1
|
Varghese M, Kumar R, Sharma A, Lone A, Gershenzon J, Bisht NC. Isopropylmalate synthase regulatory domain removal abolishes feedback regulation at the expense of leucine homeostasis in plants. PLANT PHYSIOLOGY 2025; 197:kiaf041. [PMID: 39869449 DOI: 10.1093/plphys/kiaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation of Leu flux upon removing the IPMS regulatory domain remain to be explored in plants. Here, we removed the IPMS C-terminal regulatory domain using a CRISPR/Cas9-based gene editing system and studied the resulting impact on the Leu biosynthesis pathway under in planta conditions. Absence of the IPMS regulatory domain unexpectedly reduced the formation of the end product Leu but increased the levels of Leu pathway intermediates in mustard (Brassica juncea). Additionally, delayed growth was observed when IPMS devoid of the regulatory domain was introduced into IPMS-null mutants of Escherichia coli and Arabidopsis thaliana. Further, a detailed biochemical analysis showed that in the absence of the C-terminal regulatory domain, a Leu pathway intermediate (α-ketoisocaproate) could compete with the native IPMS substrate (2-oxoisovalerate) for the active site. Combining these metabolomic, biochemical, and in planta analyses, we demonstrate that the C-terminal regulatory domain of IPMS is critical for maintaining Leu-Val homeostasis in plants.
Collapse
Affiliation(s)
- Mohan Varghese
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Roshan Kumar
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Aprajita Sharma
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Asif Lone
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Naveen C Bisht
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
2
|
Wang M, Zhang S, Li R, Zhao Q. Unraveling the specialized metabolic pathways in medicinal plant genomes: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1459533. [PMID: 39777086 PMCID: PMC11703845 DOI: 10.3389/fpls.2024.1459533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants are important sources of bioactive specialized metabolites with significant therapeutic potential. Advances in multi-omics have accelerated the understanding of specialized metabolite biosynthesis and regulation. Genomics, transcriptomics, proteomics, and metabolomics have each contributed new insights into biosynthetic gene clusters (BGCs), metabolic pathways, and stress responses. However, single-omics approaches often fail to fully address these complex processes. Integrated multi-omics provides a holistic perspective on key regulatory networks. High-throughput sequencing and emerging technologies like single-cell and spatial omics have deepened our understanding of cell-specific and spatially resolved biosynthetic dynamics. Despite these advancements, challenges remain in managing large datasets, standardizing protocols, accounting for the dynamic nature of specialized metabolism, and effectively applying synthetic biology for sustainable specialized metabolite production. This review highlights recent progress in omics-based research on medicinal plants, discusses available bioinformatics tools, and explores future research trends aimed at leveraging integrated multi-omics to improve the medicinal quality and sustainable utilization of plant resources.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
| | - Shuqiao Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Zhu J, Zhou H, Zhang M, Hong Y, Zhang Y, Lv C, Guo B, Wang F, Xu R. A novel QTL qRYM-7H for barley yellow mosaic resistance identified by GWAS and linkage analysis. PLANT MOLECULAR BIOLOGY 2024; 114:127. [PMID: 39572425 DOI: 10.1007/s11103-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Barley (Hordeum vulgare L.) is the fourth largest cereal crop in the world after rice, wheat and maize. Barley yellow mosaic disease (BYMD) is a serious threat to winter barley production. The evolution and mutation of virus strains lead to the breakdown of the resistance of the originally resistant varieties. It is therefore vital to explore new BYMD resistance genes. In this study, a natural population (334 barley varieties or lines) and a double haploid population derived from the cross between Tam407227 and Franklin were used to search for new quantitative trait loci (QTL) for BYMD resistance. Two major QTL on chromosomes 3H and 7H, respectively, were detected from the genome wide association study and validated in the DH population. Among them, The QTL on 3H (qRYM-3H/qTFRYM-3H) was confirmed to be the reported BYMD resistance gene eIF4E by haplotype analysis. And the QTL on 7H (qRYM-7H/qTFRYM-7H) is a novel QTL that has not been reported before. Another QTL on 2H was identified from the DH population. This QTL is more likely the Rmy16Hb reported previously. These three QTL showed an additive effect on improving BYMD resistance with the average disease scores from 2.45 (all sensitive alleles for these three QTL) to 0.62 (all tolerant alleles for these three QTL). The candidate genes for the novel QTL qRYM-7H/qTFRYM-7H were predicted based on transcriptome sequencing and qPCR analysis.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Busta L, Hall D, Johnson B, Schaut M, Hanson CM, Gupta A, Gundrum M, Wang Y, A Maeda H. Mapping of specialized metabolite terms onto a plant phylogeny using text mining and large language models. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:406-419. [PMID: 38976238 DOI: 10.1111/tpj.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Drew Hall
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Braidon Johnson
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Madelyn Schaut
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caroline M Hanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anika Gupta
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Megan Gundrum
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuer Wang
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Simpson JP, Kim CY, Kaur A, Weng JK, Dilkes B, Chapple C. Genome-wide association identifies a BAHD acyltransferase activity that assembles an ester of glucuronosylglycerol and phenylacetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2169-2187. [PMID: 38558472 DOI: 10.1111/tpj.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.
Collapse
Affiliation(s)
- Jeffrey P Simpson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology & Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02120, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, 02120, USA
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
6
|
Zhang N, Zhan Y, Ding K, Wang L, Qi P, Ding W, Xu M, Ni J. Overexpression of the Ginkgo biloba dihydroflavonol 4-reductase gene GbDFR6 results in the self-incompatibility-like phenotypes in transgenic tobacco. PLANT SIGNALING & BEHAVIOR 2023; 18:2163339. [PMID: 36630727 PMCID: PMC9839370 DOI: 10.1080/15592324.2022.2163339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although flavonoids play multiple roles in plant growth and development, the involvement in plant self-incompatibility (SI) have not been reported. In this research, the fertility of transgenic tobacco plants overexpressing the Ginkgo biloba dihydroflavonol 4-reductase gene, GbDFR6, were investigated. To explore the possible physiological defects leading to the failure of embryo development in transgenic tobacco plants, functions of pistils and pollen grains were examined. Transgenic pistils pollinated with pollen grains from another tobacco plants (either transgenic or wild-type), developed full of well-developed seeds. In contrast, in self-pollinated transgenic tobacco plants, pollen-tube growth was arrested in the upper part of the style, and small abnormal seeds developed without fertilization. Although the mechanism remains unclear, our research may provide a valuable method to create SI tobacco plants for breeding.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yang Zhan
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Kexin Ding
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Lijun Wang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Peng Qi
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, China
| | - Maojun Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Jun Ni
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Younkin GC, Alani ML, Capador AP, Fischer HD, Mirzaei M, Hastings AP, Agrawal AA, Jander G. Cardiac glycosides protect wormseed wallflower ( Erysimum cheiranthoides) against some, but not all, glucosinolate-adapted herbivores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558517. [PMID: 37790475 PMCID: PMC10542140 DOI: 10.1101/2023.09.19.558517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.
