1
|
Duan SG, Mao L, Sun SF, Chen RD, Taha Abdelkhalek S, Wang MQ. Key site residues of Cnaphalocrocis medinalis odorant-binding protein 13 CmedOBP13 involved in interacting with rice plant volatiles. Int J Biol Macromol 2025; 290:139007. [PMID: 39708865 DOI: 10.1016/j.ijbiomac.2024.139007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Odorant binding proteins (OBPs) play key roles in the insect olfactory system by assisting the neuronal response to hydrophobic odor molecules, understanding their interaction with ligands will facilitate the virtual screening of behaviorally active compounds in insects. Here, we successfully cloned and confirmed CmedOBP13, an antennae-biased OBP from the rice leaffolder Cnaphalocrocis medinalis, as a secreted protein. Recombinant CmedOBP13 was obtained using the Escherichia coli system, and its binding affinities to 35 volatile compounds emitted by rice plants and three sex pheromone components from female moths were assessed by a competitive binding assay. The results revealed that CmedOBP13 exhibited binding affinity to 23 rice volatiles, while no binding affinity for sex pheromone components. Furthermore, the stability of its conformation was found to be dependent on the pH level. Finally, the interaction between CmedOBP13 and odorants was predicted and confirmed by molecular docking and mutation functional assays, respectively. The combination of multiple hydrophobic residues created an adequate hydrophobic setting for ligands, and three residues (Glu13, Arg34, and Tyr115) might form hydrogen bonds with 15 odorants. Single mutations of Glu13, Arg34, Leu72, and Tyr115 diminished the binding affinities of CmedOBP13 to corresponding odorants, respectively. These findings provided valuable insights into the mode of action of CmedOBP13 interacting with the volatiles of rice plants and will guide the screening of behaviorally active compounds against C. medinalis in future.
Collapse
Affiliation(s)
- Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Ling Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuang-Feng Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Xianning Bureau of Agriculture and Rural Affairs, Xianning 437100, PR China
| | - Ru-Di Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
3
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
4
|
Liu Q, Yin MZ, Ma S, Gu N, Qian LF, Zhang YN, Li XM. Ligand-binding properties of chemosensory protein 1 in Callosobruchus chinensis to mung bean volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105394. [PMID: 37105632 DOI: 10.1016/j.pestbp.2023.105394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Callosobruchus chinensis (Coleoptera: Fabaceae) is a worldwide pest that feeds exclusively on legumes, and is the most serious pest affecting mung beans. Usually, the insect olfactory system plays a predominant role in searching for host plants and egg-laying locations. Chemosensory proteins (CSPs), are mainly responsible for transporting specific odour molecules from the environment. In this study, we found that the CSP1 gene of adult C. chinensis displayed antennae-biased expression using quantitative real-time PCR (qRT-PCR) analysis. The binding properties of 23 mung bean volatiles were then determined through several analyses of in vitro recombinant CSP1 protein, including fluorescence competitive binding assay, homology modelling, molecular docking, and site-directed mutagenesis. Fluorescence competitive binding assays showed that CchiCSP1 protein could bind to four mung bean volatiles and was most stable at pH 7.4. After site-directed mutation of three key amino acid bases (L39, V25, and Y35), their binding affinities to each ligand were significantly decreased or lost. This indicated that these three amino acid residues may be involved in the binding of CchiCSP1 to different ligands. We further used Y-tube behavioural bioassays to find that the four mung bean volatiles had a significant attraction or repulsion response in adult C. chinensis. The above findings confirm that the CchiCSP1 protein may be involved in the response of C. chinensis to mung bean volatiles and plays an important role in olfactory-related behaviours. The four active volatiles are expected to develop into new behavioural attractants or repellents in the future.
Collapse
Affiliation(s)
- Qiang Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Nan Gu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Li-Fu Qian
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
5
|
Guimarães DO, Ferro M, Santos TS, Costa TR, Yoneyama KAG, Rodrigues VDM, Henrique-Silva F, Rodrigues RS. Transcriptomic and biochemical analysis from the venom gland of the neotropical ant Odontomachus chelifer. Toxicon 2023; 223:107006. [PMID: 36572114 DOI: 10.1016/j.toxicon.2022.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
The genus Odontomachus is widely distributed in neotropical areas throughout Central and South America. It is a stinging ant that subdues its prey (insects) by injecting them a cocktail of toxic molecules (venom). Ant venoms are generally composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Odontomachus chelifer is an ant that inhabits neotropical regions from Mexico to Argentina. Unlike the venom of other animals such as scorpions, spiders and snakes, this ant venom has seldom been analyzed comprehensively, and their compositions are not yet completely known. In the present study, we performed a partial investigation of enzymatic and functional activities of O. chelifer ant venom, and we provide a global insight on the transcripts expressed in the venom gland to better understand their properties. The crude venom showed phospholipase A2 and antiparasitic activities. RNA sequencing (Illumina platform) of the venom gland of O. chelifer generated 61, 422, 898 reads and de novo assembly Trinity generated 50,220 contigs. BUSCO analysis against Arthropoda_db10 showed that 92.89% of the BUSCO groups have complete gene representation (single-copy or duplicated), while 4.05% are only partially recovered, and 3.06% are missing. The 30 most expressed genes in O. chelifer venom gland transcriptome included important transcripts involved in venom function such as U-poneritoxin (01)-Om1a-like (pilosulin), chitinase 2, venom allergen 3, chymotrypsin 1 and 2 and glutathione S-transferase. Analysis of the molecular function revealed that the largest number of transcripts were related to catalytic activity, including phospholipases. These data emphasize the potential of O. chelifer venom for prospection of molecules with biotechnological application.
Collapse
Affiliation(s)
- Denise Oliveira Guimarães
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Thamires Silva Santos
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tassia Rafaela Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luis, Km 235, São Carlos, 13565-905, SP, Brazil.
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Liu J, Liu H, Yi J, Mao Y, Li J, Sun D, An Y, Wu H. Transcriptome Characterization and Expression Analysis of Chemosensory Genes in Chilo sacchariphagus (Lepidoptera Crambidae), a Key Pest of Sugarcane. Front Physiol 2021; 12:636353. [PMID: 33762968 PMCID: PMC7982955 DOI: 10.3389/fphys.2021.636353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insect chemoreception involves many families of genes, including odourant/pheromone binding proteins (OBP/PBPs), chemosensory proteins (CSPs), odourant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs), which play irreplaceable roles in mediating insect behaviors such as host location, foraging, mating, oviposition, and avoidance of danger. However, little is known about the molecular mechanism of olfactory reception in Chilo sacchariphagus, which is a major pest of sugarcane. A set of 72 candidate chemosensory genes, including 31 OBPs/PBPs, 15 CSPs, 11 ORs, 13 IRs, and two SNMPs, were identified in four transcriptomes from different tissues and genders of C. sacchariphagus. Phylogenetic analysis was conducted on gene families and paralogs from other model insect species. Quantitative real-time PCR (qRT-PCR) showed that most of these chemosensory genes exhibited antennae-biased expression, but some had high expression in bodies. Most of the identified chemosensory genes were likely involved in chemoreception. This study provides a molecular foundation for the function of chemosensory proteins, and an opportunity for understanding how C. sacchariphagus behaviors are mediated via chemical cues. This research might facilitate the discovery of novel strategies for pest management in agricultural ecosystems.
