1
|
Gondalia N, Quiroz LF, Lai L, Singh AK, Khan M, Brychkova G, McKeown PC, Chatterjee M, Spillane C. Harnessing promoter elements to enhance gene editing in plants: perspectives and advances. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1375-1395. [PMID: 40013512 PMCID: PMC12018835 DOI: 10.1111/pbi.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 02/28/2025]
Abstract
Genome-edited plants, endowed with climate-smart traits, have been promoted as tools for strengthening resilience against climate change. Successful plant gene editing (GE) requires precise regulation of the GE machinery, a process controlled by the promoters, which drives its transcription through interactions with transcription factors (TFs) and RNA polymerase. While constitutive promoters are extensively used in GE constructs, their limitations highlight the need for alternative approaches. This review emphasizes the promise of tissue/organ specific as well as inducible promoters, which enable targeted GE in a spatiotemporal manner with no effects on other tissues. Advances in synthetic biology have paved the way for the creation of synthetic promoters, offering refined control over gene expression and augmenting the potential of plant GE. The integration of these novel promoters with synthetic systems presents significant opportunities for precise and conditional genome editing. Moreover, the advent of bioinformatic tools and artificial intelligence is revolutionizing the characterization of regulatory elements, enhancing our understanding of their roles in plants. Thus, this review provides novel insights into the strategic use of promoters and promoter editing to enhance the precision, efficiency and specificity of plant GE, setting the stage for innovative crop improvement strategies.
Collapse
Affiliation(s)
- Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Avinash Kumar Singh
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Peter C. McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Manash Chatterjee
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
- Viridian Seeds Ltd.CambridgeUK
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| |
Collapse
|
2
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Mattioli F, Friðriksdóttir R, Hebert A, Bassani S, Ibrahim N, Naz S, Chrast J, Pailler-Pradeau C, Oddsson Á, Sulem P, Halldorsson GH, Melsted P, Guðbjartsson DF, Palombo F, Pippucci T, Nouri N, Seri M, Farrow EG, Saunders CJ, Guex N, Ansar M, Stefansson K, Reymond A. Bi-allelic variants in BRF2 are associated with perinatal death and craniofacial anomalies. Genome Med 2025; 17:38. [PMID: 40229899 PMCID: PMC11995667 DOI: 10.1186/s13073-025-01463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Variants in genes encoding multiple subunits of the RNA Polymerase III complex which synthesizes rRNAs, tRNAs, and other small RNAs were previously associated with neurological disorders, such as syndromic hypomyelination leukodystrophies, pontocerebellar hypoplasia, and cerebellofaciodental syndrome. One new such candidate is BRF2, which encodes a TFIIB-like factor that recruits the RNA polymerase III complex to type 3 promoters to initiate transcription of U6, RnaseP, and 7SK RNAs. METHODS We combined sequencing with functional analyses to investigate the effects of BRF2 variants. RESULTS We observe that a previously reported significant underrepresentation of double transmission of a splice variant results in recessive lethality in three large Icelandic families with multiple perinatal losses. Using data aggregation, we identified an additional seven individuals worldwide from three unrelated families carrying biallelic variants in BRF2. Affected individuals present a variable phenotype ranging from severe craniofacial anomalies with early death to intellectual disability with motor and speech development. In silico 3D modelling and functional analyses showed functional impairment of the identified variants, e.g., differences in target loci occupancy. Zebrafish knocked down for the orthologous brf2 presented with abnormal escape response, reduced swimming velocity and head size, and craniofacial malformations. These defects were complemented by the human wild-type but not mutated BRF2 mRNA further demonstrating their deleteriousness. CONCLUSIONS Overall, our results support the association of biallelic BRF2 variants with a novel neurodevelopmental disease and provide an additional link between RNA polymerase III, its targets and craniofacial anomalies.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | - Anne Hebert
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Clara Pailler-Pradeau
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Páll Melsted
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche, Programma Di Neurogenetica, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Nayereh Nouri
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Carol J Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland.
- Health2030 Genome Center, Foundation Campus Biotech Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Yi Y, Zhang J, Guo S, Du X, Gu R, Wang J, Chen Q. Multi-Omics Analysis Reveals Differential Molecular Responses of RNA Polymerase Common Subunit ZmRPABC5b for Seedling Development in Maize. PLANTS (BASEL, SWITZERLAND) 2025; 14:941. [PMID: 40265882 PMCID: PMC11944614 DOI: 10.3390/plants14060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The normal development of maize (Zea mays) seedling is a prerequisite for achieving high crop yields. Although numerous molecular pathways regulate seedling development, the role of RNA polymerases (RNAPs) in this process remains largely unclear, and the function of common RNAP subunits in plants are not well understood. Here, we characterized the loss-of-function mutant of common subunit ZmRPABC5b, defective kernel 701 (dek701), which displays delayed seedling development. To elucidate the role of ZmRPABC5b in maize seedling growth, we conducted transcriptomic and metabolomic analyses. This study found that the loss of ZmRPABC5b function severely impaired early seedling growth, leading to significant reductions in stem length, root length, as well as fresh and dry weight. Transcriptome analysis identified 3780 upregulated and 4385 downregulated differentially expressed genes (DEGs) in dek701 seedlings compared to wild type. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs revealed that significant enrichment in pathways related to RNA biosynthesis, carbohydrate metabolic, hormone stimulus, cellular transporter and ribosome activity. Metabolome analysis identified 501 differentially expressed metabolites (DEMs) in dek701 seedlings, which were significantly enriched in the amino acid metabolism, secondary metabolites, carbohydrate metabolism, lipid metabolism, transport and translation. These findings provide substantial insight into the ZmRPABC5b regulatory network, positioning it as a central hub for regulating seedling development in maize.
