1
|
Moore V, Vermaas W. Functional consequences of modification of the photosystem I/photosystem II ratio in the cyanobacterium Synechocystis sp. PCC 6803. J Bacteriol 2024; 206:e0045423. [PMID: 38695523 PMCID: PMC11112997 DOI: 10.1128/jb.00454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 05/24/2024] Open
Abstract
The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.
Collapse
Affiliation(s)
- Vicki Moore
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| | - Wim Vermaas
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Dai GZ, Song WY, Xu HF, Tu M, Yu C, Li ZK, Shang JL, Jin CL, Ding CS, Zuo LZ, Liu YR, Yan WW, Zang SS, Liu K, Zhang Z, Bock R, Qiu BS. Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1844-1867. [PMID: 38146915 PMCID: PMC11062458 DOI: 10.1093/plcell/koad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Miao Tu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chun-Lei Jin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chao-Shun Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ling-Zi Zuo
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ralph Bock
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
3
|
Levin G. New kid on the photosynthetic block: Ycf51 is a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1586-1587. [PMID: 38243578 PMCID: PMC11062422 DOI: 10.1093/plcell/koae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Guy Levin
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Faculty of Biology, Technion, Haifa, 32000, Israel
| |
Collapse
|
4
|
Nellaepalli S, Lau AS, Jarvis RP. Chloroplast protein translocation pathways and ubiquitin-dependent regulation at a glance. J Cell Sci 2023; 136:jcs241125. [PMID: 37732520 PMCID: PMC10546890 DOI: 10.1242/jcs.241125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Chloroplasts conduct photosynthesis and numerous metabolic and signalling processes that enable plant growth and development. Most of the ∼3000 proteins in chloroplasts are nucleus encoded and must be imported from the cytosol. Thus, the protein import machinery of the organelle (the TOC-TIC apparatus) is of fundamental importance for chloroplast biogenesis and operation. Cytosolic factors target chloroplast precursor proteins to the TOC-TIC apparatus, which drives protein import across the envelope membranes into the organelle, before various internal systems mediate downstream routing to different suborganellar compartments. The protein import system is proteolytically regulated by the ubiquitin-proteasome system (UPS), enabling centralized control over the organellar proteome. In addition, the UPS targets a range of chloroplast proteins directly. In this Cell Science at a Glance article and the accompanying poster, we present mechanistic details of these different chloroplast protein targeting and translocation events, and of the UPS systems that regulate chloroplast proteins.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Anne Sophie Lau
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
- Department of Plant Physiology, Faculty of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R. Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
5
|
Wang CK, Li XM, Dong F, Sun CH, Lu WL, Hu DG. Yang cycle enzyme DEP1: its moonlighting functions in PSI and ROS production during leaf senescence. MOLECULAR HORTICULTURE 2022; 2:10. [PMID: 37789483 PMCID: PMC10514949 DOI: 10.1186/s43897-022-00031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/25/2022] [Indexed: 10/05/2023]
Abstract
Ethylene-mediated leaf senescence and the compromise of photosynthesis are closely associated but the underlying molecular mechanism is a mystery. Here we reported that apple DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (MdDEP1), initially characterized to its enzymatic function in the recycling of the ethylene precursor SAM, plays a role in the regulation of photosystem I (PSI) activity, activating reactive oxygen species (ROS) homeostasis, and negatively regulating the leaf senescence. A series of Y2H, Pull-down, CO-IP and Cell-free degradation biochemical assays showed that MdDEP1 directly interacts with and dephosphorylates the nucleus-encoded thylakoid protein MdY3IP1, leading to the destabilization of MdY3IP1, reduction of the PSI activity, and the overproduction of ROS in plant cells. These findings elucidate a novel mechanism that the two pathways intersect at MdDEP1 due to its moonlighting role in destabilizing MdY3IP1, and synchronize ethylene-mediated leaf senescence and the compromise of photosynthesis.
Collapse
Affiliation(s)
- Chu-Kun Wang
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiu-Ming Li
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fang Dong
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, 271000, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen-Li Lu
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, Paul V, Kumar S, Singh B, Zinta G. Physiological and molecular insights on wheat responses to heat stress. PLANT CELL REPORTS 2022; 41:501-518. [PMID: 34542670 DOI: 10.1007/s00299-021-02784-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Gahlaut
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Gaurav Zinta
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
7
|
Chen DG, Zhou XQ, Chen K, Chen PL, Guo J, Liu CG, Chen YD. Fine-mapping and candidate gene analysis of a major locus controlling leaf thickness in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:6. [PMID: 35103045 PMCID: PMC8792131 DOI: 10.1007/s11032-022-01275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
UNLABELLED Leaf thickness is an important trait in rice (Oryza sativa L.). It affects both photosynthesis and sink-resource efficiency. However, compared to leaf length and length width, reports seldom focused on leaf thickness due to the complicated measurement and minor difference. To identify the quantitative trait loci (QTL) and explore the genetic mechanism regulating the natural variation of leaf thickness, we crossed a high leaf thickness variety Aixiuzhan (AXZ) to a thin leaf thickness variety Yangdao No.6 (YD 6) and evaluated 585 F2 individuals. We further use bulked sergeant analysis with whole-genome resequencing (BSA-seq) to identify five genomic regions, including chromosomes 1, 6, 9, 10, and 12. These regions represented significant allele frequency differentiation between thick and thin leaf thickness among the mixed pool offspring. Moreover, we conducted a linkage mapping using 276 individuals derived from the F2 population. We fine-mapped and confirmed that chromosome 9 contributed the primary explanation of phenotypic variance. We fine-mapped the candidate regions and confirmed that the chromosome 9 region contributed to flag leaf thickness in rice. We observed the virtual cellular slices and found that the bundle sheath cells in YD 6 flag leaf veins are fewer than AXZ. We analyzed the potential regions on chromosome 9 and narrowed the QTL candidate intervals in the 928-kb region. Candidate genes of this major QTL were listed as potentially controlled leaf thickness. These results provide promising evidence that cloning leaf thickness is associated with yield production in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-022-01275-y.