Collapse
Affiliation(s)
- Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | | | | | - Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Brouckaert M, Peng M, Höfer R, El Houari I, Darrah C, Storme V, Saeys Y, Vanholme R, Goeminne G, Timokhin VI, Ralph J, Morreel K, Boerjan W. QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits. MOLECULAR PLANT 2023; 16:1212-1227. [PMID: 37349988 PMCID: PMC7614782 DOI: 10.1016/j.molp.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
Collapse
Affiliation(s)
- Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Meng Peng
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - René Höfer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chiarina Darrah
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Véronique Storme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yvan Saeys
- Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; VIB Metabolomics Core, 9052 Ghent, Belgium
| | - Vitaliy I Timokhin
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Ji W, Mandal S, Rezenom YH, McKnight TD. Specialized metabolism by trichome-enriched Rubisco and fatty acid synthase components. PLANT PHYSIOLOGY 2023; 191:1199-1213. [PMID: 36264116 PMCID: PMC9922422 DOI: 10.1093/plphys/kiac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.
Collapse
Affiliation(s)
| | | | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
10
|
Kruse LH, Fehr B, Chobirko JD, Moghe GD. Phylogenomic analyses across land plants reveals motifs and coexpression patterns useful for functional prediction in the BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1067613. [PMID: 36844084 PMCID: PMC9950517 DOI: 10.3389/fpls.2023.1067613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The BAHD acyltransferase family is one of the largest enzyme families in flowering plants, containing dozens to hundreds of genes in individual genomes. Highly prevalent in angiosperm genomes, members of this family contribute to several pathways in primary and specialized metabolism. In this study, we performed a phylogenomic analysis of the family using 52 genomes across the plant kingdom to gain deeper insights into its functional evolution and enable function prediction. We found that BAHD expansion in land plants was associated with significant changes in various gene features. Using pre-defined BAHD clades, we identified clade expansions in different plant groups. In some groups, these expansions coincided with the prominence of metabolite classes such as anthocyanins (flowering plants) and hydroxycinnamic acid amides (monocots). Clade-wise motif-enrichment analysis revealed that some clades have novel motifs fixed on either the acceptor or the donor side, potentially reflecting historical routes of functional evolution. Co-expression analysis in rice and Arabidopsis further identified BAHDs with similar expression patterns, however, most co-expressed BAHDs belonged to different clades. Comparing BAHD paralogs, we found that gene expression diverges rapidly after duplication, suggesting that sub/neo-functionalization of duplicate genes occurs quickly via expression diversification. Analyzing co-expression patterns in Arabidopsis in conjunction with orthology-based substrate class predictions and metabolic pathway models led to the recovery of metabolic processes of most of the already-characterized BAHDs as well as definition of novel functional predictions for some uncharacterized BAHDs. Overall, this study provides new insights into the evolution of BAHD acyltransferases and sets up a foundation for their functional characterization.
Collapse
Affiliation(s)
- Lars H. Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Fehr
- Computational Biology Department, Cornell University, Ithaca, NY, United States
| | - Jason D. Chobirko
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY, United States
| | - Gaurav D. Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Ho BL, Chen JC, Huang TP, Fang SC. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1054586. [PMID: 36523623 PMCID: PMC9745142 DOI: 10.3389/fpls.2022.1054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Bacterial fruit blotch, caused by the seedborne gram-negative bacterium Acidovorax citrulli, is one of the most destructive bacterial diseases of cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable means to control bacterial fruit blotch remain limited. Transcriptomic analyses of tissue culture-based regeneration processes have revealed that organogenesis-associated cellular reprogramming is often associated with upregulation of stress- and defense-responsive genes. Yet, there is limited evidence supporting the notion that the reprogrammed cellular metabolism of the regenerated tissued confers bona fide antimicrobial activity. Here, we explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was potent in slowing growth of A. citrulli, reducing the number of bacteria attached to watermelon seeds, and alleviating disease symptoms of watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity can be fractionated chemically, we predict that reprogrammed cellular activity during the PLB regeneration process produces metabolites with antibacterial activity. In conclusion, our data demonstrated the antibacterial activity in developing PLBs and revealed the potential of using orchid PLBs to discover chemicals to control bacterial fruit blotch disease.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- Master’s and PhD Degree Program of Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Zhu L, Pietiäinen M, Kontturi J, Turkkelin A, Elomaa P, Teeri TH. Polyketide reductases in defense-related parasorboside biosynthesis in Gerbera hybrida share processing strategies with microbial polyketide synthase systems. THE NEW PHYTOLOGIST 2022; 236:296-308. [PMID: 35719102 PMCID: PMC9541798 DOI: 10.1111/nph.18328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 05/14/2023]
Abstract
Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Anna Turkkelin
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| |
Collapse
|
13
|
Bernard G, Buges J, Delporte M, Molinié R, Besseau S, Bouchereau A, Watrin A, Fontaine JX, Mathiron D, Berardocco S, Bassard S, Quéro A, Hilbert JL, Rambaud C, Gagneul D. Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory. PLANT PHYSIOLOGY 2022; 189:2029-2043. [PMID: 35604091 PMCID: PMC9343010 DOI: 10.1093/plphys/kiac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.
