1
|
Song P, Zhang L, Wu L, Hu H, Liu Q, Li D, Hu P, Zhou F, Bu R, Wei Q, Yu Y, Guan Y, Chen E, Su X, Huang Z, Qiao M, Ru Z, Li C. A Ricin B-Like Lectin Protein Physically Interacts with TaPFT and Is Involved in Resistance to Fusarium Head Blight in Wheat. PHYTOPATHOLOGY 2021; 111:2309-2316. [PMID: 34058858 DOI: 10.1094/phyto-11-20-0506-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, has become one of the most serious diseases that damage wheat. The TaPFT (pore-forming toxin-like) and TaHRC (histidine-rich calcium-binding protein) genes at the quantitative trait locus Fhb1 were identified to confer resistance to FHB in the wheat cultivar Sumai 3. In this study, a wheat ricin B-like lectin gene (designated TaRBL) that interacted with TaPFT was isolated by a yeast two-hybrid screen of a wheat cDNA library. A yeast two-hybrid and bimolecular fluorescence complementation study further verified that TaRBL interacted with TaPFT but not with TaHRC. Gene expression studies showed that upon F. graminearum infection, TaRBL expression was upregulated in resistant cultivars but downregulated in susceptible cultivars. Furthermore, knockdown of TaRBL expression by barley stripe mosaic virus-induced gene silencing significantly reduced the resistance of wheat to FHB in both the resistant cultivar Sumai 3 and the susceptible cultivar Jimai 22. Thus, we conclude that TaRBL encodes a ricin B-like lectin protein that interacts with TaPFT and is involved in resistance to FHB in wheat.
Collapse
Affiliation(s)
- Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lufan Zhang
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liuliu Wu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qili Liu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongxiao Li
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Feng Zhou
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ruifang Bu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qichao Wei
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongang Yu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Eryong Chen
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojia Su
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhongwen Huang
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mei Qiao
- College of Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhengang Ru
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chengwei Li
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
2
|
Tandem Affinity Purification (TAP) of Low-Abundance Protein Complexes in Filamentous Fungi Demonstrated Using Magnaporthe oryzae. Methods Mol Biol 2021. [PMID: 34236680 DOI: 10.1007/978-1-0716-1613-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein-protein interactions underlie cellular structure and function. In recent years, a number of methods have been developed for the identification of protein complexes and component proteins involved in the control of various biological pathways. Tandem affinity purification (TAP) coupled with mass spectrometry (MS) is a powerful method enabling the isolation of high-purity native protein complexes under mild conditions by performing two sequential purification steps using two different epitope tags. In this protocol, we describe a TAP-MS methodology for identifying protein-protein interactions present at very low levels in the fungal cell. Using the 6xHis-3xFLAG double tag, we start the affinity purification process for our protein of interest using high-capacity Ni2+ columns. This allows for greatly increased sample input compared to antibody-based first-step purification in conventional TAP protocols and provides a large amount of highly concentrated and preliminarily purified protein complexes to be used in a second purification step involving FLAG immunoprecipitation. The second step greatly facilitates the capture of low-level interacting partners under in vivo conditions. Our TAP-MS method has been proven to secure the characterization of low-abundance protein complexes under physiological conditions with high efficiency, specificity, and economy in the filamentous fungus Magnaporthe oryzae and might benefit gene function and proteomics studies in plants and other research fields.
Collapse
|
3
|
Lau ET, Khew CY, Hwang SS. Transcriptomic analysis of pepper plants provides insights into host responses to Fusarium solani infestation. J Biotechnol 2020; 314-315:53-62. [PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023]
Abstract
Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
Collapse
Affiliation(s)
- Ee Tiing Lau
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia.
| | - Choy Yuen Khew
- Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
4
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Wang P, Hawes C, Hussey PJ. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites. TRENDS IN PLANT SCIENCE 2017; 22:289-297. [PMID: 27955928 DOI: 10.1016/j.tplants.2016.11.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 05/08/2023]
Abstract
The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
6
|
Polyclonal Antibody Development Against Purified CC-NBS-LRR like Protein Fragment from Mature Lageneria siceraria Seeds and Immunolocalization. Protein J 2016; 35:379-390. [DOI: 10.1007/s10930-016-9683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Guy E, Boulain H, Aigu Y, Le Pennec C, Chawki K, Morlière S, Schädel K, Kunert G, Simon JC, Sugio A. Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex. FRONTIERS IN PLANT SCIENCE 2016; 7:1171. [PMID: 27555856 PMCID: PMC4977312 DOI: 10.3389/fpls.2016.01171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 05/06/2023]
Abstract
Aphids are piercing-sucking insect pests and feed on phloem sap. During feeding, aphids inject a battery of salivary proteins into host plant. Some of these proteins function like effectors of microbial pathogens and influence the outcome of plant-aphid interactions. The pea aphid (Acyrthosiphon pisum) is the model aphid and encompasses multiple biotypes each specialized to one or a few legume species, providing an opportunity to investigate the underlying mechanisms of the compatibility between plants and aphid biotypes. We aim to identify the aphid factors that determine the compatibility with host plants, hence involved in the host plant specialization process, and hypothesize that salivary proteins are one of those factors. Agrobacterium-mediated transient gene expression is a powerful tool to perform functional analyses of effector (salivary) proteins in plants. However, the tool was not established for the legume species that A. pisum feeds on. Thus, we decided to optimize the method for legume plants to facilitate the functional analyses of A. pisum salivary proteins. We screened a range of cultivars of pea (Pisum sativum) and alfalfa (Medicago sativa). None of the M. sativa cultivars was suitable for agroinfiltration under the tested conditions; however, we established a protocol for efficient transient gene expression in two cultivars of P. sativum, ZP1109 and ZP1130, using A. tumefaciens AGL-1 strain and the pEAQ-HT-DEST1 vector. We confirmed that the genes are expressed from 3 to 10 days post-infiltration and that aphid lines of the pea adapted biotype fed and reproduced on these two cultivars while lines of alfalfa and clover biotypes did not. Thus, the pea biotype recognizes these two cultivars as typical pea plants. By using a combination of ZP1109 and an A. pisum line, we defined an agroinfiltration procedure to examine the effect of in planta expression of selected salivary proteins on A. pisum fitness and demonstrated that transient expression of one candidate salivary gene increased the fecundity of the aphids. This result confirms that the agroinfiltration can be used to perform functional analyses of salivary proteins in P. sativum and consequently to study the molecular mechanisms underlying host specialization in the pea aphid complex.
