1
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 2024; 39:147-171. [PMID: 37542622 DOI: 10.1007/s11011-023-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting 1% of the world population and ranks as one of the disorders providing the most severe burden for society. Schizophrenia etiology remains obscure involving multi-risk factors, such as genetic, environmental, nutritional, and developmental factors. Complex interactions of genetic and environmental factors have been implicated in the etiology of schizophrenia. This review provides an overview of the historical origins, pathophysiological mechanisms, diagnosis, clinical symptoms and corresponding treatment of schizophrenia. In addition, as schizophrenia is a polygenic, genetic disorder caused by the combined action of multiple micro-effective genes, we further detail several approaches, such as candidate gene association study (CGAS) and genome-wide association study (GWAS), which are commonly used in schizophrenia genomics studies. A number of GWASs about schizophrenia have been performed with the hope to identify novel, consistent and influential risk genetic factors. Finally, some schizophrenia susceptibility genes have been identified and reported in recent years and their biological functions are also listed. This review may serve as a summary of past research on schizophrenia genomics and susceptibility genes (NRG1, DISC1, RELN, BDNF, MSI2), which may point the way to future schizophrenia genetics research. In addition, depending on the above discovery of susceptibility genes and their exact function, the development and application of antipsychotic drugs will be promoted in the future.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chong Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zi-Yue Man
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xin Xiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central hospital of Dalian University of Technology, Dalian, 116000, China.
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
4
|
Cason SE, Fenton AR, Holzbaur ELF. Employing Live-Cell Imaging to Study Motor-Mediated Transport. Methods Mol Biol 2023; 2623:45-59. [PMID: 36602678 DOI: 10.1007/978-1-0716-2958-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microtubule-based transport is a highly regulated process, requiring kinesin and/or dynein motors, a multitude of motor-associated regulatory proteins including activating adaptors and scaffolding proteins, and microtubule tracks that also provide regulatory cues. While in vitro studies are invaluable, fully replicating the physiological conditions under which motility occurs in cells is not yet possible. Here, we describe two methods that can be employed to study motor-based transport and motor regulation in a cellular context. Live-cell imaging of organelle transport in neurons leverages the uniform polarity of microtubules in axons to better understand the factors regulating microtubule-based motility. Peroxisome recruitment assays allow users to examine the net effect of motors and motor-regulatory proteins on organelle distribution. Together, these methods open the door to motility experiments that more fully interrogate the complex cellular environment.
Collapse
Affiliation(s)
- Sydney E Cason
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam R Fenton
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Mini-review: Microtubule sliding in neurons. Neurosci Lett 2021; 753:135867. [PMID: 33812935 DOI: 10.1016/j.neulet.2021.135867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Microtubule sliding is an underappreciated mechanism that contributes to the establishment, organization, preservation, and plasticity of neuronal microtubule arrays. Powered by molecular motor proteins and regulated in part by static crosslinker proteins, microtubule sliding is the movement of microtubules relative to other microtubules or to non-microtubule structures such as the actin cytoskeleton. In addition to other important functions, microtubule sliding significantly contributes to the establishment and maintenance of microtubule polarity patterns in different regions of the neuron. The purpose of this article is to review the state of knowledge on microtubule sliding in the neuron, with emphasis on its mechanistic underpinnings as well as its functional significance.
Collapse
|
6
|
|
7
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
8
|
Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon. J Neurosci 2019; 39:3792-3811. [PMID: 30804089 DOI: 10.1523/jneurosci.3099-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors.SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.
Collapse
|
9
|
Martinez Carrera LA, Gabriel E, Donohoe CD, Hölker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 2019. [PMID: 29528393 DOI: 10.1093/hmg/ddy086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.
Collapse
Affiliation(s)
- Lilian A Martinez Carrera
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Elke Gabriel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Colin D Donohoe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Aruljothi Mariappan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
10
|
Dong EL, Wang C, Wu S, Lu YQ, Lin XH, Su HZ, Zhao M, He J, Ma LX, Wang N, Chen WJ, Lin X. Clinical spectrum and genetic landscape for hereditary spastic paraplegias in China. Mol Neurodegener 2018; 13:36. [PMID: 29980238 PMCID: PMC6035405 DOI: 10.1186/s13024-018-0269-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Hereditary spastic paraplegias (HSP) is a heterogeneous group of rare neurodegenerative disorders affecting the corticospinal tracts. To date, more than 78 HSP loci have been mapped to cause HSP. However, both the clinical and mutational spectrum of Chinese patients with HSP remained unclear. In this study, we aim to perform a comprehensive analysis of clinical phenotypes and genetic distributions in a large cohort of Chinese HSP patients, and to elucidate the primary pathogenesis in this population. Methods We firstly performed next-generation sequencing targeting 149 genes correlated with HSP in 99 index cases of our cohort. Multiplex ligation-dependent probe amplification testing was further carried out among those patients without known disease-causing gene mutations. We simultaneously performed a retrospective study on the reported patients exhibiting HSP in other Chinese cohorts. All clinical and molecular characterization from above two groups of Chinese HSP patients were analyzed and summarized. Eventually, we further validated the cellular changes in fibroblasts of two major spastic paraplegia (SPG) patients (SPG4 and SPG11) in vitro. Results Most patients of ADHSP (94%) are pure forms, whereas most patients of ARHSP (78%) tend to be complicated forms. In