1
|
Kirimi MT, Hoare D, Holsgrove M, Czyzewski J, Mirzai N, Mercer JR, Neale SL. Detection of Blood Clots Using a Whole Stent as an Active Implantable Biosensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304748. [PMID: 38342628 DOI: 10.1002/advs.202304748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Indexed: 02/13/2024]
Abstract
Many cardiovascular problems stem from blockages that form within the vasculature and often treatment includes fitting a stent through percutaneous coronary intervention. This offers a minimally invasive therapy but re-occlusion through restenosis or thrombosis formation often occurs post-deployment. Research is ongoing into the creation of smart stents that can detect the occurrence of further problems. In this study, it is shown that selectively metalizing a non-conductive stent can create a set of electrodes that are capable of detecting a build-up of material around the stent. The associated increase in electrical impedance across the electrodes is measured, testing the stent with blood clot to mimic thrombosis. It is shown that the device is capable of sensing different amounts of occlusion. The stent can reproducibly sense the presence of clot showing a 16% +/-3% increase in impedance which is sufficient to reliably detect the clot when surrounded by explanted aorta (one sample t-test, p = 0.009, n = 9). It is demonstrated that this approach can be extended beyond the 3D printed prototypes by showing that it can be applied to a commercially available stent and it is believed that it can be further utilized by other types of medical implants.
Collapse
Affiliation(s)
- Mahmut Talha Kirimi
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniel Hoare
- Institute of Cardiovascular and Medical Sciences/British Heart Foundation, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Holsgrove
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jakup Czyzewski
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nosrat Mirzai
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John R Mercer
- Institute of Cardiovascular and Medical Sciences/British Heart Foundation, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Steve L Neale
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Hoare D, Kingsmore D, Holsgrove M, Russell E, Kirimi MT, Czyzewski J, Mirzai N, Kennedy S, Neale SL, Mercer JR. Realtime monitoring of thrombus formation in vivo using a self-reporting vascular access graft. COMMUNICATIONS MEDICINE 2024; 4:15. [PMID: 38316912 PMCID: PMC10844314 DOI: 10.1038/s43856-024-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) affects 10% of the global population costing over a hundred billion dollars per annum and leading to increased risk of cardiovascular disease. Many patients with CKD require regular haemodialyses. Synthetic arteriovenous grafts (AVG) are increasingly used to provide rapid vascular connection for dialysis. Initially, they have excellent patency rates but are critically limited by neointimal hyperplasia at the venous anastomosis, which drives subsequent thrombosis, graft failure and death. METHODS Here, we describe a system in which electrical impedance spectroscopy sensors are incorporated circumferentially into the wall of a synthetic arteriovenous graft. This is combined with an implantable radiotelemetry system for data transmission outside the patient. The system was tested using monolayers of endothelial and smooth muscle cells as well as swine blood and clots with explanted human carotid artery plaques. Sensor testing was then performed in vitro and the device was implanted in vivo in female swine. RESULTS The device can wirelessly report the accumulation of biological material, both cells and blood. Differences are also detected when comparing controls with pathological atheroma. In swine differences between blockage formation in a graft were remotely obtained and wireless reported. CONCLUSIONS Combining electrical impedance spectroscopy and an implantable radiotelemetry system enables graft surveillance. This has the potential to be used for early detection of venous stenosis and blood clot formation in real-time in vivo. In principle, the concept could apply to other cardiovascular diseases and vascular implantable devices.
Collapse
Affiliation(s)
- Daniel Hoare
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - David Kingsmore
- Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Michael Holsgrove
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ewan Russell
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mahmut T Kirimi
- Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Jakub Czyzewski
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nosrat Mirzai
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Steven L Neale
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - John R Mercer
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Combining Electrostimulation with Impedance Sensing to Promote and Track Osteogenesis within a Titanium Implant. Biomedicines 2023; 11:biomedicines11030697. [PMID: 36979676 PMCID: PMC10045247 DOI: 10.3390/biomedicines11030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Background: Electrical stimulation is a promising alternative to promote bone fracture healing but with the limitation of tracking the osteogenesis progress in vivo. To overcome this issue, we present an opportunity to combine the electrical stimulation of a commercial titanium implant, which promotes osteogenesis within the fracture, with a real-time readout of the osteogenic progress by impedance sensing. This makes it possible to adjust the electrical stimulation modalities to the individual patient’s fracture healing process. (2) Methods: In detail, osteogenic differentiation of several cell types was monitored under continuous or pulsatile electrical stimulation at 0.7 V AC/20 Hz for at least seven days on a titanium implant by electric cell-substrate impedance sensing (ECIS). For control, chemical induction of osteogenic differentiation was induced. (3) Results: The most significant challenge was to discriminate impedance changes caused by proliferation events from those initiated by osteogenic differentiation. This discrimination was achieved by remodeling the impedance parameter Alpha (α), which increases over time for pulsatile electrically stimulated stem cells. Boosted α-values were accompanied by an increased formation of actin stress fibers and a reduced expression of the focal adhesion kinase in the cell periphery; morphological alterations known to occur during osteogenesis. (4) Conclusions: This work provided the basis for developing an effective fracture therapy device, which can induce osteogenesis on the one hand, and would allow us to monitor the induction process on the other hand.