Collapse
Affiliation(s)
- Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Yoann Aigu
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Charlotte Le Pennec
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Khaoula Chawki
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Kristina Schädel
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant ProtectionLe Rheu, France
- *Correspondence: Akiko Sugio,
| |
Collapse
|
8
|
Nallamilli BRR, Edelmann MJ, Zhong X, Tan F, Mujahid H, Zhang J, Nanduri B, Peng Z. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa). PLoS One 2014; 9:e89283. [PMID: 24586658 PMCID: PMC3930695 DOI: 10.1371/journal.pone.0089283] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.
Collapse
Affiliation(s)
- Babi Ramesh Reddy Nallamilli
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Mariola J. Edelmann
- Institute of Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experimental Station, Mississippi State University, Starkville, Mississippi, United States of America
| | - Xiaoxian Zhong
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Feng Tan
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Hana Mujahid
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Bindu Nanduri
- Institute of Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experimental Station, Mississippi State University, Starkville, Mississippi, United States of America
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Zhaohua Peng
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
9
|
Nallamilli BRR, Zhang J, Mujahid H, Malone BM, Bridges SM, Peng Z. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet 2013; 9:e1003322. [PMID: 23505380 PMCID: PMC3591265 DOI: 10.1371/journal.pgen.1003322] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP–Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis. Rice is the staple food for over half of the world's population and an important feedstock for livestock. The rice grain is mainly endosperm tissue. The regulatory mechanism of rice endosperm development is still largely unknown thus far. Understanding the underlying mechanism will lead to crop yield and quality improvement in the long term, besides gaining new knowledge. Polycomb complex is a protein complex with a potential role in endosperm development according to prior publications. In this manuscript, we purified the rice OsFIE2-polycomb protein complex and demonstrated the enzyme activity of the complex. Genetic studies showed that a reduction of polycomb group gene OsFIE2 expression led to smaller seeds, partially filled seeds, and seed germination before seed maturation. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated while a key transcription factor is up-regulated in OsFIE2 reduction lines. In addition, we identified many loci in the rice genome whose histone proteins are modified by the polycomb complex enzyme via a method called ChIP–Seq. Our results demonstrate that OsFIE2-polycomb complex positively regulates rice grain development via a mechanism distinct from that in Arabidopsis and provide new insight into the regulation of rice grain development.
Collapse
Affiliation(s)
- Babi Ramesh Reddy Nallamilli
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Hana Mujahid
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Brandon M. Malone
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Susan M. Bridges
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Zhaohua Peng
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
10
|
Li Y, Franklin S, Zhang MJ, Vondriska TM. Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: application to Bruton's tyrosine kinase. Protein Sci 2011; 20:140-9. [PMID: 21080425 DOI: 10.1002/pro.546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20-30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His₆ purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
11
|
Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant protein complexes by mass spectrometry. Proteomics 2011; 11:1824-33. [DOI: 10.1002/pmic.201000635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
|
12
|
Li Y. The tandem affinity purification technology: an overview. Biotechnol Lett 2011; 33:1487-99. [PMID: 21424840 DOI: 10.1007/s10529-011-0592-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/08/2011] [Indexed: 02/07/2023]
Abstract
Tandem affinity purification (TAP) is a methodology for the isolation of protein complexes from endogenous sources. It involves incorporation of a dual-affinity tag into the protein of interest and introduction of the construct into desired cell lines or organisms. Using the two affinity handles, the protein complex assembled under physiological conditions, which contains the tagged target protein and its interacting partners, can be isolated by a sequential purification scheme. Compared with single-step purification, TAP greatly reduces non-specific background and isolates protein complexes with higher purity. TAP-based protein retrieval plus mass spectrometry-based analysis has become a standard approach for identification and characterization of multi-protein complexes. The present article gives an overview of the TAP method, with a focus on its key feature-the dual-affinity tag. In addition, the application of this technology in various systems is briefly discussed.
Collapse
Affiliation(s)
- Yifeng Li
- Protein Production Core Facility, Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7303 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Klodmann J, Lewejohann D, Braun HP. Low-SDS Blue native PAGE. Proteomics 2011; 11:1834-9. [DOI: 10.1002/pmic.201000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/10/2022]
|
14
|
Xu X, Song Y, Li Y, Chang J, zhang H, An L. The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 2010; 72:149-56. [DOI: 10.1016/j.pep.2010.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
15
|
Abstract
TAP (tandem affinity purification) allows rapid and clean isolation of a tagged protein along with its interacting partners from cell lysates. Initially developed in yeast, the TAP method has subsequently been adapted to other cells and organisms. In combination with MS analysis, this method has become an indispensable tool for systematic identification of target-associated protein complexes. The key feature of TAP is the use of a dual-affinity tag, which is fused to the protein of interest. The original TAP tag consisted of two IgG-binding units of Protein A of Staphylococcus aureus and the calmodulin-binding peptide. As the technique has been widely exploited, a number of alternative TAP tags based on other affinity handles have been developed. The present review gives an overview of the various tag combinations for TAP with a highlight on those alternatives that result in improved yields or unique features. The information provided should assist in the selection and development of TAP tags for specific applications.
Collapse
|
16
|
Affiliation(s)
- Arthur Günzl
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington Connecticut
| | | |
Collapse
|
17
|
Wang S, Assmann SM, Fedoroff NV. Characterization of the Arabidopsis Heterotrimeric G Protein. J Biol Chem 2008; 283:13913-22. [DOI: 10.1074/jbc.m801376200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FLW, Jones JDG. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. THE PLANT CELL 2008; 20:697-719. [PMID: 18375657 PMCID: PMC2329923 DOI: 10.1105/tpc.107.056978] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/07/2008] [Accepted: 03/04/2008] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing identified the Avr9/Cf-9 RAPIDLY ELICITED gene ACRE189 as essential for the Cf-9- and Cf-4-mediated hypersensitive response (HR) in Nicotiana benthamiana. We report a role for ACRE189 in disease resistance in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). ACRE189 (herein renamed Avr9/Cf-9-INDUCED F-BOX1 [ACIF1]) encodes an F-box protein with a Leu-rich-repeat domain. ACIF1 is widely conserved and is closely related to F-box proteins regulating plant hormone signaling. Silencing of tobacco ACIF1 suppressed the HR triggered by various elicitors (Avr9, Avr4, AvrPto, Inf1, and the P50 helicase of Tobacco mosaic virus [TMV]). ACIF1 is recruited to SCF complexes (a class of ubiquitin E3 ligases), and the expression of ACIF1 F-box mutants in tobacco compromises the HR similarly to ACIF1 silencing. ACIF1 affects N gene-mediated responses to TMV infection, including lesion formation and salicylic acid accumulation. Loss of ACIF1 function also reduced confluent cell death induced by Pseudomonas syringae pv tabaci. ACIF1 silencing in Cf9 tomato attenuated the Cf-9-dependent HR but not Cf-9 resistance to Cladosporium fulvum. Resistance conferred by the Cf-9 homolog Cf-9B, however, was compromised in ACIF1-silenced tomato. Analysis of public expression profiling data suggests that Arabidopsis thaliana homologs of ACIF1 (VFBs) regulate defense responses via methyl jasmonate- and abscisic acid-responsive genes. Together, these findings support a role of ACIF1/VFBs in plant defense responses.