ADHSP, we found that SPG4 (79%) was the most prevalent, followed by SPG3A (11%), SPG6 (4%) and SPG33 (2%). Subtle mutations were the common genetic cause for SPG4 patients and most of them located in AAA cassette domain of spastin protein. In ARHSP, the most common subtype was SPG11 (53%), followed by SPG5 (32%), SPG35 (6%) and SPG46 (3%). Moreover, haplotype analysis showed a unique haplotype was shared in 14 families carrying c.334C > T (p.R112*) mutation in CYP7B1 gene, suggesting the founder effect. Functionally, we observed significantly different patterns of mitochondrial dynamics and network, decreased mitochondrial membrane potential (Δψm), increased reactive oxygen species and reduced ATP content in SPG4 fibroblasts. Moreover, we also found the enlargement of LAMP1-positive organelles and abnormal accumulation of autolysosomes in SPG11 fibroblasts. Conclusions Our study present a comprehensive clinical spectrum and genetic landscape for HSP in China. We have also provided additional evidences for mitochondrial and autolysosomal-mediated pathways in the pathogenesis of HSP. Electronic supplementary material The online version of this article (10.1186/s13024-018-0269-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chong Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Shuang Wu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Hui-Zhen Su
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jin He
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Li-Xiang Ma
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
11
|
Rao AN, Patil A, Black MM, Craig EM, Myers KA, Yeung HT, Baas PW. Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-Sorting Manner. Cell Rep 2018; 19:2210-2219. [PMID: 28614709 DOI: 10.1016/j.celrep.2017.05.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023] Open
Abstract
Axonal microtubules are predominantly organized into a plus-end-out pattern. Here, we tested both experimentally and with computational modeling whether a motor-based polarity-sorting mechanism can explain this microtubule pattern. The posited mechanism centers on cytoplasmic dynein transporting plus-end-out and minus-end-out microtubules into and out of the axon, respectively. When cytoplasmic dynein was acutely inhibited, the bi-directional transport of microtubules in the axon was disrupted in both directions, after which minus-end-out microtubules accumulated in the axon over time. Computational modeling revealed that dynein-mediated transport of microtubules can establish and preserve a predominantly plus-end-out microtubule pattern as per the details of the experimental findings, but only if a kinesin motor and a static cross-linker protein are also at play. Consistent with the predictions of the model, partial depletion of TRIM46, a protein that cross-links axonal microtubules in a manner that influences their polarity orientation, leads to an increase in microtubule transport.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Ankita Patil
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Mark M Black
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA 19140, USA
| | - Erin M Craig
- Department of Physics, Central Washington University, Ellensburg, WA 98926, USA
| | - Kenneth A Myers
- Department Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Howard T Yeung
- Department of Physics, Central Washington University, Ellensburg, WA 98926, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA.
| |
Collapse
|
12
|
An Essential Postdevelopmental Role for Lis1 in Mice. eNeuro 2018; 5:eN-NWR-0350-17. [PMID: 29404402 PMCID: PMC5797476 DOI: 10.1523/eneuro.0350-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/13/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
LIS1 mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport. We therefore knocked out Lis1 in adult mice using tamoxifen-induced, Cre-ER-mediated recombination. When an actin promoter was used to drive Cre-ER expression (Act-Cre-ER), heterozygous Lis1 knockout (KO) caused no obvious change in viability or behavior, despite evidence of widespread recombination by a Cre reporter three weeks after tamoxifen exposure. In contrast, homozygous Lis1 KO caused the rapid onset of neurological symptoms in both male and female mice. One tamoxifen-dosing regimen caused prominent recombination in the midbrain/hindbrain, PNS, and cardiac/skeletal muscle within a week; these mice developed severe symptoms in that time frame and were killed. A different tamoxifen regimen resulted in delayed recombination in midbrain/hindbrain, but not in other tissues, and also delayed the onset of symptoms. This indicates that Lis1 loss in the midbrain/hindbrain causes the severe phenotype. In support of this, brainstem regions known to house cardiorespiratory centers showed signs of axonal dysfunction in KO animals. Transport defects, neurofilament (NF) alterations, and varicosities were observed in axons in cultured DRG neurons from KO animals. Because no symptoms were observed when a cardiac specific Cre-ER promoter was used, we propose a vital role for Lis1 in autonomic neurons and implicate defective axonal transport in the KO phenotype.
Collapse
|
13
|
Craig EM, Yeung HT, Rao AN, Baas PW. Polarity sorting of axonal microtubules: a computational study. Mol Biol Cell 2017; 28:3271-3285. [PMID: 28978741 PMCID: PMC5687029 DOI: 10.1091/mbc.e17-06-0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/11/2022] Open
Abstract
We present a computational model to test a "polarity sorting" mechanism for microtubule (MT) organization in developing axons. We simulate the motor-based axonal transport of short MTs to test the hypothesis that immobilized cytoplasmic dynein motors transport short MTs with their plus ends leading, so "mal-oriented" MTs with minus-end-out are transported toward the cell body while "correctly" oriented MTs are transported in the anterograde direction away from the soma. We find that dynein-based transport of short MTs can explain the predominately plus-end-out polarity pattern of axonal MTs but that transient attachments of plus-end-directed motor proteins and nonmotile cross-linker proteins are needed to explain the frequent pauses and occasional reversals observed in live-cell imaging of MT transport. Static cross-linkers increase the likelihood of a stalled "tug-of-war" between retrograde and anterograde forces on the MT, providing an explanation for the frequent pauses of short MTs and the immobility of longer MTs. We predict that inhibition of the proposed static cross-linker will produce disordered transport of short MTs and increased mobility of longer MTs. We also predict that acute inhibition of cytoplasmic dynein will disrupt the polarity sorting of MTs by increasing the likelihood of "incorrect" sorting of MTs by plus-end-directed motors.
