1
|
Garrido-Romero M, Díez-Municio M, Moreno FJ. Global Status, Recent Trends, and Knowledge Mapping of Olive Bioactivity Research Through Bibliometric Analysis (2000-2024). Foods 2025; 14:1349. [PMID: 40282751 PMCID: PMC12026489 DOI: 10.3390/foods14081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Over the past two decades, both academic and industrial interest in olive bioactive compounds has grown significantly due to their remarkable health benefits, such as antioxidant, anti-inflammatory, and cardioprotective properties. These compounds, found in both olive fruit and leaves, have become a central focus in the research on functional foods and nutraceuticals. A comprehensive bibliometric analysis of scientific publications from 2000 to 2024 highlights a notable increase in this field, with 2228 documents published in high-impact journals with an estimated annual growth rate of 0.2694 year-1, particularly in the last decade. This surge reflects the growing recognition of olive bioactive compounds' potential in promoting human health through nutritional and therapeutic interventions, and their role in the expanding nutraceutical industry. This growth is further reaffirmed by patent analysis, which shows a significant rise in industrial interest and patent filings related to olive bioactive compounds. The analysis also examined nearly 6000 keywords to identify the most influential research domains, pinpoint knowledge gaps, and reveal the most important bioactive compounds in olives and their potential in preventing various human diseases.
Collapse
Affiliation(s)
- Manuel Garrido-Romero
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain;
| | | | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Valenti B, Scicutella F, Viti C, Daghio M, Mannelli F, Gigante D, Buccioni A, Bolletta V, Morbidini L, Turini L, Natalello A, Servili M, Selvaggini R, Pauselli M. Olive tree leaves in dairy sheep diet: effects on rumen metabolism, microbiota composition and milk quality. Animal 2025; 19:101435. [PMID: 39970862 DOI: 10.1016/j.animal.2025.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Feeding ruminants with agro-industrial by-products represents an effective strategy to implement circular economy principles in animal husbandry. Olive tree leaves discarded during olive oil production are a natural source of compounds that may influence ruminant metabolism and product quality. In this study, an in vivo feeding trial evaluated the effect of dietary olive tree leaves on the rumen microbial community, animal performance and milk quality in dairy sheep. Two groups of 10 grazing Comisana ewes were supplemented with 800 g/head/d of a control pelleted concentrate (CTRL) or a concentrate containing 28% of dried olive leaves (LEAVES) for 30 days. After the adaptation period, individual milk was collected weekly and analysed for gross composition, fatty acids and renneting properties. Individual rumen liquor collected on the last day of the trial was analysed for microbial and fatty acid profiles. Moreover, the effect of olive tree leaves inclusion on dietary nutrient degradability of the LEAVES concentrate was tested in vitro. In vitro data indicated that olive leaves did not affect the rumen degradability of NDF and protein compared to CTRL. Regarding the in vivo trial, milk yield was comparable between groups, but LEAVES milk showed a greater protein percentage. Dietary olive leaves marginally affected the rumen microbiota: the Catenisphera genus was more abundant in the rumen of the LEAVES group, and Mogibacterium was found only in rumen of LEAVES ewes. The rumen liquor of LEAVES ewes showed a greater content of c9 18:1 and t6-8 18:1. Fatty acids mainly involved in biohydrogenation were found at a comparable content in the rumen of CTRL and LEAVES groups. Despite this, both dietary polyunsaturated fatty acids (c9c12 18:2 and c9c12c15 18:3) and fatty acids mainly originated from rumen biohydrogenation (trans 18:1 and 18:2 isomers) were found at a greater percentage in the LEAVES milk. Dietary olive leaves increased total monounsaturated fatty acids, polyunsaturated fatty acids, polyunsaturated fatty acids n-3 and polyunsaturated fatty acids n-6 and reduced saturated fatty acids in comparison with the CTRL diet. Among the health-promoting fatty acids, c9 18:1, c9t11 18:2, 22:5 n-6 and 22:6 n-3 were greater in the LEAVES milk. Consequently, LEAVES milk showed a lower atherogenic and thrombogenic index and a smaller hypercholesterolemic potential. Our results confirm the viability of the use of agro-industrial by-products rich in bioactive compounds in animal diets as a strategy to improve the circularity of animal production and product quality without modification to animal performance.