Collapse
|
4
|
Real-Time Monitoring of the Cytotoxic and Antimetastatic Properties of Cannabidiol in Human Oral Squamous Cell Carcinoma Cells Using Electric Cell-Substrate Impedance Sensing. Int J Mol Sci 2022; 23:ijms232415842. [PMID: 36555480 PMCID: PMC9785110 DOI: 10.3390/ijms232415842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects. This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell-substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h. AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 μM CBD. This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.
Collapse
|
5
|
Real-Time Monitoring the Cytotoxic Effect of Andrographolide on Human Oral Epidermoid Carcinoma Cells. BIOSENSORS 2022; 12:bios12050304. [PMID: 35624605 PMCID: PMC9138648 DOI: 10.3390/bios12050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Andrographolide is an active diterpenoid compound extracted from Andrographis paniculata. It exhibits antiinflammatory and anticancer effects. Previous studies show that it is non-toxic to experimental animals. The leading causes of cancer are chronic inflammation and high blood glucose. This study determines the cytotoxic effect of andrographolide on cellular morphology, viability, and migration for human oral epidermoid carcinoma cell Meng-1 (OEC-M1). We use electric cell-substrate impedance sensing (ECIS) to measure the subsequent overall impedance changes of the cell monolayer in response to different concentrations of andrographolide for 24 h (10–100 µM). The results for exposure of OEC-M1 cells to andrographolide (10–100 µM) for 24 h show a concentration-dependent decrease in the overall measured resistance at 4 kHz. AlamarBlue cell viability assay and annexin V also show the apoptotic effect of andrographolide on OEC-M1 cells. A reduction in wound-healing recovery rate is observed for cells treated with 30 μM andrographolide. This study demonstrates that ECIS can be used for the in vitro screening of anticancer drugs. ECIS detects the cytotoxic effect of drugs earlier than traditional biochemical assays, and it is more sensitive and shows more detail.
Collapse
|
6
|
Buchini Labayen AC, Bellotti MI, Bast W, Bonetto FJ. Electrical cell impedance spectral mesoscopic model applied to experimental data of variable size microelectrodes. Phys Rev E 2022; 105:044401. [PMID: 35590599 DOI: 10.1103/physreve.105.044401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
We apply the electric cell-substrate impedance sensing (ECIS) technique to monolayers of Madin-Darby canine kidney type II cells cultured on microelectrodes of different sizes. We analyze the effect of the microelectrode radius on the parameters provided by existing ECIS models. The cellular properties inferred from the models should be invariant to the change in the microelectrode radius used for the measurements, since these properties are inherent to the type of cells studied. The current standard model, the Giaever-Keese (GK) model, derived from electrical balances of a single cell extended to infinity by suitable boundary conditions, assumes an infinite microelectrode. The model is fitted to experimental data acquired with a large-radius microelectrode, which can be considered infinite for practical purposes. We compute the impedance of the other cell-covered microelectrodes from the parameters obtained with the GK model, resulting in values strongly discrepant with the experimental data for small microelectrodes. We repeat the process with the mean field (MF) model, an alternative model that depends on the microelectrode radius but not on the cell radius. In this paper we introduce the mesoscopic model, an analytical model that simultaneously includes the properties of an individual cell and the sizes of the microelectrode and the insulator (region between the microelectrode and the ground). The impedances calculated with the mesoscopic model are in excellent agreement with experimental data. Finally, the mesoscopic model reduces to the MF model when the insulator goes to infinity and to the GK model when it goes to zero.
Collapse
Affiliation(s)
- Ana C Buchini Labayen
- Laboratorio de Cavitación y Biotecnología, Instituto Balseiro, Universidad Nacional de Cuyo/Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro AGP8402, Argentina
| | - Mariela I Bellotti
- Laboratorio de Cavitación y Biotecnología, Instituto Balseiro, Universidad Nacional de Cuyo/Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro AGP8402, Argentina
| | - Walter Bast
- Laboratorio de Cavitación y Biotecnología, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro AGP8402, Argentina
| | - Fabian J Bonetto
- Laboratorio de Cavitación y Biotecnología, Instituto Balseiro, Universidad Nacional de Cuyo/Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro AGP8402, Argentina
| |
Collapse
|
7
|
Kohls A, Maurer Ditty M, Dehghandehnavi F, Zheng SY. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6287-6306. [PMID: 35090107 PMCID: PMC9254017 DOI: 10.1021/acsami.1c20423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.
Collapse
|
8
|
Karsch S, Büchau F, Magin TM, Janshoff A. An intact keratin network is crucial for mechanical integrity and barrier function in keratinocyte cell sheets. Cell Mol Life Sci 2020; 77:4397-4411. [PMID: 31912195 PMCID: PMC11104923 DOI: 10.1007/s00018-019-03424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.
Collapse
Affiliation(s)
- Susanne Karsch
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Fanny Büchau
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany.