Collapse
Affiliation(s)
- Erin M Craig
- Department of Physics, Central Washington University, Ellensburg, WA 98926
| | - Howard T Yeung
- Department of Physics, Central Washington University, Ellensburg, WA 98926
| | - Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| |
Collapse
|
14
|
Sainath R, Armijo-Weingart L, Ketscheck A, Xu Z, Li S, Gallo G. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons. Dev Neurobiol 2017; 77:1351-1370. [PMID: 28901718 DOI: 10.1002/dneu.22535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Lorena Armijo-Weingart
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Andrea Ketscheck
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Zhuxuan Xu
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Shuxin Li
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
15
|
Rao AN, Falnikar A, O'Toole ET, Morphew MK, Hoenger A, Davidson MW, Yuan X, Baas PW. Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. J Cell Biol 2016; 213:329-41. [PMID: 27138250 PMCID: PMC4862329 DOI: 10.1083/jcb.201506140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Aditi Falnikar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mary K Morphew
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Andreas Hoenger
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 Department of Biological Science, Florida State University, Tallahassee, FL 32310
| | - Xiaobing Yuan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
16
|
Chetta J, Love JM, Bober BG, Shah SB. Bidirectional actin transport is influenced by microtubule and actin stability. Cell Mol Life Sci 2015; 72:4205-20. [PMID: 26043972 PMCID: PMC11113749 DOI: 10.1007/s00018-015-1933-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons. Our data revealed that filamentous actin densities arise along the length of the axon and move short but significant distances bidirectionally, with a net anterograde bias. We directly tested the role of actin and microtubules in this movement. We also confirmed a role for actin densities in extension of axonal filopodia, and demonstrated intermittent correlation of actin and mitochondrial movement. Our results support a novel mechanism underlying slow component axonal transport, in which the stability of both microtubule and actin cytoskeletal components influence the mobility of filamentous actin.
Collapse
Affiliation(s)
- Joshua Chetta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - James M Love
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brian G Bober
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Islam MA, Sharif SR, Lee H, Moon IS. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells 2015; 38:876-85. [PMID: 26467288 PMCID: PMC4625069 DOI: 10.14348/molcells.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| |
Collapse
|
18
|
Baas PW, Matamoros AJ. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. Neural Regen Res 2015. [PMID: 26199587 PMCID: PMC4498332 DOI: 10.4103/1673-5374.158351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that accompany abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, USA
| | - Andrew J Matamoros
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, USA
| |
Collapse
|
19
|
Abstract
Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein.
Collapse
Affiliation(s)
- Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University East Lansing, MI, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
20
|
Auer TO, Xiao T, Bercier V, Gebhardt C, Duroure K, Concordet JP, Wyart C, Suster M, Kawakami K, Wittbrodt J, Baier H, Del Bene F. Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLife 2015; 4. [PMID: 26076409 PMCID: PMC4467164 DOI: 10.7554/elife.05061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching.
Collapse
Affiliation(s)
| | - Tong Xiao
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | | | | | | - Jean-Paul Concordet
- Muséum National d'Histoire naturelle, Inserm U 1154, CNRS, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 6, Paris, France
| | - Maximiliano Suster
- Neural Circuits and Behaviour Group, Uni Research AS High Technology Centre, Bergen, Norway
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | |
Collapse
|
21
|
Ketschek A, Jones S, Spillane M, Korobova F, Svitkina T, Gallo G. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Dev Neurobiol 2015; 75:1441-61. [PMID: 25846486 DOI: 10.1002/dneu.22294] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch-inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK-3β site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling, and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Steven Jones
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Farida Korobova
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
22
|
Beaven R, Dzhindzhev NS, Qu Y, Hahn I, Dajas-Bailador F, Ohkura H, Prokop A. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 2015; 26:1491-508. [PMID: 25694447 PMCID: PMC4395129 DOI: 10.1091/mbc.e14-06-1083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/05/2015] [Accepted: 02/10/2015] [Indexed: 11/11/2022] Open
Abstract
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.