Collapse
Affiliation(s)
- B Valenti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - F Scicutella
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - C Viti
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - M Daghio
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - F Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy
| | - D Gigante
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - A Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 18 50144 Firenze, Italy.
| | - V Bolletta
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - L Morbidini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - L Turini
- Diparimento di Scienze Agrarie, Alimentari ed Agro-Ambientali, Università di Pisa, Via del Borghetto 56124 Pisa, Italy
| | - A Natalello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5 95123 Catania, Italy
| | - M Servili
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - R Selvaggini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| | - M Pauselli
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Perugia, Borgo XX Giugno 74 06121 Perugia, Italy
| |
Collapse
|
3
|
Demirer B, Samur G. Health Benefits of Olive Leaf: The Focus on Efficacy of Antiglycation Mechanisms. Nutr Rev 2025; 83:551-561. [PMID: 39530765 DOI: 10.1093/nutrit/nuae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Olive leaves have been a therapeutic herbal agent for diseases for centuries. Olive leaves contain many health-beneficial nutrients and bioactive components. There is much evidence for the positive effects of the phenolic compounds they contain on health. The main active phenolic component in olive leaves is oleuropein, which can constitute 6%-9% of the leaf's dry matter and has been intensively studied for its promising results/effects on human health. In addition, olive leaf provides health benefits through bioactive components, such as secoiridoids, flavonoids, triterpenes, and lignans. The anti-inflammatory, antioxidant, anticancer, antidiabetic, and antihypertensive properties of bioactive components, especially oleuropein, are well known. In addition, various health benefits, such as neuroprotective effects and microbiota modulation, are also mentioned. In recent years, in vitro studies have shown that olive leaves and bioactive components from olive leaves may have antiglycation effects. Currently, it is thought that the components found in olive leaves have a direct or indirect antiglycation effect. It is thought that, their direct effects include reducing the interaction between sugars and amino acids, nucleic acids, and lipids and sequestering reactive dicarbonyl species, and their indirect effects include preventing the formation of advanced glycation end-products (AGEs) by reducing inflammation and oxidative stress. However, in vivo and clinical studies are needed to prove these mechanisms and understand how their metabolism works in the human body. This review examines the beneficial health effects of olive leaves and their potential antiglycation role.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk 78050, Turkey
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara 06320, Turkey
| |
Collapse
|
4
|
Lauwers S, Weyns AS, Breynaert A, Van Rillaer T, Van Huynegem V, Fransen E, Bittremieux W, Lebeer S, Tuenter E, Hermans N. Comparison of In Vitro Biotransformation of Olive Polyphenols Between Healthy Young and Elderly. Metabolites 2025; 15:26. [PMID: 39852369 PMCID: PMC11766994 DOI: 10.3390/metabo15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Olive leaves are a rich source of polyphenols, predominantly secoiridoids, flavonoids, and simple phenols, which exhibit various biological properties. Extracts prepared from olive leaves are associated with hypoglycemic, hypotensive, diuretic, and antiseptic properties. Upon ingestion, a substantial fraction of these polyphenols reaches the colon where they undergo extensive metabolism by the gut microbiota. Host characteristics, like age, can influence the composition of the gut microbiome, potentially affecting the biotransformation of these compounds. Therefore, it can be hypothesised that differences in the gut microbiome between young and elderly individuals may impact the biotransformation rate and the type and amount of metabolites formed. METHODS An in vitro biotransformation model was used to mimic the conditions in the stomach, small intestine and colon of two age groups of healthy participants (20-30 years old, ≥65 years old), using oleuropein as a single compound and an olive leaf extract as test compounds. The bacterial composition and metabolite content were investigated. RESULTS The study revealed that, while the same metabolites were formed in both age groups, in the young age group, less metabolite formation was observed, likely due to a reduced viable cell count. Most biotransformation reactions took place within the first 24 h of colon incubation, and mainly, deglycosylation, hydrolysis, flavonoid ring cleavage, and demethylation reactions were observed. A bacterial composition analysis showed a steep drop in α-diversity after 24 h of colon incubation, likely due to favourable experimental conditions for certain bacterial species. CONCLUSIONS Both age groups produced the same metabolites, suggesting that the potential for polyphenols to exert their health-promoting benefits persists in healthy older individuals.