Collapse
Affiliation(s)
- Da-gang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Xin-qiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ping-li Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuan-guang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - You-ding Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
8
|
Ahmad HM, Wang X, Mahmood-Ur-Rahman, Fiaz S, Azeem F, Shaheen T. Morphological and Physiological Response of Helianthus annuus L. to Drought Stress and Correlation of Wax Contents for Drought Tolerance Traits. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06098-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhen ZH, Qin S, Ren QM, Wang Y, Ma YY, Wang YC. Reciprocal Effect of Copper and Iron Regulation on the Proteome of Synechocystis sp. PCC 6803. Front Bioeng Biotechnol 2021; 9:673402. [PMID: 34041232 PMCID: PMC8141849 DOI: 10.3389/fbioe.2021.673402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria can acclimate to changing copper and iron concentrations in the environment via metal homeostasis, but a general mechanism for interpreting their dynamic relationships is sparse. In this study, we assessed growth and chlorophyll fluorescence of Synechocystis sp. PCC 6803 and investigated proteomic responses to copper and iron deductions. Results showed that copper and iron exerted reciprocal effect on the growth and photosynthesis of Synechocystis sp. PCC 6803 at combinations of different concentrations. And some proteins involved in the uptake of copper and iron and the photosynthetic electron transport system exhibit Cu-Fe proteomic association. The protein abundance under copper and iron deduction affected the photosynthetic electronic activity of Synechocystis sp. PCC 6803 and eventually affected the growth and photosynthesis. Based on these results, we hypothesize that the Cu-Fe proteomic association of Synechocystis sp. PCC 6803 can be elucidated via the uptake system of outer membrane-periplasmic space-inner plasma membrane-thylakoid membrane, and this association is mainly required to maintain electron transfer. This study provides a broader view regarding the proteomic association between Cu and Fe in cyanobacteria, which will shed light on the role of these two metal elements in cyanobacterial energy metabolism and biomass accumulation.
Collapse
Affiliation(s)
- Zhang-He Zhen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qing-Min Ren
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yu-Ying Ma
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yin-Chu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
10
|
PAP90, a novel rice protein plays a critical role in regulation of D1 protein stability of PSII. J Adv Res 2021; 30:197-211. [PMID: 34026296 PMCID: PMC8132209 DOI: 10.1016/j.jare.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction Photosystem II (PSII) protein complex plays an essential role in the entire photosynthesis process. Various known and unknown protein factors are involved in the dynamics of the PSII complex that need to be characterized in crop plants for enhancing photosynthesis efficiency and productivity. Objectives The experiments were conducted to decipher the regulatory proteins involved in PSII dynamics of rice crop. Methods A novel rice regulatory protein PAP90 (PSII auxiliary protein ~90 kDa) was characterized by generating a loss-of-function mutant pap90. The mutation was characterized at molecular level followed by various experiments to analyze the morphological, physiological and biochemical processes of mutant under control and abiotic stresses. Results The pap90 mutant showed reduced photosynthesis due to D1 protein instability that subsequently causes inadequate accumulation of thylakoid membrane complexes, especially PSII and decreases PSII functional efficiency. Expression of OsFtsH family genes and proteins were induced in the mutant, which are known to play a key role in D1 protein degradation and turnover. The reduced D1 protein accumulation in the mutant increased the production of reactive oxygen species (ROS). The accumulation of ROS along with the increased activity of antioxidant enzymes and induced expression of stress-associated genes and proteins in pap90 mutant contributed to its water-limited stress tolerance ability. Conclusion We propose that PAP90 is a key auxiliary protein that interacts with D1 protein and maintains its stability, thereby promoting subsequent assembly of the PSII and associated membrane complexes.
Collapse
|
11
|
EMS Derived Wheat Mutant BIG8-1 ( Triticum aestivum L.)-A New Drought Tolerant Mutant Wheat Line. Int J Mol Sci 2021; 22:ijms22105314. [PMID: 34070033 PMCID: PMC8158095 DOI: 10.3390/ijms22105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.
Collapse
|
12
|
Li D, Wang M, Zhang T, Chen X, Li C, Liu Y, Brestic M, Chen THH, Yang X. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. PHOTOSYNTHESIS RESEARCH 2021; 147:301-315. [PMID: 33394352 DOI: 10.1007/s11120-020-00810-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage exceeds the rate of D1 protein repair. Here, genetically engineered codA-tomato with the capability to accumulate glycinebetaine (GB) was established. After photoinhibition treatment at high temperature, the transgenic lines displayed more thermotolerance to heat-induced photoinhibition than the control line. GB maintained high expression of LeFtsHs and LeDegs and degraded the damaged D1 protein in time. Meanwhile, the increased transcription of synthesis-related genes accelerated the de novo synthesis of D1 protein. Low ROS accumulation reduced the inhibition of D1 protein translation in the transgenic plants, thereby reducing protein damage. The increased D1 protein content and decreased phosphorylated D1 protein (pD1) in the transgenic plants compared with control plants imply that GB may minimize photodamage and maximize D1 protein stability. As D1 protein exhibits a high turnover, PSII maybe repaired rapidly and efficiently in transgenic plants under photoinhibition treatment at high temperature, with the resultant mitigation of photoinhibition of PSII.
Collapse
Affiliation(s)
- Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiao Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
13
|
Shi L, Du L, Wen J, Zong X, Zhao W, Wang J, Xu M, Wang Y, Fu A. Conserved Residues in the C-Terminal Domain Affect the Structure and Function of CYP38 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:630644. [PMID: 33732275 PMCID: PMC7959726 DOI: 10.3389/fpls.2021.630644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis cyclophilin38 (CYP38) is a thylakoid lumen protein critial for PSII assembly and maintenance, and its C-terminal region serves as the target binding domain. We hypothesized that four conserved residues (R290, F294, Q372, and F374) in the C-terminal domain are critical for the structure and function of CYP38. In yeast two-hybrid and protein pull-down assays, CYP38s with single-sited mutations (R290A, F294A, Q372A, or F374A) did not interact with the CP47 E-loop as the wild-type CYP38. In contrast, CYP38 with the R290A/F294A/Q372A/F374A quadruple mutation could bind the CP47 E-loop. Gene transformation analysis showed that the quadruple mutation prevented CYP38 to efficiently complement the mutant phenotype of cyp38. The C-terminal domain half protein with the quadruple mutation, like the wild-type one, could interact with the N-terminal domain or the CP47 E-loop in vitro. The cyp38 plants expressing CYP38 with the quadruple mutation showed a similar BN-PAGE profile as cyp38, but distinct from the wild type. The CYP38 protein with the quadruple mutation associated with the thylakoid membrane less efficiently than the wild-type CYP38. We concluded that these four conserved residues are indispensable as changes of all these residues together resulted in a subtle conformational change of CYP38 and reduced its intramolecular N-C interaction and the ability to associate with the thylakoid membrane, thus impairing its function in chloroplast.