Collapse
|
20
|
Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. THE PLANT CELL 2008; 20:752-67. [PMID: 18326828 PMCID: PMC2329921 DOI: 10.1105/tpc.107.054858] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/30/2007] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Unité Mixte de Recherche 2594/441, 31320 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. THE PLANT CELL 2007; 19:2225-45. [PMID: 17616737 PMCID: PMC1955694 DOI: 10.1105/tpc.106.048017] [Citation(s) in RCA: 724] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, 4067, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chang IF. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 2007; 6:6158-66. [PMID: 17072909 DOI: 10.1002/pmic.200600225] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
23
|
Kohorn BD, Kobayashi M, Johansen S, Friedman HP, Fischer A, Byers N. Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. J Cell Sci 2007; 119:2282-90. [PMID: 16723734 DOI: 10.1242/jcs.02968] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Arabidopsis thaliana wall-associated kinases (WAKs) bind to pectin with an extracellular domain and also contain a cytoplasmic protein kinase domain. WAKs are required for cell elongation and modulate sugar metabolism. This work shows that in leaf protoplasts a WAK1-GFP fusion protein accumulates in a cytoplasmic compartment that contains pectin. The WAK compartment contains markers for the Golgi, the site of pectin synthesis. The migration of WAK1-GFP to the cell surface is far slower than that of a cell surface receptor not associated with the cell wall, is influenced by the presence of fucose side chains on one or more unidentified molecules that might include pectin, and is dependent upon cellulose synthesis on the plasma membrane. WAK is crosslinked into a detergent-insoluble complex within the cytoplasmic compartment before it appears on the cell surface, and this is independent of fucose modification or cellulose synthesis. Thus, the assembly and crosslinking of WAKs may begin at an early stage within a cytoplasmic compartment rather than in the cell wall itself, and is coordinated with synthesis of surface cellulose.
Collapse
Affiliation(s)
- Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hua ZM, Yang X, Fromm ME. Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. PLANT, CELL & ENVIRONMENT 2006; 29:1761-70. [PMID: 16913865 DOI: 10.1111/j.1365-3040.2006.01552.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase (MAPK) occurs after phosphorylation by an upstream MAP kinase kinase (MAPKK). The Arabidopsis thaliana genome encodes 10 MKKs, but few of these have been shown directly to activate any of the 20 Arabidopsis MAPKs (AtMPKs) and NaCl-, drought- or abscisic acid (ABA)-induced genes RD29A or RD29B. We have constructed the constitutively activated form for nine of the 10 AtMKK proteins, and tested their ability to activate the RD29A and RD29B promoters and also checked the ability of the nine activated AtMKK proteins to phosphorylate 11 of the AtMPK proteins in transient assays. The results show that three proteins, AtMKK1, AtMKK2 and AtMKK3, could activate the RD29A promoter, while these three and two additional AtMKK6/8 proteins could activate the RD29B promoter. Four other proteins, AtMKK7/AtMKK9 and AtMKK4/AtMKK5, can cause hypersensitive response (HR) in tobacco leaves using transient analysis. The activation of the RD29A promoter correlated with four uniquely activated AtMPK proteins. A novel method of activating AtMPK proteins by fusion to a cis-acting mutant of a human MAPK kinase MEK1 was used to confirm that specific members of the AtMPK gene family can activate the RD29A stress pathway.
Collapse
Affiliation(s)
- Zhi-Ming Hua
- Plant Science Initiative, University of Nebraska, Lincoln, NE 68508, USA.
| | | | | |
Collapse
|
25
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|
26
|
González-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JDG. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. THE PLANT CELL 2006; 18:1067-83. [PMID: 16531490 PMCID: PMC1425846 DOI: 10.1105/tpc.106.040998] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 05/07/2023]
Abstract
We previously identified three Avr9/Cf-9 Rapidly Elicited (ACRE) genes essential for Cf-9- and Cf-4-dependent hypersensitive response (HR) production in Nicotiana benthamiana. Two of them encode putative E3 ubiquitin ligase components. This led us to investigate other ACRE genes associated with the ubiquitination pathway. ACRE74 encodes a U-box E3 ligase homolog, highly related to parsley (Petroselinum crispum) CMPG1 and Arabidopsis thaliana PLANT U-BOX20 (PUB20) and PUB21 proteins, and was called Nt CMPG1. Transcript levels of Nt CMPG1 and the homologous tomato (Solanum lycopersicum) Cmpg1 are induced in Cf9 tobacco (Nicotiana tabacum) and Cf9 tomato after Avr9 elicitation. Tobacco CMPG1 possesses in vitro E3 ligase activity. N. benthamiana plants silenced for Nt CMPG1 show reduced HR after Cf-9/Avr9 elicitation, while overexpression of Nt CMPG1 induces a stronger HR in Cf9 tobacco plants after Avr9 infiltration. In tomato, silencing of Cmpg1 decreased resistance to Cladosporium fulvum. Overexpression of epitope-tagged tobacco CMPG1 mutated in the U-box domain confers a dominant-negative phenotype. We also show that Nt CMPG1 is involved in the Pto/AvrPto and Inf1 responses. In summary, we show that the E3 ligase Nt CMPG1 is essential for plant defense and disease resistance.
Collapse
|
27
|
Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:1-13. [PMID: 16553892 DOI: 10.1111/j.1365-313x.2006.02671.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.