Collapse
Affiliation(s)
- Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Huan Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongkai Mao
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Wanchoo A, Zhang W, Ortiz-Urquiza A, Boswell J, Xia Y, Keyhani NO. Red Imported Fire Ant ( Solenopsis invicta) Chemosensory Proteins Are Expressed in Tissue, Developmental, and Caste-Specific Patterns. Front Physiol 2020; 11:585883. [PMID: 33192598 PMCID: PMC7646262 DOI: 10.3389/fphys.2020.585883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The red imported fire ant, Solenopsis invicta, is a eusocial invasive insect that has spread worldwide. Chemosensory proteins (CSPs) are ligand-binding proteins that participate in a diverse range of physiological processes that include olfaction and chemical transport. Here, we performed a systematic survey of the expression of the 21 gene S. invicta CSP family that includes at least two groups of apparent S. invicta-specific gene expansions. These data revealed caste, tissue, and developmental stage-specific differential expression of the SiCSPs. In general, moderate to high SiCSP expression was seen in worker antennae and abdomen tissues with lower expression in head/thorax regions. Male and female alates showed high antennal expression of fewer SiCSPs, with the female alate thorax showing comparatively high SiCSP expression. SiCSP expression was lower in male alates tissues compared to workers and female alates, albeit with some highly expressed SiCSPs. SiCSP expression was low during development including in eggs, larvae (early and late instars), and pupae. Global analyses revealed examples of conserved, divergent, and convergent SiCSP expression patterns linked to phylogenetic relationships. The developmental and caste-specific variation seen in SiCSP expression patterns suggests specific functional diversification of CSPs that may translate into differential chemical recognition and communication among individuals and/or reflect other cellular roles of CSPs. Our results support a model for CSPs acting as general ligand carriers involved in a wide range of physiological processes beyond olfaction. As compared to the expression patterns of the S. invicta odorant binding proteins (OBPs), an inverse correlation between SiOBP and SiCSP expression was seen, suggesting potential complementary and/or compensatory functions between these two classes of ligand carriers.
Collapse
Affiliation(s)
- Arun Wanchoo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Wei Zhang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - John Boswell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Shah JS, Renthal R. Antennal Proteome of the Solenopsis invicta (Hymenoptera: Formicidae): Caste Differences in Olfactory Receptors and Chemosensory Support Proteins. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5937575. [PMID: 33098433 PMCID: PMC7585320 DOI: 10.1093/jisesa/ieaa118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the expression pattern of odorant and pheromone transporters, receptors, and deactivation enzymes in the antennae of ants carrying out different tasks. In order to begin filling in this information gap, we compared the proteomes of the antennae of workers and males of the red fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Male ants do not perform any colony work, and their only activity is to leave the nest on a mating flight. Previous studies showed that male ants express fewer types of odorant receptors than workers. Thus, we expected to find large differences between male and worker antennae for expression of receptors, transporters, and deactivators of signaling chemicals. We found that the abundance of receptors was consistent with the expected caste-specific signaling complexity, but the numbers of different antenna-specific transporters and deactivating enzymes in males and workers were similar. It is possible that some of these proteins have antenna-specific functions that are unrelated to chemosensory reception. Alternatively, the similar complexity could be a vestige of ant progenitors that had more behaviorally active males. As the reduced behavior of male ants evolved, the selection process may have favored a complex repertoire of transporters and deactivating enzymes alongside a limited repertoire of odorant receptors.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
9
|
Wen D, Li X, Geng X, Hirai M, Ajito S, Takahashi K, Ozaki M, Hojo MK, Uebi T, Iwasa T. Characterization of Localization, Ligand Binding, and pH-Dependent Conformational Changes of Two Chemosensory Proteins Expressed in the Antennae of the Japanese Carpenter Ant, Camponotus Japonicus. Zoolog Sci 2020; 37:371-381. [PMID: 32729716 DOI: 10.2108/zs190138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022]
Abstract
Camponotus japonicus uses basiconic antennal sensilla (s. basiconica) to sense a colony-specific blend of species-specific cuticular hydrocarbons (CHCs). The inner portion of the s. basiconica is filled with sensillar lymph and chemosensory proteins (CSPs) presumed to transport CHCs to olfactory neuron receptors. Although 12 CSPs have been found in C. japonicus antennae, we focused on CjapCSP1 and CjapCSP13. The molecular basis of CSP1 function was explored by observation of its structure in solution at pH 4.0 and 7.0 through circular dichroism (CD) and X-ray solution scattering. Although the secondary structure did not vary with pH change, the radius of gyration (Rg) was larger by 5.3% (0.74 Å increase) at pH 4.0 than at pH 7.0. The dissociation constant (Kd) for CjapCSP1 measured with a fluorescent probe, 1-N-phenylnaphthylamine, was larger at pH 4.0 than at pH 7.0, suggesting that acidic pH triggers ligand dissociation. In contrast to CjapCSP1, the Rg of CjapCSP13 was slightly smaller at pH 4.0 than at pH 7.0. Western blotting and immunohistochemistry with protein-specific antisera revealed that both CjapCSP1 and CjapCSP13 are detected in the antennae, but differ in their specific internal localization. Binding to four compounds, including the ant CHC (z)-9-tricosene, was examined. Although both CjapCSP1 and CjapCSP13 bound to (z)-9-tricosene, CjapCSP13 bound with higher affinity than CjapCSP1 and showed different binding properties. CjapCSP1 and CjapCSP13 are synthesized by the same cells of the antenna, but function differently in CHC distribution due to differences in their localization and binding characteristics.
Collapse
Affiliation(s)
- Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Xing Li
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Mitsuhiro Hirai
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Satoshi Ajito
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Kosuke Takahashi
- Graduate School of Science and Technology, Gunma University, Maebashi 371-8510, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masaru K Hojo
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tatsuya Uebi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan.,Academic Support Center, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan,
| |
Collapse
|
10
|
Hull JJ, Perera OP, Wang MX. Molecular cloning and comparative analysis of transcripts encoding chemosensory proteins from two plant bugs, Lygus lineolaris and Lygus hesperus. INSECT SCIENCE 2020; 27:404-424. [PMID: 30549241 DOI: 10.1111/1744-7917.12656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Chemosensory proteins (CSPs) are soluble carrier proteins typically characterized by a six-helix bundle structure joined by two disulfide bridges and a conserved Cys spacing pattern (C1-X6-8 -C2-X16-21 -C3-X2 -C4). CSPs are functionally diverse with reported roles in chemosensation, immunity, development, and resistance. To expand our molecular understanding of CSP function in plant bugs, we used recently developed transcriptomic resources for Lygus lineolaris and Lygus hesperus to identify 17 and 14 CSP-like sequences, respectively. The Lygus CSPs are orthologous and share significant sequence identity with previously annotated CSPs. Three of the CSPs are predicted to deviate from the typical CSP structure with either five or seven helical segments rather than six. The seven helix CSP is further differentiated by an atypical C3-X3 -C4 Cys spacing motif. Reverse transcriptase PCR-based profiling of CSP transcript abundance in adult L. lineolaris tissues revealed broad expression for most of the CSPs with antenna specific expression limited to a subset of the CSPs. Comparative sequence analyses and homology modeling suggest that variations in the amino acids that comprise the Lygus CSP binding pockets affect the size and nature of the ligands accommodated.