Collapse
Affiliation(s)
- Yaoran Yi
- Sanya Institute of China Agricultural University, Sanya 572025, China;
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Jie Zhang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Shuangqi Guo
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Xuemei Du
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Jianhua Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China;
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| | - Quanquan Chen
- Sanya Institute of China Agricultural University, Sanya 572025, China;
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Frontiers Science Center for Molecular Design Breeding (MOE), Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.Z.); (S.G.); (X.D.); (R.G.)
| |
Collapse
|
5
|
Verstraten R, Cetraro P, Fitzpatrick AH, Alwie Y, Frommeyer YN, Loliashvili E, Stein SC, Häussler S, Ouwendijk WJ, Depledge DP. Defining expansions and perturbations to the RNA polymerase III transcriptome and epitranscriptome by modified direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641986. [PMID: 40161704 PMCID: PMC11952314 DOI: 10.1101/2025.03.07.641986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
RNA polymerase III (Pol III) transcribes cytosolic transfer RNAs (tRNAs) and other non-coding RNAs (ncRNAs) essential to cellular function. However, many aspects of Pol III transcription and processing, including RNA modifications, remain poorly understood, mainly due to a lack of available sensitive and systematic methods for their analysis. Here, we present DRAP3R (Direct Read and Analysis of Polymerase III transcribed RNAs), a modified nanopore direct RNA sequencing approach and analysis framework that enables the specific and sensitive capture of nascent Pol III transcribed RNAs. Applying DRAP3R to distinct cell types, we identify previously unconfirmed tRNA genes and other novel Pol III transcribed RNAs, thus expanding the known Pol III transcriptome. Critically, DRAP3R also enables discrimination between co- and post-transcriptional RNA modifications such as pseudouridine (Ψ) and N 6-methyladenosine (m6A) at single-nucleotide resolution across all examined transcript types and reveals differential Ψ installation patterns across tRNA isodecoders and other ncRNAs. Finally, applying DRAP3R to epithelial cells infected with Herpes Simplex Virus Type 1 reveals an extensive remodelling of both the Pol III transcriptome and epitranscriptome. Our findings thus establish DRAP3R as a powerful tool for systematically studying Pol III transcribed RNAs and their modifications in diverse cellular contexts.
Collapse
Affiliation(s)
- Ruth Verstraten
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Pierina Cetraro
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Yasmine Alwie
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | | | - Saskia C. Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Khan MA, Herring G, Zhu JY, Oliva M, Fourie E, Johnston B, Zhang Z, Potter J, Pineda L, Pflueger J, Swain T, Pflueger C, Lloyd JPB, Secco D, Small I, Kidd BN, Lister R. CRISPRi-based circuits to control gene expression in plants. Nat Biotechnol 2025; 43:416-430. [PMID: 38769424 DOI: 10.1038/s41587-024-02236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.
Collapse
Affiliation(s)
- Muhammad Adil Khan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gabrielle Herring
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Yuan Zhu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elliott Fourie
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin Johnston
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhining Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jarred Potter
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Luke Pineda
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Tessa Swain
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Christian Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan N Kidd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland, Australia.
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
7
|
Zeng S, Li Z, Li X, Du Q, Zhang Y, Zhong Z, Wang H, Zhang S, Li P, Li H, Chen L, Jiang A, Shang P, Li M, Long K. Inhibition of triglyceride metabolism-associated enhancers alters lipid deposition during adipocyte differentiation. FASEB J 2025; 39:e70347. [PMID: 39873971 PMCID: PMC11774232 DOI: 10.1096/fj.202401137r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data. Luciferase reporter assays revealed that 11 enhancers exhibited fluorescence activity. The repression of enhancers using the dCas9-KRAB system revealed the functional roles of enhancers of Dgat2 and Pnpla2 in regulating their expression and TG metabolism. Furthermore, transcriptome analyses revealed that inhibition of Dgat2-En4 downregulated pathways associated with lipid metabolism, lipid biosynthesis, and adipocyte differentiation. Additionally, overexpression and motif mutation experiments of transcription factor found that two TFs, PPARG and RXRA, regulate the activity of Agpat2-En1, Dgat2-En4, and Pnpla2-En5. Our study identified functional enhancers regulating TG metabolism and elucidated potential regulatory mechanisms of TG deposition from enhancer-promoter interactions, providing insights into understanding lipid deposition.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Ziqi Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xiaokai Li
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Songling Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Haohuan Li
- College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Peng Shang
- Animal Science CollegeTibet Agriculture and Animal Husbandry UniversityLinzhiChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
| |
Collapse
|
8
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Hollingsworth EW, Liu TA, Alcantara JA, Chen CX, Jacinto SH, Kvon EZ. Rapid and quantitative functional interrogation of human enhancer variant activity in live mice. Nat Commun 2025; 16:409. [PMID: 39762235 PMCID: PMC11704014 DOI: 10.1038/s41467-024-55500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Taryn A Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Joshua A Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Cindy X Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Sandra H Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
10
|
Kim D, Kim HK, Kay MA. Functional analysis of tRNA-derived small translational regulation. Methods Enzymol 2025; 711:336-355. [PMID: 39952714 DOI: 10.1016/bs.mie.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Transfer RNAs (tRNAs) are short non-coding RNA molecules that play a crucial role in protein synthesis by carrying amino acids to ribosomes during translation. tRNAs are highly conserved and abundant across species, with each type categorized based on its anticodon sequence. Although traditionally viewed as essential for protein synthesis, tRNAs have been found to have additional roles in cell proliferation, tumor metastasis, and neuronal homeostasis. In addition, tRNAs are cleaved by ribonucleases to produce smaller fragments. These fragments have previously been referred to as tRNA fragments (tRF RNAs) or tRNA-derived small RNAs (tsRNAs). More recently a nomenclature has been but forward for all tRNA derived RNAs referred to as tDRs. We will use tsRNA and tDR interterchangeably. The tDRs are processed at specific sites in tRNAs and can be differentially expressed in various tissues and diseases, indicating their potential as unique non-coding RNAs with specific functions. In a previous study, we identified a 3'tDR, which can regulate the translation of a target mRNA by altering its secondary structure. This chapter provides a detailed protocol to analyze the tDR-mediated translational regulation based on several molecular methods.