Collapse
Affiliation(s)
- Jai S Rohila
- Plant Science Initiative, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1. THE PLANT CELL 2006; 18:626-38. [PMID: 16473966 PMCID: PMC1383638 DOI: 10.1105/tpc.105.039412] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) is a leucine-rich repeat receptor-like kinase (LRR-RLK) involved in the acquisition of embryogenic competence and in male sporogenesis. To determine the composition of the SERK1 signaling complex in vivo, we generated plants expressing the SERK1 protein fused to cyan fluorescent protein under SERK1 promoter control. The membrane receptor complex was immunoprecipitated from seedlings, and the coimmunoprecipitating proteins were identified using liquid chromatography/matrix-assisted laser desorption ionization-time of flight/mass spectrometry of the trypsin-released peptides. This approach identified two other LRR-RLKs, the BRASSINOSTEROID-INSENSITIVE1 (BRI1) receptor and its coreceptor, the SERK3 or BRI1-ASSOCIATED KINASE1 protein. In addition, KINASE-ASSOCIATED PROTEIN PHOSPHATASE, CDC48A, and 14-3-3nu were found. Finally, the MADS box transcription factor AGAMOUS-LIKE15 and an uncharacterized zinc finger protein, a member of the CONSTANS family, were identified as part of the SERK1 complex. Using blue native gel electrophoresis, we show that SERK1 and SERK3 are part of BRI1-containing multiple protein complexes with relative masses between 300 and 500 kD. The SERK1 mutant allele serk1-1 enhances the phenotype of the weak BRI1 allele bri1-119. Collectively, these results suggest that apart from SERK3, SERK1 is also involved in the brassinolide signaling pathway.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Eubel H, Braun HP, Millar AH. Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. PLANT METHODS 2005; 1:11. [PMID: 16287510 PMCID: PMC1308860 DOI: 10.1186/1746-4811-1-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/16/2005] [Indexed: 05/05/2023]
Abstract
Intact protein complexes can be separated by apparent molecular mass using a standard polyacrylamide gel electrophoresis system combining mild detergents and the dye Coomassie Blue. Referring to the blue coloured gel and the gentle method of solubilization yielding native and enzymatically active protein complexes, this technique has been named Blue-Native Polyacrylamide Gel-Electrophoresis (BN-PAGE). BN-PAGE has become the method of choice for the investigation of the respiratory protein complexes of the electron transfer chains of a range of organisms, including bacteria, yeasts, animals and plants. It allows the separation in two dimensions of extremely hydrophobic protein sets for analysis and also provides information on their native interactions. In this review we discuss the capabilities of BN-PAGE in proteomics and the wider investigation of protein:protein interactions with a focus on its use and potential in plant science.
Collapse
Affiliation(s)
- Holger Eubel
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Australia
| | - Hans-Peter Braun
- Abteilung Angewandte Genetik, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Australia
| |
Collapse
|
30
|
Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 2005; 102:10736-41. [PMID: 16027369 PMCID: PMC1176231 DOI: 10.1073/pnas.0502954102] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental changes and need to integrate multiple external stress cues. Calcium-dependent protein kinases (CDPKs) are implicated as major primary Ca2+ sensors in plants. CDPK activation, like activation of mitogen-activated protein kinases (MAPKs), is triggered by biotic and abiotic stresses, although distinct stimulus-specific stress responses are induced. To investigate whether CDPKs are part of an underlying mechanism to guarantee response specificity, we identified CDPK-controlled signaling pathways. A truncated form of Nicotiana tabacum CDPK2 lacking its regulatory autoinhibitor and calcium-binding domains was ectopically expressed in Nicotiana benthamiana. Infiltrated leaves responded to an abiotic stress stimulus with the activation of biotic stress reactions. These responses included synthesis of reactive oxygen species, defense gene induction, and SGT1-dependent cell death. Furthermore, N-terminal CDPK2 signaling triggered enhanced levels of the phytohormones jasmonic acid, 12-oxo-phytodienoic acid, and ethylene but not salicylic acid. These responses, commonly only observed after challenge with a strong biotic stimulus, were prevented when the CDPK's intrinsic autoinhibitory peptide was coexpressed. Remarkably, elevated CDPK signaling compromised stress-induced MAPK activation, and this inhibition required ethylene synthesis and perception. These data indicate that CDPK and MAPK pathways do not function independently and that a concerted activation of both pathways controls response specificity to biotic and abiotic stress.
Collapse
Affiliation(s)
- Andrea A Ludwig
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dresselhaus T, Amien S, Márton M, Strecke A, Brettschneider R, Cordts S. TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. THE PLANT CELL 2005; 17:730-45. [PMID: 15705951 PMCID: PMC1069695 DOI: 10.1105/tpc.104.028340] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 12/09/2004] [Indexed: 05/19/2023]
Abstract
We report the identification and functional analysis of TRANSPARENT LEAF AREA1 (TLA1), a maize (Zea mays) gene representing a novel class of secreted, extremely hydrophobic peptides (proteolipids) with a C-terminal Caax box-like motif. ZmTLA1 encodes 27 amino acid residues and is most strongly expressed in the egg cell and microspores. Lower transcript amounts were detected during vegetative development. Transgenic maize expressing an antisense transcript displayed a variety of phenotypes. The most visible phenotypes were dwarfism and transparent leaf areas resulting from defective morphogenesis of mesophyll, bundle sheath, stomatal, and epidermal cells during leaf development. Incomplete cell walls were observed, indicating a defect of cytokinesis. The accumulation of gerontoplasts was probably a secondary effect caused by defects of leaf cell morphogenesis. A defect of anther maturation was observed in approximately 30% of the plants displaying the tla phenotype. Male sterility was mainly caused by incomplete disintegration of the tapetal cell layers and tetrad callose as 90% of the microspores developed into functional pollen. Overexpression of ZmTLA1 seemed to have a lethal effect both in maize and Arabidopsis thaliana. Development of primary roots, root hairs, primary leaves, and chloroplasts was suppressed in Arabidopsis seedlings expressing an inducible ZmTLA1-green fluorescent protein (GFP) fusion protein. GFP signals were exclusively detected in cell walls. Based on our observations, we suggest that the ZmTLA1 peptide represents a class of novel plant morphogens required for the development and maturation of leaf and reproductive tissues.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
van der Hoorn RAL, Wulff BBH, Rivas S, Durrant MC, van der Ploeg A, de Wit PJGM, Jones JDG. Structure-function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. THE PLANT CELL 2005; 17:1000-15. [PMID: 15722474 PMCID: PMC1069714 DOI: 10.1105/tpc.104.028118] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/22/2004] [Indexed: 05/18/2023]
Abstract
The tomato (Lycopersicon pimpinellifolium) resistance protein Cf-9 belongs to a large class of plant proteins with extracytoplasmic Leu-rich repeats (eLRRs). eLRR proteins play key roles in plant defense and development, mainly as receptor-like proteins or receptor-like kinases, conferring recognition of various pathogen molecules and plant hormones. We report here a large-scale structure-function analysis of an eLRR protein. A total of 66 site-directed mutants of Cf-9 were analyzed for activity in Avr9 recognition and for protein stability and the results interpreted with the help of a homology model of the Cf-9 structure. Conserved Trp and Cys pairs in the N-terminal LRR-flanking domain appear to be important for Cf-9 activity and are probably exposed at the putative concave inner surface of the Cf-9 protein, where recognition specificity also resides. Removal of each of the 22 putative N-linked glycosylation sites (PGS) revealed that many PGSs contribute to Cf-9 activity and that the PGSs in the putative alpha-helices of the LRR modules are essential. Immunoblot analysis and mass spectrometry showed that all but one of the PGSs are N-glycosylated. Introduction of glycosylation at the putative concave beta-sheet surface blocks Cf-9 activity, in some cases probably by disturbing specific recognition, and in another case by steric hindrance with existing N-glycans. The glycosylation pattern and several other features are conserved in other eLRR proteins, where similar mutations show similar phenotypes.