Collapse
Affiliation(s)
- Guillaume Bernard
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Julie Buges
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Marianne Delporte
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours 37200, France
| | - Alain Bouchereau
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Amandine Watrin
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - David Mathiron
- Plateforme Analytique (PFA), Université de Picardie Jules Verne, Amiens 80039, France
| | - Solenne Berardocco
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Solène Bassard
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Anthony Quéro
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| |
Collapse
|
14
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
15
|
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. THE NEW PHYTOLOGIST 2022; 234:1614-1628. [PMID: 35288949 PMCID: PMC9324839 DOI: 10.1111/nph.18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
| | - Sylvain Prigent
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Claudio Latorre
- Departamento de EcologíaPontificia Universidad Católica de ChileAv Libertador Bernardo O'Higgins 340SantiagoChile
- Institute of Ecology and Biodiversity (IEB)Las Palmeras3425ÑuñoaSantiagoChile
| | - Stéphane Bernillon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Amélie Flandin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Francisca P. Díaz
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Cédric Cassan
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Pierre Van Delft
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Daniel Jacob
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Kranthi Varala
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Jérôme Joubes
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Yves Gibon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Dominique Rolin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Pierre Pétriacq
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| |
Collapse
|
16
|
Brzozowski LJ, Campbell MT, Hu H, Caffe M, Gutiérrez LA, Smith KP, Sorrells ME, Gore MA, Jannink JL. Generalizable approaches for genomic prediction of metabolites in plants. THE PLANT GENOME 2022; 15:e20205. [PMID: 35470586 DOI: 10.1002/tpg2.20205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Plant metabolites are important traits for plant breeders seeking to improve nutrition and agronomic performance yet integrating selection for metabolomic traits can be limited by phenotyping expense and degree of genetic characterization, especially of uncommon metabolites. As such, developing generalizable genomic selection methods based on biochemical pathway biology for metabolites that are transferable across plant populations would benefit plant breeding programs. We tested genomic prediction accuracy for >600 metabolites measured by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in oat (Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite genome-wide association study (mGWAS) and selected loci to use in multikernel models that encompassed metabolome-wide mGWAS results or mGWAS from specific metabolite structures or biosynthetic pathways. Metabolite kernels developed from LC-MS metabolites in the discovery panel improved prediction accuracy of LC-MS metabolite traits in the validation panel consisting of more advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS metabolites. We ranked model performance by metabolite and found that metabolites with similar polarity had consistent rankings of models. Overall, testing biological rationales for developing kernels for genomic prediction across populations contributes to developing frameworks for plant breeding for metabolite traits.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Malachy T Campbell
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Haixiao Hu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Melanie Caffe
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57006, USA
| | - Lucı A Gutiérrez
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kevin P Smith
- Dep. of Agronomy & Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Mao K, Zhang M, Kong Y, Dai S, Wang Y, Meng Q, Ma N, Lv W. Origin, Expansion, and Divergence of ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE Transcription Factors During Streptophytes Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:858477. [PMID: 35645995 PMCID: PMC9136324 DOI: 10.3389/fpls.2022.858477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The transition of plants to land required several regulatory adaptive mechanisms. Little is known about these mechanisms, but they no doubt involved the evolution of transcription factor (TF) families. ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) transcription factors (TFs) are core components of the ethylene signaling pathway that play important roles in almost every aspect of plant development and environmental responses by regulating the transcription of numerous genes. However, the evolutionary history of EIN3/EIL TFs, which are present in a wide range of streptophytes, is still not clear. Here, to explore the evolution and functions of EIN3/EIL TFs, we performed phylogenetic analysis of these TFs and investigated their gene and protein structures as well as sequence features. Our results suggest that the EIN3/EIL TF family was already was already present in the ancestor of streptophyte algae. Phylogenetic analysis divided the EIN3/EIL TFs into three groups (Group A-C). Analysis of gene and protein structure revealed that most of the structural features of these TFs had already formed in ancient lineages. Further investigation suggested that all groups have undergone several duplication events related to whole-genome duplications in plants, generating multiple, functionally diverse gene copies. Therefore, as plants colonized terrestrial habitats and evolved key traits, the EIN3/EIL TF family expanded broadly via multiple duplication events, which could have promoted their fundamental neo- and sub-functionalization to help plants adapt to terrestrial life. Our findings shed light on the functional evolution of the EIN3/EIL TF family in the streptophytes.
Collapse
|
18
|
Mukherjee D, Saha D, Acharya D, Mukherjee A, Ghosh TC. Interplay between gene expression and gene architecture as a consequence of gene and genome duplications: evidence from metabolic genes of Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1091-1108. [PMID: 35722515 PMCID: PMC9203644 DOI: 10.1007/s12298-022-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
Gene and genome duplications have been widespread during the evolution of flowering plant which resulted in the increment of biological complexity as well as creation of plasticity of a genome helping the species to adapt to changing environments. Duplicated genes with higher evolutionary rates can act as a mechanism of generating novel functions in secondary metabolism. In this study, we explored duplication as a potential factor governing the expression heterogeneity and gene architecture of Primary Metabolic Genes (PMGs) and Secondary Metabolic Genes (SMGs) of Arabidopsis thaliana. It is remarkable that different types of duplication processes controlled gene expression and tissue specificity differently in PMGs and SMGs. A complex relationship exists between gene architecture and expression patterns of primary and secondary metabolic genes. Our study reflects, expression heterogeneity and gene structure variation of primary and secondary metabolism in Arabidopsis thaliana are partly results of duplication events of different origins. Our study suggests that duplication has differential effect on PMGs and SMGs regarding expression pattern by controlling gene structure, epigenetic modifications, multifunctionality and subcellular compartmentalization. This study provides an insight into the evolution of metabolism in plants in the light of gene and genome scale duplication. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01188-2.
Collapse
Affiliation(s)
- Dola Mukherjee
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Deeya Saha
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Debarun Acharya
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| | - Ashutosh Mukherjee
- Department of Botany, Vivekananda College, 269, Diamond Harbour Road, Thakurpukur, Kolkata, West Bengal 700063 India
| | - Tapash Chandra Ghosh
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata, 700 054 India
| |
Collapse
|
19
|
Wang P, Schumacher AM, Shiu SH. Computational prediction of plant metabolic pathways. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102171. [PMID: 35078130 DOI: 10.1016/j.pbi.2021.102171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Uncovering genes encoding enzymes responsible for the biosynthesis of diverse plant metabolites is essential for metabolic engineering and production of plant metabolite-derived medicine. With the availability of multi-omics data for an ever-increasing number of plant species and the development of computational approaches, the metabolic pathways of many important plant compounds can be predicted, complementing a more traditional genetic and/or biochemical approach. Here, we summarize recent progress in predicting plant metabolic pathways using genome, transcriptome, proteome, interactome, and/or metabolome data, and the utility of integrating these data with machine learning to further improve metabolic pathway predictions.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ally M Schumacher
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
The ease and complexity of identifying and using specialized metabolites for crop engineering. Emerg Top Life Sci 2022; 6:153-162. [PMID: 35302160 PMCID: PMC9023015 DOI: 10.1042/etls20210248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Plants produce a broad variety of specialized metabolites with distinct biological activities and potential applications. Despite this potential, most biosynthetic pathways governing specialized metabolite production remain largely unresolved across the plant kingdom. The rapid advancement of genetics and biochemical tools has enhanced our ability to identify plant specialized metabolic pathways. Further advancements in transgenic technology and synthetic biology approaches have extended this to a desire to design new pathways or move existing pathways into new systems to address long-running difficulties in crop systems. This includes improving abiotic and biotic stress resistance, boosting nutritional content, etc. In this review, we assess the potential and limitations for (1) identifying specialized metabolic pathways in plants with multi-omics tools and (2) using these enzymes in synthetic biology or crop engineering. The goal of these topics is to highlight areas of research that may need further investment to enhance the successful application of synthetic biology for exploiting the myriad of specialized metabolic pathways.
Collapse
|
21
|
Günther J, Erthmann PØ, Khakimov B, Bak S. Reciprocal mutations of two multifunctional β-amyrin synthases from Barbarea vulgaris shift α/β-amyrin ratios. PLANT PHYSIOLOGY 2022; 188:1483-1495. [PMID: 34865155 PMCID: PMC8896598 DOI: 10.1093/plphys/kiab545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
In the wild cruciferous wintercress (Barbarea vulgaris), β-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce β-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of β-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.