Collapse
Affiliation(s)
- Dongjin Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
11
|
Reza MAN, Harvey TN, Regmi A, Torgersen JS, Sandvik GK. Exploring the Use of Alternative Promoters for Enhanced Transgene and sgRNA Expression in Atlantic Salmon Cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1143-1154. [PMID: 39212852 PMCID: PMC11541246 DOI: 10.1007/s10126-024-10362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This study facilitates design of expression vectors and lentivirus tools for gene editing of Atlantic salmon. We have characterized widely used heterologous promoters and novel endogenous promoters in Atlantic salmon cells. We used qPCR to evaluate the activity of several U6 promoters for sgRNA expression, including human U6 (hU6), tilapia U6 (tU6), mouse U6 (mU6), zebrafish U6 (zU6), Atlantic salmon U6 (sU6), medaka U6 (medU6), and fugu U6 (fU6) promoters. We also evaluated several polymerase type II (pol II) promoters by luciferase assay. Our results showed that hU6 and tU6 promoters were the most active among all the tested U6 promoters, and heterologous promoters (CMV, hEF1α core) had higher activity compared to endogenous Atlantic salmon promoters sHSP8, sNUC3L, sEF1α. Among endogenous pol II promoters, sEF1α and sHSP8 displayed higher activity than sNUC3L, sHSP703, sHSP7C, sXRCC1L, and sETF. We observed that extending the promoter sequence to include the region up to the start codon (ATG) resulted in a significant increase in expression efficiency for sNUC3L and sEF1α. We also show that mutating the PRDM1 motif will significantly decrease the activity of the sEF1α promoter. The presence of the PRDM1 motif in sHSP8 promoter was also associated with relatively high expression compared to the promoters that naturally lacked this motif, such as sNUC3L. We speculate that this short sequence might be included in other promoters to further enhance the promoter activity, but further experiments are needed to confirm this. Our findings provide valuable insights into the activity of different promoters in Atlantic salmon cells and can be used to facilitate further transgenic studies and improve the efficiency of transgene expression in Atlantic salmon.
Collapse
Affiliation(s)
- Mohammad Ali Noman Reza
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Thomas Nelson Harvey
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Axmee Regmi
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | | | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway.
| |
Collapse
|
12
|
Kunitake K, Mizuno T, Hattori K, Oneyama C, Kamiya M, Ota S, Urano Y, Kojima R. Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis and release regulators. Nat Commun 2024; 15:9777. [PMID: 39562573 DOI: 10.1038/s41467-024-53736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important intercellular information transmitters in various biological contexts, but their release processes remain poorly understood. Herein, we describe a high-throughput assay platform, CRISPR-assisted individually barcoded sEV-based release regulator (CIBER) screening, for identifying key players in sEV release. CIBER screening employs sEVs barcoded with CRISPR-gRNA through the interaction of gRNA and dead Cas9 fused with an sEV marker. Barcode quantification enables the estimation of the sEV amount released from each cell in a massively parallel manner. Barcoding sEVs with different sEV markers in a CRISPR pooled-screening format allows genome-wide exploration of sEV release regulators in a subpopulation-specific manner, successfully identifying previously unknown sEV release regulators and uncovering the exosomal/ectosomal nature of CD63+/CD9+ sEVs, respectively, as well as the synchronization of CD9+ sEV release with the cell cycle. CIBER should be a valuable tool for detailed studies on the biogenesis, release, and heterogeneity of sEVs.
Collapse
Affiliation(s)
- Koki Kunitake
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Hattori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Institute of Science Tokyo, Kanagawa, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
13
|
K C R, Cheng R, Zhou S, Lizarazo S, Smith DJ, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. Mol Cell 2024; 84:4111-4124.e5. [PMID: 39393362 PMCID: PMC11560567 DOI: 10.1016/j.molcel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes. We show that such RNA Pol III-occupied promoters are enriched for small nascent RNAs terminating in a run of 4 Ts-a hallmark of RNA Pol III termination indicative of constrained RNA Pol III transcription. Taken further, RNA Pol III disruption generally reduces the expression of RNA Pol III-occupied protein-coding genes, suggesting RNA Pol III recruitment and transcription enhance RNA Pol II activity. These findings resemble analogous patterns of RNA Pol II activity at RNA Pol III-transcribed genes, altogether uncovering a reciprocal form of crosstalk between RNA Pol II and RNA Pol III.
Collapse
Affiliation(s)
- Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Yin H, Yu Y, Shen Y. Identification of novel variants in BRF1 gene from patient with developmental delay, hearing abnormality, and nervous system anomalies. Int J Dev Neurosci 2024; 84:679-687. [PMID: 39005000 DOI: 10.1002/jdn.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cerebellofaciodental syndrome characterized with dysmorphic features, intellectual disability, and brain anomalies. Now its clinical spectrum expanded more manifestations including bilateral sensorineural hearing impairment and inner ear malformation. Here, we report a 14-month-old boy with global developmental delay and hearing disorder. Whole exome sequencing (WES) revealed the compound heterozygous variants [NM_001519.4: c.652 T > G (p.W218G); c.915 + 1G > T] in the BRF1 gene which inherited from his parents, respectively. The MRI results showed hypoplastic cerebellar vermis, enlarged cisterna magna, and prominent fourth ventricle, the rehabilitation therapy failed to improve the symptoms for our patient. Our finding expands the genetic spectrum of BRF1 variants, which indicates patients with the developmental delay caused by BRF1 variants require other treatments instead of rehabilitation.