Collapse
Affiliation(s)
- Stef Lauwers
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Sophie Weyns
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Tim Van Rillaer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Valerie Van Huynegem
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Erik Fransen
- Center for Medical Genetics, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2650 Edegem, Belgium
| | - Wout Bittremieux
- ADReM Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Ben Hassena A, Abidi J, Miled N, Kulinowski Ł, Skalicka‐Woźniak K, Bouaziz M. New Insights into the Antibacterial Activity of Hydroxytyrosol Extracted from Olive Leaves: Molecular Docking Simulations of its Antibacterial Mechanisms. Chem Biodivers 2025; 22:e202401714. [PMID: 39294100 PMCID: PMC11741148 DOI: 10.1002/cbdv.202401714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
This study investigated the biological activities of a hydroxytyrosol-rich extract from Olea europaea leaves, particularly its ability to eradicate severe pathogenic bacteria producing Extended-Spectrum Beta-Lactamases (ESBLs). The latter bacteria are emerging microorganisms that pose significant challenges due to their resistance to a broad range of potent therapeutic drugs. The extract was prepared through an accessible acid hydrolysis method. In vitro and In silico analyses through MIC, MBC analysis and molecular docking were conducted to evaluate the antibacterial properties. The extract showed remarkable antioxidant activity and significant antibacterial potential against reference species and ESBL bacteria. MIC and MBC calculations confirmed the extract's capacity to kill bacteria rather than just inhibit their growth. Further in silico analyzes demonstrated the high binding affinity of HT to the active sites of the gyrase B subunit and the peptidoglycan DD-transpeptidase domain from proteins located in the cytoplasm and the cell wall of the bacteria, respectively. Results confirmed the structure-activity relationship and the ability of HT to disrupt essential bacterial functions. This study validates the debated antimicrobial potential of HT and highlights its importance as a potential therapeutic agent against resistant bacteria, which is a critical area of research given the global challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Amal Ben Hassena
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
| | - Jihen Abidi
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
| | - Nabil Miled
- College of ScienceDepartment of Biological SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Łukasz Kulinowski
- Department of Natural Products ChemistryMedical University of Lublin1 Chodzki Street20-093LublinPoland
| | - Krystyna Skalicka‐Woźniak
- Department of Natural Products ChemistryMedical University of Lublin1 Chodzki Street20-093LublinPoland
| | - Mohamed Bouaziz
- Laboratory of Electrochemistry and EnvironmentNational School of Engineers of SfaxUniversity of Sfax, BP 1173Sfax3038Tunisia
- Higher Institute of Biotechnology of SfaxUniversity of Sfax, BP 1175Sfax3038Tunisia
| |
Collapse
|
6
|
Derosa G, D’Angelo A, Angelini F, Belli L, Cicero AFG, Da Ros R, De Pergola G, Gaudio GV, Lupi A, Sartore G, Vignati FA, Maffioli P. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2024; 17:14. [PMID: 39796448 PMCID: PMC11723399 DOI: 10.3390/nu17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Dysglycemia is a condition preceding diabetes mellitus. The two situations inherent in this condition are called impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). If one of these situations is found in the patient, after the advice of an appropriate diet and physical activity, the addition of nutraceuticals or supplements can be considered, which can stop or delay the progression to diabetes mellitus over time. The purpose was to compile a systematic review about the use of nutraceuticals for treating diabetes and prediabetes and to offer a valuable resource for colleagues working on this crucial subject, thereby improving patient health. The added value of the paper compared to other reviews is that it was written by experts appointed by five different scientific societies dealing with diabetes, nutrition, and complications.
Collapse
Affiliation(s)
- Giuseppe Derosa
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Aselli, 43/45, 27100 Pavia, Italy
| | - Angela D’Angelo
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Fabrizio Angelini
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Luca Belli
- SINseB—Società Italiana Nutrizione, Sport e Benessere, Via Morimondo 26, 20143 Milano, Italy; (F.A.); (L.B.)
| | - Arrigo F. G. Cicero
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| | - Roberto Da Ros
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Giovanni De Pergola
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Giovanni V. Gaudio
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Alessandro Lupi
- CFC—Collegio Federativo di Cardiologia, Via Paolo Maspero, 5, 21100 Varese, Italy; (G.V.G.); (A.L.)
| | - Giovanni Sartore
- AMD—Associazione Medici Diabetologi, Viale delle Milizie, 96, 00192 Roma, Italy; (R.D.R.); (G.S.)
| | - Federico A. Vignati
- SIO—Società Italiana Obesità, Corso Italia, 115, 56125 Pisa, Italy; (G.D.P.); (F.A.V.)
| | - Pamela Maffioli
- SINut—Società Italiana di Nutraceutica, Via Guelfa, 9, 40138 Bologna, Italy; (A.D.); (A.F.G.C.); (P.M.)