Collapse
Affiliation(s)
- Robin Beaven
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nikola S Dzhindzhev
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
23
|
Aboud O, Parcon PA, DeWall KM, Liu L, Mrak RE, Griffin WST. Aging, Alzheimer's, and APOE genotype influence the expression and neuronal distribution patterns of microtubule motor protein dynactin-P50. Front Cell Neurosci 2015; 9:103. [PMID: 25859183 PMCID: PMC4373372 DOI: 10.3389/fncel.2015.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/09/2015] [Indexed: 01/21/2023] Open
Abstract
Reports from neural cell cultures and experimental animal studies provide evidence of age- and disease-related changes in retrograde transport of spent or misfolded proteins destined for degradation or recycling. However, few studies address these issues in human brain from those who either age without dementia and overt neuropathology, or succumb to Alzheimer's; especially as such propensity may be influenced by APOE genotype. We studied the expression and distribution of the dynein subunit dynactin-P50, the β amyloid precursor protein (βAPP), and hyperphosphorylated tau (P-tau) in tissues and tissue sections of brains from non-demented, neuropathology-free patients and from Alzheimer patients, with either APOE ε3,3 or APOE ε4,4. We found that advanced age in patients without dementia or neuropathological change was associated with coordinated increases in dynactin-P50 and βAPP in neurons in pyramidal layers of the hippocampus. In contrast, in Alzheimer's, βAPP and dynactin were significantly reduced. Furthermore, the dynactin-P50 and βAPP that was present was located primarily in dystrophic neurites in Aβ plaques. Tissues from Alzheimer patients with APOE ε3,3 had less P-tau, more βAPP, dynactin-P50, and synaptophysin than did tissues from Alzheimer patients carrying APOE ε4,4. It is logical to conclude, then, that as neurons age successfully, there is coordination between retrograde delivery and maintenance and repair, as well as between retrograde delivery and degradation and/or recycling of spent proteins. The buildup of proteins slated for repair, synaptic viability, transport, and re-cycling in neuron soma and dystrophic neurites suggest a loss of this coordination in Alzheimer neurons. Inheritance of APOE ε3,3 rather than APOE ε4,4, is associated with neuronal resilience, suggestive of better repair capabilities, more synapses, more efficient transport, and less hyperphosphorylation of tau. We conclude that even in disease the ε3 allele is neuroprotective.
Collapse
Affiliation(s)
- Orwa Aboud
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Paul A Parcon
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - K Mark DeWall
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Department of Biology, Brigham Young University Idaho, Rexburg, ID, USA
| | - Ling Liu
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Robert E Mrak
- Department of Pathology, University of Toledo Health Sciences Campus Toledo, OH, USA
| | - W Sue T Griffin
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Geriatric Research, Education, Clinical Center, Central Arkansas HealthCare System Little Rock, AR, USA
| |
Collapse
|
24
|
Sainath R, Gallo G. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 2014; 75:757-77. [PMID: 25404503 DOI: 10.1002/dneu.22246] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/11/2022]
Abstract
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
25
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Abstract
Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.
Collapse
Affiliation(s)
- Leif Dehmelt
- Department of Systemic Cell Biology; Max Planck Institute of Molecular Physiology; Dortmund, Germany; Fakultät für Chemie und Chemische Biologie; Dortmund University of Technology; Dortmund, Germany
| |
Collapse
|
27
|
Kuznetsov IA, Kuznetsov AV. Modeling anterograde and retrograde transport of short mobile microtubules from the site of axonal branch formation. J Biol Phys 2013; 40:41-53. [PMID: 24271236 DOI: 10.1007/s10867-013-9334-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
This theoretical research is motivated by a recent model of microtubule (MT) transport put forward by Baas and Mozgova (Cytoskeleton 69:416-425, 2012). According to their model, in an axon all plus-end-distal mobile MTs move anterogradely while all minus-end-distal mobile MTs move retrogradely. Retrograde MT transport thus represents a mechanism by which minus-end-distal MTs are removed from the axon. We suggested equations that implement Baas and Mozgova's model. We employed these equations to simulate transport of short mobile MTs from a region (such as the site of axonal branch formation) where MT severing activity results in generation of a large number of short MTs of both orientations. We obtained the exact and approximate transient solutions of these equations utilizing the Laplace transform technique. We applied the obtained solutions to calculate the average rates of anterograde and retrograde transport of short MTs.
Collapse
Affiliation(s)
- I A Kuznetsov
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218-2694, USA,
| | | |
Collapse
|
28
|
Arens J, Duong TT, Dehmelt L. A morphometric screen identifies specific roles for microtubule-regulating genes in neuronal development of P19 stem cells. PLoS One 2013; 8:e79796. [PMID: 24260302 PMCID: PMC3832585 DOI: 10.1371/journal.pone.0079796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/25/2013] [Indexed: 11/18/2022] Open
Abstract
The first morphological change after neuronal differentiation is the microtubule-dependent initiation of thin cell protrusions called neurites. Here we performed a siRNA-based morphometric screen in P19 stem cells to evaluate the role of 408 microtubule-regulating genes during this early neuromorphogenesis step. This screen uncovered several novel regulatory factors, including specific complex subunits of the microtubule motor dynein involved in neurite initiation and a novel role for the microtubule end-binding protein EB2 in attenuation of neurite outgrowth. Epistasis analysis suggests that competition between EB1 and EB2 regulates neurite length, which links its expression to neurite outgrowth. We propose a model that explains how microtubule regulators can mediate cellular morphogenesis during the early steps of neuronal development by controlling microtubule stabilization and organizing dynein-generated forces.