Collapse
Affiliation(s)
- Hongwei Yin
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Yingying Shen
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
15
|
Savina EA, Shumilina TG, Porolo VA, Lebedev GS, Orlov YL, Anashkina AA, Il’icheva IA. Structural Features of DNA in tRNA Genes and Their Upstream Sequences. Int J Mol Sci 2024; 25:11758. [PMID: 39519309 PMCID: PMC11547032 DOI: 10.3390/ijms252111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
RNA polymerase III (Pol III) transcribes tRNA genes using type II promoters. The internal control regions contain a Box A and a Box B, which are recognized by TFIIIC. The 5'-flanking regions of tRNA genes clearly play a role in the regulation of transcription, but consensus sequences in it have been found only in some plants and S. pombe; although, the TATA binding protein (TBP) is a component of the TFIIIB complex in all eukaryotes. Archaea utilize an ortholog of the TBP. The goal of this work is the detection of the positions of intragenic and extragenic promoters of Pol III, which regulate the transcription of tRNA genes in eukaryotes and archaea. For this purpose, we analyzed textual and some structural, mechanical, and physicochemical properties of the DNA in the 5'-flanking regions of tRNA genes, as well as in 30 bp at the beginning of genes and 60 bp at the end of genes in organisms possessing the TBP or its analog (eukaryotes, archaea) and organisms not possessing the TBP (bacteria). Representative tRNA gene sets of 11 organisms were taken from the GtRNAdb database. We found that the consensuses of A- and B-boxes in organisms from all three domains are identical; although, they differ in the conservativism of some positions. Their location relative to the ends of tRNA genes is also identical. In contrast, the structural and mechanical properties of DNA in the 5'-flanking regions of tRNA genes differ not only between organisms from different domains, but also between organisms from the same domain. Well-expressed TBP binding positions are found only in S. pombe and A. thaliana. We discuss possible reasons for the variability of the 5'-flanking regions of tRNA genes.
Collapse
Affiliation(s)
- Ekaterina A. Savina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Tatiana G. Shumilina
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Viktoria A. Porolo
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Georgy S. Lebedev
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
| | - Yury L. Orlov
- The Digital Health Center, I.M.Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), 119991 Moscow, Russia; (T.G.S.); (V.A.P.); (G.S.L.); (Y.L.O.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Anastasia A. Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
| | - Irina A. Il’icheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.A.S.); (A.A.A.)
| |
Collapse
|
16
|
Hong CKY, Wu Y, Erickson AA, Li J, Federico AJ, Cohen BA. Massively parallel characterization of insulator activity across the genome. Nat Commun 2024; 15:8350. [PMID: 39333469 PMCID: PMC11436800 DOI: 10.1038/s41467-024-52599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024] Open
Abstract
A key question in regulatory genomics is whether cis-regulatory elements (CREs) are modular elements that can function anywhere in the genome, or whether they are adapted to certain genomic locations. To distinguish between these possibilities we develop MPIRE (Massively Parallel Integrated Regulatory Elements), a technology for recurrently assaying CREs at thousands of defined locations across the genome in parallel. MPIRE allows us to separate the intrinsic activity of CREs from the effects of their genomic environments. We apply MPIRE to assay three insulator sequences at thousands of genomic locations and find that each insulator functions in locations with distinguishable properties. All three insulators can block enhancers, but each insulator blocks specific enhancers at specific locations. However, only ALOXE3 appears to block heterochromatin silencing. We conclude that insulator function is highly context dependent and that MPIRE is a robust method for revealing the context dependencies of CREs.
Collapse
Affiliation(s)
- Clarice K Y Hong
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Yawei Wu
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Alyssa A Erickson
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Jie Li
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Arnold J Federico
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA.
- Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Wu J, Zhou Y, Zhao D, Xu R, Wang J, Lin H, Ding Z, Zou Y. Engineered mouse H1 promoter mutants with superior RNA polymerase III activity. Biochem Biophys Rep 2024; 39:101795. [PMID: 39175666 PMCID: PMC11340601 DOI: 10.1016/j.bbrep.2024.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Vectors incorporating the human H1 (hH1) promoter are being applied for RNA interference (RNAi) experiments and genome editing. Although extensive studies have been conducted on the hH1 promoter, our understanding of the mouse H1 promoter remains limited. In this study, we predicted the 163 bp mouse H1 (mH1) promoter and 84 bp mouse H1 core (mH1 core) promoter through global alignment and detected its RNA polymerase II (Pol II) and III activities through the expression of the EGFP and the abundance of artificial sequence, which were generally slightly weaker than those of the hH1 promoter. Furthermore, to boost its Pol III activity, we engineered various promoter mutants by introducing mutations or systematically swapping elements. Surprisingly, the Pol II activity of mH1 core mut5 with AT stretch was at least 2-fold greater than that of the wild type, making it a potential candidate for target protein expression purposes. Fortunately, the Pol III activities of mH1 mut1 and mH1 core mut5 were at least 1.5 times stronger than those of the parental promoters in human and mouse cell lines on account of AT stretch, as did the mH1 mut4 with AT stretch and proximal sequence element (PSE) and TATA box insertion mutations. We highly recommend these three promoters as valuable supplements to the type 3 Pol III promoter toolbox.
Collapse
Affiliation(s)
- Jiaying Wu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yufei Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
| | - Di Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
- Shanghai Geriatric Medical Center, Shanghai, 201104, China
| | - Jienan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
| | - Hong Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
- Departments of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 218120, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai, 200032, China
- Departments of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 218120, China
| |
Collapse
|
18
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
19
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
20
|
Taube M, Lisiak N, Totoń E, Rubiś B. Human Vault RNAs: Exploring Their Potential Role in Cellular Metabolism. Int J Mol Sci 2024; 25:4072. [PMID: 38612882 PMCID: PMC11012908 DOI: 10.3390/ijms25074072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy.