Collapse
Affiliation(s)
- Jan Günther
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Pernille Østerbye Erthmann
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Bekzod Khakimov
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Author for communication:
| |
Collapse
|
22
|
Knockout of Arabidopsis thaliana VEP1, Encoding a PRISE (Progesterone 5β-Reductase/Iridoid Synthase-Like Enzyme), Leads to Metabolic Changes in Response to Exogenous Methyl Vinyl Ketone (MVK). Metabolites 2021; 12:metabo12010011. [PMID: 35050133 PMCID: PMC8778713 DOI: 10.3390/metabo12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why—or why not—certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more “accidental” roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.
Collapse
|
23
|
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. SCIENCE ADVANCES 2021; 7:eabj8726. [PMID: 34757799 PMCID: PMC8580325 DOI: 10.1126/sciadv.abj8726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 05/09/2023]
Abstract
Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
25
|
Martínez-Cortés T, Pomar F, Novo-Uzal E. Evolutionary Implications of a Peroxidase with High Affinity for Cinnamyl Alcohols from Physcomitrium patens, a Non-Vascular Plant. PLANTS 2021; 10:plants10071476. [PMID: 34371679 PMCID: PMC8309402 DOI: 10.3390/plants10071476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023]
Abstract
Physcomitrium (Physcomitrella) patens is a bryophyte highly tolerant to different stresses, allowing survival when water supply is a limiting factor. This moss lacks a true vascular system, but it has evolved a primitive water-conducting system that contains lignin-like polyphenols. By means of a three-step protocol, including ammonium sulfate precipitation, adsorption chromatography on phenyl Sepharose and cationic exchange chromatography on SP Sepharose, we were able to purify and further characterize a novel class III peroxidase, PpaPrx19, upregulated upon salt and H2O2 treatments. This peroxidase, of a strongly basic nature, shows surprising homology to angiosperm peroxidases related to lignification, despite the lack of true lignins in P. patens cell walls. Moreover, PpaPrx19 shows catalytic and kinetic properties typical of angiosperm peroxidases involved in oxidation of monolignols, being able to efficiently use hydroxycinnamyl alcohols as substrates. Our results pinpoint the presence in P. patens of peroxidases that fulfill the requirements to be involved in the last step of lignin biosynthesis, predating the appearance of true lignin.
Collapse
Affiliation(s)
- Teresa Martínez-Cortés
- Grupo de Investigación en Biología Evolutiva, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain; (T.M.-C.); (F.P.)
| | - Federico Pomar
- Grupo de Investigación en Biología Evolutiva, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain; (T.M.-C.); (F.P.)
| | - Esther Novo-Uzal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
26
|
Foerster H, Battey JND, Sierro N, Ivanov NV, Mueller LA. Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Brief Bioinform 2021; 22:bbaa136. [PMID: 32662816 PMCID: PMC8138835 DOI: 10.1093/bib/bbaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.
Collapse
|
27
|
Katz E, Li JJ, Jaegle B, Ashkenazy H, Abrahams SR, Bagaza C, Holden S, Pires CJ, Angelovici R, Kliebenstein DJ. Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe. eLife 2021; 10:67784. [PMID: 33949309 PMCID: PMC8205490 DOI: 10.7554/elife.67784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022] Open
Abstract
Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here, we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show that a combination of geography, environmental parameters, demography and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within-species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation. Since plants cannot move, they have evolved chemical defenses to help them respond to changes in their surroundings. For example, where animals run from predators, plants may produce toxins to put predators off. This approach is why plants are such a rich source of drugs, poisons, dyes and other useful substances. The chemicals plants produce are known as specialized metabolites, and they can change a lot between, and even within, plant species. The variety of specialized metabolites is a result of genetic changes and evolution over millions of years. Evolution is a slow process, yet plants are able to rapidly develop new specialized metabolites to protect them from new threats. Even different populations of the same species produce many distinct metabolites that help them survive in their surroundings. However, the factors that lead plants to produce new metabolites are not well understood, and it is not known how this affects genetic variation. To gain a better understanding of this process, Katz et al. studied 797 European variants of a common weed species called Arabidopsis thaliana, which is widely studied. The investigation found that many factors affect the range of specialized metabolites in each variant. These included local geography and environment, as well as genetics and population history (demography). Katz et al. revealed a pattern of relationships between the variants that could mirror their evolutionary history as the species spread and adapted to new locations. These results highlight the complex network of factors that affect plant evolution. Rapid diversification is key to plant survival in new and changing environments and has resulted in a wide range of specialized metabolites. As such they are of interest both for studying plant evolution and for understanding their ecology. Expanding similar work to more populations and other species will broaden the scope of our ability to understand how plants adapt to their surroundings.
Collapse
Affiliation(s)
- Ella Katz
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jia-Jie Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shawn R Abrahams
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Chris J Pires
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, United States.,DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
28
|
Naake T, Maeda HA, Proost S, Tohge T, Fernie AR. Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. PLANT PHYSIOLOGY 2021; 185:857-875. [PMID: 33793871 PMCID: PMC8133574 DOI: 10.1093/plphys/kiaa086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.
Collapse
Affiliation(s)
- Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Campus Gasthuisberg, Rega Instituut, Herestraat, 3000 Leuven, Belgium
| | - Takayuki Tohge
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Author for communication:
| |
Collapse
|
29
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
30
|
Alcazar Magana A, Wright K, Vaswani A, Caruso M, Reed RL, Bailey CF, Nguyen T, Gray NE, Soumyanath A, Quinn J, Stevens JF, Maier CS. Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: application to extracts of Centella asiatica (L.) Urban. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:722-738. [PMID: 32281154 PMCID: PMC7587007 DOI: 10.1002/pca.2936] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 05/16/2023]
Abstract
INTRODUCTION The phytochemical composition of plant material governs the bioactivity and potential health benefits as well as the outcomes and reproducibility of laboratory studies and clinical trials. OBJECTIVE The objective of this work was to develop an efficient method for the in-depth characterisation of plant extracts and quantification of marker compounds that can be potentially used for subsequent product integrity studies. Centella asiatica (L.) Urb., an Ayurvedic herb with potential applications in enhancing mental health and cognitive function, was used as a case study. METHODS A quadrupole time-of-flight analyser in conjunction with an optimised high-performance liquid chromatography (HPLC) separation was used for in-depth untargeted fingerprinting and post-acquisition precursor ion quantification to determine levels of distinct phytochemicals in various C. asiatica extracts. RESULTS We demonstrate the utility of this workflow for the characterisation of extracts of C. asiatica. This integrated workflow allowed the identification or tentative identification of 117 compounds, chemically interconnected based on Tanimoto chemical similarity, and the accurate quantification of 24 phytochemicals commonly found in C. asiatica extracts. CONCLUSION We report a phytochemical analysis method combining liquid chromatography, high resolution mass spectral data acquisition, and post-acquisition interrogation that allows chemical fingerprints of botanicals to be obtained in conjunction with accurate quantification of distinct phytochemicals. The variability in the composition of specialised metabolites across different C. asiatica accessions was substantial, demonstrating that detailed characterisation of plant extracts is a prerequisite for reproducible use in laboratory studies, clinical trials and safe consumption. The methodological approach is generally applicable to other botanical products.