Collapse
|
14
|
Park SB, Yun JH, Ryu AJ, Yun J, Kim JW, Lee S, Choi S, Cho DH, Choi DY, Lee YJ, Kim HS. Development of a novel nannochloropsis strain with enhanced violaxanthin yield for large-scale production. Microb Cell Fact 2021; 20:43. [PMID: 33588824 PMCID: PMC7885382 DOI: 10.1186/s12934-021-01535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nannochloropsis is a marine microalga that has been extensively studied. The major carotenoid produced by this group of microalgae is violaxanthin, which exhibits anti-inflammatory, anti-photoaging, and antiproliferative activities. Therefore, it has a wide range of potential applications. However, large-scale production of this pigment has not been much studied, thereby limiting its industrial application. RESULTS To develop a novel strain producing high amount of violaxanthin, various Nannochloropsis species were isolated from seawater samples and their violaxanthin production potential were compared. Of the strains tested, N. oceanica WS-1 exhibited the highest violaxanthin productivity; to further enhance the violaxanthin yield of WS-1, we performed gamma-ray-mediated random mutagenesis followed by colorimetric screening. As a result, Mutant M1 was selected because of its significant higher violaxanthin content and biomass productivity than WS-1 (5.21 ± 0.33 mg g- 1 and 0.2101 g L- 1 d- 1, respectively). Subsequently, we employed a 10 L-scale bioreactor to confirm the large-scale production potential of M1, and the results indicated a 43.54 % increase in violaxanthin production compared with WS-1. In addition, comparative transcriptomic analysis performed under normal light condition identified possible mechanisms associated with remediating photo-inhibitory damage and other key responses in M1, which seemed to at least partially explain enhanced violaxanthin content and delayed growth. CONCLUSIONS Nannochloropsis oceanica mutant (M1) with enhanced violaxanthin content was developed and its physiological characteristics were investigated. In addition, enhanced production of violaxanthin was demonstrated in the large-scale cultivation. Key transcriptomic responses that are seemingly associated with different physiological responses of M1 were elucidated under normal light condition, the details of which would guide ongoing efforts to further maximize the industrial potential of violaxanthin producing strains.
Collapse
Affiliation(s)
- Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea.,Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
| | - Ae Jin Ryu
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
| | - Joohyun Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea.,Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Sujin Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea.,Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Saehae Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea.,Osong Medical Innovation Foundation, 28160, Chungbuk, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea. .,Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea.
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 34141, Daejeon, Republic of Korea. .,Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Gao X, Zhang C, Lu C, Wang M, Xie N, Chen J, Li Y, Chen J, Shen C. Disruption of Photomorphogenesis Leads to Abnormal Chloroplast Development and Leaf Variegation in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2021; 12:720800. [PMID: 34567034 PMCID: PMC8459013 DOI: 10.3389/fpls.2021.720800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 05/09/2023]
Abstract
Camellia sinensis cv. 'Yanlingyinbiancha' is a leaf-variegated mutant with stable genetic traits. The current study aimed to reveal the differences between its albino and green tissues, and the molecular mechanism underlying the variegation. Anatomic analysis showed the chloroplasts of albino tissues to have no intact lamellar structure. Photosynthetic pigment in albino tissues was significantly lower than that in green tissues, whereas all catechin components were more abundant in the former. Transcriptome analysis revealed most differentially expressed genes involved in the biosynthesis of photosynthetic pigment, photosynthesis, and energy metabolism to be downregulated in albino tissues while most of those participating in flavonoid metabolism were upregulated. In addition, it was found cryptochrome 1 (CRY1) and phytochrome B (PHYB) genes that encode blue and red light photoreceptors to be downregulated. These photoreceptors mediate chloroplast protein gene expression, chloroplast protein import and photosynthetic pigment biosynthesis. Simultaneously, SUS gene, which was upregulated in albino tissues, encodes sucrose synthase considered a biochemical marker for sink strength. Collectively, we arrived to the following conclusions: (1) repression of the biosynthesis of photosynthetic pigment causes albinism; (2) destruction of photoreceptors in albino tissues suppresses photomorphogenesis, leading to abnormal chloroplast development; (3) albino tissues receive sucrose from the green tissues and decompose their own storage substances to obtain the energy needed for survival; and (4) UV-B signal and brassinosteroids promote flavonoid biosynthesis.
Collapse
Affiliation(s)
- Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Tea Research Institution, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Cui Lu
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Minghan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Nianci Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yunfei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jiahao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen
| |
Collapse
|
16
|
Amna S, Qamar S, Turab Naqvi AA, Al-Huqail AA, Qureshi MI. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:348-358. [PMID: 33189055 DOI: 10.1016/j.plaphy.2020.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
An adequate amount of Sulfur (S) is essential for proper plant growth and defence against abiotic stresses including metals and metalloids. Arsenic (As) contamination is increasing in agricultural soils rapidly due to anthropogenic activities. Sulfur deficiency and arsenic stress could be more harmful than these individual stresses alone. To understand the impact of S-deficiency and arsenic (31 ppm Na3AsO4 of soil) on ecophysiology, growth, inorganic phosphate level, and proteomic profile of spinach, the present study was conducted. Interaction of arsenic with phosphate transporters, phytochelatins, and glutathione was also analyzed in silico. Comparative 2D MS/MS proteomics helped in the identification of important proteins which might be the key players under S-deficiency and As stress. Upregulation and downregulation of 36 and 21 proteins under As stress; 19 and 36 proteins under S-deficiency; 38 and 31 proteins under combined stress, respectively was observed. A total, 87 proteins subjected to identification via MS/MS ion search were found to be associated with important plant functions. PHO1 abundance was highly influenced by As stress; hence an in-silico homology modeling based molecular docking was performed which indicated high interaction between PHO1 and As/phosphate. Varied proximity of arsenic with phosphate transporters, phytochelatin, and glutathione revealed these components as a potential target of As toxicity/detoxification in Spinach, reflecting sulfur as an important criterion for arsenic tolerance.
Collapse
Affiliation(s)
- Syeda Amna
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Sadia Qamar
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Delhi, India.