Collapse
Affiliation(s)
- J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Omaththage P Perera
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, Mississippi, USA
| | - Mei-Xian Wang
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, Arizona, USA
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Zhou YT, Li L, Zhou XR, Tan Y, Pang BP. Three Chemosensory Proteins Involved in Chemoreception of Oedaleus asiaticus (Orthopera: Acridoidea). J Chem Ecol 2019; 46:138-149. [PMID: 31853816 DOI: 10.1007/s10886-019-01138-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Chemosensory proteins (CSPs) are thought to play roles in the insect olfactory system by binding and carrying hydrophobic odorants across the aqueous sensillar lymph. The band-winged grasshopper, Oedaleus asiaticus Bei-Bienko, is one of the most important grasshopper pests in northern China, but there is little information about its olfactory system. In order to investigate the olfactory functions of CSPs in this pest, three CSP genes (OasiCSP4, OasiCSP11 and OasiCSP12) were expressed in Escherichia coli, and the binding affinities of the three recombinant CSP proteins were measured for 16 volatiles from the host plant (Stipa krylovii), fecal material and body of live adult O. asiaticus using fluorescence competitive binding assays. To further verify their olfactory functions, RNA interference (RNAi) and electrophysiological recording were conducted. The three recombinant proteins displayed different degrees of binding to various volatiles in ligand-binding assays, with OasiCSP12 having higher binding affinities for more volatiles than OasiCSP4 and OasiCSP11. OasiCSP12 exhibited strong binding affinities (Ki < 20 μΜ) for five host plant volatiles and one volatile from the live body of adult O. asiaticus. The transcript levels of the three OasiCSP genes were significantly lower after silencing the individual genes by RNAi, which in turn reduced the EAG responses in adults of both sexes to most tested compounds. Our study indicates that these three OasiCSPs are involved in the detection of volatile semiochemicals, and may play important roles in finding host plants and in aggregation in O. asiaticus.
Collapse
Affiliation(s)
- Yuan-Tao Zhou
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, China
| | - Xiao-Rong Zhou
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, China.
| |
Collapse
|
12
|
Yi X, Shi S, Wang P, Chen Y, Lu Q, Wang T, Zhou X, Zhong G. Characterizing potential repelling volatiles for "push-pull" strategy against stem borer: a case study in Chilo auricilius. BMC Genomics 2019; 20:751. [PMID: 31623553 PMCID: PMC6796385 DOI: 10.1186/s12864-019-6112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023] Open
Abstract
Background Massive techniques have been evaluated for developing different pest control methods to minimize fertilizer and pesticide inputs. As “push-pull” strategy utilizes generally non-toxic chemicals to manipulate behaviors of insects, such strategy is considered to be environmentally friendly. “Push-pull” strategy has been extraordinarily effective in controlling stem borers, and the identification of new “pushing” or “pull” components against stem borers could be significantly helpful. Results In this study, the results of field trapping assay and behavioral assay showed the larvae of C.auricilius, one kind of stem borers, could be deterred by rice plant under tilling stage, its main host crop. The profiles of volatiles were compared between rice plants under two different developmental stages, and α-pinene was identified as a key differential component. The repelling activity of α-pinene against C.auricilius was confirmed by Y-tube olfactometer. For illuminating the olfactory recognition mechanism, transcriptome analysis was carried out, and 13 chemosensory proteins (CSPs) were identified in larvae and 19 CSPs were identified in adult of C.auriciliu, which was reported for the first time in this insect. Among these identified CSPs, 4 CSPs were significantly regulated by α-pinene treatment, and CSP8 showed good binding affinity with α-pinene in vitro. Conclusions Overall, C.auricilius could be repelled by rice plant at tilling stage, and our results highlighted α-pinene as a key component in inducing repelling activity at this specific stage and confirmed the roles of some candidate chemosensory elements in this chemo-sensing process. The results in this study could provide valuable information for chemosensory mechanism of C.auricilius and for identification of “push” agent against rice stem borers.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Song Shi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Peidan Wang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Tianyi Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China. .,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Ali S, Ahmed MZ, Li N, Ali SAI, Wang MQ. Functional characteristics of chemosensory proteins in the sawyer beetle Monochamus alternatus Hope. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:34-42. [PMID: 29463326 DOI: 10.1017/s0007485318000123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a major pest of pines and it is also the key vector of the exotic pinewood nematode in China. In the present study, we cloned, expressed, and purified a chemosensory protein (CSP) in M. alternatus. We surveyed its expression in various developmental stages of male and female adult tissues and determined its binding affinities for different pine volatiles using a competitive binding fluorescence assay. A CSP known as CSP5 in M. alternatus was obtained from an antennal cDNA library and expressed in Escherichia coli. Quantitative reverse transcription polymerase chain reaction results indicated that the CSP5 gene was mainly expressed in male and female antennae. Competitive binding assays were performed to test the binding affinity of recombinant CSP5 to 13 odour molecules of pine volatiles. The results showed that CSP5 showed very strong binding abilities to myrcene, (+)-β-pinene, and (-)-isolongifolene, whereas the volatiles 2-methoxy-4-vinylphenol, p-cymene, and (+)-limonene oxide have relatively weak binding affinity at pH 5.0. Three volatiles myrcene, (+)-β-pinene, and (-)-isolongifolene may play crucial roles in CSP5 binding with ligands but this needs further study for confirmation. The sensitivity of insect to host plant volatiles can effectively be used to control and monitor the population through mass trapping as part of integrated pest management programs.
Collapse
Affiliation(s)
- S Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory,College of Plant Science and Technology, Huazhong Agricultural University,Wuhan 430070,People's Republic of China
| | - M Z Ahmed
- Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida,18905 SW 280th Street, Homestead, FL 33031,USA
| | - N Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory,College of Plant Science and Technology, Huazhong Agricultural University,Wuhan 430070,People's Republic of China
| | - S A I Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory,College of Plant Science and Technology, Huazhong Agricultural University,Wuhan 430070,People's Republic of China
| | - M-Q Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory,College of Plant Science and Technology, Huazhong Agricultural University,Wuhan 430070,People's Republic of China
| |
Collapse
|
14
|
Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene 2018; 678:288-301. [DOI: 10.1016/j.gene.2018.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
|
15
|
Zeng FF, Liu H, Zhang A, Lu ZX, Leal WS, Abdelnabby H, Wang MQ. Three chemosensory proteins from the rice leaf folder Cnaphalocrocis medinalis involved in host volatile and sex pheromone reception. INSECT MOLECULAR BIOLOGY 2018; 27:710-723. [PMID: 29802739 DOI: 10.1111/imb.12503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemosensory proteins (CSPs) have been considered to play a key role in chemoreception in insects. As stated in our earlier study, three CSP genes from rice leaf folder Cnaphalocrocis medinalis have been identified and showed potential physiological functions in olfaction. Here, we conducted western blot, immunolocalization, competitive binding assay and knockdown assay by RNA interference both in vitro and in vivo to reveal the functions of these three CSPs in C. medinalis. Results showed that both CmedCSP1 and CmedCSP2 are housed in sensilla basiconica and showed high binding affinities to a wide range of host-related semiochemicals. On the other hand, CmedCSP3 is highly expressed in sensilla trichodea of males and sensilla basiconica of females. It showed binding affinities to plant volatiles, especially terpenoids, as well as two of the C. medinalis sex pheromone components, Z11-16:Ac and Z11-16:Al. The transcript expression level of the three CSP genes significantly decreased after injecting target double-stranded RNAs and resulted in remarkably down-regulation on electroantennogram responses evoked by host-related semiochemicals and one sex pheromone compound, which have high binding affinities with CmedCSPs. In conclusion, the three CmedCSPs tested are involved in C. medinalis reception of semiochemicals, including host attractants and sex pheromones.