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0226. [PMID: 29786561 DOI: 10.1098/rstb.2017.0226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- W Gamal
- School of Electronic Engineering, Bangor University, Bangor LL57 1UT, UK
| | - H Wu
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - I Underwood
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - J Jia
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - S Smith
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
10
|
Detection of apoptotic and live pre-osteoblast cell line using impedance-based biosensors with variable electrode design. Biosens Bioelectron 2019; 128:37-44. [PMID: 30616216 DOI: 10.1016/j.bios.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023]
Abstract
Electrical impedance-based sensing of cell activity has become a powerful analytical tool that allows the monitoring of several relevant biological processes associated with cell evolution and morphology. In these types of biosensors, the electrode design has a direct impact on the sensitivity because it defines the capability of the biosensor to measure small changes in the impedance resulting from cell activities. Herein, impedance-based biosensors arrays with several configurations were successfully developed and used to study the impact of the electrode layout on the dynamics of cultured pre-osteoblast cells. The biosensor design was initially validated by measuring the effect of electrode design on the capacitance of a dielectric polymer (parylene) that mimics the dielectric characteristics of cell populations, results are shown in the Supplementary information section. Results from in vitro cell growth indicate that the optimized design of single electrodes with a diameter of 50 µm, are the most sensitive to cell motion whereas increasing the number of electrodes allows clear differentiation between living and dead cells after 3 h of inducing apoptosis. Apoptosis death was induced with Staurosporine, a chemical mediator of apoptosis in osteoblasts. These impedance results have been validated with optical imaging and flow cytometry analysis that were performed on parallel cultures. Frequency and electrolyte concentration effects are also discussed.
Collapse
|
11
|
Voiculescu I, Toda M, Inomata N, Ono T, Li F. Nano and Microsensors for Mammalian Cell Studies. MICROMACHINES 2018; 9:E439. [PMID: 30424372 PMCID: PMC6187600 DOI: 10.3390/mi9090439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
This review presents several sensors with dimensions at the nano- and micro-scale used for biological applications. Two types of cantilever beams employed as highly sensitive temperature sensors with biological applications will be presented. One type of cantilever beam is fabricated from composite materials and is operated in the deflection mode. In order to achieve the high sensitivity required for detection of heat generated by a single mammalian cell, the cantilever beam temperature sensor presented in this review was microprocessed with a length at the microscale and a thickness in the nanoscale dimension. The second type of cantilever beam presented in this review was operated in the resonant frequency regime. The working principle of the vibrating cantilever beam temperature sensor is based on shifts in resonant frequency in response to temperature variations generated by mammalian cells. Besides the cantilever beam biosensors, two biosensors based on the electric cell-substrate impedance sensing (ECIS) used to monitor mammalian cells attachment and viability will be presented in this review. These ECIS sensors have dimensions at the microscale, with the gold films used for electrodes having thickness at the nanoscale. These micro/nano biosensors and their mammalian cell applications presented in the review demonstrates the diversity of the biosensor technology and applications.
Collapse
Affiliation(s)
- Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA.
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Naoki Inomata
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Fang Li
- Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA.
| |
Collapse
|
12
|
Zhang X, Wang W, Li F, Voiculescu I. Stretchable impedance sensor for mammalian cell proliferation measurements. LAB ON A CHIP 2017; 17:2054-2066. [PMID: 28513702 DOI: 10.1039/c7lc00375g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the fabrication and testing of a novel stretchable electric cell-substrate impedance sensing (ECIS) lab on a chip device. This is the first time that ECIS electrodes were fabricated on a stretchable polydimethylsiloxane (PDMS) substrate and ECIS measurements were performed on mammalian cells exposed to cyclic strain. The stretchable ECIS biosensors simulate in vitro the dynamic environment of organisms, such as pulsation, bending and stretching, which enables investigations on cell behavior that undergoes mechanical stimuli in biological tissue. Usually cell-based assays used in cell mechanobiology rely on endpoint cell tests, which provide a limited view on dynamic cellular mechanisms. The ECIS technique is a label-free, real-time and noninvasive method to monitor the cellular response to mechanical stimuli. Bovine aortic endothelial cells (BAECs) have been used in this research because the BAECs are exposed in vivo to cyclic physiologic elongation produced by blood circulation in the arteries. These innovative stretchable ECIS biosensors were used to analyze the proliferation of BAECs under different cyclic mechanical stimulations. The results of fluorescence based cell proliferation assays confirmed that the stretchable ECIS sensors were able to analyze in real-time the BAEC proliferation. The novel stretchable ECIS sensor has the ability to analyse cell proliferation, determine the cell number and density, and apply mechanical stimulation at the same time.
Collapse
Affiliation(s)
- Xudong Zhang
- The City College of New York, Mechanical Engineering Department, USA.
| | | | | | | |
Collapse
|
13
|
Low K, Wong LY, Maldonado M, Manjunath C, Horner CB, Perez M, Myung NV, Nam J. Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System. Stem Cell Reports 2017; 8:1329-1339. [PMID: 28457888 PMCID: PMC5425683 DOI: 10.1016/j.stemcr.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/14/2023] Open
Abstract
Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Karen Low
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Lauren Y Wong
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Maricela Maldonado
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Chetas Manjunath
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Christopher B Horner
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Mark Perez
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA
| | - Nosang V Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Bourns Hall B355, 900 University Avenue, Riverside, CA 92521, USA
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, Materials Science & Engineering Building 331, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
14
|
Pajęcka K, Nielsen MN, Hansen TK, Williams JM. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating. Exp Cell Res 2017; 353:16-25. [PMID: 28237245 DOI: 10.1016/j.yexcr.2017.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/12/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). METHODS Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. RESULTS All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). CONCLUSION We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 - which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity.