Collapse
|
33
|
Rivas S, Thomas CM. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:395-436. [PMID: 16078890 DOI: 10.1146/annurev.phyto.43.040204.140224] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C. fulvum.
Collapse
Affiliation(s)
- Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS/INRA 2594, BP 52627, 31326 Castanet-Tolosan cedex, France.
| | | |
Collapse
|
34
|
Kruijt M, DE Kock MJD, de Wit PJGM. Receptor-like proteins involved in plant disease resistance. MOLECULAR PLANT PATHOLOGY 2005; 6:85-97. [PMID: 20565641 DOI: 10.1111/j.1364-3703.2004.00264.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated resistance genes of the RLP class are the tomato Cf genes, which confer resistance to the fungal pathogen Cladosporium fulvum. To date, several other RLP genes are known to be implicated in resistance in other plant-pathogen interactions. These include HcrVf2 from apple, Ve1 and Ve2 from tomato, and RPP27 from Arabidopsis, which are involved in resistance to Venturia, Verticillium and Peronospora, respectively. Furthermore, the tomato RLP gene LeEix initiates defence responses upon elicitation with a fungal ethylene-inducing xylanase (EIX) of non-pathogenic Trichoderma. The tomato Cf genes, which are the most intensively studied RLP resistance genes, are usually found in clusters of several homologues. Whereas some of these homologues are functional Cf resistance genes, others have no known function in resistance. Different evolutionary processes contribute to variation in functional Cf genes, and functional as well as non-functional homologues may provide a source for the generation of novel Cf resistance genes. To date, little is known of the proteins that interact with Cf proteins to initiate defence responses. In contrast to the LeEix protein and the corresponding EIX elicitor, for which a direct interaction was found, no direct interaction between Cf proteins and the corresponding C. fulvum elicitors has been demonstrated. Analogous to the CLAVATA signalling complex, which comprises an RLP, a receptor-like kinase (RLK) and a small proteineous ligand, Cf proteins may form a complex with RLKs and thus initiate signalling upon recognition of the corresponding elicitors. The presence of RLP resistance genes in diverse plant species suggests that these genes play an important role in the extracellular recognition of plant pathogens.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
35
|
Zhang Y, Dorey S, Swiderski M, Jones JDG. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:213-24. [PMID: 15447648 DOI: 10.1111/j.1365-313x.2004.02201.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis RPS4 gene belongs to the Toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) class of plant resistance (R) genes. It confers resistance to Pseudomonas syringae carrying the avirulence gene avrRps4. Transient expression of genomic RPS4 driven by the 35S promoter in tobacco leaves induces an AvrRps4-independent hypersensitive response (HR). The same phenotype is seen after expression of a full-length RPS4 cDNA. This indicates that alternative splicing of RPS4 is not involved in this HR. The extent of HR is correlated with RPS4 protein levels. Deletion analyses of RPS4 domains show the TIR domain is required for the HR phenotype. Mutations in the P-loop motif of the NB domain abolish the HR. Using virus-induced gene silencing, we found that the cell death resulting from RPS4 expression is dependent on the three plant signalling components EDS1, SGT1 and HSP90. All these data suggest that heterologous expression of an R gene can result in activation of cell death even in the absence of its cognate avirulence product, and provides a system for studying the RPS4 domains required for HR.
Collapse
Affiliation(s)
- Yan Zhang
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | |
Collapse
|
36
|
Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1206-20. [PMID: 15266054 PMCID: PMC519041 DOI: 10.1104/pp.104.045179] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/19/2004] [Accepted: 05/21/2004] [Indexed: 05/18/2023]
Abstract
A long-term goal of Arabidopsis research is to define the minimal gene set needed to produce a viable plant with a normal phenotype under diverse conditions. This will require both forward and reverse genetics along with novel strategies to characterize multigene families and redundant biochemical pathways. Here we describe an initial dataset of 250 EMB genes required for normal embryo development in Arabidopsis. This represents the first large-scale dataset of essential genes in a flowering plant. When compared with 550 genes with other knockout phenotypes, EMB genes are enriched for basal cellular functions, deficient in transcription factors and signaling components, have fewer paralogs, and are more likely to have counterparts among essential genes of yeast (Saccharomyces cerevisiae) and worm (Caenorhabditis elegans). EMB genes also represent a valuable source of plant-specific proteins with unknown functions required for growth and development. Analyzing such unknowns is a central objective of genomics efforts worldwide. We focus here on 34 confirmed EMB genes with unknown functions, demonstrate that expression of these genes is not embryo-specific, validate a strategy for identifying interacting proteins through complementation with epitope-tagged proteins, and discuss the value of EMB genes in identifying novel proteins associated with important plant processes. Based on sequence comparison with essential genes in other model eukaryotes, we identify 244 candidate EMB genes without paralogs that represent promising targets for reverse genetics. These candidates should facilitate the recovery of additional genes required for seed development.