Collapse
Affiliation(s)
- F-F Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - H Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - A Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, USDA-ARS, Beltsville, MD, USA
| | - Z-X Lu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - W S Leal
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - H Abdelnabby
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, Egypt
| | - M-Q Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
16
|
Song L, Gao Y, Li J, Ban L. iTRAQ-Based Comparative Proteomic Analysis Reveals Molecular Mechanisms Underlying Wing Dimorphism of the Pea Aphid, Acyrthosiphon pisum. Front Physiol 2018; 9:1016. [PMID: 30131706 PMCID: PMC6090017 DOI: 10.3389/fphys.2018.01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/09/2018] [Indexed: 01/14/2023] Open
Abstract
Wing dimorphism is a widespread phenomenon in insects with an associated trade-off between flight capability and fecundity. Despite the molecular underpinnings of phenotypic plasticity that has already been elucidated, it is still not fully understood. In this study, we focused on the differential proteomics profiles between alate and apterous morphs of the pea aphid, Acyrthosiphon pisum at the fourth instar nymph and adult stages, using isobaric tags for relative and absolute quantitation (iTRAQ) in a proteomic-based approach. A total of 5,116 protein groups were identified and quantified in the three biological replicates, of which 836 were differentially expressed between alate and apterous morphs. A bioinformatics analysis of differentially expressed protein groups (DEPGs) was performed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG enrichment analysis showed that DEPGs mainly participated in energy metabolism, amino acid biosynthesis and metabolism, and signal sensing and transduction. To verify the reliability of proteomics data, the transcriptional expression of 29 candidates of differentially expressed proteins were analyzed by quantitative real-time PCR (qRT-PCR), showing that 26 genes were consistent with those at proteomic levels. In addition, differentially expressed proteins between winged and wingless morphs that were linked to olfactory sense were investigated. Quantitative real-time PCR revealed the tissue- and morph-biased expression profiles. These results suggested that olfactory sense plays a key role in wing dimorphism of aphids. The comparative proteomic analysis between alate and apterous morphs of the pea aphid provides a novel insight into wing development and dimorphism in aphids and will help facilitate our understanding of these concepts at molecular levels.
Collapse
Affiliation(s)
- Limei Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhao Gao
- Affiliated High School of Peking University, Beijing, China
| | - Jindong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liping Ban
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Tan J, Song X, Fu X, Wu F, Hu F, Li H. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:346-353. [PMID: 29763828 DOI: 10.1016/j.saa.2018.04.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH < 0, ΔS > 0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (KA) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods.
Collapse
Affiliation(s)
- Jing Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinmi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaobin Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongliang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Das T, Alabi I, Colley M, Yan F, Griffith W, Bach S, Weintraub ST, Renthal R. Major venom proteins of the fire ant Solenopsis invicta: insights into possible pheromone-binding function from mass spectrometric analysis. INSECT MOLECULAR BIOLOGY 2018; 27:505-511. [PMID: 29656567 PMCID: PMC6188847 DOI: 10.1111/imb.12388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Proteins in the venom of the fire ant Solenopsis invicta have been suggested to function in pheromone binding. Venom from queens and workers contains different isoforms of these proteins, consistent with the differing pheromones they secrete, but questions remain about the venom protein composition and glandular source. We found that the queen venom contains a previously uncharacterized pheromone-binding protein paralogue known as Sol i 2X1. Using imaging mass spectrometry, we located the main venom proteins in the poison sac, implying that pheromones might have to compete with venom alkaloids for binding. Using the known structure of the worker venom protein Sol i 2w, we generated three-dimensional homology models of the worker venom protein Sol i 4.02, and of the two main venom proteins in queens and female alates, Sol i 2q and Sol i 2X1. Surprisingly, the models show that the proteins have relatively small internal hydrophobic binding pockets that are blocked by about 10 amino acids of the C-terminal region. For these proteins to function as carriers of hydrophobic ligands, a conformational change would be required to displace the C-terminal region, somewhat like the mechanism known to occur in the silk moth pheromone-binding protein.
Collapse
Affiliation(s)
- T Das
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - I Alabi
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - M Colley
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - F Yan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - W Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - S Bach
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - S T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Waris MI, Younas A, Ul Qamar MT, Hao L, Ameen A, Ali S, Abdelnabby HE, Zeng FF, Wang MQ. Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens. Front Physiol 2018; 9:379. [PMID: 29706901 PMCID: PMC5906745 DOI: 10.3389/fphys.2018.00379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.
Collapse
Affiliation(s)
- Muhammad I Waris
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aneela Younas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Liu Hao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Asif Ameen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Saqib Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hazem Elewa Abdelnabby
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Fang-Fang Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Li Z, Dai L, Chu H, Fu D, Sun Y, Chen H. Identification, Expression Patterns, and Functional Characterization of Chemosensory Proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front Physiol 2018; 9:291. [PMID: 29636701 PMCID: PMC5881420 DOI: 10.3389/fphys.2018.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022] Open
Abstract
The Chinese white pine beetle, Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae), is a serious pest of coniferous forests in China. Thus, there is considerable interest in developing eco-friendly pest-control methods, with the use of semiochemicals as a distinct possibility. Olfaction is extremely important for fitness of D. armandi because it is the primary mechanism through which the insect locates hosts and mates. Thus, here we characterized nine full-length genes encoding chemosensory proteins (CSPs) from D. armandi. The genes were ubiquitously and multiply expressed across different developmental stages and adult tissues, indicating various roles in developmental metamorphosis, olfaction, and gustation. Ligand-binding assays implied that DarmCSP2 may be the carrier of D. armandi pheromones and various plant host volatiles. These volatiles were identified through RNA interference of DarmCSP2 as: (+)-α-pinene, (+)-β-pinene, (−)-β-pinene, (+)-camphene, (+)-3-carene, and myrcene. The systematic chemosensory functional analysis of DarmCSP2 in this study clarified the molecular mechanisms underlying D. armandi olfaction and provided a theoretical foundation for eco-friendly pest control.
Collapse
Affiliation(s)
- Zhumei Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | - Honglong Chu
- College of Forestry, Northwest A&F University, Yangling, China.,Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Li ZQ, Ma L, Yin Q, Cai XM, Luo ZX, Bian L, Xin ZJ, He P, Chen ZM. Gene Identification of Pheromone Gland Genes Involved in Type II Sex Pheromone Biosynthesis and Transportation in Female Tea Pest Ectropis grisescens. G3 (BETHESDA, MD.) 2018; 8:899-908. [PMID: 29317471 PMCID: PMC5844310 DOI: 10.1534/g3.117.300543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
Abstract
Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies.