Collapse
Affiliation(s)
- Kamilla Pajęcka
- Global Research, Novo Nordisk A/S, Måløv, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Troels Krarup Hansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
15
|
Messina W, Fitzgerald M, Moore E. SEM and ECIS Investigation of Cells Cultured on Nanopillar Modified Interdigitated Impedance Electrodes for Analysis of Cell Growth and Cytotoxicity of Potential Anticancer Drugs. ELECTROANAL 2016. [DOI: 10.1002/elan.201600025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Walter Messina
- Tyndall National Institute; University College Cork; Cork Republic Of Ireland
- University College Cork, Dept. Of Chemistry; Cork Republic Of Ireland
| | - Michelle Fitzgerald
- Tyndall National Institute; University College Cork; Cork Republic Of Ireland
| | - Eric Moore
- Tyndall National Institute; University College Cork; Cork Republic Of Ireland
- University College Cork, Dept. Of Chemistry; Cork Republic Of Ireland
| |
Collapse
|
16
|
Pandya HJ, Park K, Chen W, Goodell LA, Foran DJ, Desai JP. Toward a Portable Cancer Diagnostic Tool Using a Disposable MEMS-Based Biochip. IEEE Trans Biomed Eng 2016; 63:1347-53. [PMID: 26930673 PMCID: PMC4917475 DOI: 10.1109/tbme.2016.2535364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GOAL The objective of this study is to design and develop a portable tool consisting of a disposable biochip for measuring electrothermomechanical (ETM) properties of breast tissue. METHODS A biochip integrated with a microheater, force sensors, and electrical sensors is fabricated using microtechnology. The sensor covers the area of 2 mm and the biochip is 10 mm in diameter. A portable tool capable of holding tissue and biochip is fabricated using 3-D printing. Invasive ductal carcinoma and normal tissue blocks are selected from cancer tissue bank in Biospecimen Repository Service at Rutgers Cancer Institute of New Jersey. The ETM properties of the normal and cancerous breast tissues (3-mm thickness and 2-mm diameter) are measured by indenting the tissue placed on the biochip integrated inside the 3-D printed tool. RESULTS Integrating microengineered biochip and 3-D printing, we have developed a portable cancer diagnosis device. Using this device, we have shown a statistically significant difference between cancerous and normal breast tissues in mechanical stiffness, electrical resistivity, and thermal conductivity. CONCLUSION The developed cancer diagnosis device is capable of simultaneous ETM measurements of breast tissue specimens and can be a potential candidate for delineating normal and cancerous breast tissue cores. SIGNIFICANCE The portable cancer diagnosis tool could potentially provide a deterministic and quantitative information about the breast tissue characteristics, as well as the onset and disease progression of the tissues. The tool can be potentially used for other tissue-related cancers.
Collapse
Affiliation(s)
- Hardik J. Pandya
- Department of Mechanical Engineering, University of Maryland,
College Park, MD, USA. He is now with Brigham and Women’s Hospital -
Harvard Medical School, Cambridge, MA, USA
| | - Kihan Park
- Department of Mechanical Engineering, University of Maryland,
College Park, MD, USA
| | - Wenjin Chen
- Department of Pathology and Laboratory Medicine, Rutgers Robert
Wood Johnson Medical School, Rutgers, The State University of New Jersey,
New Brunswick, NJ, USA
| | - Lauri A. Goodell
- Department of Pathology and Laboratory Medicine, Rutgers Robert
Wood Johnson Medical School, Rutgers, The State University of New Jersey,
New Brunswick, NJ, USA
| | - David J. Foran
- Department of Pathology and Laboratory Medicine, Rutgers Robert
Wood Johnson Medical School, Rutgers, The State University of New Jersey,
New Brunswick, NJ, USA
| | - Jaydev P. Desai
- Department of Mechanical Engineering, University of Maryland,
College Park, MD, USA
| |
Collapse
|
17
|
Kanyong P, Hughes G, Pemberton RM, Jackson SK, Hart JP. Amperometric Screen-Printed Galactose Biosensor for Cell Toxicity Applications. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1070166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Pandya HJ, Park K, Desai JP. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2015; 25:075025. [PMID: 26526747 PMCID: PMC4624460 DOI: 10.1088/0960-1317/25/7/075025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens.
Collapse
Affiliation(s)
- Hardik J. Pandya
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kihan Park
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jaydev P. Desai
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Zhang X, Li F, Nordin AN, Tarbell J, Voiculescu I. Toxicity studies using mammalian cells and impedance spectroscopy method. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Pandya HJ, Kim HT, Roy R, Chen W, Cong L, Zhong H, Foran DJ, Desai JP. Towards an Automated MEMS-based Characterization of Benign and Cancerous Breast Tissue using Bioimpedance Measurements. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 199:259-268. [PMID: 25013305 PMCID: PMC4084740 DOI: 10.1016/j.snb.2014.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Micro-Electro-Mechanical-Systems (MEMS) are desirable for use within medical diagnostics because of their capacity to manipulate and analyze biological materials at the microscale. Biosensors can be incorporated into portable lab-on-a-chip devices to quickly and reliably perform diagnostics procedure on laboratory and clinical samples. In this paper, electrical impedance-based measurements were used to distinguish between benign and cancerous breast tissues using microchips in a real-time and label-free manner. Two different microchips having inter-digited electrodes (10 µm width with 10 µm spacing and 10 µm width with 30 µm spacing) were used for measuring the impedance of breast tissues. The system employs Agilent E4980A precision impedance analyzer. The impedance magnitude and phase were collected over a frequency range of 100 Hz to 2 MHz. The benign group and cancer group showed clearly distinguishable impedance properties. At 200 kHz, the difference in impedance of benign and cancerous breast tissue was significantly higher (3110 Ω) in the case of microchips having 10 µm spacing compared to microchip having 30 µm spacing (568 Ω).
