobo M, Maynadier M, Garcia M, Majoral JP, Caminade AM, Mongin O, Blanchard-Desce M. Dendrimeric Nanoparticles for Two-Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Two-Photon Irradiation in the NIR. Chemistry 2019; 25:3637-3649. [PMID: 30620107 DOI: 10.1002/chem.201805617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The synthesis and the photophysical properties of a new class of fully organic monodisperse nanoparticles for combined two-photon imaging and photodynamic therapy are described. The design of such nanoparticles is based on the covalent immobilization of a dedicated quadrupolar dye that combines excellent two-photon absorbing (2PA) properties, fluorescence and singlet oxygen generation ability, in a phosphorous-based dendrimeric architecture. First, a bifunctional quadrupolar dye bearing two different grafting moieties, a phenol function and an aldehyde function, was synthesized. It was then covalently grafted through its phenol function to a phosphorus-based dendrimer scaffold of generation 1. The remaining aldehyde functions were then used to continue the dendrimer synthesis up to generation 2, introducing finally 24 water-solubilizing triethyleneglycol chains at its periphery. A dendrimer confining 12 photoactive quadrupolar units in its inner scaffold and showing water solubility was thus obtained. Interestingly, the G1 and G2 dendrimers retain some fluorescence as well as significant singlet oxygen production efficiencies while they were found to show very high 2PA cross-sections in a broad range of the NIR biological spectral window. Hydrophilic dendrimer G2 was tested in vitro on breast cancer cells, first in one- and two-photon microscopy, which allowed for visualization of their cell internalization, then in two-photon photodynamic therapy. While being nontoxic in the dark and, more importantly, under exposure to daylight, dendrimer G2 proved to be a very efficient cell-death inducer only under two-photon irradiation in the NIR.
Collapse
Affiliation(s)
- Aude Sourdon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | | |
Collapse
|
38
|
Abstract
Recent advances in understanding of the molecular biology of prion diseases and improved clinical diagnostic techniques might allow researchers to think about therapeutic trials in Creutzfeldt-Jakob disease (CJD) patients. Some attempts have been made in the past and various compounds have been tested in single case reports and patient series. Controlled trials are rare. However, in the past few years, it has been demonstrated that clinical trials are feasible. The clinicians might face several specific problems when evaluating the efficacy of the drug in CJD, such as rareness of the disease, lack of appropriate preclinical tests and heterogeneous clinical presentation in humans. These problems have to be carefully addressed in future.
Collapse
Affiliation(s)
- Saima Zafar
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneeqa Noor
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center and German Center for Neurodegenerative Diseases, Department of Neurology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Majoral J, Caminade A. Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean‐Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| |
Collapse
|
40
|
Apartsin EK, Grigoryeva AE, Malrin-Fournol A, Ryabchikova EI, Venyaminova AG, Mignani S, Caminade AM, Majoral JP. Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading. Pharmaceutics 2018; 10:pharmaceutics10030120. [PMID: 30082671 PMCID: PMC6161142 DOI: 10.3390/pharmaceutics10030120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
In this work, we report the assemblage of hydrogels from phosphorus dendrimers in the presence of biocompatible additives and the study of their interactions with nucleic acids. As precursors for hydrogels, phosphorus dendrimers of generations 1–3 based on the cyclotriphosphazene core and bearing ammonium or pyridinium acetohydrazones (Girard reagents) on the periphery have been synthesized. The gelation was done by the incubation of dendrimer solutions in water or phosphate-buffered saline in the presence of biocompatible additives (glucose, glycine or polyethylene glycol) to form physical gels. Physical properties of gels have been shown to depend on the gelation conditions. Transmission electron microscopy revealed structural units and well-developed network structures of the hydrogels. The hydrogels were shown to bind nucleic acids efficiently. In summary, hydrogels of phosphorus dendrimers represent a useful tool for biomedical applications.
Collapse
Affiliation(s)
- Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia.
| | - Alina E Grigoryeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia.
| | | | - Elena I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev ave., 630090 Novosibirsk, Russia.
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 8601, 75006 Paris, France.
- Centro de Química da Madeira, MMRG, Universidade da Madeira, 9000-390 Funchal, Portugal.