| | - Asma A Al-Huqail
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| |
Collapse
|
17
|
Caspy I, Malavath T, Klaiman D, Fadeeva M, Shkolnisky Y, Nelson N. Structure and energy transfer pathways of the Dunaliella Salina photosystem I supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148253. [PMID: 32569661 DOI: 10.1016/j.bbabio.2020.148253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Oxygenic photosynthesis evolved more than 3 billion years ago in cyanobacteria. The increased complexity of photosystem I (PSI) became apparent from the high-resolution structures that were obtained for the complexes that were isolated from various organisms, ranging from cyanobacteria to plants. These complexes are all evolutionarily linked. In this paper, the researchers have uncovered the increased complexity of PSI in a single organism demonstrated by the coexistance of two distinct PSI compositions. The Large Dunaliella PSI contains eight additional subunits, six in PSI core and two light harvesting complexes. Two additional chlorophyll a molecules pertinent for efficient excitation energy transfer in state II transition were identified in PsaL and PsaO. Short distances between these newly identified chlorophylls correspond with fast excitation transfer rates previously reported during state II transition. The apparent PSI conformations could be a coping mechanism for the high salinity.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Klaiman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maria Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoel Shkolnisky
- School of Mathematical Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
18
|
Yue W, Huihui Z, Jiechen W, Hancheng Z, Guoqiang H, Dan H, Fuwen Y, Meichun Z, Yanhui C, Zhiyuan T, Guanjun L, Guangyu S. Elevated NO 2 damages the photosynthetic apparatus by inducing the accumulation of superoxide anions and peroxynitrite in tobacco seedling leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110534. [PMID: 32247242 DOI: 10.1016/j.ecoenv.2020.110534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to further understand the toxicity of high concentrations of nitrogen dioxide (NO2) to plants, especially to plant photosynthesis. Tobacco plants in the six-leaf stage were exposed to 16.0 μL L-1 NO2 to determine the activities of photosystem II (PSII) and photosystem I (PSI) reaction centers, the blocking site of PSII electron transport, the degree of membrane peroxidation and the relative expression of PsbA, PsbO and PsaA genes in the third fully expanded leaves by using gas exchange and chlorophyll fluorescence techniques, biochemical and RT-PCR analysis. The results showed that 16.0 μL L-1 NO2 caused necrotic lesions to form on leaves and significantly increased the generation rate of superoxide anions (O2-) and the content of peroxynitrite (ONOO-) in leaves of tobacco seedling, leading to damage to cell membrane, chlorophyll content and net photosynthetic rate reduction, and photosynthetic apparatus destruction. Fumigation with 16.0 μL L-1 NO2 decreased the activity of PSII reaction center and oxygen evolution complex, and the relative expression of PabA in leaves of tobacco seedlings to inhibit the electron transport from the donor side to the receptor side of PSII, especially blocking the electron transport from QA to QB on the receptor side. The activity of the PSI reaction center and the relative expression of PsaA decreased, weakening the ability to accept electrons and inhibiting the electron transfer from PSII to PSI, which further increased the damage of PSII of tobacco seedling leaves caused by 16.0 μL L-1 NO2. Therefore, 16.0 μL L-1 NO2 leaded to the accumulation of O2- and ONOO-, which damaged the cell membrane and thylakoid membrane, inhibit the electron transport, and destroyed the photosynthetic apparatus in leaves of tobacco seedlings. The results from this study emphasized the importance of reducing the NO2 concentration in the atmosphere.
Collapse
Affiliation(s)
- Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhang Huihui
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Jiechen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhao Hancheng
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - He Guoqiang
- Mudanjang Institute of Tobacco Science, Harbin, Heilongjiang, China
| | - Huang Dan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yang Fuwen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhao Meichun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Che Yanhui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Teng Zhiyuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Liu Guanjun
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
19
|
Interplay of Calcium and Nitric Oxide in improvement of Growth and Arsenic-induced Toxicity in Mustard Seedlings. Sci Rep 2020; 10:6900. [PMID: 32327685 PMCID: PMC7181649 DOI: 10.1038/s41598-020-62831-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/09/2020] [Indexed: 01/24/2023] Open
Abstract
In this study, Ca2+ mediated NO signalling was studied in response to metalloid (As) stress in Brassica seedlings. Arsenic toxicity strongly suppressed the growth (fresh weight, root and shoot length), photosynthetic pigments, Chl a fluorescence indices (Kinetic traits: Fv, Fm, Fv/Fo, Fm/Fo, ФPo or Fv/Fm, Ψo, ФEo, PIABS, Area and N and redox status (AsA/DHA and GSH/GSSG ratios) of the cell; whereas energy flux traits: ABS/RC, TRo/RC, ETo/RC and DIo/RC along with Fo, Fo/Fv, Fo/Fm, ФDo and Sm) were enhanced. Further, addition of EGTA (Ca2+ scavenger) and LaCl3 (plasma membrane Ca2+ channel blocker) to As + Ca; while c‒PTIO (NO scavenger) and l‒NAME (NO synthase inhibitor) to As + SNP treated seedlings, siezed recovery on above parameters caused due to Ca2+ and NO supplementation, respectively to As stressed seedlings thereby indicating their signalling behaviour. Further, to investigate the link between Ca2+ and NO, when c‒PTIO and l‒NAME individually as well as in combination were supplemented to As + Ca treated seedlings; a sharp inhibition in above mentioned traits was observed even in presence of Ca2+, thereby signifying that NO plays crucial role in Ca2+ mediated signalling. In addition, As accumulation, ROS and their indices, antioxidant system, NO accumulation and thiol compounds were also studied that showed varied results.
Collapse
|
20
|
Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and Biochemical Responses of Cucumis melo L. Chloroplasts to Low-Phosphate Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1525. [PMID: 30405663 PMCID: PMC6204437 DOI: 10.3389/fpls.2018.01525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 05/02/2023]
Abstract
Phosphorus (P) is a limiting plant soil nutrient. Long-term low inorganic phosphate (Pi) irreversibly damages plant cells and hinders plant growth. Plants have evolved several adaptive biochemical, physiological, and developmental responses to low-Pi stress. However, little is known about chloroplast responses to low-Pi stress. In this study, we used physiological and biochemical analyses to investigate melon chloroplast responses to low-Pi stress. The results indicated that low-Pi stress impeded melon seedling growth and reduced its dry matter content by inhibiting the photosynthesis. Low-Pi stress reduced the P content in shoots, which inhibited ATP synthase (ATP-ase) activity, and disturbed the proton and electron transport efficiency on chloroplast photosynthetic electron transport chain. In addition, low-Pi stress induced reactive oxygen species (ROS) production in the leaves, which caused membrane peroxidation. Therefore, redox homeostasis was not maintained, and the melon leaves presented with symptoms of photooxidative stress. To mitigate photoinhibition, the melon plants initiated non-photochemical chlorophyll fluorescence quenching (NPQ) initiated by acidification of the thylakoid lumen to dissipate excess excitation energy, significantly improved ROS-scavenging enzyme activity. Based on these experimental results, we concluded that low Pi inhibited photosystem activity and caused photooxidative stress and photoinhibition. To alleviate these negative effects, the plant activated its NPQ mechanism, alternative electron transport pathways, and antioxidant system to protect its chloroplasts.
Collapse
Affiliation(s)
- Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyang Weng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- Planting Management Station, Ningbo, China
| | - Liyao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
He L, Yu L, Li B, Du N, Guo S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC PLANT BIOLOGY 2018; 18:180. [PMID: 30180797 PMCID: PMC6122546 DOI: 10.1186/s12870-018-1393-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/27/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plants often suffer from hypoxic stress during waterlogging and hydroponic culturing. This study investigated the response of cucumber (Cucumis sativus L.) plant growth parameters, leaf photosynthesis, chlorophyll fluorescence, fast chlorophyll a fluorescence transient (OJIP), and fruit quality parameters to hypoxic stress alleviated by exogenous calcium. During the fruiting period, cucumber plants were exposed to hypoxia and hypoxia + Ca2+ treatment (4 mM Ca2+) for 9 d. RESULT Exogenous calcium application enhanced the biomass and fruit quality of hypoxic stressed cucumber and also increased the net photosynthesis rate, stomatal conductance, intercellular CO2 concentration, maximum quantum efficiency of photosystem II photochemistry, actual photochemical efficiency of PSII, photochemical quenching coefficient, and non-photochemical quenching coefficient. Additionally, measurement of chlorophyll a fluorescence transients showed the positive K- and L-bands were more pronounced in leaves treated with hypoxia compared with those with hypoxia + Ca2+, indicating that hypoxic treatment induced uncoupling of the oxygen-evolving complex and inhibited electron transport beyond plastoquinone pool (Qa, Qb) including possible constraints on the reduction of end electron acceptors of photosystem I. Exogenous calcium can reduce these stress-induced damages in cucumber. CONCLUSION This research focused the effect of exogenous calcium on cucumber photosynthesis during the fruiting period under hypoxic stress. Hypoxic stress might impair the photosynthetic electron-transport chain from the donor side of PSII up to the reduction of end acceptors of PSI, and exogenous calcium enhanced electron transport capacity and reduced hypoxic damage of cucumber leaves.