Collapse
Affiliation(s)
- Hardik J. Pandya
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA
| | - Hyun Tae Kim
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA
| | - Rajarshi Roy
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA
| | - Wenjin Chen
- Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ-08901, USA
| | - Lei Cong
- Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ-08901, USA
| | - Hua Zhong
- Department of Pathology and Laboratory Medicine Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ-08903, USA
| | - David J. Foran
- Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ-08901, USA
| | - Jaydev P. Desai
- Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
21
|
Liu F, Nordin AN, Li F, Voiculescu I. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. LAB ON A CHIP 2014; 14:1270-1280. [PMID: 24463940 DOI: 10.1039/c3lc51085a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.
Collapse
Affiliation(s)
- F Liu
- Department of Mechanical Engineering, City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Hu N, Wang T, Cao J, Su K, Zhou J, Wu J, Wang P. Comparison between ECIS and LAPS for establishing a cardiomyocyte-based biosensor. SENSORS AND ACTUATORS B: CHEMICAL 2013; 185:238-244. [DOI: 10.1016/j.snb.2013.04.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Alexander FA, Celestin M, Price DT, Nanjundan M, Bhansali S. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies. Analyst 2013; 138:3728-34. [PMID: 23689543 DOI: 10.1039/c3an00176h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the design and evaluation of a multi-electrode design that improves upon the statistical significance and spatial resolution of cellular impedance data measured using commercial electric cell-substrate impedance sensing (ECIS) systems. By evaluating cellular impedance using eight independent sensing electrodes, position-dependent impedance measurements can be recorded across the device and compare commonly used equivalent circuit and mathematical models for extraction of cell parameters. Data from the 8-electrode device was compared to data taken from commercial electric cell-substrate impedance sensing (ECIS) system by deriving a relationship between equivalent circuit and mathematically modelled parameters. The impedance systems were evaluated and compared by investigating the effects of arsenic trioxide (As2O3), a well-established chemotherapeutic agent, on ovarian cancer cells. Impedance spectroscopy, a non-destructive, label-free technique, was used to continuously measure the frequency-dependent cellular properties, without adversely affecting the cells. The importance of multiple measurements within a cell culture was demonstrated; and the data illustrated that the non-uniform response of cells within a culture required redundant measurements in order to obtain statistically significant data, especially for drug discovery applications. Also, a correlation between equivalent circuit modelling and mathematically modelled parameters was derived, allowing data to be compared across different modelling techniques.
Collapse
Affiliation(s)
- Frank A Alexander
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | |
Collapse
|
25
|
Liu F, Li F, Nordin AN, Voiculescu I. A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. SENSORS 2013; 13:3039-55. [PMID: 23459387 PMCID: PMC3658730 DOI: 10.3390/s130303039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 10(4) cells/cm2 BAECs; 60 minutes for 2.0 × 10(4) cells/cm2 BAECs; 70 minutes for 3.0 × 10(4) cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.
Collapse
Affiliation(s)
- Fei Liu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA; E-Mail:
| | - Fang Li
- Mechanical Engineering Department, New York Institute of Technology, Old Westbury, NY 11568, USA; E-Mail:
| | - Anis Nurashikin Nordin
- Electrical and Computer Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia; E-Mail:
| | - Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-650-5210; Fax: +1-212-650-8013
| |
Collapse
|
26
|
Alexander FA, Price DT, Bhansali S. From Cellular Cultures to Cellular Spheroids: Is Impedance Spectroscopy a Viable Tool for Monitoring Multicellular Spheroid (MCS) Drug Models? IEEE Rev Biomed Eng 2013; 6:63-76. [DOI: 10.1109/rbme.2012.2222023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices. Diagnostics (Basel) 2012; 2:83-96. [PMID: 26859401 PMCID: PMC4665553 DOI: 10.3390/diagnostics2040083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
Cell-based biosensors provide new horizons for medical diagnostics by adopting complex recognition elements such as mammalian cells in microfluidic devices that are simple, cost efficient and disposable. This combination renders possible a new range of applications in the fields of diagnostics and personalized medicine. The review looks at the most recent developments in cell-based biosensing microfluidic systems with electrical and electrochemical transduction, and relevance to medical diagnostics.
Collapse
|
28
|
Chen CJ, Liu JT, Chang SJ, Lee MW, Tsai JZ. Development of a portable impedance detection system for monitoring the growth of mouse L929 cells. J Taiwan Inst Chem Eng 2012. [DOI: 10.1016/j.jtice.2012.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Sarró E, Lecina M, Fontova A, Solà C, Gòdia F, Cairó J, Bragós R. Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosens Bioelectron 2012; 31:257-63. [DOI: 10.1016/j.bios.2011.10.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022]
|
30
|
Primiceri E, Chiriacò MS, Dioguardi F, Monteduro AG, D'Amone E, Rinaldi R, Giannelli G, Maruccio G. Automatic transwell assay by an EIS cell chip to monitor cell migration. LAB ON A CHIP 2011; 11:4081-6. [PMID: 22012570 DOI: 10.1039/c1lc20540d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here an EIS (electrochemical impedance spectroscopy) biochip to detect cell migration is demonstrated. This biochip has been inspired by a traditional transwell assay/modified Boyden chamber and consists of two compartments separated by a porous membrane. This structure (PDMS-based) is aligned to EIS sensors. Cells are seeded in the upper chamber through microfluidic channels. During migration cells go through the pores of the membrane and get in touch with the electrodes that detect migrated cells. The performance of our cell-chip was tested by investigating the migratory ability of hepatocellular carcinoma (HCC) cells as a function of microenvironment. For this purpose we challenged HCC cells to migrate on different extra-cellular matrix (ECM) components including laminin 1, collagen IV and laminin 5. The results reveal that our cell chip provides reliable results that consistently overlap with those obtained with traditional standardized Boyden chambers. Thus, we demonstrate a new, easy tool to study cell migration and to perform automatic assays. This approach is easier and faster than traditional transwell assays and can be suitable for high-throughput studies in drug discovery applications.