Collapse
Affiliation(s)
- Armando Alcazar Magana
- Department of ChemistryOregon State UniversityCorvallisORUSA
- Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Kirsten Wright
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Ashish Vaswani
- Department of ChemistryOregon State UniversityCorvallisORUSA
| | - Maya Caruso
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Ralph L. Reed
- Department of Pharmaceutical SciencesOregon State UniversityCorvallisORUSA
- Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | | | - Thuan Nguyen
- OHSU‐PSU School of Public Health, Oregon Health & Science UniversityPortlandORUSA
| | - Nora E. Gray
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Amala Soumyanath
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Joseph Quinn
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare SystemPortlandORUSA
| | - Jan F. Stevens
- Department of Pharmaceutical SciencesOregon State UniversityCorvallisORUSA
- Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Claudia S. Maier
- Department of ChemistryOregon State UniversityCorvallisORUSA
- Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| |
Collapse
|
31
|
Kim YC, Choi D, Cha A, Lee YG, Baek NI, Rimal S, Sang J, Lee Y, Lee S. Critical enzymes for biosynthesis of cucurbitacin derivatives in watermelon and their biological significance. Commun Biol 2020; 3:444. [PMID: 32796947 PMCID: PMC7429850 DOI: 10.1038/s42003-020-01170-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Various cucurbitacins have been isolated, and their structures have been elucidated. Owing to their economic potential and importance as active pharmacological compounds, their cytotoxicity in various cancer cells has been assessed. Here, we mined several candidate genes with potential involvement in cucurbitacin biosynthesis in watermelon (Citrullus lanatus) and performed in vitro enzymatic assays and instrumental analyses using various substrates to identify cucurbitacin functions and products. Enzymatic activities of two acetyltransferases (ACTs) and one UDP-glucosyltransferase (UGT) against cucurbitacins were confirmed, resulting in the synthesis of novel cucurbitacins in vivo and/or in vitro to our knowledge. As ACTs and UGT are involved in the dynamic conversion of cucurbitacins by catalyzing acetylation and glucosylation at moieties in the cucurbitacins skeleton, these findings improve our knowledge on how these genes contribute to the diversity of cucurbitacins. Kim et al. use RNAseq of two watermelons to select candidate genes coding for enzymes that catalyze modifications of cucurbitacins. They characterise four of the 16 candidate enzymes (3 different acetyltransferases and one UDP-glucosyltransferase) by HPLC, LC-MS, NMR, and in vitro enzymatic assay. They further show with in vivo assay in Drosophila, that acetylation of cucurbitacin increases neuronal activity in insects.
Collapse
Affiliation(s)
- Young-Cheon Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Korea
| | - Daeun Choi
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Korea
| | - Ahra Cha
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Korea
| | - Yeong-Geun Lee
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Gyeonggi-do, 17104, Korea
| | - Nam-In Baek
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Gyeonggi-do, 17104, Korea
| | - Suman Rimal
- Department of Bio and Fermentation Convergence Technology, BK21PLUS Project, Kookmin University, Seoul, 02707, Korea
| | - Jiun Sang
- Department of Bio and Fermentation Convergence Technology, BK21PLUS Project, Kookmin University, Seoul, 02707, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21PLUS Project, Kookmin University, Seoul, 02707, Korea
| | - Sanghyeob Lee
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Korea. .,Plant Engineering Research Institute, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
32
|
Liu Z, Suarez Duran HG, Harnvanichvech Y, Stephenson MJ, Schranz ME, Nelson D, Medema MH, Osbourn A. Drivers of metabolic diversification: how dynamic genomic neighbourhoods generate new biosynthetic pathways in the Brassicaceae. THE NEW PHYTOLOGIST 2020; 227:1109-1123. [PMID: 31769874 PMCID: PMC7383575 DOI: 10.1111/nph.16338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/17/2019] [Indexed: 05/11/2023]
Abstract
Plants produce an array of specialized metabolites with important ecological functions. The mechanisms underpinning the evolution of new biosynthetic pathways are not well-understood. Here, we exploit available genome sequence resources to investigate triterpene biosynthesis across the Brassicaceae. Oxidosqualene cyclases (OSCs) catalyze the first committed step in triterpene biosynthesis. Systematic analysis of 13 sequenced Brassicaceae genomes was performed to identify all OSC genes. The genome neighbourhoods (GNs) around a total of 163 OSC genes were investigated to identify Pfam domains significantly enriched in these regions. All-vs-all comparisons of OSC neighbourhoods and phylogenomic analysis were used to investigate the sequence similarity and evolutionary relationships of the numerous candidate triterpene biosynthetic gene clusters (BGCs) observed. Functional analysis of three representative BGCs was carried out and their triterpene pathway products were elucidated. Our results indicate that plant genomes are remarkably plastic, and that dynamic GNs generate new biosynthetic pathways in different Brassicaceae lineages by shuffling the genes encoding a core palette of triterpene-diversifying enzymes, presumably in response to strong environmental selection pressure. These results illuminate a genomic basis for diversification of plant-specialized metabolism through natural combinatorics of enzyme families, which can be mimicked using synthetic biology to engineer diverse bioactive molecules.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Metabolic BiologyJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | | | - Yosapol Harnvanichvech
- Bioinformatics GroupWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Michael J. Stephenson
- Department of Metabolic BiologyJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - David Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of Tennessee858 Madison Avenue, Suite G01MemphisTN38163USA
| | - Marnix H. Medema
- Bioinformatics GroupWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Anne Osbourn
- Department of Metabolic BiologyJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
33
|
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, Schenck CA, Combs R, Cao P, Brandizzi F, Shiu SH, Last RL. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 2020; 9:e56717. [PMID: 32613943 PMCID: PMC7386920 DOI: 10.7554/elife.56717] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Peipei Wang
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Bryan J Leong
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Bethany M Moore
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- University of WisconsinMadisonUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Rachel Combs
- Division of Biological Sciences, University of MissouriColumbusUnited States
| | - Pengfei Cao
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- Department of Computational Mathematics, Science, and Engineering, Michigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
34
|
Grzechowiak M, Sliwiak J, Jaskolski M, Ruszkowski M. Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:754. [PMID: 32655590 PMCID: PMC7326016 DOI: 10.3389/fpls.2020.00754] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 05/24/2023]
Abstract