Collapse
Affiliation(s)
- Lizhong He
- Shanghai Key Lab of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201106 China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agricultural, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Yu
- Shanghai Key Lab of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201106 China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agricultural, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bin Li
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agricultural, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- College of Horticulture Shanxi Agriculture University, Taigu, 030801 Shanxi China
| | - Nanshan Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agricultural, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450000 Henan China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agricultural, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
22
|
Rozentsvet O, Nesterov V, Bogdanova E, Kosobryukhov А, Subova S, Semenova G. Structural and molecular strategy of photosynthetic apparatus organisation of wild flora halophytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:213-220. [PMID: 29894861 DOI: 10.1016/j.plaphy.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Structural and molecular parameters of photosynthetic apparatus in plants with different strategies for the accumulation of salts were investigated. CO2 gas exchange rate, content of pigments, mesostructure, chloroplast ultrastructure and the biochemical composition of the membrane structural components in leaves were measured. The objects of the study were euhalophytes (Salicornia perennans, Suaeda salsa, Halocnemum strobilaceum), crynohalophyte (Limonium gmelinii), glycohalophyte (Artemisia santonica). Euhalophytes S. perennans and S. salsa belong to the plants of the halosucculent type, three other species represent the xerophilic type. The highest photosynthetic activity estimated by the average parameters of CO2 gas exchange rate in the leaves was observed in S. perennans plants. Plants of the xerophyte type including both H. strobilaceum euhalophyte and cryno- and glycohalophytes are described by lower values of these characteristics. Larger cells with a great number of chloroplasts and a high content of membrane glycerolipids and unsaturated C18:3 fatty acid, but with smaller pigment and light-harvesting complexes size characterise the features of euhalophytes with a succulent leaf type. Thus, features of the mesostructure, ultrastructure, and supramolecular interactions of the halophyte PA were closely related to the functional parameters of gas exchange, and were characterised by the strategy of species in relation to the accumulation of salts, the life form of plants, and the attitude to the method of water regulation.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003, Togliatti, Russia.
| | - Viktor Nesterov
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003, Togliatti, Russia
| | - Elena Bogdanova
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003, Togliatti, Russia
| | - Аnatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institutskaya St., 142290 Pushchino, Russia
| | - Svetlana Subova
- Samara National Research University Name of Sergei Korolev, 34 Moskovskoye Shosse, 443086, Samara, Russia
| | - Galina Semenova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| |
Collapse
|
23
|
Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nat Commun 2018; 9:2439. [PMID: 29934511 PMCID: PMC6015050 DOI: 10.1038/s41467-018-04823-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
In oxygenic photosynthesis, light energy is converted into redox energy by two photosystems (PSI and PSII). PSI forms one of the largest multiprotein complexes in thylakoid membranes consisting of a core complex, peripheral light-harvesting complexes (LHCIs) and cofactors. Although the high-resolution structure of the PSI–LHCI complex has been determined, the assembly process remains unclear due to the rapid nature of the assembly process. Here we show that two conserved chloroplast-encoded auxiliary factors, Ycf3 and Ycf4, form modules that mediate PSI assembly. The first module consists of the tetratricopeptide repeat protein Ycf3 and its interacting partner, Y3IP1, and mainly facilitates the assembly of reaction center subunits. The second module consists of oligomeric Ycf4 and facilitates the integration of peripheral PSI subunits and LHCIs into the PSI reaction center subcomplex. We reveal that these two modules are major mediators of the PSI–LHCI assembly process. Photosystem I is a large multiprotein complex embedded in the chloroplast thylakoid membrane. Here the authors provide evidence for a modular assembly process, whereby Ycf3 facilitates assembly of the reaction center, while Ycf4 incorporates peripheral core and light harvesting complex subunits to the reaction center.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. .,JST-CREST, Tokyo, Japan.
| |
Collapse
|
24
|
Wittkopp TM, Saroussi S, Yang W, Johnson X, Kim RG, Heinnickel ML, Russell JJ, Phuthong W, Dent RM, Broeckling CD, Peers G, Lohr M, Wollman FA, Niyogi KK, Grossman AR. GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b 6 f complex accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1023-1037. [PMID: 29602195 DOI: 10.1111/tpj.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (Conserved in Plant Lineage and Diatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high-light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6 f complex (Cytb6 f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6 f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6 f complex. Based on motifs of CPLD49 and the activities of other CPLD49-like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6 f.
Collapse
Affiliation(s)
- Tyler M Wittkopp
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Xenie Johnson
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint Paul lez Durance, France
| | - Rick G Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Mark L Heinnickel
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - James J Russell
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Witchukorn Phuthong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Rachel M Dent
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Martin Lohr
- Institut für Molekulare Physiologie - Pflanzenbiochemie, Johannes Gutenberg-Universität, 55099, Mainz, Germany
| | | | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Dymova O, Khristin M, Miszalski Z, Kornas A, Strzalka K, Golovko T. Seasonal variations of leaf chlorophyll-protein complexes in the wintergreen herbaceous plant Ajuga reptans L. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:519-527. [PMID: 32290991 DOI: 10.1071/fp17199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/07/2017] [Indexed: 06/11/2023]
Abstract
The chlorophyll and carotenoid content, and the spectra of low-temperature fluorescence of the leaves, chloroplasts and isolated pigment-protein complexes in the perennial herbaceous wintergreen plant Ajuga reptans L. (bugle) in different seasons of the year were studied. During winter, these plants downregulate photosynthesis and the PSA is reorganised, including the loss of chlorophyll, possible reductions in the number of functional reaction centres of PSII, and changes in aggregation of the thylakoid protein complexes. We also observed a restructuring of the PSI-PSII megacomplex and the PSII-light-harvesting complex II supercomplex in leaves covered by snow. After snowmelt, the monomeric form of the chl a/b pigment-protein complex associated with PSII (LHCII) and the free pigments were also detected. We expect that snow cover provides favourable conditions for keeping photosynthetic machinery ready for photosynthesis in spring just after snowmelt. During winter, the role of the zeaxanthin-dependent protective mechanism, which is responsible for the dissipation of excess absorbed light energy, is likely to increase.