Collapse
Affiliation(s)
- Julia Arens
- Department of Systemic Cell Biology, Max Planck Institute of Molekular Physiology, and Fachbereich Chemische Biologie, Dortmund University of Technology, Dortmund, Germany
| | - Thanh-Thuy Duong
- Department of Systemic Cell Biology, Max Planck Institute of Molekular Physiology, and Fachbereich Chemische Biologie, Dortmund University of Technology, Dortmund, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Max Planck Institute of Molekular Physiology, and Fachbereich Chemische Biologie, Dortmund University of Technology, Dortmund, Germany
- * E-mail:
| |
Collapse
|
29
|
Lewis TL, Courchet J, Polleux F. Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. ACTA ACUST UNITED AC 2013; 202:837-48. [PMID: 24043699 PMCID: PMC3776347 DOI: 10.1083/jcb.201305098] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper brain wiring during development is pivotal for adult brain function. Neurons display a high degree of polarization both morphologically and functionally, and this polarization requires the segregation of mRNA, proteins, and lipids into the axonal or somatodendritic domains. Recent discoveries have provided insight into many aspects of the cell biology of axonal development including axon specification during neuronal polarization, axon growth, and terminal axon branching during synaptogenesis.
Collapse
Affiliation(s)
- Tommy L Lewis
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037
| | | | | |
Collapse
|
30
|
Mazel T, Biesemann A, Krejczy M, Nowald J, Müller O, Dehmelt L. Direct observation of microtubule pushing by cortical dynein in living cells. Mol Biol Cell 2013; 25:95-106. [PMID: 24173713 PMCID: PMC3873897 DOI: 10.1091/mbc.e13-07-0376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Single-molecule speckle microscopy and computational modeling reveal the relation between cortical dynein complex dynamics and microtubule behavior in mammalian cells. Experimentally observed rapid turnover of dynein complexes at the cell cortex facilitates their search to efficiently capture and push microtubules with leading plus ends. Microtubules are under the influence of forces mediated by cytoplasmic dynein motors associated with the cell cortex. If such microtubules are free to move, they are rapidly transported inside cells. Here we directly observe fluorescent protein–labeled cortical dynein speckles and motile microtubules. We find that several dynein complex subunits, including the heavy chain, the intermediate chain, and the associated dynactin subunit Dctn1 (also known as p150glued) form spatially resolved, dynamic speckles at the cell cortex, which are preferentially associated with microtubules. Measurements of bleaching and dissociation kinetics at the cell cortex reveal that these speckles often contain multiple labeled dynein heavy-chain molecules and turn over rapidly within seconds. The dynamic behavior of microtubules, such as directional movement, bending, or rotation, is influenced by association with dynein speckles, suggesting a direct physical and functional interaction. Our results support a model in which rapid turnover of cell cortex–associated dynein complexes facilitates their search to efficiently capture and push microtubules directionally with leading plus ends.
Collapse
Affiliation(s)
- Tomáš Mazel
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, and Fakultät Chemie, Chemische Biologie, Dortmund University of Technology, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 2013; 8:17. [PMID: 24010872 PMCID: PMC3846809 DOI: 10.1186/1749-8104-8-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize into parallel bundles that are established through extension at the leading axon tips within growth cones, and these bundles then form the architectural backbones, as well as the highways for axonal transport essential for supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT dynamics, axonal transport and the motors is essential for nervous system development and function, and its investigation has huge potential to bring urgently required progress in understanding the causes of many developmental and degenerative brain disorders. During the last years new explanations for the highly specific properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an overview of these new developments.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
32
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Albus CA, Rishal I, Fainzilber M. Cell length sensing for neuronal growth control. Trends Cell Biol 2013; 23:305-10. [PMID: 23511112 DOI: 10.1016/j.tcb.2013.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/27/2022]
Abstract
Neurons exhibit great size differences, and must coordinate biosynthesis rates in cell bodies with the growth needs of different lengths of axons. Classically, axon growth has been viewed mainly as a consequence of extrinsic influences. However, recent publications have proposed at least two different intrinsic axon growth-control mechanisms. We suggest that these mechanisms form part of a continuum of axon growth-control mechanisms, wherein initial growth rates are pre-programmed by transcription factor levels, and subsequent elongating growth is dependent on feedback from intrinsic length-sensing enabled by bidirectional motor-dependent oscillating signals. This model might explain intrinsic limits on elongating neuronal growth and provides a mechanistic framework for determining the connections between genome expression and cellular growth rates in neurons.
Collapse
Affiliation(s)
- Christin A Albus
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
34
|
Rishal I, Kam N, Perry RBT, Shinder V, Fisher EMC, Schiavo G, Fainzilber M. A motor-driven mechanism for cell-length sensing. Cell Rep 2013; 1:608-16. [PMID: 22773964 PMCID: PMC3389498 DOI: 10.1016/j.celrep.2012.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Microtubules are nearly uniformly oriented in the axons of vertebrate neurons but are non-uniformly oriented in their dendrites. Studies to date suggest a scenario for establishing these microtubule patterns whereby microtubules are transported into the axon and nascent dendrites with plus-ends-leading, and then additional microtubules of the opposite orientation are transported into the developing dendrites. Here, we used contemporary tools to confirm that depletion of kinesin-6 (also called CHO1/MKLP1 or kif23) from rat sympathetic neurons causes a reduction in the appearance of minus-end-distal microtubules in developing dendrites, which in turn causes them to assume an axon-like morphology. Interestingly, we observed a similar phenomenon when we depleted kinesin-12 (also called kif15 or HKLP2). Both motors are best known for their participation in mitosis in other cell types, and both are enriched in the cell body and dendrites of neurons. Unlike kinesin-12, which is present throughout the neuron, kinesin-6 is barely detectable in the axon. Accordingly, depletion of kinesin-6, unlike depletion of kinesin-12, has no effect on axonal branching or navigation. Interestingly, depletion of either motor results in faster growing axons with greater numbers of mobile microtubules. Based on these observations, we posit a model whereby these two motors generate forces that attenuate the transport of microtubules with plus-ends-leading from the cell body into the axon. Some of these microtubules are not only prevented from moving into the axon but are driven with minus-ends-leading into developing dendrites. In this manner, these so-called "mitotic" motors coregulate the microtubule patterns of axons and dendrites.