Collapse
Affiliation(s)
| | | | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.T.); (N.L.); (E.T.)
| |
Collapse
|
21
|
Akiyama Y, Ivanov P. Oxidative Stress, Transfer RNA Metabolism, and Protein Synthesis. Antioxid Redox Signal 2024; 40:715-735. [PMID: 37767630 PMCID: PMC11001508 DOI: 10.1089/ars.2022.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Zacarías-Fluck MF, Soucek L, Whitfield JR. MYC: there is more to it than cancer. Front Cell Dev Biol 2024; 12:1342872. [PMID: 38510176 PMCID: PMC10952043 DOI: 10.3389/fcell.2024.1342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
MYC is a pleiotropic transcription factor involved in multiple cellular processes. While its mechanism of action and targets are not completely elucidated, it has a fundamental role in cellular proliferation, differentiation, metabolism, ribogenesis, and bone and vascular development. Over 4 decades of research and some 10,000 publications linking it to tumorigenesis (by searching PubMed for "MYC oncogene") have led to MYC becoming a most-wanted target for the treatment of cancer, where many of MYC's physiological functions become co-opted for tumour initiation and maintenance. In this context, an abundance of reviews describes strategies for potentially targeting MYC in the oncology field. However, its multiple roles in different aspects of cellular biology suggest that it may also play a role in many additional diseases, and other publications are indeed linking MYC to pathologies beyond cancer. Here, we review these physiological functions and the current literature linking MYC to non-oncological diseases. The intense efforts towards developing MYC inhibitors as a cancer therapy will potentially have huge implications for the treatment of other diseases. In addition, with a complementary approach, we discuss some diseases and conditions where MYC appears to play a protective role and hence its increased expression or activation could be therapeutic.
Collapse
Affiliation(s)
- Mariano F. Zacarías-Fluck
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Soucek
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Peptomyc S.L., Barcelona, Spain
| | - Jonathan R. Whitfield
- Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
23
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
24
|
Mattijssen S, Kerkhofs K, Stephen J, Yang A, Han CG, Tadafumi Y, Iben JR, Mishra S, Sakhawala RM, Ranjan A, Gowda M, Gahl WA, Gu S, Malicdan MC, Maraia RJ. A POLR3B-variant reveals a Pol III transcriptome response dependent on La protein/SSB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577363. [PMID: 38410490 PMCID: PMC10896340 DOI: 10.1101/2024.02.05.577363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kyra Kerkhofs
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joshi Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Acong Yang
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - Chen G. Han
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yokoyama Tadafumi
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James R. Iben
- Molecular Genetics Core, NICHD, NIH, Bethesda, MD 20892, USA
| | - Saurabh Mishra
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amitabh Ranjan
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mamatha Gowda
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Puducherry, India
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - May C. Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
26
|
Arimbasseri AG, Shukla A, Pradhan AK, Bhargava P. Increased histone acetylation is the signature of repressed state on the genes transcribed by RNA polymerase III. Gene 2024; 893:147958. [PMID: 37923095 DOI: 10.1016/j.gene.2023.147958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1. We found that most of the histone acetylations increase with starvation-induced repression on several genes transcribed by the yeast pol III. On one of these genes, SNR6 (coding for the U6snRNA), a strongly positioned nucleosome in the gene upstream region plays regulatory role under repression. On this nucleosome, the changes in H3K9 and H3K14 acetylations show different dynamics. During repression, acetylation levels on H3K9 show steady increase whereas H3K14 acetylation increases with a peak at 40 min after which levels reduce. Both the levels settle by 2 hr to a level higher than the active state, which revert to normal levels with nutrient repletion. The increase in H3 acetylations is seen in the mutants reported to show reduced SNR6 transcription but not in the maf1Δ cells. This increase on a regulatory nucleosome may be part of the signaling mechanisms, which prepare cells for the stress-related quick repression as well as reactivation. The contrasting association of the histone acetylations with pol II and pol III transcription may be an important consideration to make in research studies focused on drug developments targeting histone modifications.
Collapse
Affiliation(s)
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ashis Kumar Pradhan
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
27
|
Sizer RE, Butterfield SP, Hancocks LA, Gato De Sousa L, White RJ. Selective Occupation by E2F and RB of Loci Expressed by RNA Polymerase III. Cancers (Basel) 2024; 16:481. [PMID: 38339234 PMCID: PMC10854548 DOI: 10.3390/cancers16030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
In all cases tested, TFIIIB is responsible for recruiting pol III to its genetic templates. In mammalian cells, RB binds TFIIIB and prevents its interactions with both promoter DNA and pol III, thereby suppressing transcription. As TFIIIB is not recruited to its target genes when bound by RB, the mechanism predicts that pol III-dependent templates will not be occupied by RB; this contrasts with the situation at most genes controlled by RB, where it can be tethered by promoter-bound sequence-specific DNA-binding factors such as E2F. Contrary to this prediction, however, ChIP-seq data reveal the presence of RB in multiple cell types and the related protein p130 at many loci that rely on pol III for their expression, including RMRP, RN7SL, and a variety of tRNA genes. The sets of genes targeted varies according to cell type and growth state. In such cases, recruitment of RB and p130 can be explained by binding of E2F1, E2F4 and/or E2F5. Genes transcribed by pol III had not previously been identified as common targets of E2F family members. The data provide evidence that E2F may allow for the selective regulation of specific non-coding RNAs by RB, in addition to its influence on overall pol III output through its interaction with TFIIIB.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. White
- Department of Biology, University of York, York YO10 5DD, UK; (R.E.S.)
| |
Collapse
|
28
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Tsang CK, Zheng XS. Role of RNA polymerase III transcription and regulation in ischaemic stroke. RNA Biol 2024; 21:1-10. [PMID: 39363536 PMCID: PMC11457610 DOI: 10.1080/15476286.2024.2409554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - X.F. Steven Zheng
- Rutgers Cancer Institute, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Gao L, Behrens A, Rodschinka G, Forcelloni S, Wani S, Strasser K, Nedialkova DD. Selective gene expression maintains human tRNA anticodon pools during differentiation. Nat Cell Biol 2024; 26:100-112. [PMID: 38191669 PMCID: PMC10791582 DOI: 10.1038/s41556-023-01317-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.