Collapse
Affiliation(s)
- Olga Dymova
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia
| | - Mikhail Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
| | - Andrzej Kornas
- Institute of Biology, Pedagogical University of Cracow, Podchorazych 2, 30-084 Kraków, Poland
| | - Kazimierz Strzalka
- Ma?opolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Tamara Golovko
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia
| |
Collapse
|
26
|
Kato Y, Sugimoto K, Shikanai T. NDH-PSI Supercomplex Assembly Precedes Full Assembly of the NDH Complex in Chloroplast. PLANT PHYSIOLOGY 2018; 176:1728-1738. [PMID: 29203556 PMCID: PMC5813578 DOI: 10.1104/pp.17.01120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex is structurally similar to respiratory complex I and mediates PSI cyclic electron flow. In Arabidopsis (Arabidopsis thaliana), chloroplast NDH is composed of at least 29 subunits and associates with two copies of PSI to form the NDH-PSI supercomplex. Here, we found that CHLORORESPIRATORY REDUCTION3 (CRR3) is an assembly factor required for the accumulation of subcomplex B (SubB) of chloroplast NDH. In Suc density gradient centrifugation, CRR3 was detected in three protein complexes. Accumulation of the largest peak III complex was impaired in mutants defective in the SubB subunits PnsB2-PnsB5. The oligomeric form of CRR3 likely functions to assemble the core of SubB to form the peak III complex as an assembly intermediate. A defect in the PnsL3 subunit increased the level of the peak III complex, suggesting that CRR3 was released from the assembly intermediate after PnsL3 binding. Unlike PnsB2-PnsB5 and PnsL3, PnsB1 was not absolutely necessary for stabilizing SubB. PnsB1 is likely incorporated into the intermediate at the final step during SubB assembly. Lhca6 is a linker protein mediating NDH-PSI supercomplex formation, and its site of contact with NDH was suggested to be SubB. In the lhca6 mutant, accumulation of the peak III complex was impaired, suggesting that SubB interacted with Lhca6 during the step of SubB assembly. The process of supercomplex formation was triggered before the completion of the NDH assembly. Consistent with its predicted function, CRR3 accumulated in young leaves, where the NDH complex was assembled.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuhiko Sugimoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Gierz SL, Forêt S, Leggat W. Transcriptomic Analysis of Thermally Stressed Symbiodinium Reveals Differential Expression of Stress and Metabolism Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:271. [PMID: 28293249 PMCID: PMC5328969 DOI: 10.3389/fpls.2017.00271] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 05/29/2023]
Abstract
Endosymbioses between dinoflagellate algae (Symbiodinium sp.) and scleractinian coral species form the foundation of coral reef ecosystems. The coral symbiosis is highly susceptible to elevated temperatures, resulting in coral bleaching, where the algal symbiont is released from host cells. This experiment aimed to determine the transcriptional changes in cultured Symbiodinium, to better understand the response of cellular mechanisms under future temperature conditions. Cultures were exposed to elevated temperatures (average 31°C) or control conditions (24.5°C) for a period of 28 days. Whole transcriptome sequencing of Symbiodinium cells on days 4, 19, and 28 were used to identify differentially expressed genes under thermal stress. A large number of genes representing 37.01% of the transcriptome (∼23,654 unique genes, FDR < 0.05) with differential expression were detected at no less than one of the time points. Consistent with previous studies of Symbiodinium gene expression, fold changes across the transcriptome were low, with 92.49% differentially expressed genes at ≤2-fold change. The transcriptional response included differential expression of genes encoding stress response components such as the antioxidant network and molecular chaperones, cellular components such as core photosynthesis machinery, integral light-harvesting protein complexes and enzymes such as fatty acid desaturases. Differential expression of genes encoding glyoxylate cycle enzymes were also found, representing the first report of this in Symbiodinium. As photosynthate transfer from Symbiodinium to coral hosts provides up to 90% of a coral's daily energy requirements, the implications of altered metabolic processes from exposure to thermal stress found in this study on coral-Symbiodinium associations are unknown and should be considered when assessing the stability of the symbiotic relationship under future climate conditions.
Collapse
Affiliation(s)
- Sarah L. Gierz
- College of Public Health, Medical and Veterinary Sciences, James Cook University, TownsvilleQLD, Australia
- Comparative Genomics Centre, James Cook University, TownsvilleQLD, Australia
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, CanberraACT, Australia
| | - William Leggat
- College of Public Health, Medical and Veterinary Sciences, James Cook University, TownsvilleQLD, Australia
- Comparative Genomics Centre, James Cook University, TownsvilleQLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
28
|
Beck J, Lohscheider JN, Albert S, Andersson U, Mendgen KW, Rojas-Stütz MC, Adamska I, Funck D. Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:7. [PMID: 28167950 PMCID: PMC5253381 DOI: 10.3389/fpls.2017.00007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/03/2017] [Indexed: 05/07/2023]
Abstract
The extended superfamily of chlorophyll a/b binding proteins comprises the Light-Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One-Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are highly conserved in photosynthetic eukaryotes, but have probably evolved independently and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components were strongly reduced and photosynthetic electron transport was almost undetectable. Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon sources for growth and did not produce seeds. Interestingly, the induction of ELIP1 expression and Cu/Zn superoxide dismutase activity in low light conditions indicated that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data, we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization of photosynthetic pigment-protein complexes, especially photosystem reaction centers, in the thylakoid membrane.
Collapse
|
29
|
Wang P, Grimm B. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants. PLANT PHYSIOLOGY 2016; 172:1519-1531. [PMID: 27663408 PMCID: PMC5100790 DOI: 10.1104/pp.16.01009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 05/23/2023]
Abstract
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Bernhard Grimm
- Department of Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
30
|
Zhu Y, Liberton M, Pakrasi HB. A Novel Redoxin in the Thylakoid Membrane Regulates the Titer of Photosystem I. J Biol Chem 2016; 291:18689-99. [PMID: 27382055 DOI: 10.1074/jbc.m116.721175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms like cyanobacteria and plants, the main engines of oxygenic photosynthesis are the pigment-protein complexes photosystem I (PSI) and photosystem II (PSII) located in the thylakoid membrane. In the cyanobacterium Synechocystis sp. PCC 6803, the slr1796 gene encodes a single cysteine thioredoxin-like protein, orthologs of which are found in multiple cyanobacterial strains as well as chloroplasts of higher plants. Targeted inactivation of slr1796 in Synechocystis 6803 resulted in compromised photoautotrophic growth. The mutant displayed decreased chlorophyll a content. These changes correlated with a decrease in the PSI titer of the mutant cells, whereas the PSII content was unaffected. In the mutant, the transcript levels of genes for PSI structural and accessory proteins remained unaffected, whereas the levels of PSI structural proteins were severely diminished, indicating that Slr1796 acts at a posttranscriptional level. Biochemical analysis indicated that Slr1796 is an integral thylakoid membrane protein. We conclude that Slr1796 is a novel regulatory factor that modulates PSI titer.