Collapse
Affiliation(s)
- Iris Tzafrir
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hirano H, Islam N, Kawasaki H. Technical aspects of functional proteomics in plants. PHYTOCHEMISTRY 2004; 65:1487-1498. [PMID: 15276446 DOI: 10.1016/j.phytochem.2004.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 04/14/2004] [Indexed: 05/24/2023]
Abstract
Since the completion of genome sequences of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. This analysis is achieved by separation and identification of proteins, determination of their function and functional network, and construction of an appropriate database. Many improvements in separation and identification of proteins, such as two-dimensional electrophoresis, nano-liquid chromatography and mass spectrometry, have rapidly been achieved. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. These techniques have provided the possibility of high-throughput analysis of function and functional network of proteins in plants. However, to cope with the huge information emerging from proteome analyses, more sophisticated techniques and software are essential. The development and adaptation of such techniques will ease analyses of protein profiling, identification of post-translational modifications and protein-protein interaction, which are vital for elucidation of the protein functions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan.
| | | | | |
Collapse
|
38
|
Tör M, Brown D, Cooper A, Woods-Tör A, Sjölander K, Jones JDG, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. PLANT PHYSIOLOGY 2004; 135:1100-12. [PMID: 15155873 PMCID: PMC514143 DOI: 10.1104/pp.103.037770] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/06/2004] [Accepted: 02/11/2004] [Indexed: 05/18/2023]
Abstract
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR amplified from Ler-0 and transformed into mutant Col-rpp7.1 plants. Homozygous transgenic lines conferred resistance to Hiks1 and at least four Ler-0 avirulent/Columbia-0 (Col-0) virulent isolates of downy mildew pathogen. A full-length RPP27 cDNA was isolated, and analysis of the deduced amino acid sequences showed that the gene encodes a receptor-like protein (RLP) with a distinct domain structure, composed of a signal peptide followed by extracellular Leu-rich repeats, a membrane spanning region, and a short cytoplasmic carboxyl domain. RPP27 is the first RLP-encoding gene to be implicated in disease resistance in Arabidopsis, enabling the deployment of Arabidopsis techniques to investigate the mechanisms of RLP function. Homology searches of the Arabidopsis genome, using the RPP27, Cf-9, and Cf-2 protein sequences as a starting point, identify 59 RLPs, including the already known CLAVATA2 and TOO MANY MOUTHS genes. A combination of sequence and phylogenetic analysis of these predicted RLPs reveals conserved structural features of the family.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Complementation Test
- Immunity, Innate/genetics
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Peronospora/growth & development
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Mahmut Tör
- Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tör M, Brown D, Cooper A, Woods-Tör A, Sjölander K, Jones JDG, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. PLANT PHYSIOLOGY 2004; 135:1100-1112. [PMID: 15155873 DOI: 10.2307/4281828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR amplified from Ler-0 and transformed into mutant Col-rpp7.1 plants. Homozygous transgenic lines conferred resistance to Hiks1 and at least four Ler-0 avirulent/Columbia-0 (Col-0) virulent isolates of downy mildew pathogen. A full-length RPP27 cDNA was isolated, and analysis of the deduced amino acid sequences showed that the gene encodes a receptor-like protein (RLP) with a distinct domain structure, composed of a signal peptide followed by extracellular Leu-rich repeats, a membrane spanning region, and a short cytoplasmic carboxyl domain. RPP27 is the first RLP-encoding gene to be implicated in disease resistance in Arabidopsis, enabling the deployment of Arabidopsis techniques to investigate the mechanisms of RLP function. Homology searches of the Arabidopsis genome, using the RPP27, Cf-9, and Cf-2 protein sequences as a starting point, identify 59 RLPs, including the already known CLAVATA2 and TOO MANY MOUTHS genes. A combination of sequence and phylogenetic analysis of these predicted RLPs reveals conserved structural features of the family.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Complementation Test
- Immunity, Innate/genetics
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Peronospora/growth & development
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Mahmut Tör
- Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rivas S, Rougon-Cardoso A, Smoker M, Schauser L, Yoshioka H, Jones JDG. CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO J 2004; 23:2156-65. [PMID: 15131698 PMCID: PMC424418 DOI: 10.1038/sj.emboj.7600224] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 04/06/2004] [Indexed: 11/08/2022] Open
Abstract
To identify proteins involved in tomato Cf-9 resistance protein function, a yeast two-hybrid screen was undertaken using the cytoplasmic C-terminus of Cf-9 as bait. A thioredoxin-homologous clone, interacting specifically with Cf-9, was identified and called CITRX (Cf-9-interacting thioredoxin). Virus-induced gene silencing (VIGS) of CITRX resulted in an accelerated Cf-9/Avr9-triggered hypersensitive response in both tomato and Nicotiana benthamiana, accompanied by enhanced accumulation of reactive oxygen species, alteration of protein kinase activity and induction of defence-related genes. VIGS of CITRX also conferred increased resistance to the fungal pathogen Cladosporium fulvum in the otherwise susceptible Cf0 tomato. CITRX acts as a negative regulator of the cell death and defence responses induced through Cf-9, but not Cf-2. Recognition of the Cf-9 C-terminus by CITRX is necessary and sufficient for this negative regulation. This is the first study that implicates thioredoxin activity in the regulation of plant disease resistance.
Collapse
Affiliation(s)
- Susana Rivas
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Matthew Smoker
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Leif Schauser
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hirofumi Yoshioka
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
41
|
Rohila JS, Chen M, Cerny R, Fromm ME. Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:172-81. [PMID: 15053770 DOI: 10.1111/j.1365-313x.2004.02031.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A synthetic gene encoding the tandem affinity purification (TAP) tag has been constructed, and the TAP tag assayed for its effects on expression levels and subcellular localization by fusion to green fluorescent protein (GFP) as well as for its effects on steroid-dependent translocation to the nucleus and transcription when fused to a hybrid glucocorticoid receptor. A nuclear localization signal (NLS) was detected in the calmodulin-binding protein (CBP) domain and removed by mutation to improve the usefulness of the TAP tag. Additionally, purification improvements were made, including inhibition of a co-purifying protease, and adding a protein cross-linking step to increase the recovery of interacting proteins. The improved synthetic TAP tag gene and methods were used to isolate proteins interacting with the hybrid glucocorticoid receptor and to identify them by mass spectrometry. The two proteins identified, HSP70 and HSP90, are known to interact with the glucocorticoid receptor in vivo in mammalian cells and in vitro in plants.