Collapse
Affiliation(s)
- Lexi Gao
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sascha Wani
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katrin Strasser
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
31
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Song JJ, Chobrutskiy A, Chobrutskiy BI, Cios KJ, Huda TI, Eakins RA, Diaz MJ, Blanck G. Chemical Complementarity of Tumor Resident, Adaptive Immune Receptor CDR3s and Previously Defined Hepatitis C Virus Epitopes Correlates with Improved Outcomes in Hepatocellular Carcinoma. Viral Immunol 2023; 36:669-677. [PMID: 38052065 DOI: 10.1089/vim.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
To better understand how adaptive immune receptors (IRs) in hepatocellular carcinoma (HCC) microenvironments are related to disease outcomes, we employed a chemical complementarity scoring algorithm to quantify electrostatic complementarity between HCC tumor TRB or IGH complementarity-determining region 3 (CDR3) amino acid (AA) sequences and previously characterized hepatitis C virus (HCV) epitopes. High electrostatic complementarity between HCC-resident CDR3s and 12 HCV epitopes was associated with greater survival probabilities, as indicated by two distinct HCC IR CDR3 datasets. Two of the HCV epitopes, HCV*71871 (TRB) and HCV*13458 (IGH), were also determined to represent significantly larger electrostatic CDR3-HCV epitope complementarity in HCV-positive HCC cases, compared with HCV-negative HCC cases, with the CDR3s representing yet a third, independent HCC dataset. Overall, the results indicated the utility of CDR3 AA sequences as biomarkers for HCC patient stratification and as potential guides for the development of therapeutic reagents.
Collapse
Affiliation(s)
- Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
33
|
Frishberg A, Milman N, Alpert A, Spitzer H, Asani B, Schiefelbein JB, Bakin E, Regev-Berman K, Priglinger SG, Schultze JL, Theis FJ, Shen-Orr SS. Reconstructing disease dynamics for mechanistic insights and clinical benefit. Nat Commun 2023; 14:6840. [PMID: 37891175 PMCID: PMC10611752 DOI: 10.1038/s41467-023-42354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Diseases change over time, both phenotypically and in their underlying molecular processes. Though understanding disease progression dynamics is critical for diagnostics and treatment, capturing these dynamics is difficult due to their complexity and the high heterogeneity in disease development between individuals. We present TimeAx, an algorithm which builds a comparative framework for capturing disease dynamics using high-dimensional, short time-series data. We demonstrate the utility of TimeAx by studying disease progression dynamics for multiple diseases and data types. Notably, for urothelial bladder cancer tumorigenesis, we identify a stromal pro-invasion point on the disease progression axis, characterized by massive immune cell infiltration to the tumor microenvironment and increased mortality. Moreover, the continuous TimeAx model differentiates between early and late tumors within the same tumor subtype, uncovering molecular transitions and potential targetable pathways. Overall, we present a powerful approach for studying disease progression dynamics-providing improved molecular interpretability and clinical benefits for patient stratification and outcome prediction.
Collapse
Affiliation(s)
- Amit Frishberg
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- CytoReason, Tel-Aviv, Israel
| | - Neta Milman
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ayelet Alpert
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hannah Spitzer
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Ben Asani
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, 85748, Garching, Germany
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- CytoReason, Tel-Aviv, Israel.
| |
Collapse
|
34
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. MAF1 is a predictive biomarker in HER2 positive breast cancer. PLoS One 2023; 18:e0291549. [PMID: 37801436 PMCID: PMC10558074 DOI: 10.1371/journal.pone.0291549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023] Open
Abstract
RNA polymerase III transcription is pivotal in regulating cellular growth and frequently deregulated in various cancers. MAF1 negatively regulates RNA polymerase III transcription. Currently, it is unclear if MAF1 is universally deregulated in human cancers. Recently, MAF1 expression has been demonstrated to be altered in colorectal and liver carcinomas and Luminal B breast cancers. In this study, we analyzed clinical breast cancer datasets to determine if MAF1 alterations correlate with clinical outcomes in HER2-positive breast cancer. Using various bioinformatics tools, we screened breast cancer datasets for alterations in MAF1 expression. We report that MAF1 is amplified in 39% of all breast cancer sub-types, and the observed amplification co-occurs with MYC. MAF1 amplification correlated with increased methylation of the MAF1 promoter and MAF1 protein expression is significantly decreased in luminal, HER2-positive, and TNBC breast cancer subtypes. MAF1 protein expression is also significantly reduced in stage 2 and 3 breast cancer compared to normal and significantly decreased in all breast cancer patients, regardless of race and age. In SKBR3 and BT474 breast cancer cell lines treated with anti-HER2 therapies, MAF1 mRNA expression is significantly increased. In HER2-positive breast cancer patients, MAF1 expression significantly increases and correlates with five years of relapse-free survival in response to trastuzumab treatment, suggesting MAF1 is a predictive biomarker in breast cancer. These data suggest a role for MAF1 alterations in HER2-positive breast cancer. More extensive studies are warranted to determine if MAF1 serves as a predictive and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Department of Biology, St. John’s University, Queens, NY, United States of America
| |
Collapse
|
35
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Borodulina OR, Ustyantsev IG, Kramerov DA. SINEs as Potential Expression Cassettes: Impact of Deletions and Insertions on Polyadenylation and Lifetime of B2 and Ves SINE Transcripts Generated by RNA Polymerase III. Int J Mol Sci 2023; 24:14600. [PMID: 37834047 PMCID: PMC10572872 DOI: 10.3390/ijms241914600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Short Interspersed Elements (SINEs) are common in the genomes of most multicellular organisms. They are transcribed by RNA polymerase III from an internal promoter comprising boxes A and B. As transcripts of certain SINEs from mammalian genomes can be polyadenylated, such transcripts should contain the AATAAA sequence as well as those called β- and τ-signals. One of the goals of this work was to evaluate how autonomous and independent other SINE parts are β- and τ-signals. Extended regions outside of β- and τ-signals were deleted from SINEs B2 and Ves and the derived constructs were used to transfect HeLa cells in order to evaluate the relative levels of their transcripts as well as their polyadenylation efficiency. If the deleted regions affected boxes A and B, the 5'-flanking region of the U6 RNA gene with the external promoter was inserted upstream. Such substitution of the internal promoter in B2 completely restored its transcription. Almost all tested deletions/substitutions did not reduce the polyadenylation capacity of the transcripts, indicating a weak dependence of the function of β- and τ-signals on the neighboring sequences. A similar analysis of B2 and Ves constructs containing a 55-bp foreign sequence inserted between β- and τ-signals showed an equal polyadenylation efficiency of their transcripts compared to those of constructs without the insertion. The acquired poly(A)-tails significantly increased the lifetime and thus the cellular level of such transcripts. The data obtained highlight the potential of B2 and Ves SINEs as cassettes for the expression of relatively short sequences for various applications.