Collapse
Affiliation(s)
- Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province 210014, People's Republic of China
| | - Xiao-Ming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zong-Xiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zhao-Jun Xin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Peng He
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zong-Mao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| |
Collapse
|
22
|
He P, Li ZQ, Zhang YF, Chen L, Wang J, Xu L, Zhang YN, He M. Identification of odorant-binding and chemosensory protein genes and the ligand affinity of two of the encoded proteins suggest a complex olfactory perception system in Periplaneta americana. INSECT MOLECULAR BIOLOGY 2017; 26:687-701. [PMID: 28719023 DOI: 10.1111/imb.12328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The American cockroach (Periplaneta americana) is an urban pest with a precise chemosensory system that helps it achieve complex physiological behaviours, including locating food and mating. However, its chemosensory mechanisms have not been well studied. Here, we identified 71 putative odorant carrier protein genes in P. americana, including 57 new odorant-binding proteins (OBPs) and 11 chemosensory proteins (CSPs). To identify their physiological functions, we investigated their tissue expression patterns in antennae, mouthparts, legs, and the remainder of the body of both sexes, and determined that most of these genes were expressed in chemosensory organs. A phylogenetic tree showed that the putative pheromone-binding proteins of P. americana were in different clades from those of moths. Two genes, PameOBP24 and PameCSP7, were expressed equally in antennae of both sexes and highly expressed amongst the OBPs and CSPs. These genes were expressed in Escherichia coli and the resultant proteins were purified. The binding affinities of 74 common odorant compounds were tested with recombinant PameOBP24 and PameCSP7. Both proteins bound a variety of ligands. Our findings provide a foundation for future research into the chemosensory mechanisms of P. americana and help in identifying potential target genes for managing this pest.
Collapse
Affiliation(s)
- P He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - Z-Q Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Y-F Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - L Chen
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Guian, Guizhou, China
| | - J Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - L Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Y-N Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - M He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| |
Collapse
|
23
|
Li ZQ, Luo ZX, Cai XM, Bian L, Xin ZJ, Liu Y, Chu B, Chen ZM. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones. Front Physiol 2017; 8:953. [PMID: 29209233 PMCID: PMC5702326 DOI: 10.3389/fphys.2017.00953] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023] Open
Abstract
Tea grey geometrid (Ectropis grisescens), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E. grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E. grisescens. After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens, including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E. grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E. grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species.
Collapse
Affiliation(s)
- Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zong-Xiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Xiao-Ming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zhao-Jun Xin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Yan Liu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Bo Chu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Zong-Mao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
24
|
Renthal R, Manghnani L, Bernal S, Qu Y, Griffith WP, Lohmeyer K, Guerrero FD, Borges LMF, Pérez de León A. The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins. INSECT SCIENCE 2017; 24:730-742. [PMID: 27307202 DOI: 10.1111/1744-7917.12368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Proteomic analyses were done on 2 chemosensory appendages of the lone star tick, Amblyomma americanum. Proteins in the fore tarsi, which contain the olfactory Haller's organ, and in the palps, that include gustatory sensilla, were compared with proteins in the third tarsi. Also, male and female ticks were compared. Proteins were identified by sequence similarity to known proteins, and by 3-dimensional homology modeling. Proteomic data were also compared with organ-specific transcriptomes from the tick Rhipicephalus microplus. The fore tarsi express a lipocalin not found in the third tarsi or palps. The fore tarsi and palps abundantly express 2 proteins, which are similar to insect odorant-binding proteins (OBPs). Compared with insect OBPs, the tick OBP-like sequences lacked the cysteine absent in C-minus OBPs, and 1 tick OBP-like sequence had additional cysteines that were similar to C-plus OBPs. Four proteins similar to the antibiotic protein microplusin were found: 2 exclusively expressed in the fore tarsi and 1 exclusively expressed in the palps. These proteins lack the microplusin copper-binding site, but they are modeled to have a significant internal cavity, potentially a ligand-binding site. Proteins similar to the dust mite allergens Der p7 and Der f 7 were found differentially expressed in female fore tarsi. A protein exclusively expressed in the fore tarsi has similarities to Neto, which is known to be involved in clustering of ionotropic glutamate receptors. These results constitute the first report of OBP-like protein sequences in ticks and point to several research avenues on tick chemosensory reception.
Collapse
Affiliation(s)
- Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Leena Manghnani
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra Bernal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Yanyan Qu
- RCMI Protein Biomarkers Core, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Wendell P Griffith
- RCMI Protein Biomarkers Core, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kim Lohmeyer
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, Kerrville, TX, 78029, USA
| | - Felix D Guerrero
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, Kerrville, TX, 78029, USA
| | - Lígia M F Borges
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Adalberto Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, Kerrville, TX, 78029, USA
| |
Collapse
|
25
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
26
|
Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA. Proteomic analysis of the kissing bug Rhodnius prolixus antenna. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:108-118. [PMID: 28606853 DOI: 10.1016/j.jinsphys.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Reception of odorants is essential in insects' life since the chemical signals in the environment (=semiochemicals) convey information about availability of hosts for a blood meal, mates for reproduction, sites for oviposition and other relevant information for fitness in the environment. Once they reach the antennae, these semiochemicals bind to odorant-binding proteins and are transported through the sensillar lymph until reach the odorant receptors. Such perireceptor events, particularly the interactions with transport proteins, are the liaison between the external environment and the entire neuroethological system and, therefore, a potential target to disrupt insect chemical communication. In this study, a proteomic profile of female and male antennae of Rhodnius prolixus, a vector of Chagas disease, was obtained in an attempt to unravel the entire repertoire of olfactory proteins involved in perireceptor events. Using shotgun proteomics and two-dimensional gel electrophoresis approaches followed by nano liquid chromatography coupled with tandem LTQ Velos Orbitrap mass spectrometry, we have identified 581 unique proteins. Putative olfactory proteins, including 17 odorant binding proteins, 6 chemosensory proteins, 2 odorant receptors, 3 transient receptor channels and 1 gustatory receptor were identified. Proteins involved in general cellular functions such as generation of precursor metabolites, energy generation and catabolism were expressed at high levels. Additionally, proteins that take part in signal transduction, ion binding, and stress response, kinase and oxidoreductase activity were frequent in antennae from both sexes. This proteome strategy unraveled for the first time the complex nature of perireceptor and other olfactory events that occur in R. prolixus antennae, including evidence for phosphorylation of odorant-binding and chemosensory proteins. These findings not only increase our understanding of the olfactory process in triatomine species, but also identify potential molecular targets to be explored for population control of such insect vectors.
Collapse
Affiliation(s)
- Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Nathalia F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Fabio C S Nogueira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Walter S Leal
- University of California-Davis, Department of Molecular and Cellular Biology, 95616 Davis, CA, USA
| | - Marcia R Soares
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Qiu HL, Cheng DF. A Chemosensory Protein Gene Si-CSP1 Associated With Necrophoric Behavior in Red Imported Fire Ants (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1284-1290. [PMID: 28444203 DOI: 10.1093/jee/tox095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 06/07/2023]
Abstract
Necrophoric behavior is essential to colony health in social insects. Little is known about the genes that are responsible for necrophoric behavior. Here, we show that a chemosensory protein gene Si-CSP1 was expressed significantly higher in the antennae than in other tissues such as the legs and heads of Solenopsis invicta Buren workers. Furthermore, Si-CSP1-silenced workers moved significantly fewer corpses of their nestmates than normal workers. Finally, Si-CSP1-silenced workers exhibited weaker antennal responses to oleic acid and linoleic acid than controls. These results suggest that Si-CSP1 functions by sensing oleic acid and linoleic acid associated with dead colony members and regulating the necrophoric behavior of workers in S. invicta.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Research Center of Red Imported Fire Ant, South China Agricultural University, Guangzhou, China (; )
| | - Dai-Feng Cheng
- Research Center of Red Imported Fire Ant, South China Agricultural University, Guangzhou, China ( ; )
- Corresponding author, e-mail:
| |
Collapse
|
28
|
Wu S, Huang Z, Rebeca CL, Zhu X, Guo Y, Lin Q, Hu X, Wang R, Liang G, Guan X, Zhang F. De novo characterization of the pine aphid Cinara pinitabulaeformis Zhang et Zhang transcriptome and analysis of genes relevant to pesticides. PLoS One 2017; 12:e0178496. [PMID: 28570707 PMCID: PMC5453536 DOI: 10.1371/journal.pone.0178496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/14/2017] [Indexed: 12/25/2022] Open
Abstract
The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations.