Collapse
Affiliation(s)
- Jai S Rohila
- Plant Science Initiative, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
42
|
Torii KU. Leucine-Rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:1-46. [PMID: 15066372 DOI: 10.1016/s0074-7696(04)34001-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leucine-rich repeat receptor kinases (LRR-RKs) comprise the largest subfamily of transmembrane receptor-like kinases in plants, with over 200 members in Arabidopsis. LRR-RKs regulate a wide variety of developmental and defense-related processes including cell proliferation, stem cell maintenance, hormone perception, host-specific as well as non-host-specific defense response, wounding response, and symbiosis. Several studies indicate that LRR-RKs act as dimers, and some may form a receptor complex with leucine-rich repeat receptor-like proteins (LRR-RPs) that lack a cytoplasmic kinase domain. Despite the fact that structural features of LRR-RKs are fairy similar, five available ligand molecules for LRR-RKs are structurally diverse, from steroids (brassinolides) to peptides (phytosulfokine and systemin) and secreted proteins (CLV3). Precise ligand-binding sites of LRR-RKs are not understood. However, the extracellular "island" domain that intercepts the LRR domain in some LRR-RKs may play an important role in ligand binding. Advances in unveiling components of three LRR-RK signaling pathways, namely BRI1 in steroid signaling, CLV1 in meristem maintenance, and FLS2 in bacterial elicitor perception, revealed an intriguing link between plant LRR-RK and animal receptor signaling pathways. Finally, rapid progress made in LRR-RK research beyond the model system Arabidopsis has provided exciting, novel insights into the evolution of the LRR-RK signaling system in plants, such as BRI1 utilized in the wound-responsive signaling pathway in Solanaceae plants and recruitment of CLV1 in nodule development in leguminous plants.
Collapse
Affiliation(s)
- Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
43
|
van't Slot KAE, van den Burg HA, Kloks CPAM, Hilbers CW, Knogge W, Papavoine CHM. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold. J Biol Chem 2003; 278:45730-6. [PMID: 12944393 DOI: 10.1074/jbc.m308304200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the disease resistance response in a host plant frequently requires the interaction of a plant resistance gene product with a corresponding, pathogenderived signal encoded by an avirulence gene. The products of resistance genes from diverse plant species show remarkable structural similarity. However, due to the general paucity of information on pathogen avirulence genes the recognition process remains in most cases poorly understood. NIP1, a small protein secreted by the fungal barley pathogen Rhynchosporium secalis, is one of only a few fungal avirulence proteins identified and characterized to date. The defense-activating activity of NIP1 is mediated by barley resistance gene Rrs1. In addition, a role of the protein in fungal virulence is suggested by its nonspecific toxicity in leaf tissues of host and non-host cereals as well as its resistance gene-independent stimulatory effect on the plant plasma membrane H+-ATPase. Four naturally occurring NIP1 isoforms are characterized by single amino acid alterations that affect the different activities in a similar way. As a step toward unraveling the signal perception/transduction mechanism, the solution structure of NIP1 was determined. The protein structure is characterized by a novel fold. It consists of two parts containing beta-sheets of two and three anti-parallel strands, respectively. Five intramolecular disulfide bonds, comprising a novel disulfide bond pattern, stabilize these parts and their position with respect to each other. A comparative analysis of the protein structure with the properties of the NIP1 isoforms suggests two loop regions to be crucial for the resistance-triggering activity of NIP1.
Collapse
Affiliation(s)
- Klaas A E van't Slot
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:353-65. [PMID: 14617092 DOI: 10.1046/j.1365-313x.2003.01877.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial wilt, one of the most devastating bacterial diseases of plants worldwide, is caused by Ralstonia solanacearum and affects many important crop species. We show that several strains isolated from solanaceous crops in Europe are pathogenic in different accessions of Arabidopsis thaliana. One of these strains, 14.25, causes wilting symptoms in A. thaliana accession Landsberg erecta (Ler) and no apparent symptoms in accession Columbia (Col-0). Disease development and bacterial multiplication in the susceptible Ler accession depend on functional hypersensitive response and pathogenicity (hrp) genes, key elements for bacterial pathogenicity. Genetic analysis using Ler x Col-0 recombinant inbred lines showed that resistance is governed by at least three loci: QRS1 (Quantitative Resistance to R. solanacearum) and QRS2 on chromosome 2, and QRS3 on chromosome 5. These loci explain about 90% of the resistance carried by the Col-0 accession. The ERECTA gene, which encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) and affects development of aerial organs, is dimorphic in our population and lies close to QRS1. Susceptible Ler plants transformed with a wild-type ERECTA gene, and the LER line showed increased disease resistance to R. solanacearum as indicated by reduced wilt symptoms and impaired bacterial growth, suggesting unexpected cross-talk between resistance and developmental pathways.
Collapse
Affiliation(s)
- Laurence Godiard
- Laboratoire des Interactions Plantes-Microorganismes, CNRS-INRA, B.P. 27, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pop OI, Westermann M, Volkmer-Engert R, Schulz D, Lemke C, Schreiber S, Gerlach R, Wetzker R, Müller JP. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J Biol Chem 2003; 278:38428-36. [PMID: 12867413 DOI: 10.1074/jbc.m306516200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tat (twin-arginine protein translocation) system initially discovered in the thylakoid membrane of chloroplasts has been described recently for a variety of eubacterial organisms. Although in Escherichia coli four Tat proteins with calculated membrane spanning domains have been demonstrated to mediate Tat-dependent transport, a specific transport system for twin-arginine signal peptide containing phosphodiesterase PhoD of Bacillus subtilis consists of one TatA/TatC (TatAd/TatCd) pair of proteins. Here, we show that TatAd was found beside its membrane-integrated localization in the cytosol were it interacted with prePhoD. prePhoD was efficiently co-immunoprecipitated by TatAd. Inefficient co-immunoprecipitation of mature PhoD and missing interaction to Sec-dependent and cytosolic peptides by TatAd demonstrated a particular role of the twin-arginine signal peptide for this interaction. Affinity of prePhoD to TatAd was interfered by peptides containing the twin-arginine motif but remained active when the arginine residues were substituted. The selective binding of TatAd to peptides derived from the signal peptide of PhoD elucidated the function of the twin-arginine motif as a target site for pre-protein TatAd interaction. Substitution of the binding motif demonstrated the pivotal role of basic amino acid residues for TatA binding. These features suggest that TatA interacts prior to membrane integration with its pre-protein substrate and could therefore assist targeting of twin-arginine pre-proteins.