| |
Collapse
|
7
|
Prevete G, Donati E, Ruggiero AP, Fardellotti S, Lilla L, Ramundi V, Nicoletti I, Mariani F, Mazzonna M. Encapsulation of Olea europaea Leaf Polyphenols in Liposomes: A Study on Their Antimicrobial Activity to Turn a Byproduct into a Tool to Treat Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68850-68863. [PMID: 39631768 DOI: 10.1021/acsami.4c13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
According to the innovative and sustainable perspective of the circular economy model, Olea europaea leaves, a solid byproduct generated every year in large amounts by the olive oil production chain, are considered a valuable source of bioactive compounds, such as polyphenols, with many potential applications. In particular, the following study aimed to valorize olive leaves in order to obtain products with potential antibacterial activity. In this study, olive leaf extracts, rich in polyphenols, were prepared by ultrasound-assisted extraction using green solvents, such as ethanol and water. The extracts were found to be rich in polyphenols up to 26.7 mgGAE/gleaves; in particular, hydroxytyrosol-hexose isomers (up to 6.6 mg/gdry extract) and oleuropein (up to 324.1 mg/gdry extract) turned out to be the most abundant polyphenolic compounds in all of the extracts. The extracts were embedded in liposomes formulated with natural phosphocholine and cholesterol, in the presence or in the absence of a synthetic galactosylated amphiphile. All liposomes, prepared according to the thin-layer evaporation method coupled with an extrusion protocol, showed a narrow size distribution with a particle diameter between 79 and 120 nm and a good polydispersity index (0.10-0.20). Furthermore, all developed liposomes exhibited a great storage stability up to 90 days at 4 °C and at different pH values, with no significant changes in their size and polydispersity index. The effect of the encapsulation in liposomes of O. europaea leaf extracts on their antimicrobial activity was examined in vitro against two strains of Staphylococcus aureus: ATCC 25923 (wild-type strain) and ATCC 33591 (methicillin-resistant S. aureus, MRSA). The extracts demonstrated good antimicrobial activity against both bacterial strains under investigation, with the minimum inhibitory concentration ranging from 140 to 240 μgextract/mL and the minimum bactericidal concentration ranging from 180 to 310 μgextract/mL, depending on the specific extract and the bacterium tested. Moreover, a possible synergistic effect between the bioactive compounds inside the extracts tested was highlighted. Notably, their inclusion in galactosylated liposomes highlighted comparable or slightly increased antimicrobial activity compared to the free extracts against both bacterial strains tested.
Collapse
Affiliation(s)
- Giuliana Prevete
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Anna Paola Ruggiero
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Silvia Fardellotti
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Laura Lilla
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Valentina Ramundi
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Isabella Nicoletti
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Francesca Mariani
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| | - Marco Mazzonna
- Institute for Biological Systems (ISB), Consiglio Nazionale delle Ricerche (CNR), Territorial Research Area Rome 1, Strada Provinciale 35d, no. 9, 00010 Montelibretti, Rome, Italy
| |
Collapse
|
8
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMID: 39765835 PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
9
|
Zhao C, Sinkkonen A, Jumpponen A, Hui N. Neighborhood plant community, airborne microbiota transferred indoors and prevalence of respiratory diseases are interrelated: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176978. [PMID: 39419227 DOI: 10.1016/j.scitotenv.2024.176978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Airborne microbiota transferred indoors (AMTI) is linked to human respiratory health. Yet, the factors influencing these microorganisms and their connections to the prevalence of respiratory diseases (RDs) remain unclear. In this study, we examined plant communities and AMTI using VenTube, next-generation sequencing and quantitative polymerase chain reaction (qPCR) in 72 Shanghai neighborhoods in warm and cold seasons, respectively. To determine the prevalence of RDs, we collected 1026 questionnaires, enlisting 30 ± 5 volunteers aged 40-80, residing in the area for more than a decade, with an equal gender balance. Our results demonstrated that the AMTI communities were less diverse in the cold season than in the warm season, which is in agreement with the changes of garden plant diversity between seasons. Along the reduction of AMTI diversity, greater relative abundances of RDs-associated microbes (e.g., Pseudomonas and Streptococcus) was transferred indoors during the cold season. The questionnaire survey showed that the most prevalent symptom was shortness of breath (25.6 %), followed by rhinitis (20.8 %) and wheeze (14.4 %), with generally no prevalence difference between urban and peri-urban neighborhoods. Notably, despite the sparse garden plant community in the cold season, the abundance of Oleaceae trees showed an inverse relationship with the RDs-associated microbes as well as the prevalences of RDs based on the structural equation model results. This finding was largely supported by the negative effect of Oleaceae trees on the population of Streptococcus anginosus (qPCR) which was a dominant species transferred indoors in the cold season, given that S. anginosus is highly associated with rhinitis and rhinoconjunctivitis. Taken together, our findings suggest a strong association between the Oleaceae trees, the AMTI and the prevalence of RDs, which can shed some lights in the ecological development towards respiratory safe environment in cities.