Collapse
Affiliation(s)
- Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Zhicheng Huang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | | | - Xiaoli Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiong Guan
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
29
|
Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 2017; 93:184-200. [DOI: 10.1111/brv.12339] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | | - Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | |
Collapse
|
30
|
Qiu HL, Zhao CY, He YR. On the Molecular Basis of Division of Labor in Solenopsis invicta (Hymenoptera: Formicidae) Workers: RNA-seq Analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3093133. [PMID: 28365770 PMCID: PMC5469383 DOI: 10.1093/jisesa/iex002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/07/2023]
Abstract
The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| | - Cheng-Yin Zhao
- Department of Life Science Luoyang Normal University, Henan, Luoyang 471000, China
| | - Yu-Rong He
- Department of Entomology College of Agriculture, South China Agricultural University, Guangdong, Guangzhou 510642, China
| |
Collapse
|
31
|
Brito NF, Moreira MF, Melo ACA. A look inside odorant-binding proteins in insect chemoreception. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:51-65. [PMID: 27639942 DOI: 10.1016/j.jinsphys.2016.09.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/14/2023]
Abstract
Detection of chemical signals from the environment through olfaction is an indispensable mechanism for maintaining an insect's life, evoking critical behavioral responses. Among several proteins involved in the olfactory perception process, the odorant binding protein (OBP) has been shown to be essential for a normally functioning olfactory system. This paper discusses the role of OBPs in insect chemoreception. Here, structural aspects, mechanisms of action and binding affinity of such proteins are reviewed, as well as their promising application as molecular targets for the development of new strategies for insect population management and other technological purposes.
Collapse
Affiliation(s)
- Nathália F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Sci Rep 2016; 6:35452. [PMID: 27765943 PMCID: PMC5073229 DOI: 10.1038/srep35452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.
Collapse
|
33
|
Xue W, Fan J, Zhang Y, Xu Q, Han Z, Sun J, Chen J. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae. PLoS One 2016; 11:e0161839. [PMID: 27561107 PMCID: PMC4999175 DOI: 10.1371/journal.pone.0161839] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae.
Collapse
Affiliation(s)
- Wenxin Xue
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingxuan Xu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zongli Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingrui Sun
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Julian Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- * E-mail: ;
| |
Collapse
|
34
|
Qu SX, Ma L, Li HP, Song JD, Hong XY. Chemosensory proteins involved in host recognition in the stored-food mite Tyrophagus putrescentiae. PEST MANAGEMENT SCIENCE 2016; 72:1508-1516. [PMID: 26515037 DOI: 10.1002/ps.4178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) have been proposed to transport a range of aliphatic compounds, esters and other long-chain compounds. A large number of CSPs from different gene subfamilies have been identified and annotated in arthropods; however, the CSP genes in mites remain unknown. Tyrophagus putrescentiae Schrank is an important stored-product and house-dust pest. RESULTS By analysing the transcriptome, two putative CSPs were identified, namely TputCSP1 and TputCSP2 (14.9 kDa and 12.1 kDa respectively). The phylogenetic tree showed that the two TputCSPs shared most homology with CSPs in Ixodes scapularis and partially with Diptera, including Anopheles gambiae, Drosophila melanogaster, D. pseudoobscura, D. simulans, Delia antiqua and Culex quinquefasciatus. Additionally, they had similar secondary structure. The 3D models revealed that there are six α-helices enclosing the hydrophobic ligand binding pocket. Based on a docking study, we found that three ligands, (-)-alloaromadendrene, 2-methylnaphthalene and cyclopentadecane, had high binding affinities for TputCSP1. Moreover, the TputCSP2 protein had a higher inhibition constant with different affinities to all test ligands from host volatile substances. CONCLUSION The two CSPs have distinct physiological functions. TputCSP1 may mediate host recognition. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Xuan Qu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Lin Ma
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Hui-Ping Li
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Jin-Di Song
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:11-9. [DOI: 10.1016/j.cbpb.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/20/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022]
|
36
|
Zhao Y, Wang F, Zhang X, Zhang S, Guo S, Zhu G, Liu Q, Li M. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. PLoS One 2016; 11:e0148159. [PMID: 26841106 PMCID: PMC4739689 DOI: 10.1371/journal.pone.0148159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
Chouioia cunea Yang is an endoparasitic wasp that attacks pupae of Hyphantria cunea (Drury), an invasive moth species that severely damages forests in China. Chemosensory systems of insects are used to detect volatile chemical odors such as female sex pheromones and host plant volatiles. The antennae of parasite wasps are important for host detection and other sensory-mediated behaviors. We identified and documented differential expression profiles of chemoreception genes in C. cunea antennae. A total of 25 OBPs, 80 ORs, 10 IRs, 11 CSP, 1 SNMPs, and 17 GRs were annotated from adult male and female C. cunea antennal transcriptomes. The expression profiles of 25 OBPs, 16 ORs, and 17 GRs, 5 CSP, 5 IRs and 1 SNMP were determined by RT-PCR and RT-qPCR for the antenna, head, thorax, and abdomen of male and female C. cunea. A total of 8 OBPs, 14 ORs, and 8 GRs, 1 CSP, 4 IRs and 1 SNMPs were exclusively or primarily expressed in female antennae. These female antennal-specific or dominant expression profiles may assist in locating suitable host and oviposition sites. These genes will provide useful targets for advanced study of their biological functions.
Collapse
Affiliation(s)
- Yanni Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Fengzhu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Xinyue Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Suhua Zhang
- Natural Enemy Breeding Center of Luohe Central South Forestry, 462000, Henan, China
| | - Shilong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Gengping Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Min Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
- * E-mail:
| |
Collapse
|
37
|
Silva MF, Mota CM, Miranda VDS, Cunha ADO, Silva MC, Naves KSC, de Oliveira F, Silva DADO, Mineo TWP, Santiago FM. Biological and Enzymatic Characterization of Proteases from Crude Venom of the Ant Odontomachus bauri. Toxins (Basel) 2015; 7:5114-28. [PMID: 26633501 PMCID: PMC4690119 DOI: 10.3390/toxins7124869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
Hymenoptera venoms constitute an interesting source of natural toxins that may lead to the development of novel therapeutic agents. The present study investigated the enzymatic and biological characteristics of the crude venom of the ant Odontomachus bauri. Its crude venom presents several protein bands, with higher staining for six proteins with gelatinolytic activity (17, 20, 26, 29, 43 and 48 kDa). The crude venom showed high proteolytic activity on azocasein at optimal pH 8.0 and 37 °C. In the presence of protease inhibitors as aprotinin, leupeptin and EDTA, the azocaseinolytic activity was reduced by 45%, 29% and 9%, respectively, suggesting that the enzymes present in the crude venom belong to the three classes of proteases, with the serine proteases in greater intensity. The crude venom degraded the fibrinogen α-chain faster than the β-chain, while the fibrinogen γ-chain remained unchanged. In biological assays, O. bauri venom showed hemolytic and coagulant activity in vitro, and defibrinating activity in vivo. In addition, the venom showed antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as antiparasitic activity on Toxoplasma gondii infection in vitro. In that sense, this study sheds perspectives for pharmacological applications of O. bauri venom enzymes.