Collapse
|
36
|
Shea TB, Lee S. The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array. Cytoskeleton (Hoboken) 2012; 70:67-73. [PMID: 23124969 DOI: 10.1002/cm.21087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 12/19/2022]
Abstract
Neurofilaments (NFs) provide structural support to axons. Timely and regional deposition of NFs is essential during axonogenesis, since progressive stabilization of proximal axons is essential to support continued pathfinding of distal axonal regions. NFs undergo short bursts of microtubule-mediated axonal transport interspersed by prolonged pauses. We demonstrate herein that it is this unique "on-off" method of axonal transport, coupled with the ability of NFs to form cation-dependent, phosphomediated lateral associations that allow neurons to mediate the orderly transition from exploratory process to stabilized axon following synaptogenesis. We further demonstrate how this transport method provides for NF maintenance following maturation and encompasses the potential for regeneration.
Collapse
Affiliation(s)
- Thomas B Shea
- Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
37
|
Jean DC, Baas PW, Black MM. A novel role for doublecortin and doublecortin-like kinase in regulating growth cone microtubules. Hum Mol Genet 2012; 21:5511-27. [PMID: 23001563 DOI: 10.1093/hmg/dds395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Doublecortin (DCX) and doublecortin-like kinase (DCLK), closely related family members, are microtubule-associated proteins with overlapping functions in both neuronal migration and axonal outgrowth. In growing axons, these proteins appear to have their primary functions in the growth cone. Here, we used siRNA to deplete these proteins from cultured rat sympathetic neurons. Normally, microtubules in the growth cone exhibit a gently curved contour as they extend from the base of the cone toward its periphery. However, following depletion of DCX and DCLK, microtubules throughout the growth cone become much more curvy, with many microtubules exhibiting multiple prominent bends over relatively short distances, creating a configuration that we termed wave-like folds. Microtubules with these folds appeared as if they were buckling in response to powerful forces. Indeed, inhibition of myosin-II, which generates forces on the actin cytoskeleton to push microtubules in the growth cone back toward the axonal shaft, significantly decreases the frequency of these wave-like folds. In addition, in the absence of DCX and DCLK, the depth of microtubule invasion into filopodia is reduced compared with controls, and at a functional level, growth cone responses to substrate guidance cues are altered. Conversely, overexpression of DCX results in microtubules that are straighter than usual, suggesting that higher levels of these proteins can enable an even greater resistance to folding. These findings support a role for DCX and DCLK in enabling microtubules to overcome retrograde actin-based forces, thereby facilitating the ability of the growth cone to carry out its crucial path-finding functions.
Collapse
Affiliation(s)
- Daphney C Jean
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
38
|
Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J Neurosci 2012; 32:9143-58. [PMID: 22764224 DOI: 10.1523/jneurosci.0416-12.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correct outgrowth of axons is essential for the development and regeneration of nervous systems. Axon growth is primarily driven by microtubules. Key regulators of microtubules in this context are the spectraplakins, a family of evolutionarily conserved actin-microtubule linkers. Loss of function of the mouse spectraplakin ACF7 or of its close Drosophila homolog Short stop/Shot similarly cause severe axon shortening and microtubule disorganization. How spectraplakins perform these functions is not known. Here we show that axonal growth-promoting roles of Shot require interaction with EB1 (End binding protein) at polymerizing plus ends of microtubules. We show that binding of Shot to EB1 requires SxIP motifs in Shot's C-terminal tail (Ctail), mutations of these motifs abolish Shot functions in axonal growth, loss of EB1 function phenocopies Shot loss, and genetic interaction studies reveal strong functional links between Shot and EB1 in axonal growth and microtubule organization. In addition, we report that Shot localizes along microtubule shafts and stabilizes them against pharmacologically induced depolymerization. This function is EB1-independent but requires net positive charges within Ctail which essentially contribute to the microtubule shaft association of Shot. Therefore, spectraplakins are true members of two important classes of neuronal microtubule regulating proteins: +TIPs (tip interacting proteins; plus end regulators) and structural MAPs (microtubule-associated proteins). From our data we deduce a model that relates the different features of the spectraplakin C terminus to the two functions of Shot during axonal growth.