Collapse
|
31
|
Wissenwasser J, Vellekoop MJ, Kapferer W, Lepperdinger G, Heer R. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:115110. [PMID: 22129016 DOI: 10.1063/1.3664614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.
Collapse
Affiliation(s)
- J Wissenwasser
- Nano-Systems, AIT Austrian Institute of Technology GmbH, 1220 Wien, Austria
| | | | | | | | | |
Collapse
|
32
|
Kiilerich-Pedersen K, Poulsen CR, Jain T, Rozlosnik N. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells. Biosens Bioelectron 2011; 28:386-92. [PMID: 21840702 DOI: 10.1016/j.bios.2011.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/31/2023]
Abstract
The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a micro fluidic system on conductive polymer PEDOT:TsO microelectrodes by electrochemical impedance spectroscopy and video time lapse microscopy. Employing this sensitive, real time electrochemical technique, we could measure the immediate cell response to cytomegalovirus, and detect an infection within 3h, which is several hours before the cytopathic effect is apparent with conventional imaging techniques. Atomic force microscopy and scanning ion conductance microscopy imaging consolidate the electrochemical measurements by demonstrating early virus induced changes in cell morphology of apparent programmed cell death.
Collapse
Affiliation(s)
- Katrine Kiilerich-Pedersen
- Technical University of Denmark, Department of Micro- and Nanotechnology, Oersteds Plads 345 East, DK-2800 Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
33
|
Effects of osmolarity on human epithelial conjunctival cells using an electrical technique. Graefes Arch Clin Exp Ophthalmol 2011; 249:1875-82. [PMID: 21773768 DOI: 10.1007/s00417-011-1723-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND The purpose of this study is to report the effect of different media osmolarity on a cell line monolayer of normal human conjunctival epithelia (IOBA-NHC) using Electric Cell-substrate Impedance Sensing (ECIS). METHODS We built our own ECIS system. We fabricated biocompatible microelectrodes. We used a monolayer of IOBA-NHC cells with media at different osmolarities (315, 360, 446, and 617 mOsm/l). RESULTS When there is an increase in hyperosmolarity, there is a slight decrease in the measured resistance of the naked microelectrode (without cells), whereas its capacitance remained practically unchanged. The evaluation of resistance and capacitance of a microelectrode covered by a monolayer of IOBA-NHC in relation to a naked microelectrode showed no difference in the standard media (315 mOsm/l), a small difference with 360 mOsm/l, and significant differences with hyperosmolarities of 446 mOsm/l and 610 mOsm/l. The resistance with a confluent cell monolayer is up to three times greater compared to the value of the resistance of the naked electrode with standard media. CONCLUSIONS Both resistance and capacitance measurements for the cell monolayer were sensitive to changes in osmolarity.
Collapse
|
34
|
Bellotti MI, Bast W, Berra A, Bonetto FJ. A new experimental device to evaluate eye ulcers using a multispectral electrical impedance technique. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:074303. [PMID: 21806204 DOI: 10.1063/1.3615241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.
Collapse
Affiliation(s)
- Mariela I Bellotti
- Laboratorio de Cavitación y Biotecnología, Instituto Balseiro/CAB-CONICET, 8400 San Carlos de Bariloche, RN, Argentina
| | | | | | | |
Collapse
|
35
|
Graham AHD, Robbins J, Bowen CR, Taylor J. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. SENSORS (BASEL, SWITZERLAND) 2011; 11:4943-71. [PMID: 22163884 PMCID: PMC3231360 DOI: 10.3390/s110504943] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 11/16/2022]
Abstract
The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.
Collapse
Affiliation(s)
- Anthony H. D. Graham
- Department of Electronic & Electrical Engineering, University of Bath, Bath, BA2 7AY, UK; E-Mail:
| | - Jon Robbins
- Receptors & Signalling, Wolfson CARD, King’s College London, London SE1 1UL, UK; E-Mail:
| | - Chris R. Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK; E-Mail:
| | - John Taylor
- Department of Electronic & Electrical Engineering, University of Bath, Bath, BA2 7AY, UK; E-Mail:
| |
Collapse
|
36
|
A cell-based impedance assay for monitoring transient receptor potential (TRP) ion channel activity. Biosens Bioelectron 2011; 26:2376-82. [DOI: 10.1016/j.bios.2010.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/29/2023]
|
37
|
Kandasamy K, Choi CS, Kim S. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance. NANOTECHNOLOGY 2010; 21:375501. [PMID: 20714049 DOI: 10.1088/0957-4484/21/37/375501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.