Collapse
Affiliation(s)
- Mariana Ferreira Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Caroline Martins Mota
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Vanessa dos Santos Miranda
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Amanda de Oliveira Cunha
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Maraísa Cristina Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Karinne Spirandelli Carvalho Naves
- Institute of Biomedical Sciences, Laboratory of Clinical Bacteriology, Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Fábio de Oliveira
- Institute of Biomedical Sciences, Laboratory of Biophysics, Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
- National Institute in Science and Technology in Nanobiopharmaceutics (NanoBiofar), Belo Horizonte-MG 31270-901, Brazil.
| | - Deise Aparecida de Oliveira Silva
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Tiago Wilson Patriarca Mineo
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| | - Fernanda Maria Santiago
- Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, Brazil.
| |
Collapse
|
38
|
Hojo MK, Ishii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M. Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 2015; 5:13541. [PMID: 26310137 PMCID: PMC4550911 DOI: 10.1038/srep13541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 11/17/2022] Open
Abstract
Chemical communication is essential for the coordination of complex organisation in ant societies. Recent comparative genomic approaches have revealed that chemosensory genes are diversified in ant lineages, and suggest that this diversification is crucial for social organisation. However, how such diversified genes shape the peripheral chemosensory systems remains unknown. In this study, we annotated and analysed the gene expression profiles of chemosensory proteins (CSPs), which transport lipophilic compounds toward chemosensory receptors in the carpenter ant, Camponotus japonicus. Transcriptome analysis revealed 12 CSP genes and phylogenetic analysis showed that 3 of these are lineage-specifically expanded in the clade of ants. RNA sequencing and real-time quantitative polymerase chain reaction revealed that, among the ant specific CSP genes, two of them (CjapCSP12 and CjapCSP13) were specifically expressed in the chemosensory organs and differentially expressed amongst ant castes. Furthermore, CjapCSP12 and CjapCSP13 had a ratio of divergence at non-synonymous and synonymous sites (dN/dS) greater than 1, and they were co-expressed with CjapCSP1, which is known to bind cuticular hydrocarbons. Our results suggested that CjapCSP12 and CjapCSP13 were functionally differentiated for ant-specific chemosensory events, and that CjapCSP1, CjapCSP12, and CjapCSP13 work cooperatively in the antennal chemosensilla of worker ants.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
39
|
Li ZQ, Zhang S, Luo JY, Wang SB, Wang CY, Lv LM, Dong SL, Cui JJ. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:28-38. [PMID: 26072463 DOI: 10.1016/j.cbd.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
Chrysoperla sinica is one of the most prominent natural enemies of many agricultural pests. Host seeking in insects is strongly mediated by olfaction. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. sinica in biological control. Obtaining olfactory genes is a research priority for investigating the olfactory system in this species. However, no olfaction sequence information is available for C. sinica. Consequently, we sequenced female- and male-antennae transcriptome of C. sinica. Many candidate chemosensory genes were identified, including 12 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 37 odorant receptors (ORs), and 64 ionotropic receptors from C. sinica. The expression patterns of 12 OBPs, 19 CSPs and 37 ORs were determined by RT-PCR, and demonstrated antennae-dominantly expression of most OBP and OR genes. Our finding provided large scale genes for further investigation on the olfactory system of C. sinica at the molecular level.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Si-Bao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
40
|
Li ZQ, Zhang S, Luo JY, Zhu J, Cui JJ, Dong SL. Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera. J Chem Ecol 2015; 41:473-85. [PMID: 25893790 DOI: 10.1007/s10886-015-0574-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Abstract
Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | | | | | | | | |
Collapse
|
41
|
Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. INSECT SCIENCE 2015; 22:203-219. [PMID: 24677614 DOI: 10.1111/1744-7917.12116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation, Ecology and Physiology of Crops, Shandong Academy of Agricultural Sciences, Jinan
| | | | | | | | | | | | | |
Collapse
|
42
|
Arun A, Baumlé V, Amelot G, Nieberding CM. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana. PLoS One 2015; 10:e0120401. [PMID: 25793735 PMCID: PMC4368739 DOI: 10.1371/journal.pone.0120401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/21/2015] [Indexed: 12/03/2022] Open
Abstract
Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression profile of the target candidate genes.
Collapse
Affiliation(s)
- Alok Arun
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4, Louvain-la-Neuve, Belgium
- * E-mail: (AA); (CMN)
| | - Véronique Baumlé
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4, Louvain-la-Neuve, Belgium
| | - Gaël Amelot
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4, Louvain-la-Neuve, Belgium
| | - Caroline M. Nieberding
- Evolutionary Ecology and Genetics group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4, Louvain-la-Neuve, Belgium
- * E-mail: (AA); (CMN)
| |
Collapse
|
43
|
Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci Rep 2015; 5:9245. [PMID: 25784646 PMCID: PMC4363891 DOI: 10.1038/srep09245] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/25/2015] [Indexed: 01/18/2023] Open
Abstract
Chemosensory proteins (CSPs) have been predicted to be involved in development;
however, direct evidence for their involvement is lacking, and genetic basis is
largely unknown. To determine the function of the chemosensory protein 9
(Si-CSP9) gene in Solenopsis invicta, we used RNA interference to
silence Si-CSP9 in 3rd-instar larvae. The 3rd-instar larvae failed to shed
their cuticle after being fed Si-CSP9-directed siRNA, and expression
profiling of RNAi-treated and untreated control larvae showed that 375 genes were
differentially expressed. Pathway enrichment analysis revealed that 4 pathways
associated with larval development were significantly enriched. Blast analysis
revealed that one fatty acid amide hydrolase (FAAH) gene was up-regulated and
4 fatty acid synthase (FAT) genes and one protein kinase DC2 gene
(PKA) were down-regulated in the enriched pathways. Significantly higher
expression of these genes was found in 4th-instar larvae, and Pearson correlation
analysis of the expression patterns revealed significant relationships among
Si-CSP9, PKA, FAAH, and FAT1-4. Moreover, we confirmed that
expression levels of Si-CSP9, FAAH, and FAT1-4 were significantly
reduced and that the development of 3rd-instar larvae was halted with PKA
silencing. These results suggest that Si-CSP9 and PKA may be involved
in the network that contributes to development of 3rd-instar larvae.