Collapse
|
39
|
Baas PW, Mozgova OI. A novel role for retrograde transport of microtubules in the axon. Cytoskeleton (Hoboken) 2012; 69:416-25. [PMID: 22328357 DOI: 10.1002/cm.21013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/14/2023]
Abstract
Short microtubules move within the axon in both directions. In the past, it had been assumed that all of the short moving microtubules are oriented with their plus-ends distal to the cell body, regardless of their direction of movement. The anterogradely moving microtubules were posited to play critical roles in the establishment, expansion, and maintenance of the axonal microtubule array. There was no known function for the retrogradely moving microtubules. In considering the mechanism of their transport, we had assumed that all of the short microtubules have a plus-end-distal polarity orientation, as is characteristic of the long microtubules that dominate the axon. Here we discuss an alternative hypothesis, namely that the short microtubules moving retrogradely have the opposite polarity orientation of those moving anterogradely. Those that move anterogradely have their plus-ends distal to the cell body while those that move retrogradely have their minus ends distal to the cell body. In this view, retrograde transport is a means for clearing the axon of incorrectly oriented microtubules. This new model, if correct, has profound implications for the manner by which healthy axons preserve their characteristic pattern of microtubule polarity orientation. We speculate that pathological flaws in this mechanism may be a critical factor in the degeneration of axons during disease and injury, as well as in neuropathy caused by microtubule-active drugs.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| | | |
Collapse
|
40
|
Kimura N, Okabayashi S, Ono F. Dynein dysfunction disrupts intracellular vesicle trafficking bidirectionally and perturbs synaptic vesicle docking via endocytic disturbances a potential mechanism underlying age-dependent impairment of cognitive function. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:550-61. [PMID: 22182700 DOI: 10.1016/j.ajpath.2011.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 01/09/2023]
Abstract
Although genetic studies have demonstrated that β-amyloid protein (Aβ) plays a pivotal role in Alzheimer's disease (AD) pathogenesis, how aging contributes to AD onset remains unclear. Moreover, growing evidence suggests that Aβ-independent mechanisms, such as altered intracellular signaling cascades and impaired neurotransmitter release, also are likely involved in this process. Cytoplasmic dynein, a microtubule-based motor protein, mediates minus end-directed vesicle transport via interactions with dynactin, another microtubule-associated protein. We previously showed that normal aging attenuates the interaction between dynein-dynactin complexes in monkey brain and that dynein dysfunction reproduces age-dependent endocytic disturbances, resulting in intracellular Aβ accumulation. In this study, we report that dynein dysfunction disrupts not only retrograde transport of neurotrophic receptors but also anterograde transport of synaptic vesicles, which occurs concomitantly with an increase in Rab3 GTPase levels. Additionally, synaptic vesicle docking was perturbed via enhanced endocytosis. Dynein dysfunction also induced neuritic swelling, which is accompanied by a significant accumulation of neurofilaments. Moreover, we also confirmed that the dynein dysfunction-related disturbances are associated with aging in monkey brains and that age-dependent endocytic disturbances precede Aβ abnormality. These findings suggest that dynein dysfunction can alter neuronal activity via endocytic disturbances and may underlie age-dependent impairment of cognitive function. Moreover, in the presence of other risk factors, such as intracellular Aβ accumulation, dynein dysfunction may contribute to the development of AD.
Collapse
Affiliation(s)
- Nobuyuki Kimura
- Laboratory of Disease Control, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Ibaraki, Japan.
| | | | | |
Collapse
|
41
|
Abstract
During development, axons are guided to their appropriate targets by a variety of guidance factors. On arriving at their synaptic targets, or while en route, axons form branches. Branches generated de novo from the main axon are termed collateral branches. The generation of axon collateral branches allows individual neurons to make contacts with multiple neurons within a target and with multiple targets. In the adult nervous system, the formation of axon collateral branches is associated with injury and disease states and may contribute to normally occurring plasticity. Collateral branches are initiated by actin filament– based axonal protrusions that subsequently become invaded by microtubules, thereby allowing the branch to mature and continue extending. This article reviews the current knowledge of the cellular mechanisms of the formation of axon collateral branches. The major conclusions of this review are (1) the mechanisms of axon extension and branching are not identical; (2) active suppression of protrusive activity along the axon negatively regulates branching; (3) the earliest steps in the formation of axon branches involve focal activation of signaling pathways within axons, which in turn drive the formation of actin-based protrusions; and (4) regulation of the microtubule array by microtubule-associated and severing proteins underlies the development of branches. Linking the activation of signaling pathways to specific proteins that directly regulate the axonal cytoskeleton underlying the formation of collateral branches remains a frontier in the field.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
42
|
Dehmelt L, Poplawski G, Hwang E, Halpain S. NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis. BMC Neurosci 2011; 12:100. [PMID: 21989414 PMCID: PMC3208608 DOI: 10.1186/1471-2202-12-100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 10/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems. Results Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology. Conclusions NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.
Collapse
Affiliation(s)
- Leif Dehmelt
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str, 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
43
|
Baas PW, Lin S. Hooks and comets: The story of microtubule polarity orientation in the neuron. Dev Neurobiol 2011; 71:403-18. [PMID: 21557497 DOI: 10.1002/dneu.20818] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is widely believed that signature patterns of microtubule polarity orientation within axons and dendrites underlie compositional and morphological differences that distinguish these neuronal processes from one another. Axons of vertebrate neurons display uniformly plus-end-distal microtubules, whereas their dendrites display non-uniformly oriented microtubules. Recent studies on insect neurons suggest that it is the minus-end-distal microtubules that are the critical feature of the dendritic microtubule array, whether or not they are accompanied by plus-end-distal microtubules. Discussed in this article are the history of these findings, their implications for the regulation of neuronal polarity across the animal kingdom, and potential mechanisms by which neurons establish the distinct microtubule polarity patterns that define axons and dendrites.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
44
|
Ori-McKenney KM, Vallee RB. Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev 2011; 6:26. [PMID: 21612657 PMCID: PMC3127822 DOI: 10.1186/1749-8104-6-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Cytoplasmic dynein and its regulatory proteins have been implicated in neuronal and non-neuronal cell migration. A genetic model for analyzing the role of cytoplasmic dynein specifically in these processes has, however, been lacking. The Loa (Legs at odd angles) mouse with a mutation in the dynein heavy chain has been the focus of an increasing number of studies for its role in neuron degeneration. Despite the location of this mutation in the tail domain of the dynein heavy chain, we previously found a striking effect on coordination between the two dynein motor domains, resulting in a defect in dynein run length in vitro and in vivo. Results We have now tested for effects of the Loa mutation on neuronal migration in the developing neocortex. Loa homozygotes showed clear defects in neocortical lamination and neuronal migration resulting from a reduction in the rate of radial migration of bipolar neurons. Conclusions These results present a new genetic model for understanding the dynein pathway and its functions during neuronal migration. They also provide the first evidence for a link between dynein processivity and somal movement, which is essential for proper development of the brain.