Collapse
Affiliation(s)
| | | | - Dmitri A. Kramerov
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (O.R.B.); (I.G.U.)
| |
Collapse
|
38
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
39
|
Rathore AS, Gupta KK, Govindaraj SK, Ajmani A, Arivalagan J, Anto RJ, Kalishwaralal K, Chandran SA. Targeting BRF2: insights from in silico screening and molecular dynamic simulations. J Biomol Struct Dyn 2023; 42:10439-10451. [PMID: 37705251 DOI: 10.1080/07391102.2023.2256884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Transcription factor II B (TFIIB)‑related factor 2 (BRF2) containing TFIIIB complex recruits RNA polymerase III multi-subunit complex to selective gene promoters that altogether are responsible for synthesizing a variety of small non-coding RNAs, including a special type of selenocysteine tRNA (tRNASec), micro-RNA (miRNA), and other regulatory RNAs. BRF2 has been identified as a potential oncogene that promotes cancer cell survival under oxidative stress through its genetic activation. The structure of the BRF2 protein was modeled using the Robetta server, refined, and validated using the Ramachandran plot. A virtual approach utilizing molecular docking was used to screen a natural compound library to determine potential compounds that can interact with the molecular pin motif of the BRF2 protein using Maestro (Schrodinger). Subsequent molecular dynamics simulation studies of the top four ligands that exhibited low glide scores were performed using GROMACS. The findings derived from the simulations, in conjunction with the exploration of hydrogen bonding patterns, evaluation of the free energy landscape, and thorough analysis of residue decomposition, collectively converged to emphasize the robust interaction characteristics exhibited by Ligand 366 (Deacetyl lanatoside C) and ligand 336 (Neogitogenin)-with the BRF2 protein. These natural compounds may be potential inhibitors of BRF2, which could modulate the regulation of selenoprotein synthesis in cancer cells. Targeting BRF2 using these promising compounds may offer a new therapeutic approach to sensitize cancer cells to ferroptosis and apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Abhishek Ajmani
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | | | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
40
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
41
|
Chen Q, Guo Y, Zhang J, Zheng N, Wang J, Liu Y, Lu J, Zhen S, Du X, Li L, Fu J, Wang G, Gu R, Wang J, Liu Y. RNA polymerase common subunit ZmRPABC5b is transcriptionally activated by Opaque2 and essential for endosperm development in maize. Nucleic Acids Res 2023; 51:7832-7850. [PMID: 37403778 PMCID: PMC10450181 DOI: 10.1093/nar/gkad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiawen Lu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
42
|
Song JJ, Chobrutskiy A, Chobrutskiy BI, Cios KJ, Huda TI, Eakins RA, Diaz MJ, Blanck G. TRB CDR3 chemical complementarity with HBV epitopes correlates with increased hepatocellular carcinoma, disease-free survival. J Med Virol 2023; 95:e29043. [PMID: 37621059 DOI: 10.1002/jmv.29043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The liver is a site of immune privilege, compared with the bladder and skin, for example. To study this attenuation of the immune response in the cancer setting, we compared quantities and features of adaptive immune receptor (IR) recombination reads obtained from hepatocellular carcinoma (HCC) and six other cancers. Of these cancers, HCC had the lowest numbers of IR recombination reads and was the only cancer with a greater number immunoglobulin rather than T-cell receptor recombination reads. To better understand the role of adaptive IRs obtained from the tumor microenvironment in shaping the outcome of HCC cases, we quantified the chemical complementarity between HCC tumor TRB and IGH complementarity determining region-3 (CDR3) amino acid (AA) sequences, and known hepatitis B virus (HBV) epitopes. High chemical complementarity between HCC-resident CDR3s and three HBV epitopes correlated with increased survival probabilities, for two sources of CDR3s representing different CDR3 recovery algorithms. These results suggest the potential of CDR3 AA sequences as biomarkers for HCC patient stratification and as guides for future development of therapeutics.
Collapse
Affiliation(s)
- Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
43
|
Butterfield SP, Sizer RE, Rand E, White RJ. Selection of tRNA Genes in Human Breast Tumours Varies Substantially between Individuals. Cancers (Basel) 2023; 15:3576. [PMID: 37509247 PMCID: PMC10377016 DOI: 10.3390/cancers15143576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Abnormally elevated expression of tRNA is a common feature of breast tumours. Rather than a uniform increase in all tRNAs, some are deregulated more strongly than others. Elevation of particular tRNAs has been associated with poor prognosis for patients, and experimental models have demonstrated the ability of some tRNAs to promote proliferation or metastasis. Each tRNA isoacceptor is encoded redundantly by multiple genes, which are commonly dispersed across several chromosomes. An unanswered question is whether the consistently high expression of a tRNA in a cancer type reflects the consistent activation of the same members of a gene family, or whether different family members are activated from one patient to the next. To address this question, we interrogated ChIP-seq data to determine which tRNA genes were active in individual breast tumours. This revealed that distinct sets of tRNA genes become activated in individual cancers, whereas there is much less variation in the expression patterns of families. Several pathways have been described that are likely to contribute to increases in tRNA gene transcription in breast tumours, but none of these can adequately explain the observed variation in the choice of genes between tumours. Current models may therefore lack at least one level of regulation.