Collapse
|
44
|
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 2014; 15:1141. [PMID: 25523483 PMCID: PMC4377858 DOI: 10.1186/1471-2164-15-1141] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). Results To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. Conclusions Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany.
| | | |
Collapse
|
45
|
Sun H, Guan L, Feng H, Yin J, Cao Y, Xi J, Li K. Functional characterization of chemosensory proteins in the scarab beetle, Holotrichia oblita Faldermann (Coleoptera: Scarabaeida). PLoS One 2014; 9:e107059. [PMID: 25188038 PMCID: PMC4154846 DOI: 10.1371/journal.pone.0107059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/06/2014] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemical communication by insects, as they recognize and transport environmental chemical signals to receptors within sensilla. In this study, we identified HoblCSP1 and HoblCSP2 from a cDNA library of Holotrichia oblita antennae, successfully expressed them in E. coli and purified them by Ni ion affinity chromatography. We then measured the ligand-binding specificities of HoblCSP1 and HoblCSP2 to 50 selected ligands in a competitive binding assay. These results demonstrated that HoblCSP1 and HoblCSP2 have similar ligand-binding spectra. Both proteins displayed the highest affinity for β-ionone, α-ionone and cinnamaldehyde, indicating that they prefer binding to odorants other than sex pheromones. Additionally, immuno-localization revealed that HoblCSP1 is highly concentrated in sensilla basiconica, while HoblCSP2 is specifically localized to sensilla placodea. In conclusion, HoblCSP1 and HoblCSP2 are responsible for binding to general odorants with slightly different specificities due to their different in vivo environments.
Collapse
Affiliation(s)
- Hongyan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Li Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Honglin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, Jilin Province, P.R. China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
46
|
McKenzie SK, Oxley PR, Kronauer DJC. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 2014; 15:718. [PMID: 25159315 PMCID: PMC4161878 DOI: 10.1186/1471-2164-15-718] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/14/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The complex societies of ants and other social insects rely on sophisticated chemical communication. Two families of small soluble proteins, the odorant binding and chemosensory proteins (OBPs and CSPs), are believed to be important in insect chemosensation. To better understand the role of these proteins in ant olfaction, we examined their evolution and expression across the ants using phylogenetics and sex- and tissue-specific RNA-seq. RESULTS We find that subsets of both OBPs and CSPs are expressed in the antennae, contradicting the previous hypothesis that CSPs have replaced OBPs in ant olfaction. Both protein families have several highly conserved clades with a single ortholog in all eusocial hymenopterans, as well as clades with more dynamic evolution and many taxon-specific radiations. The dynamically evolving OBPs and CSPs have been hypothesized to function in chemical communication. Intriguingly, we find that seven members of the conserved clades are expressed specifically in the antennae of the clonal raider ant Cerapachys biroi, whereas only one dynamically evolving CSP is antenna specific. The orthologs of the conserved, antenna-specific C. biroi genes are also expressed in antennae of the ants Camponotus floridanus and Harpegnathos saltator, indicating that antenna-specific expression of these OBPs and CSPs is conserved across ants. Most members of the dynamically evolving clades in both protein families are expressed primarily in non-chemosensory tissues and thus likely do not fulfill chemosensory functions. CONCLUSIONS Our results identify candidate OBPs and CSPs that are likely involved in conserved aspects of ant olfaction, and suggest that OBPs and CSPs may not rapidly evolve to recognize species-specific signals.
Collapse
Affiliation(s)
- Sean K McKenzie
- Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA.
| | | | | |
Collapse
|
47
|
Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon. PLoS One 2014; 9:e103420. [PMID: 25083706 PMCID: PMC4118888 DOI: 10.1371/journal.pone.0103420] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs). The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR) were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6) and one CSP (AipsCSP2) were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro.
Collapse
|
48
|
Liu YL, Guo H, Huang LQ, Pelosi P, Wang CZ. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. ACTA ACUST UNITED AC 2014; 217:1821-6. [PMID: 24625642 DOI: 10.1242/jeb.102020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemosensory proteins (CSPs) are soluble proteins found only in arthropods. Some of them fill the lumen of chemosensilla and are believed to play a role similar to that of odorant-binding proteins in the detection of semiochemicals. Other members of the CSP family have been reported to perform different functions, from delivery of pheromones to development. This report is focused on a member (CSP4) of the family that is highly and almost exclusively present in the proboscis of two sibling noctuid species, Helicoverpa armigera and H. assulta. We expressed the protein in bacteria and measured binding to terpenoids and related compounds. Using specific antibodies, we found that when the moths suck on a sugar solution, CSP4 is partly extruded from the proboscis. A solution of protein can also fill a hydrophobic tube of same length and diameter as the proboscis by capillary action. On this basis, we suggest that CSP4 acts as a wetting agent to reduce the surface tension of aqueous solutions and consequently the pressure involved in sucking.
Collapse
Affiliation(s)
- Yu-Ling Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paolo Pelosi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T. Niemann-Pick type C2 protein mediating chemical communication in the worker ant. Proc Natl Acad Sci U S A 2014; 111:3847-52. [PMID: 24567405 PMCID: PMC3956204 DOI: 10.1073/pnas.1323928111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors. It has been hypothesized that semiochemicals are recognized by α-helical carrier proteins. The number of these proteins, however, is not sufficient to interact with a large number of semiochemicals estimated from chemosensory receptor genes. Here we shed light on this conundrum by identifying a Niemann-Pick type C2 (NPC2) protein from the antenna of the worker Japanese carpenter ant, Camponotus japonicus (CjapNPC2). CjapNPC2 accumulated in the sensillum cavity in the basiconic sensillum. The ligand-binding pocket of CjapNPC2 was composed of a flexible β-structure that allowed it to bind to a wide range of potential semiochemicals. Some of the semiochemicals elicited electrophysiolgical responses in the worker antenna. In vertebrates, NPC2 acts as an essential carrier protein for cholesterol from late endosomes and lysosomes to other cellular organelles. However, the ants have evolved an NPC2 with a malleable ligand-binding pocket as a moderately selective carrier protein in the sensillum cavity of the basiconic sensillum. CjapNPC2 might be able to deliver various hydrophobic semiochemicals to chemosensory receptor neurons and plays crucial roles in chemical communication required to perform the worker ant tasks.
Collapse
Affiliation(s)
- Yuko Ishida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan
| | - Wataru Tsuchiya
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Takeshi Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Mitsuhiro Miyazawa
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan; and
| | - Jun Ishibashi
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan; and
| | - Shigeru Matsuyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshimasa Yamazaki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
50
|
Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF. Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 2014; 9:e86932. [PMID: 24551045 PMCID: PMC3923736 DOI: 10.1371/journal.pone.0086932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022] Open
Abstract
Chemosensory proteins (CSPs) are small scavenger proteins that are mainly known as transporters of pheromone/odor molecules at the periphery of sensory neurons in the insect antennae and in the producing cells from the moth female pheromone gland. Sequencing cDNAs of RNA encoding CSPs in the antennae, legs, head, pheromone gland and wings from five single individual adult females of the silkworm moth Bombyx mori showed that they differed from genomic sequences by subtle nucleotide replacement (RDD). Both intronless and intronic CSP genes expressed RDDs, although in different rates. Most interestingly, in our study the degree of RDDs in CSP genes were found to be tissue-specific. The proportion of CSP-RDDs was found to be significantly much higher in the pheromone gland. In addition, Western blot analysis of proteins in different tissues showed existence of multiple CSP protein variant chains particularly found in the pheromone gland. Peptide sequencing demonstrated the occurrence of a pleiad of protein variants for most of all BmorCSPs from the pheromone gland. Our findings show that RNA editing is an important feature in the expression of CSPs and that a high variety of RDDs is found to expand drastically thus altering the repertoire of CSP proteins in a tissue-specific manner.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Xun Bu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Yan Yan Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Xue Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Guo Xia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Zhong Xue Fan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Yu Ping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Lian Qun Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Qi Nian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, Shandong Province, China
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Getter Leppik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| |
Collapse
|