Glutamate dehydrogenase (GDH) releases ammonia in a reversible NAD(P)+-dependent oxidative deamination of glutamate that yields 2-oxoglutarate (2OG). In current perception, GDH contributes to Glu homeostasis and plays a significant role at the junction of carbon and nitrogen assimilation pathways. GDHs are members of a superfamily of ELFV (Glu/Leu/Phe/Val) amino acid dehydrogenases and are subdivided into three subclasses, based on coenzyme specificity: NAD+-specific, NAD+/NADP+ dual-specific, and NADP+-specific. We determined in this work that the mitochondrial AtGDH1 isozyme from A. thaliana is NAD+-specific. Altogether, A. thaliana expresses three GDH isozymes (AtGDH1-3) targeted to mitochondria, of which AtGDH2 has an extra EF-hand motif and is stimulated by calcium. Our enzymatic assays of AtGDH1 established that its sensitivity to calcium is negligible. In vivo the AtGDH1-3 enzymes form homo- and heterohexamers of varied composition. We solved the crystal structure of recombinant AtGDH1 in the apo-form and in complex with NAD+ at 2.59 and 2.03 Å resolution, respectively. We demonstrate also that both in the apo form and in 1:1 complex with NAD+, it forms D 3-symmetric homohexamers. A subunit of AtGDH1 consists of domain I, which is involved in hexamer formation and substrate binding, and of domain II which binds coenzyme. Most of the subunits in our crystal structures, including those in NAD+ complex, are in open conformation, with domain II forming a large (albeit variable) angle with domain I. One of the subunits of the AtGDH1-NAD+ hexamer contains a serendipitous 2OG molecule in the active site, causing a dramatic (∼25°) closure of the domains. We provide convincing evidence that the N-terminal peptide preceding domain I is a mitochondrial targeting signal, with a predicted cleavage site for mitochondrial processing peptidase (MPP) at Leu17-Leu18 that is followed by an unexpected potassium coordination site (Ser27, Ile30). We also identified several MPD [(+/-)-2-methyl-2,4-pentanediol] binding sites with conserved sequence. Although AtGDH1 is insensitive to MPD in our assays, the observation of druggable sites opens a potential for non-competitive herbicide design.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Sliwiak
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Milosz Ruszkowski
- Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
35
|
Zhang C, Kong N, Cao M, Wang D, Chen Y, Chen Q. Evolutionary significance of amino acid permease transporters in 17 plants from Chlorophyta to Angiospermae. BMC Genomics 2020; 21:391. [PMID: 32503414 PMCID: PMC7275304 DOI: 10.1186/s12864-020-6729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Nitrogen is an indispensable nutrient for plant growth. It is used and transported in the form of amino acids in living organisms. Transporting amino acids to various parts of plants requires relevant transport proteins, such as amino acid permeases (AAPs), which were our focus in this study. Results We found that 5 AAP genes were present in Chlorophyte species and more AAP genes were predicted in Bryophyta and Lycophytes. Two main groups were defined and group I comprised 5 clades. Our phylogenetic analysis indicated that the origin of clades 2, 3, and 4 is Gymnospermae and that these clades are closely related. The members of clade 1 included Chlorophyta to Gymnospermae. Group II, as a new branch consisting of non-seed plants, is first proposed in our research. Our results also indicated that the AAP family was already present in Chlorophyta and then expanded accompanying the development of vasculature. Concurrently, the AAP family experienced multiple duplication events that promoted the generation of new functions and differentiation of sub-functions. Conclusions Our findings suggest that the AAP gene originated in Chlorophyta, and some non-seed AAP genes clustered in one group. A second group, which contained plants of all evolutionary stages, indicated the evolution of AAPs. These new findings can be used to guide future research.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Minxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
36
|
Lichman BR, Godden GT, Hamilton JP, Palmer L, Kamileen MO, Zhao D, Vaillancourt B, Wood JC, Sun M, Kinser TJ, Henry LK, Rodriguez-Lopez C, Dudareva N, Soltis DE, Soltis PS, Buell CR, O’Connor SE. The evolutionary origins of the cat attractant nepetalactone in catnip. SCIENCE ADVANCES 2020; 6:eaba0721. [PMID: 32426505 PMCID: PMC7220310 DOI: 10.1126/sciadv.aba0721] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
Catnip or catmint (Nepeta spp.) is a flowering plant in the mint family (Lamiaceae) famed for its ability to attract cats. This phenomenon is caused by the compound nepetalactone, a volatile iridoid that also repels insects. Iridoids are present in many Lamiaceae species but were lost in the ancestor of the Nepetoideae, the subfamily containing Nepeta. Using comparative genomics, ancestral sequence reconstructions, and phylogenetic analyses, we probed the re-emergence of iridoid biosynthesis in Nepeta. The results of these investigations revealed mechanisms for the loss and subsequent re-evolution of iridoid biosynthesis in the Nepeta lineage. We present evidence for a chronology of events that led to the formation of nepetalactone biosynthesis and its metabolic gene cluster. This study provides insights into the interplay between enzyme and genome evolution in the origins, loss, and re-emergence of plant chemical diversity.
Collapse
Affiliation(s)
- Benjamin R. Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Grant T. Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mohamed O. Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Joshua C. Wood
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Taliesin J. Kinser
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Laura K. Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos Rodriguez-Lopez
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48824, USA
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| |
Collapse
|
37
|
Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC. Enhancing flavonoid production by promiscuous activity of prenyltransferase, BrPT2 from Boesenbergia rotunda. PeerJ 2020; 8:e9094. [PMID: 32391211 PMCID: PMC7197402 DOI: 10.7717/peerj.9094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Schenck CA, Westphal J, Jayaraman D, Garcia K, Wen J, Mysore KS, Ané J, Sumner LW, Maeda HA. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in Medicago truncatula. PLANT DIRECT 2020; 4:e00218. [PMID: 32368714 PMCID: PMC7196213 DOI: 10.1002/pld3.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 05/26/2023]
Abstract
l-Tyrosine (Tyr) is an aromatic amino acid synthesized de novo in plants and microbes downstream of the shikimate pathway. In plants, Tyr and a Tyr pathway intermediate, 4-hydroxyphenylpyruvate (HPP), are precursors to numerous specialized metabolites, which are crucial for plant and human health. Tyr is synthesized in the plastids by a TyrA family enzyme, arogenate dehydrogenase (ADH/TyrAa), which is feedback inhibited by Tyr. Additionally, many legumes possess prephenate dehydrogenases (PDH/TyrAp), which are insensitive to Tyr and localized to the cytosol. Yet the role of PDH enzymes in legumes is currently unknown. This study isolated and characterized Tnt1-transposon mutants of MtPDH1 (pdh1) in Medicago truncatula to investigate PDH function. The pdh1 mutants lacked PDH transcript and PDH activity, and displayed little aberrant morphological phenotypes under standard growth conditions, providing genetic evidence that MtPDH1 is responsible for the PDH activity detected in M. truncatula. Though plant PDH enzymes and activity have been specifically found in legumes, nodule number and nitrogenase activity of pdh1 mutants were not significantly reduced compared with wild-type (Wt) during symbiosis with nitrogen-fixing bacteria. Although Tyr levels were not significantly different between Wt and mutants under standard conditions, when carbon flux was increased by shikimate precursor feeding, mutants accumulated significantly less Tyr than Wt. These data suggest that MtPDH1 is involved in Tyr biosynthesis when the shikimate pathway is stimulated and possibly linked to unidentified legume-specific specialized metabolism.