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Aki Sinkkonen
- Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| |
Collapse
|
10
|
Azzi M, Laib I, Bouafia A, Medila I, Tliba A, Laouini SE, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Antimutagenic and anticoagulant therapeutic effects of Ag/Ag 2O nanoparticles from Olea europaea leaf extract: mitigating metribuzin-induced hepato-and nephrotoxicity. Front Pharmacol 2024; 15:1485525. [PMID: 39508051 PMCID: PMC11538059 DOI: 10.3389/fphar.2024.1485525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Silver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity. Objective This study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization. Methodology Ag/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs' protective effects. Results Physicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels. Conclusion Ag/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
Collapse
Affiliation(s)
- Manel Azzi
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ifriqya Medila
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ali Tliba
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Huda Alsaeedi
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
11
|
Magyari-Pavel IZ, Moacă EA, Avram Ș, Diaconeasa Z, Haidu D, Ștefănuț MN, Rostas AM, Muntean D, Bora L, Badescu B, Iuhas C, Dehelean CA, Danciu C. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants (Basel) 2024; 13:774. [PMID: 39061845 PMCID: PMC11273738 DOI: 10.3390/antiox13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Olea europaea L. is the most valuable species of the Olea type, and its products offer a wide range of therapeutical uses. The olive tree has been extensively studied for its nourishing qualities, and the "Mediterranean diet", which includes virgin olive oil as a key dietary component, is strongly associated with a reduced risk of cardiovascular disease and various malignancies. Olive leaves, a by-product in the olive harvesting process, are valued as a resource for developing novel phytomedicines. For this purpose, two ethanolic extracts obtained from Olivae folium from Spain (OFS) and Greece (OFG) were investigated. Our findings contribute to a wider characterization of olive leaves. Both extracts displayed important amounts of phenolic compounds and pentacyclic triterpenes, OFG having higher concentrations of both polyphenols, such as oleuropein and lutein, as well as triterpenes, such as oleanolic acid and maslinic acid. The antioxidant capacity is similar for the two extracts, albeit slightly higher for OFG, possibly due to metal polyphenol complexes with antioxidant activity. The extracts elicited an antimicrobial effect at higher doses, especially against Gram-positive bacteria, such as Streptococcus pyogenes. The extract with lower inorganic content and higher content of polyphenols and triterpenic acids induced a strong anti-radical capacity, a selective cytotoxic effect, as well as antimigratory potential on A375 melanoma cells and antiangiogenic potential on the CAM. No irritability and a good tolerability were noted after evaluating the extracts on the in vivo Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Therefore, the present data are suggestive for the possible use of the two types of olive leaf products as high-antioxidant extracts, potentially impacting the healthcare system through their use as antimicrobial agents and as anticancer and anti-invasion treatments for melanoma.
Collapse
Affiliation(s)
- Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ștefana Avram
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Daniela Haidu
- Romanian Academy “Coriolan Dragulescu” Institute of Chemistry, Bv. M. Viteazu, No. 24, 300223 Timisoara, Romania;
| | - Mariana Nela Ștefănuț
- Department of Chemical and Electrochemical Syntheses, Laboratory of Electrochemical and Chemical Technologies, National Institute of Research and Development for Electrochemistry and Condensed Matter, Dr. A. P. Podeanu 144, 300569 Timişoara, Romania;
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies-INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania;
| | - Delia Muntean
- Department of Microbiology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
| | - Cristian Iuhas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (E.-A.M.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.Z.M.-P.); (L.B.); (C.D.)