Collapse
Affiliation(s)
| | - Rebecca E Sizer
- Department of Biology, University of York, York YO10 5DD, UK
| | - Emma Rand
- Department of Biology, University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
44
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
45
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
46
|
Shekhar AC, Sun YE, Khoo SK, Lin YC, Malau E, Chang WH, Chen HT. Site-directed biochemical analyses reveal that the switchable C-terminus of Rpc31 contributes to RNA polymerase III transcription initiation. Nucleic Acids Res 2023; 51:4223-4236. [PMID: 36484109 PMCID: PMC10201443 DOI: 10.1093/nar/gkac1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2023] Open
Abstract
Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.
Collapse
Affiliation(s)
| | - Yuan-En Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Seok-Kooi Khoo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| |
Collapse
|
47
|
Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Int J Mol Sci 2023; 24:ijms24108533. [PMID: 37239877 DOI: 10.3390/ijms24108533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
48
|
Yan F, Xiao X, Long C, Tang L, Wang C, Zhang M, Zhang J, Lin H, Huang H, Zhang Y, Li S. Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10212-9. [PMID: 37154998 DOI: 10.1007/s10126-023-10212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The U6 promoter, a typical RNA polymerase III promoter, is widely used to transcribe small RNAs in vector-based siRNA systems. The RNAi efficiency is mainly dependent on the transcriptional activity of the U6 promoter. However, studies have found that U6 promoters isolated from some fishes do not work well in distantly related species. To isolate a U6 promoter with high transcriptional efficiency from fish, in this study, we cloned five U6 promoters in orange-spotted grouper, of which only the grouper U6-1 (GU6-1) promoter contains the OCT element in the distant region. Functional studies revealed that the GU6-1 promoter has high transcriptional ability, which could efficiently transcribe shRNA and result in target gene knockdown in vitro and in vivo. Subsequently, the deletion or mutation of the OCT motif resulted in a significant decrease in promoter transcriptional activity, demonstrating that the OCT element plays an important role in enhancing the grouper U6 promoter transcription. Moreover, the transcriptional activity of the GU6-1 promoter showed little species specificity. It not only works in the grouper but also possesses high transcriptional activity in the zebrafish. Knockdown of the mstn gene in zebrafish and grouper through shRNA driven by the GU6-1 promoter could promote fish growth, suggesting that the GU6-1 promoter can be used as a potential molecular tool in aquaculture practice.
Collapse
Affiliation(s)
- Fengying Yan
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Xinxun Xiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chen Long
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Lin Tang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chongwei Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Mingqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, 572022, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China.
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
| |
Collapse
|
49
|
Stasenko DV, Tatosyan KA, Borodulina OR, Kramerov DA. Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes (Basel) 2023; 14:802. [PMID: 37107560 PMCID: PMC10137851 DOI: 10.3390/genes14040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The small nuclear RNAs 4.5SH and 4.5SI were characterized only in mouse-like rodents; their genes originate from 7SL RNA and tRNA, respectively. Similar to many genes transcribed by RNA polymerase III (pol III), the genes of 4.5SH and 4.5SI RNAs include boxes A and B, forming an intergenic pol III-directed promoter. In addition, their 5'-flanking sequences have TATA-like boxes at position -31/-24, also required for efficient transcription. The patterns of the three boxes notably differ in the 4.5SH and 4.5SI RNA genes. The A, B, and TATA-like boxes were replaced in the 4.5SH RNA gene with the corresponding boxes in the 4.5SI RNA gene to evaluate their effect on the transcription of transfected constructs in HeLa cells. Simultaneous replacement of all three boxes decreased the transcription level by 40%, which indicates decreased promoter activity in a foreign gene. We developed a new approach to compare the promoter strength based on the competition of two co-transfected gene constructs when the proportion between the constructs modulates their relative activity. This method demonstrated that the promoter activity of 4.5SI is 12 times that of 4.5SH. Unexpectedly, the replacement of all three boxes of the weak 4.5SH promoter with those of the strong 4.5SI gene significantly reduced, rather than enhanced, the promoter activity. Thus, the strength of a pol III-directed promoter can depend on the nucleotide environment of the gene.
Collapse
Affiliation(s)
| | | | | | - Dmitri A. Kramerov
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
50
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. BDP1 as a biomarker in serous ovarian cancer. Cancer Med 2023; 12:6401-6418. [PMID: 36305848 PMCID: PMC10028122 DOI: 10.1002/cam4.5388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TFIIIB, an RNA polymerase III specific transcription factor has been found to be deregulated in human cancers with much of the research focused on the TBP, BRF1, and BRF2 subunits. To date, the TFIIIB specific subunit BDP1 has not been investigated in ovarian cancer but has previously been shown to be deregulated in neuroblastoma, breast cancer, and Non-Hodgkins lymphoma. RESULTS Using in silico analysis of clinically derived platforms, we report a decreased BDP1 expression as a result of deletion in serous ovarian cancer and a correlation with higher and advanced ovarian stages. Further analysis in the context of TP53 mutations, a major contributor to ovarian tumorigenesis, suggests that high BDP1 expression is unfavorable for overall survival and high BDP1 expression occurs in stages 2, 3 and 4 serous ovarian cancer. Additionally, high BDP1 expression is disadvantageous and unfavorable for progression-free survival. Lastly, BDP1 expression significantly decreased in patients treated with first-line chemotherapy, platin and taxane, at twelve-month relapse-free survival. CONCLUSIONS Taken together with a ROC analysis, the data suggest BDP1 could be of clinical relevance as a predictive biomarker in serous ovarian cancer. Lastly, this study further demonstrates that both the over- and under expression of BDP1 warrants further investigation and suggests BDP1 may exhibit dual function in the context of tumorigenesis.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Biology Department, St. John's University, Queens, New York, USA
| |
Collapse
|