Collapse
Affiliation(s)
- Ovidiu I Pop
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Hans-Knöll-Strasse 2, Jena D-07745, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 2003; 278:34725-32. [PMID: 12821658 DOI: 10.1074/jbc.m305548200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant hormone ethylene is perceived by a five-member family of receptors related to the bacterial histidine kinases. The Raf-like kinase CTR1 functions downstream of the ethylene receptors as a negative regulator of ethylene signal transduction. CTR1 is shown here to be associated with membranes of the endoplasmic reticulum in Arabidopsis as a result of its interactions with ethylene receptors. Membrane association of CTR1 is reduced by mutations that eliminate ethylene receptors and by a mutation in CTR1 that reduces its ability to bind to the ethylene receptor ETR1. Direct evidence that CTR1 is part of an ethylene receptor signaling complex was obtained by co-purification of the ethylene receptor ETR1 with a tagged version of CTR1 from an Arabidopsis membrane extract. The histidine kinase activity of ETR1 is not required for its association with CTR1, based on co-purification of tagged ETR1 mutants and CTR1 after expression in a transgenic yeast system. These data demonstrate that CTR1 is part of an ethylene receptor signaling complex in Arabidopsis and support a model in which localization of CTR1 to the endoplasmic reticulum is necessary for its function. Additional data that demonstrate a post-transcriptional effect of ethylene upon the expression of CTR1 suggest that production of ethylene receptor signaling complexes may be coordinately regulated.
Collapse
Affiliation(s)
- Zhiyong Gao
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Recent important discoveries in several laboratories have identified SGT1 as an essential component of R gene-mediated disease resistance in plants. The precise molecular function of SGT1 remains unknown, although sequence analysis and structural predictions reveal that SGT1 has features of co-chaperones that associate with HSP90 in animals. This review will describe the role of SGT1 in R gene-mediated plant defence and discuss how SGT1 may regulate this process.
Collapse
Affiliation(s)
- Paul Muskett
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
48
|
Van Der Hoorn RAL, Rivas S, Wulff BBH, Jones JDG, Joosten MHAJ. Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:305-15. [PMID: 12887582 DOI: 10.1046/j.1365-313x.2003.01803.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gel filtration is frequently used to study the behaviour and composition of protein complexes. In previous studies, gel filtration analysis of solubilised membranes containing the tomato Cf-4 and Cf-9 resistance proteins indicated that these Cf proteins are present in an approximately 400- and 420-kDa protein complex, respectively, which contains only one Cf molecule per complex, does not contain Rho-related proteins, and does not alter in size upon elicitation. Here, we show that inactive Cf-4 and Cf-9 mutant proteins have a similar large apparent size upon gel filtration analysis. The size remains unaltered after pre-treating the samples under harsh conditions, such as boiling with SDS and incubation in 6 m urea. A similar large apparent size was found for Cf-4 and Cf-9 isolated from SDS gel and for Cf-9 expressed by insect cells. Therefore, the large apparent size observed in our studies appears to be an intrinsic property of the Cf proteins, rather than being caused by association with high-molecular-weight protein(s). Taken together, these results suggest that caution should be taken when interpreting data obtained from gel filtration of LRR-containing proteins.
Collapse
Affiliation(s)
- Renier A L Van Der Hoorn
- Wageningen University, Laboratory of Phytopathology, Binnenhaven 5, 6709 PD, Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
49
|
Varet A, Hause B, Hause G, Scheel D, Lee J. The Arabidopsis NHL3 gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to Pseudomonas syringae pv. tomato DC3000. PLANT PHYSIOLOGY 2003; 132:2023-33. [PMID: 12913158 PMCID: PMC181287 DOI: 10.1104/pp.103.020438] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 03/12/2003] [Accepted: 05/14/2003] [Indexed: 05/17/2023]
Abstract
The Arabidopsis genome contains a family of NDR1/HIN1-like (NHL) genes that show homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes. NHL3 is a pathogen-responsive member of this NHL gene family that is potentially involved in defense. In independent transgenic NHL3-overexpressing plant lines, a clear correlation between increased resistance to virulent Pseudomonas syringae pv. tomato DC3000 and enhanced NHL3 transcript levels was seen. These transgenic plants did not show enhanced pathogenesis-related gene expression or reactive oxygen species accumulation. Biochemical and localization experiments were performed to assist elucidation of how NHL3 may confer enhanced disease resistance. Gene constructs expressing amino-terminal c-myc-tagged or carboxyl-terminal hemagglutinin epitope (HA)-tagged NHL3 demonstrated membrane localization in transiently transformed tobacco leaves. Stable Arabidopsis transformants containing the NHL3-HA construct corroborated the findings observed in tobacco. The detected immunoreactive proteins were 10 kD larger than the calculated size and could be partially accounted for by the glycosylation state. However, the expected size was not attained with deglycosylation, suggesting possibly additional posttranslational modification. Detergent treatment, but not chemicals used to strip membrane-associated proteins, could displace the immunoreactive signal from microsomal fractions, showing that NHL3 is tightly membrane associated. Furthermore, immunofluorescence and immunogold labeling, coupled with two-phase partitioning techniques, revealed plasma membrane localization of NHL3-HA. This subcellular localization of NHL3 positions it at an initial contact site to pathogens and may be important in facilitating interception of pathogen-derived signals.
Collapse
Affiliation(s)
- Anne Varet
- Department of Stress and Developmental Biology, Institute of Plant Biochemistry, D-06120, Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
50
|
Bos JIB, Armstrong M, Whisson SC, Torto TA, Ochwo M, Birch PRJ, Kamoun S. Intraspecific comparative genomics to identify avirulence genes from Phytophthora. THE NEW PHYTOLOGIST 2003; 159:63-72. [PMID: 33873680 DOI: 10.1046/j.1469-8137.2003.00801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Members of the oomycete genus Phytophthora cause some of the most devastating plant diseases in the world and are arguably the most destructive pathogens of dicot plants. Phytophthora research has entered the genomics era. Current genomic resources include expressed sequence tags from a variety of developmental and infection stages, as well as sequences of selected regions of Phytophthora genomes. Genomics promise to impact upon our understanding of the molecular basis of infection by Phytophthora, for example, by facilitating the isolation of genes encoding effector molecules with a role in virulence and avirulence. Based on prevalent models of plant-pathogen coevolution, some of these effectors, notably those with avirulence functions, are predicted to exhibit significant sequence variation within populations of the pathogen. This and other features were used to identify candidate avirulence genes from sequence databases. Here, we describe a strategy that combines data mining with intraspecific comparative genomics and functional analyses for the identification of novel avirulence genes from Phytophthora. This approach provides a rapid and efficient alternative to classical positional cloning strategies for identifying avirulence genes that match known resistance genes. In addition, this approach has the potential to uncover 'orphan' avirulence genes for which corresponding resistance genes have not previously been characterized.
Collapse
Affiliation(s)
- Jorunn I B Bos
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Miles Armstrong
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Stephen C Whisson
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Trudy A Torto
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Mildred Ochwo
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Paul R J Birch
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sophien Kamoun
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|