Collapse
|
45
|
Axotomy induces axonogenesis in hippocampal neurons by a mechanism dependent on importin β. Biochem Biophys Res Commun 2011; 405:697-702. [DOI: 10.1016/j.bbrc.2011.01.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 01/28/2011] [Indexed: 11/24/2022]
|
46
|
Kinesin-12, a mitotic microtubule-associated motor protein, impacts axonal growth, navigation, and branching. J Neurosci 2010; 30:14896-906. [PMID: 21048148 DOI: 10.1523/jneurosci.3739-10.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Kinesin-12 (also called Kif15) is a mitotic motor protein that continues to be expressed in developing neurons. Depletion of kinesin-12 causes axons to grow faster, more than doubles the frequency of microtubule transport in both directions in the axon, prevents growth cones from turning properly, and enhances the invasion of microtubules into filopodia. These results are remarkably similar to those obtained in previous studies in which neurons were depleted of kinesin-5 (also called Eg5 or Kif11), another mitotic motor protein that continues to be expressed in developing neurons. However, there are also notable differences in the phenotypes obtained with depleting each of these motors. Depleting kinesin-12 decreases axonal branching and growth cone size, whereas inhibiting kinesin-5 increases these parameters. In addition, depleting kinesin-12 diminishes the appearance of growth-cone-like waves along the length of the axon, an effect not observed with depletion of kinesin-5. Finally, depletion of kinesin-12 abolishes the "waggling" behavior of microtubules that occurs as they assemble along actin bundles within filopodia, whereas inhibition of kinesin-5 does not. Interestingly, and perhaps relevant to these differences in phenotype, in biochemical studies, kinesin-12 coimmunoprecipitates with actin but kinesin-5 does not. Collectively, these findings support a scenario whereby kinesin-12 shares functions with kinesin-5 related to microtubule-microtubule interactions, but kinesin-12 has other functions not shared by kinesin-5 that are related to the ability of kinesin-12 to interact with actin.
Collapse
|
47
|
Stepanova T, Smal I, van Haren J, Akinci U, Liu Z, Miedema M, Limpens R, van Ham M, van der Reijden M, Poot R, Grosveld F, Mommaas M, Meijering E, Galjart N. History-Dependent Catastrophes Regulate Axonal Microtubule Behavior. Curr Biol 2010; 20:1023-8. [DOI: 10.1016/j.cub.2010.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
|
48
|
Qiang L, Yu W, Liu M, Solowska JM, Baas PW. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell 2009; 21:334-44. [PMID: 19940015 PMCID: PMC2808232 DOI: 10.1091/mbc.e09-09-0834] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This article demonstrates that the augmentation of axonal branching induced by bFGF is explicable on the basis of an enhancement of microtubule-severing, and that three different proteins related to microtubule-severing are affected by treatment of neurons with bFGF. The formation of interstitial axonal branches involves the severing of microtubules at sites where new branches form. Here we wished to ascertain whether basic fibroblast growth factor (bFGF) enhances axonal branching through alterations in proteins involved in the severing of microtubules. We found that treatment of cultured hippocampal neurons with bFGF heightens expression of both katanin and spastin, which are proteins that sever microtubules in the axon. In addition, treatment with bFGF enhances phosphorylation of tau at sites expected to cause it to dissociate from microtubules. This is important because tau regulates the access of katanin to the microtubule. In live-cell imaging experiments, axons of neurons treated with bFGF displayed greater numbers of dynamic free ends of microtubules, as well as greater numbers of short mobile microtubules. Entirely similar enhancement of axonal branching, short microtubule transport, and frequency of microtubule ends was observed when spastin was overexpressed in the neurons. Depletion of either katanin or spastin with siRNA diminished but did not eliminate the enhancement in branching elicited by bFGF. Collectively, these results indicate that bFGF enhances axonal branch formation by augmenting the severing of microtubules through both a spastin-based mode and a katanin-based mode.
Collapse
Affiliation(s)
- Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
49
|
Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell 2009; 20:4997-5006. [PMID: 19812246 DOI: 10.1091/mbc.e09-04-0304] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
50
|
Sanchez-Soriano N, Travis M, Dajas-Bailador F, Gonçalves-Pimentel C, Whitmarsh AJ, Prokop A. Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J Cell Sci 2009; 122:2534-42. [PMID: 19571116 DOI: 10.1242/jcs.046268] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Collapse
Affiliation(s)
- Natalia Sanchez-Soriano
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|