Collapse
|
38
|
Real-time monitoring of copper ions-induced cytotoxicity by EIS cell chips. Biosens Bioelectron 2010; 25:2711-6. [DOI: 10.1016/j.bios.2010.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/21/2010] [Indexed: 11/22/2022]
|
39
|
English AE, Moy AB, Kruse KL, Ward RC, Kirkpatrick SS, Goldman MH. Instrumental noise estimates stabilize and quantify endothelial cell micro-impedance barrier function parameter estimates. Biomed Signal Process Control 2009. [DOI: 10.1016/j.bspc.2008.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG. Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 2009; 24:1667-73. [DOI: 10.1016/j.bios.2008.08.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/31/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
|
41
|
Ahmad A, Moore EJ. Comparison of Cell-Based Biosensors with Traditional Analytical Techniques for Cytotoxicity Monitoring and Screening of Polycyclic Aromatic Hydrocarbons in the Environment. ANAL LETT 2009. [DOI: 10.1080/00032710802564852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Abraham JK, Yoon H, Chintakuntla R, Kavdia M, Varadan VK. Nanoelectronic interface for lab-on-a-chip devices. IET Nanobiotechnol 2008; 2:55-61. [PMID: 19045838 DOI: 10.1049/iet-nbt:20070030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innovations in microfabricated analytical devices integrated with microelectronic circuits and biological cells show promising results in detection, diagnosis and analysis. Planar metallic microelectrodes are widely used for the electrical interface with the biological cells. Issues with the current microelectrode array design are the difficulty in selective integration with a cell, the size dependency of its impedance and the large amount of noise in the circuit due to this mismatch. It is quite evident that an approach utilising nanotechnology can solve some of these problems by yielding efficient electrical interconnections. The design and development of a planar microelectrode array integrated with vertically aligned nanowires for lab-on-a-chip (LoC) device applications are presented. The nanowire integrated microelectrode arrays for LoC devices show promising results with respect to impedance control due to increased surface area. The authors have fabricated nanowire integrated microelectrode arrays on silicon and flexible polymer substrates using the template method. A high degree of specific growth is achieved by controlling the nanowire synthesis parameters. An attempt has been made to integrate biological cells into the nanowires by culturing endothelial cells onto the microelectrode array.
Collapse
Affiliation(s)
- J K Abraham
- Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
43
|
Wang L, Wang H, Wang L, Mitchelson K, Yu Z, Cheng J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosens Bioelectron 2008; 24:14-21. [PMID: 18511255 DOI: 10.1016/j.bios.2008.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/11/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
A PDMS-glass based micro-device was designed and fabricated with 12 coplanar impedance sensors integrated for electrical cell-substrate impedance sensing (ECIS). The sensitivity and frequency characteristics of the sensors were investigated both theoretically (equivalent circuit model) and experimentally for the commonly used micro-electrode dimension scale (20-80 microm). The experimental results matched well with the theoretical model analysis and revealed that, within this micro-electrode dimension scale, as the electrode width decreased or as the total electrode length decreased the sensitivity of sensor increased over the whole sensing frequency range, whilst electrode to electrode distance had no influence on sensitivity. Through our frequency characteristics analysis, the whole frequency range could be divided into four parts. New functions describing the dominant components in each frequency range were defined and validated experimentally, and could be used to explain the phenomenon of an ECIS sensing frequency window. The contribution to the impedance measurement of cells growing on the edges of the electrodes was determined for the first time. Finally, novel proposals for ECIS sensor design and ECIS measurements were presented.
Collapse
Affiliation(s)
- Lei Wang
- Medical Systems Biology Research Center, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
44
|
Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens Bioelectron 2007; 23:536-42. [PMID: 17826975 DOI: 10.1016/j.bios.2007.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/11/2007] [Accepted: 06/27/2007] [Indexed: 11/29/2022]
Abstract
Using an electrical measurement known as electric cell-substrate impedance sensing (ECIS), we have recorded the dynamics of viral infections in cell culture. With this technique, cells are cultured on small gold electrodes where the measured impedance mirrors changes in attachment and morphology of cultured cells. As the cells attach and spread on the electrode, the measured impedance increases until the electrode is completely covered. Viral infection inducing cytopathic effect results in dramatic impedance changes, which are mainly due to cell death. In the current study, two different fish cell lines have been used: chinook salmonid embryonic (CHSE-214) cells infected with infectious pancreatic necrosis virus (IPNV) and epithelioma papulosum cyprini (EPC) carp cells infected with infectious hematopoeitic necrosis virus (IHNV). The impedance changes caused by cell response to virus are easily measured and converted to resistance and capacitance. An approximate linear correlation between log of viral titer and time of cell death was determined.