Collapse
Affiliation(s)
- Yuehui Zhu
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Michelle Liberton
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
31
|
Wang X, Gao F, Zhang J, Zhao J, Ogawa T, Ma W. A Cytoplasmic Protein Ssl3829 Is Important for NDH-1 Hydrophilic Arm Assembly in Synechocystis sp. Strain PCC 6803. PLANT PHYSIOLOGY 2016; 171:864-77. [PMID: 27208268 PMCID: PMC4902581 DOI: 10.1104/pp.15.01796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/12/2016] [Indexed: 05/29/2023]
Abstract
Despite significant progress in clarifying the subunit compositions and functions of the multiple NDH-1 complexes in cyanobacteria, the assembly factors and their roles in assembling these NDH-1 complexes remain elusive. Two mutants sensitive to high light for growth and impaired in NDH-1-dependent cyclic electron transport around photosystem I were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-tagged library. Both mutants were tagged in the ssl3829 gene encoding an unknown protein, which shares significant similarity with Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION7. The ssl3829 product was localized in the cytoplasm and associates with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 300 kD (NAI300) and an NdhI maturation factor, Slr1097. Upon deletion of Ssl3829, the NAI300 complex was no longer visible on gels, thereby impeding the assembly of the NDH-1 hydrophilic arm. The deletion also abolished Slr1097 and consequently reduced the amount of mature NdhI in the cytoplasm, which repressed the dynamic assembly process of the NDH-1 hydrophilic arm because mature NdhI was essential to stabilize all functional NAIs. Therefore, Ssl3829 plays an important role in the assembly of the NDH-1 hydrophilic arm by accumulating the NAI300 complex and Slr1097 protein in the cytoplasm.
Collapse
Affiliation(s)
- Xiaozhuo Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Jingsong Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Teruo Ogawa
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.W., F.G., Jin.Z., Jia.Z., W.M.); andBioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| |
Collapse
|
32
|
Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, Annunziata R, Sanges R, Thaler M, Lepetit B, Lavaud J, Jaubert M, Finazzi G, Bouly JP, Falciatore A. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3939-51. [PMID: 27225826 PMCID: PMC4915529 DOI: 10.1093/jxb/erw198] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.
Collapse
Affiliation(s)
- Lucilla Taddei
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giulio Rocco Stella
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Alessandra Rogato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Antonio Emidio Fortunato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Remo Sanges
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Michael Thaler
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Bernard Lepetit
- Zukunftskolleg, Department of Plant Ecophysiology, University of Konstanz, D-78457 Konstanz, Germany
| | - Johann Lavaud
- UMI 3376 TAKUVIK, CNRS/Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec (Québec) G1V 0A6, Canada
| | - Marianne Jaubert
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Institut National Recherche Agronomique (INRA), Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble, (BIG), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
33
|
Cheng DD, Zhang ZS, Sun XB, Zhao M, Sun GY, Chow WS. Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by pseudomonas syringae pv. Tabaci under light and dark conditions. BMC PLANT BIOLOGY 2016; 16:29. [PMID: 26811180 PMCID: PMC4727333 DOI: 10.1186/s12870-016-0723-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/21/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Pseudomonas syringae pv. tabaci (Pst), which is the pathogen responsible for tobacco wildfire disease, has received considerable attention in recent years. The objective of this study was to clarify the responses of photosystem I (PSI) and photosystem II (PSII) to Pst infection in tobacco leaves. RESULTS The net photosynthetic rate (Pn) and carboxylation efficiency (CE) were inhibited by Pst infection. The normalized relative variable fluorescence at the K step (W k) and the relative variable fluorescence at the J step (V J) increased while the maximal quantum yield of PSII (F v/F m) and the density of Q A-reducing PSII reaction centers per cross section (RC/CSm) decreased, indicating that the reaction centers, and the donor and acceptor sides of PSII were all severely damaged after Pst infection. The PSI activity decreased as the infection progressed. Furthermore, we observed a considerable overall degradation of PsbO, D1, PsaA proteins and an over-accumulation of reactive oxygen species (ROS). CONCLUSIONS Photoinhibition and photoinhibition-like damage were observed under light and dark conditions, respectively, after Pst infection of tobacco leaves. The damage was greater in the dark. ROS over-accumulation was not the primary cause of the photoinhibition and photoinhibition-like damage. The PsbO, D1 and PsaA proteins appear to be the targets during Pst infection under light and dark conditions.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Zi-Shan Zhang
- State Key Lab of Crop Biology, College of Life Sciences, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Xing-Bin Sun
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Guang-Yu Sun
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Wah Soon Chow
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- Division of Plant Science, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
34
|
Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 2015; 5:16205. [PMID: 26552588 PMCID: PMC4639781 DOI: 10.1038/srep16205] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/12/2015] [Indexed: 11/09/2022] Open
Abstract
Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.
Collapse
|
35
|
Mazor Y, Borovikova A, Nelson N. The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 2015; 4:e07433. [PMID: 26076232 PMCID: PMC4487076 DOI: 10.7554/elife.07433] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/14/2015] [Indexed: 01/06/2023] Open
Abstract
Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthetic groups, which are mostly light harvesting pigments. The complete structures of the four LhcA subunits of LHCI include 52 chlorophyll a and 9 chlorophyll b molecules, as well as 10 carotenoids and 4 lipids. The structure of PSI-LHCI includes detailed protein pigments and pigment-pigment interactions, essential for the mechanism of excitation energy transfer and its modulation in one of nature's most efficient photochemical machines.
Collapse
Affiliation(s)
- Yuval Mazor
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anna Borovikova
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Sebastian A, Prasad MNV. Iron- and manganese-assisted cadmium tolerance in Oryza sativa L.: lowering of rhizotoxicity next to functional photosynthesis. PLANTA 2015; 241:1519-28. [PMID: 25805339 DOI: 10.1007/s00425-015-2276-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 05/03/2023]
Abstract
Cadmium toxicity is alleviated by iron and manganese supplements because of reduction in cadmium accumulation and upholding of redox regulation that prevent cadmium-inducible damage to root growth and photosynthesis. Cadmium toxicity in Oryza sativa L. MTU 7029 was investigated in the presence of different concentrations of the micronutrients Fe and Mn. It had been observed that these micronutrients reduce Cd uptake and minimize Cd-inducible rhizotoxicity. The photosynthetic electron transport chain, which is the hub of Fe containing metalloproteins, was severely affected by Cd and resulted in reduced bioproductivity under Cd stress. However, exogenous Fe restored the photosynthetic electron transport. Thus, due to the maintenance of the photosynthetic electron transport, the Cd tolerance was improved during Fe supplement. Both antioxidant enzymes and non-enzymatic antioxidant metabolites were found to play important roles in the alleviation of Cd stress under Fe or Mn supplement. It is concluded that the presence of excess Fe and Mn protects rice plants from Cd stress.