Collapse
Affiliation(s)
- Craig A. Schenck
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Josh Westphal
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Kevin Garcia
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Lloyd W. Sumner
- Department of BiochemistryUniversity of MissouriColumbiaMOUSA
- Metabolomics and Bond Life Sciences CentersUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
39
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
40
|
A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nat Commun 2020; 11:870. [PMID: 32054839 PMCID: PMC7018950 DOI: 10.1038/s41467-020-14558-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Land plants produce diverse flavonoids for growth, survival, and reproduction. Chalcone synthase is the first committed enzyme of the flavonoid biosynthetic pathway and catalyzes the production of 2',4,4',6'-tetrahydroxychalcone (THC). However, it also produces other polyketides, including p-coumaroyltriacetic acid lactone (CTAL), because of the derailment of the chalcone-producing pathway. This promiscuity of CHS catalysis adversely affects the efficiency of flavonoid biosynthesis, although it is also believed to have led to the evolution of stilbene synthase and p-coumaroyltriacetic acid synthase. In this study, we establish that chalcone isomerase-like proteins (CHILs), which are encoded by genes that are ubiquitous in land plant genomes, bind to CHS to enhance THC production and decrease CTAL formation, thereby rectifying the promiscuous CHS catalysis. This CHIL function has been confirmed in diverse land plant species, and represents a conserved strategy facilitating the efficient influx of substrates from the phenylpropanoid pathway to the flavonoid pathway.
Collapse
|
41
|
Sekula B, Ruszkowski M, Dauter Z. S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol 2020; 151:554-565. [PMID: 32057875 DOI: 10.1016/j.ijbiomac.2020.02.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
S-adenosylmethionine synthases (MATs) are responsible for production of S-adenosylmethionine, the cofactor essential for various methylation reactions, production of polyamines and phytohormone ethylene, etc. Plants have two distinct MAT types (I and II). This work presents the structural analysis of MATs from Arabidopsis thaliana (AtMAT1 and AtMAT2, both type I) and Medicago truncatula (MtMAT3a, type II), which, unlike most MATs from other domains of life, are dimers where three-domain subunits are sandwiched flat with one another. Although MAT types are very similar, their subunits are differently oriented within the dimer. Structural snapshots along the enzymatic reaction reveal the exact conformation of precatalytic methionine in the active site and show a binding niche, characteristic only for plant MATs, that may serve as a lock of the gate loop. Nevertheless, plants, in contrary to mammals, lack the MAT regulatory subunit, and the regulation of plant MAT activity is still puzzling. Our structures open a possibility of an allosteric activity regulation of type I plant MATs by linear compounds, like polyamines, which would tighten the relationship between S-adenosylmethionine and polyamine biosynthesis.
Collapse
Affiliation(s)
- Bartosz Sekula
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA.
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA
| |
Collapse
|
42
|
Norris A, Busch F, Schupfner M, Sterner R, Wysocki VH. Quaternary Structure of the Tryptophan Synthase α-Subunit Homolog BX1 from Zea mays. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:227-233. [PMID: 31933363 PMCID: PMC7313238 DOI: 10.1021/jasms.9b00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BX1 from Zea mays (zmBX1) is an enzyme of plant secondary metabolism that generates indole for the synthesis of plant defensins. It is a homologue of the tryptophan synthase α-subunit, TrpA. Whereas TrpA itself is a monomer in solution, zmBX1 is dimeric, confirmed in our work by native MS. Using cross-linking and mutagenesis, we identified the physiological dimerization interface of zmBX1. We found that homodimerization has only minor effects on catalysis and stability. A comparison of the zmBX1-zmBX1 homodimer and zmTrpA-zmTrpB heterodimer interfaces suggest that homodimerization in zmBX1 might, at an early point in evolution, have served as a mechanism to exclude the interaction with the tryptophan synthase β-subunit (zmTrpB), marking its transition from primary to secondary metabolism.
Collapse
Affiliation(s)
- Andrew Norris
- The Ohio State University , Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology , Columbus , Ohio 43210 , United States
| | - Florian Busch
- The Ohio State University , Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology , Columbus , Ohio 43210 , United States
| | - Michael Schupfner
- University of Regensburg , Institute for Biophysics and Physical Biochemistry , Regensburg D-93053 , Germany
| | - Reinhard Sterner
- University of Regensburg , Institute for Biophysics and Physical Biochemistry , Regensburg D-93053 , Germany
| | - Vicki H Wysocki
- The Ohio State University , Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology , Columbus , Ohio 43210 , United States
| |
Collapse
|
43
|
Abrahams RS, Pires JC, Schranz ME. Genomic Origin and Diversification of the Glucosinolate MAM Locus. FRONTIERS IN PLANT SCIENCE 2020; 11:711. [PMID: 32582245 PMCID: PMC7289053 DOI: 10.3389/fpls.2020.00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
Glucosinolates are a diverse group of plant metabolites that characterize the order Brassicales. The MAM locus is one of the most significant QTLs for glucosinolate diversity. However, most of what we understand about evolution at the locus is focused on only a few species and not within a phylogenetic context. In this study, we utilize a micro-synteny network and phylogenetic inference to investigate the origin and diversification of the MAM/IPMS gene family. We uncover unique MAM-like genes found at the orthologous locus in the Cleomaceae that shed light on the transition from IPMS to MAM. In the Brassicaceae, we identify six distinct MAM clades across Lineages I, II, and III. We characterize the evolutionary impact and consequences of local duplications, transpositions, whole genome duplications, and gene fusion events, generating several new hypothesizes on the function and diversity of the MAM locus.
Collapse
Affiliation(s)
- R. Shawn Abrahams
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
- *Correspondence: M. Eric Schranz,
| |
Collapse
|
44
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
45
|
Shimizu Y, Rai A, Okawa Y, Tomatsu H, Sato M, Kera K, Suzuki H, Saito K, Yamazaki M. Metabolic diversification of nitrogen-containing metabolites by the expression of a heterologous lysine decarboxylase gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:505-521. [PMID: 31364191 PMCID: PMC6899585 DOI: 10.1111/tpj.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
Lysine decarboxylase converts l-lysine to cadaverine as a branching point for the biosynthesis of plant Lys-derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys-derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La-L/ODC) and identified cadaverine-derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys-derived alkaloids in the transgenic lines. Moreover, we found several cadaverine-derived metabolites specifically detected in the transgenic lines compared with the non-transformed control. Among these, three specific metabolites were identified and confirmed as 5-aminopentanal, 5-aminopentanoate and δ-valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope-labeled [α-15 N]- or [ε-15 N]-l-lysine. Our results show similar 15 N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys-derived alkaloid biosynthesis.