Collapse
|
45
|
English AE, Squire JC, Bodmer JE, Moy AB. Endothelial cell electrical impedance parameter artifacts produced by a gold electrode and phase sensitive detection. IEEE Trans Biomed Eng 2007; 54:863-73. [PMID: 17518283 DOI: 10.1109/tbme.2007.893468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Frequency dependent cellular micro-impedance estimates obtained from a gold two-electrode configuration using phase sensitive detection have become increasingly used to evaluate cellular barrier model parameters. The results of this study show that cellular barrier function parameter estimates optimized using measurements obtained from this biosensor are highly susceptible to both time dependent and systematic instrumental artifacts. Based on a power spectral analysis of experimentally measured microelectrode voltages, synchronous, 60 Hz, and white Gaussian noise were identified as the most significant time dependent instrumental artifacts. The reduction of these artifacts using digital filtering produced a corresponding reduction in the optimized model parameter fluctuations. Using a series of instrumental circuit models, this study also shows that electrode impedance voltage divider effects and circuit capacitances can produce systematic deviations in cellular barrier function parameter estimates. Although the implementation of an active current source reduced the voltage divider effects, artifacts produced by coaxial cable and other circuit capacitive elements at frequencies exceeding 1 kHz still remained. Reducing time dependent instrumental fluctuations and systematic errors produced a significant reduction in cellular model barrier parameter errors and improved the model fit to experimental data.
Collapse
|
46
|
Liu Y, Smela E, Nelson NM, Abshire P. Cell-lab on a chip: a CMOS-based microsystem for culturing and monitoring cells. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:2534-7. [PMID: 17270789 DOI: 10.1109/iembs.2004.1403729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a MEMS-on-CMOS microsystem to encage, culture, and monitor cells. The system was designed to perform long-term measurements on arrays of single electrically active cells. A MEMS process flow was developed for the fabrication of closeable microvials to contain each cell, a custom bio-amplifier CMOS chip was designed, fabricated, and tested, and the fabrication of the MEMS structures on this chip was demonstrated. In addition, bovine aortic smooth muscle cells were plated on the surface, and over the course of a week they adhered, formed processes, and reproduced, verifying the compatibility of the materials used with the cell culture.
Collapse
Affiliation(s)
- Yingkai Liu
- Dept. of Mech. Eng., Maryland Univ., College Park, MD, USA
| | | | | | | |
Collapse
|
47
|
Urdapilleta E, Bellotti M, Bonetto FJ. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:041908. [PMID: 17155097 DOI: 10.1103/physreve.74.041908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Indexed: 05/12/2023]
Abstract
In this paper we present a model to describe the electrical properties of a confluent cell monolayer cultured on gold microelectrodes to be used with electric cell-substrate impedance sensing technique. This model was developed from microscopic considerations (distributed effects), and by assuming that the monolayer is an element with mean electrical characteristics (specific lumped parameters). No assumptions were made about cell morphology. The model has only three adjustable parameters. This model and other models currently used for data analysis are compared with data we obtained from electrical measurements of confluent monolayers of Madin-Darby Canine Kidney cells. One important parameter is the cell-substrate height and we found that estimates of this magnitude strongly differ depending on the model used for the analysis. We analyze the origin of the discrepancies, concluding that the estimates from the different models can be considered as limits for the true value of the cell-substrate height.
Collapse
Affiliation(s)
- E Urdapilleta
- Laboratorio de Cavitación y Biotecnología, Instituto Balseiro, CAB/CNEA, 8400 S.C. de Bariloche, RN, Argentina
| | | | | |
Collapse
|
48
|
|
49
|
Bragós R, Sarro E, Fontova A, Soley A, Cairó J, Bayés-Genís A, Rosell J. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:2106-2109. [PMID: 17946497 DOI: 10.1109/iembs.2006.260287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aim of this work is to provide optimization tools for cell and tissue engineering processes through continuous monitoring of cell cultures. Structural cell properties can be obtained from non-destructive electrical measurements by using electrical impedance spectroscopy (EIS). EIS measurements on monolayer animal cell cultures are usually performed using a two-electrode strategy. Because of this, the measurement is very sensitive to the electrode covering ratio and to the degree of adherence of cells. Of course, these parameters give useful information but can mask the behaviour of the cell layer above the electrodes. In a previous work, preliminary measurements with commercial microelectrode structures were performed with simulated grow processes using the settlement of cell suspensions with two and four microelectrode strategies to validate the technique. In this work, real cell growths of Vero cells are described and the resulting EIS biomass density estimators are compared to cell counts. The four-electrode impedance spectra are fitted to the Cole-Cole impedance model and the time course of their parameters are extracted and studied.
Collapse
Affiliation(s)
- R Bragós
- Electron. Eng. Dept., Tech. Univ. of Catalonia UPC, Campus Nord, C-4 c/ Jordi Girona 1-3, 08034 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yeon JH, Park JK. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal Biochem 2005; 341:308-15. [PMID: 15907877 DOI: 10.1016/j.ab.2005.03.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Indexed: 10/25/2022]
Abstract
This paper presents the use of electrochemical impedance measurement on a cell chip to monitor cell growth as a consequence of treatment with potentially cytotoxic agents. The cell chip consists of an eight-well cell culture chamber incorporated with a three-electrode system on each well. The gold electrode for impedance measurements is fabricated by sputtering on polycarbonate film. Human hepatocellular carcinoma cell (HepG2) is adapted to cytotoxicity test using the cell chip. Although the relatively small quantity of cells on the electrode has been measured indirectly, the cell chip can monitor toxic effects on the HepG2 cells cultured in the cell chip continuously and detect cellular behavior without multiple reagents. The cells in the stationary phase after plating are used for the cytotoxicity experiment and the impedance is decreased after treatments with several toxicants, such as tamoxifen and menadione, indicating the detachment of dead cells. These results reveal that the microfabricated cell chip system provides an easy and real-time monitoring method for cytotoxicity test.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | |
Collapse
|