Collapse
Affiliation(s)
- Abin Sebastian
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | | |
Collapse
|
37
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
38
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
39
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
40
|
Kangasjärvi S, Tikkanen M, Durian G, Aro EM. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:128-34. [PMID: 24361390 DOI: 10.1016/j.plaphy.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 05/09/2023]
Abstract
Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants.
Collapse
Affiliation(s)
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Guido Durian
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
41
|
Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:16-25. [PMID: 24811616 DOI: 10.1016/j.plaphy.2014.03.029] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.
Collapse
Affiliation(s)
- Hazem M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Montréal, Quebec, C.P. 8888, Succ. Centre-Ville, H3C 3P8 Canada
| | - Vladimir Alexandrov
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Margarita Kouzmanova
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Izabela A Samborska
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Magdalena D Cetner
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
42
|
Abstract
In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism.
Collapse
Affiliation(s)
- Poul Erik Jensen
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
| | - Dario Leister
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University MunichGroßhaderner Str. 2, D-82152 Planegg-MartinsriedGermany
| |
Collapse
|
43
|
Torabi S, Umate P, Manavski N, Plöchinger M, Kleinknecht L, Bogireddi H, Herrmann RG, Wanner G, Schröder WP, Meurer J. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. THE PLANT CELL 2014; 26:1183-99. [PMID: 24619613 PMCID: PMC4001377 DOI: 10.1105/tpc.113.120444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 05/20/2023]
Abstract
The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC.
Collapse
Affiliation(s)
- Salar Torabi
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Pavan Umate
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Magdalena Plöchinger
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Laura Kleinknecht
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Hanumakumar Bogireddi
- Umeå Plant Science Center and Department of
Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | - Reinhold G. Herrmann
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of
Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität
München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Fan X, Zhang Z, Gao H, Yang C, Liu M, Li Y, Li P. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark. PLoS One 2014; 9:e89067. [PMID: 24586508 PMCID: PMC3929631 DOI: 10.1371/journal.pone.0089067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.
Collapse
Affiliation(s)
- Xingli Fan
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zishan Zhang
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Huiyuan Gao
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cheng Yang
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Meijun Liu
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yuting Li
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
45
|
Kong F, Deng Y, Zhou B, Wang G, Wang Y, Meng Q. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:143-58. [PMID: 24227338 PMCID: PMC3883286 DOI: 10.1093/jxb/ert357] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DnaJ proteins act as essential molecular chaperones in protein homeostasis and protein complex stabilization under stress conditions. The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1), whose expression was upregulated by treatment at 4 and 42 °C, and with high light, NaCl, polyethylene glycol, and H2O2, were investigated here using sense and antisense transgenic tomatoes. The sense plants exhibited not only higher chlorophyll content, fresh weight and net photosynthetic rate, but also lower accumulation of reactive oxygen species and membrane damage under chilling stress. Moreover, the maximal photochemistry efficiency of photosystem II (PSII) (F v/F m) and D1 protein content were higher in the sense plants and lower in the antisense plants, and the photoinhibitory quenching was lower in the sense plants and higher in the antisense plants, suggesting that the inhibition of PSII was less severe in the sense plants and more severe in the antisense plants compared with the wild type. Furthermore, the PSII protein complexes were also more stable in the sense plants. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher F v/F m, D1 protein content and PSII stability than the SM-untreated antisense plants. This finding suggested that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, chloroplast heat-shock protein 70 was identified as the partner of LeCDJ1. These results indicate that LeCDJ1 has essential functions in maintaining PSII under chilling stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingwei Meng
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Liu J, Wang P, Liu B, Feng D, Zhang J, Su J, Zhang Y, Wang JF, Wang HB. A deficiency in chloroplastic ferredoxin 2 facilitates effective photosynthetic capacity during long-term high light acclimation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:861-874. [PMID: 24118453 DOI: 10.1111/tpj.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang P, Liu J, Liu B, Feng D, Da Q, Wang P, Shu S, Su J, Zhang Y, Wang J, Wang HB. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1710-28. [PMID: 24151299 PMCID: PMC3850194 DOI: 10.1104/pp.113.228353] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII.
Collapse
|
48
|
Koeda S, Umezaki K, Sumino A, Noji T, Ikeda A, Yamamoto Y, Dewa T, Taga K, Nango M, Tanaka T, Mizuno T. Creation of cross-linked bilayer membranes that can incorporate membrane proteins from oligo-Asp-based peptide gemini surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11695-11704. [PMID: 23944736 DOI: 10.1021/la401566h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We designed novel bilayer-forming amphiphiles based on the cyclic oligo-Asp-based peptide gemini (PG) surfactants cr-D2C12 and cr-D3C12, which consist of -Cys(Asp)nCys- (n = 2 or 3) as a core peptide and two Cys residues containing a dodecylamidomethyl group. Dynamic light scattering and transmission electron microscopy measurements revealed the formation of spherical bilayer membranes that could incorporate the light-harvesting antenna complex 2 (LH2) from Rhodopseudomonas acidophila . Furthermore, this proteoliposome-like conjugate could be assembled onto cationized glass and mica to form planar bilayer membranes incorporating LH2. Using atomic force microscopy, we observed LH2 protruding (ca. 1.2-1.5 nm) from flat terraces of the planar bilayer membranes formed from cr-D2C12 or cr-D3C12. Thus, our designed PG surfactants are a new class of bilayer-forming amphiphiles that may be applied to the study of various membrane proteins.
Collapse
Affiliation(s)
- Shuhei Koeda
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kobayashi K, Sasaki D, Noguchi K, Fujinuma D, Komatsu H, Kobayashi M, Sato M, Toyooka K, Sugimoto K, Niyogi KK, Wada H, Masuda T. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. PLANT & CELL PHYSIOLOGY 2013; 54:1365-77. [PMID: 23749810 PMCID: PMC3730084 DOI: 10.1093/pcp/pct086] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 05/20/2023]
Abstract
In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Daichi Sasaki
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Ko Noguchi
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Daiki Fujinuma
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Hirohisa Komatsu
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Masami Kobayashi
- Division of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, 305-8573 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hajime Wada
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
- *Corresponding author: E-mail, ; Fax, +81-3-5454-4321
| |
Collapse
|
50
|
Chi W, Ma J, Zhang L. Regulatory factors for the assembly of thylakoid membrane protein complexes. Philos Trans R Soc Lond B Biol Sci 2013; 367:3420-9. [PMID: 23148269 DOI: 10.1098/rstb.2012.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|