Collapse
Affiliation(s)
- Yohei Shimizu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Amit Rai
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Yuko Okawa
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| | - Hajime Tomatsu
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Human Metabolome Technologies, Inc.246‐2 Mizukami, KakuganjiTsuruokaYamagata997‐0052Japan
| | - Masaru Sato
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kota Kera
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- Present address:
Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute2‐6‐7 Kazusa‐KamatariKisarazuChiba292‐0818Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical SciencesChiba University1‐8‐1 Inohana, Chuo‐kuChiba260‐8675Japan
| |
Collapse
|
46
|
Ding Y, Murphy KM, Poretsky E, Mafu S, Yang B, Char SN, Christensen SA, Saldivar E, Wu M, Wang Q, Ji L, Schmitz RJ, Kremling KA, Buckler ES, Shen Z, Briggs SP, Bohlmann J, Sher A, Castro-Falcon G, Hughes CC, Huffaker A, Zerbe P, Schmelz EA. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. NATURE PLANTS 2019; 5:1043-1056. [PMID: 31527844 DOI: 10.1038/s41477-019-0509-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Duplication and divergence of primary pathway genes underlie the evolution of plant specialized metabolism; however, mechanisms partitioning parallel hormone and defence pathways are often speculative. For example, the primary pathway intermediate ent-kaurene is essential for gibberellin biosynthesis and is also a proposed precursor for maize antibiotics. By integrating transcriptional coregulation patterns, genome-wide association studies, combinatorial enzyme assays, proteomics and targeted mutant analyses, we show that maize kauralexin biosynthesis proceeds via the positional isomer ent-isokaurene formed by a diterpene synthase pair recruited from gibberellin metabolism. The oxygenation and subsequent desaturation of ent-isokaurene by three promiscuous cytochrome P450s and a new steroid 5α reductase indirectly yields predominant ent-kaurene-associated antibiotics required for Fusarium stalk rot resistance. The divergence and differential expression of pathway branches derived from multiple duplicated hormone-metabolic genes minimizes dysregulation of primary metabolism via the circuitous biosynthesis of ent-kaurene-related antibiotics without the production of growth hormone precursors during defence.
Collapse
Affiliation(s)
- Yezhang Ding
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Katherine M Murphy
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Elly Poretsky
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Sibongile Mafu
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Si Nian Char
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Evan Saldivar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Mengxi Wu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Karl A Kremling
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Sher
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Castro-Falcon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
47
|
Papazian S, Girdwood T, Wessels BA, Poelman EH, Dicke M, Moritz T, Albrectsen BR. Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics 2019; 15:130. [PMID: 31563978 PMCID: PMC6765471 DOI: 10.1007/s11306-019-1592-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The oxylipin methyl jasmonate (MeJA) is a plant hormone active in response signalling and defence against herbivores. Although MeJA is applied experimentally to mimic herbivory and induce plant defences, its downstream effects on the plant metabolome are largely uncharacterized, especially in the context of primary growth and tissue-specificity of the response. OBJECTIVES We investigated the effects of MeJA-simulated and real caterpillar herbivory on the foliar metabolome of the wild plant Brassica nigra and monitored the herbivore-induced responses in relation to leaf ontogeny. METHODS As single or multiple herbivory treatments, MeJA- and mock-sprayed plants were consecutively exposed to caterpillars or left untreated. Gas chromatography (GC) and liquid chromatography (LC) time-of-flight mass-spectrometry (TOF-MS) were combined to analyse foliar compounds, including central primary and specialized defensive plant metabolites. RESULTS Plant responses were stronger in young leaves, which simultaneously induced higher chlorophyll levels. Both MeJA and caterpillar herbivory induced similar, but not identical, accumulation of tricarboxylic acids (TCAs), glucosinolates (GSLs) and phenylpropanoids (PPs), but only caterpillar feeding led to depletion of amino acids. MeJA followed by caterpillars caused higher induction of defence compounds, including a three-fold increase in the major defence compound allyl-GSL (sinigrin). When feeding on MeJA-treated plants, caterpillars gained less weight indicative of the reduced host-plant quality and enhanced resistance. CONCLUSIONS The metabolomics approach showed that plant responses induced by herbivory extend beyond the regulation of defence metabolism and are tightly modulated throughout leaf development. This leads to a new understanding of the plant metabolic potential that can be exploited for future plant protection strategies.
Collapse
Affiliation(s)
- Stefano Papazian
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Tristan Girdwood
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Bernard A. Wessels
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Erik H. Poelman
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Thomas Moritz
- 0000 0000 8578 2742grid.6341.0Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Benedicte R. Albrectsen
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| |
Collapse
|
48
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
49
|
Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 2019; 35:1140-1155. [PMID: 30324199 PMCID: PMC6254060 DOI: 10.1039/c8np00037a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand dynamic biosynthesis and storage of a plethora of phytochemicals.
Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a specific pathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offers distinct storage sites for molar concentrations of specific phytochemicals. Liquid–liquid phase separation may lead to formation of dense biomolecular condensates within the cytoplasm or vacuole allowing swift activation of the stored phytochemicals as required upon pest or herbivore attack. The molecular grid behind plant plasticity offers an endless reservoir of functional modules, which may be utilized as a synthetic biology tool-box for engineering of novel biological systems based on rational design principles. In this review, we highlight some of the concepts used by plants to coordinate biosynthesis and storage of phytochemicals.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
50
|
Harun S, Abdullah-Zawawi MR, A-Rahman MRA, Muhammad NAN, Mohamed-Hussein ZA. SuCComBase: a manually curated repository of plant sulfur-containing compounds. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5353919. [PMID: 30793170 PMCID: PMC6384505 DOI: 10.1093/database/baz021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Plants produce a wide range of secondary metabolites that play important roles in plant defense and immunity, their interaction with the environment and symbiotic associations. Sulfur-containing compounds (SCCs) are a group of important secondary metabolites produced in members of the Brassicales order. SCCs constitute various groups of phytochemicals, but not much is known about them. Findings from previous studies on SCCs were scattered in published literatures, hence SuCComBase was developed to store all molecular information related to the biosynthesis of SCCs. Information that includes genes, proteins and compounds that are involved in the SCC biosynthetic pathway was manually identified from databases and published scientific literatures. Sets of co-expression data was analyzed to search for other possible (previously unknown) genes that might be involved in the biosynthesis of SCC. These genes were named as potential SCC-related encoding genes. A total of 147 known and 92 putative Arabidopsis thaliana SCC-related genes from literatures were used to identify other potential SCC-related encoding genes. We identified 778 potential SCC-related encoding genes, 4026 homologs to the SCC-related encoding genes and 116 SCCs as shown on SuCComBase homepage. Data entries are searchable from the Main page, Search, Browse and Datasets tabs. Users can easily download all data stored in SuCComBase. All publications related to SCCs are also indexed in SuCComBase, which is currently the first and only database dedicated to plant SCCs. SuCComBase aims to become a manually curated and au fait knowledge-based repository for plant SCCs.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Rusman Arief A-Rahman
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|