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne, BP 44099, 31077 Toulouse CEDEX 04, France.
- LCC-CNRS, Université de Toulouse, CNRS, 31013 Toulouse, France.
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne, BP 44099, 31077 Toulouse CEDEX 04, France.
- LCC-CNRS, Université de Toulouse, CNRS, 31013 Toulouse, France.
| |
Collapse
|
41
|
Abstract
From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
42
|
Abstract
Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental composition, on the properties of dendrimers. After a large introduction that summarizes different types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH) dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| | - Jean-Pierre Majoral
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| |
Collapse
|
43
|
Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic–metallic macromolecules. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Wang L, Yang YX, Shi X, Mignani S, Caminade AM, Majoral JP. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. J Mater Chem B 2018; 6:884-895. [PMID: 32254368 DOI: 10.1039/c7tb03081a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review is focused on the recent use of cyclotriphosphazene-based dendrimers in biomedicine. Since its synthesis for the first time in 1834, cyclotriphosphazene has been an important compound of phosphorus chemistry as a scaffold, and a large number of cyclotriphosphazene derivatives have been synthesized and applied in various fields such as biology, catalysis, fluorescence, nanomaterials, etc. Today, one of the most important uses concerns its biomedical applications. In this review, the recent developments (since 2012) of cyclotriphosphazene for major pharmaceutical applications are highlighted and analyzed.
Collapse
Affiliation(s)
- Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | | | | | | | | | | |
Collapse
|
45
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018; 47:514-532. [PMID: 29154385 DOI: 10.1039/c7cs00550d] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https://doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
47
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https:/doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
48
|
Pilkington E, Lai M, Ge X, Stanley WJ, Wang B, Wang M, Kakinen A, Sani MA, Whittaker MR, Gurzov EN, Ding F, Quinn JF, Davis TP, Ke PC. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules 2017; 18:4249-4260. [PMID: 29035554 PMCID: PMC5729549 DOI: 10.1021/acs.biomac.7b01301] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Indexed: 01/20/2023]
Abstract
Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.
Collapse
Affiliation(s)
- Emily
H. Pilkington
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - May Lai
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xinwei Ge
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - William J. Stanley
- St
Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Department
of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Bo Wang
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Miaoyi Wang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandr Kakinen
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marc-Antonie Sani
- School of
Chemistry, Bio21 Institute, The University
of Melbourne, 30 Flemington
Rd, Parkville, Victoria 3010, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Esteban N. Gurzov
- St
Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Department
of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Feng Ding
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
49
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
50
|
Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo. Proc Natl Acad Sci U S A 2017; 114:E7660-E7669. [PMID: 28847956 DOI: 10.1073/pnas.1704858114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inflammation is part of the physiological response of the organism to infectious diseases caused by organisms such as bacteria, viruses, fungi, or parasites. Innate immunity, mediated by mononuclear phagocytes, including monocytes and macrophages, is a first line of defense against infectious diseases and plays a key role triggering the delayed adaptive response that ensures an efficient defense against pathogens. Monocytes and macrophages stimulation by pathogen antigens results in activation of different signaling pathways leading to the release of proinflammatory cytokines. However, inflammation can also participate in the pathogenesis of several diseases, the autoimmune diseases that represent a relevant burden for human health. Dendrimers are branched, multivalent nanoparticles with a well-defined structure that have a high potential for biomedical applications. To explore new approaches to fight against the negative aspects of inflammation, we have used neutral high-generation phosphorus dendrimers bearing 48 (G3) or 96 (G4) bisphosphonate groups on their surface. These dendrimers show no toxicity and have good solubility and chemical stability in aqueous solutions. Here, we present data indicating that neutral phosphorus dendrimers show impressive antiinflammatory activities both in vitro and in vivo. In vitro, these dendrimers reduced the secretion of proinflammatory cytokines from mice and human monocyte-derived macrophages. In addition, these molecules present efficient antiinflammatory activity in vivo in a mouse model of subchronic inflammation. Taken together, these data suggest that neutral G3-G4 phosphorus dendrimers have strong potential applications in the therapy of inflammation and, likely, of autoimmune diseases.
Collapse
|