| |
Collapse
|
12
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
13
|
Arraji M, Al Wachami N, Boumendil K, Chebabe M, Mochhoury L, Laamiri FZ, Barkaoui M, Chahboune M. Ethnobotanical survey on herbal remedies for the management of type 2 diabetes in the Casablanca-Settat region, Morocco. BMC Complement Med Ther 2024; 24:160. [PMID: 38622669 PMCID: PMC11017650 DOI: 10.1186/s12906-024-04468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Morocco faces a substantial public health challenge due to diabetes mellitus, affecting 12.4% of adults in 2023. The Moroccan population makes extensive use of phytotherapy and traditional medicine to address the difficulties this chronic condition poses. The aim of this study is to document the use of medicinal plants in traditional medicine for managing type 2 diabetes in the provinces of the Casablanca-Settat region. METHODS The study employed a semi-structured questionnaire for data collection. A study was conducted between August 1st and September 30th, 2023, and 244 individuals diagnosed with diabetes were invited to take part in the research, all of whom used at least one medicinal plant to manage type 2 diabetes, by visiting primary healthcare facilities in Morocco. The analysis included the use of Relative Frequency of Citation (RFC) to scrutinize the data. RESULTS A total of 47 plant species belonging to 25 families were documented. Notably, the Apiaceae, Lamiaceae, and Fabaceae families were frequently mentioned in the context of treating type 2 diabetes in Morocco. Prominent among the cited plant species were Sesamum indicum L., Lepidium sativum L., followed by Foeniculum vulgare Mill., and Rosmarinus officinalis L. Seeds emerged as the plant part most commonly mentioned, with infusion being the prevailing preparation method and oral consumption being the most frequently depicted method of administration. CONCLUSION This research underscores the practicality of incorporating traditional medicine into the healthcare framework of the Casablanca-Settat region. The findings not only offer valuable documentation but also have a vital function in safeguarding knowledge regarding the utilization of medicinal plants in this locality. Moreover, they provide opportunities to delve deeper into the phytochemical and pharmacological potential of these plants.
Collapse
Affiliation(s)
- Maryem Arraji
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco.
| | - Nadia Al Wachami
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| | - Karima Boumendil
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| | - Milouda Chebabe
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| | - Latifa Mochhoury
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| | - Fatima Zahra Laamiri
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| | - Mohamed Barkaoui
- Hassan First University of Settat, Institut des Sciences du Sport, Laboratory of Health Sciences and Technologies, Settat, 26000, Morocco
| | - Mohamed Chahboune
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, 26000, Morocco
| |
Collapse
|
14
|
Elayeb R, Bermúdez-Oria A, Lazreg Aref H, Majdoub H, Ritzoulis C, Mannu A, Le Cerf D, Carraro M, Achour S, Fernández-Bolaños J, Trigui M. Antioxidant polysaccharide-enriched fractions obtained from olive leaves by ultrasound-assisted extraction with α-amylase inhibition, and antiproliferative activities. 3 Biotech 2024; 14:92. [PMID: 38425411 PMCID: PMC10899153 DOI: 10.1007/s13205-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.
Collapse
Affiliation(s)
- Rania Elayeb
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Houda Lazreg Aref
- Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Christos Ritzoulis
- Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Alberto Mannu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, CNRS, PBS, Normandie University, 76000 Rouen, France
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sami Achour
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Maher Trigui
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
15
|
Alghamdi SQ, Alotaibi NF, Al-Ghamdi SN, Alqarni LS, Amna T, Moustafa SMN, Alsohaimi IH, Alruwaili IA, Nassar AM. High Antiparasitic and Antimicrobial Performance of Biosynthesized NiO Nanoparticles via Wasted Olive Leaf Extract. Int J Nanomedicine 2024; 19:1469-1485. [PMID: 38380146 PMCID: PMC10876883 DOI: 10.2147/ijn.s443965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Background Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.
Collapse
Affiliation(s)
- Samia Q Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - N F Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sameera N Al-Ghamdi
- Chemistry Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Laila S Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - Shaima M N Moustafa
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - I A Alruwaili
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - A M Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
16
|
Luca T, Malfa GA, Siracusa L, La Mantia A, Bianchi S, Napoli E, Puleo S, Sergi A, Acquaviva R, Castorina S. Redox State Modulatory Activity and Cytotoxicity of Olea europaea L. (Oleaceae) Leaves Extract Enriched in Polyphenols Using Macroporous Resin. Antioxidants (Basel) 2024; 13:73. [PMID: 38247497 PMCID: PMC10812475 DOI: 10.3390/antiox13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
The food products derived from Olea europaea are a fundamental part of the Mediterranean diet, and their health-promoting effects are well known. In this study, we analyzed the phytochemical characteristics, the redox state modulatory activity, and the cytotoxic effect of an olive leaf aqueous extract enriched by macroporous resin on different tumor and normal cell lines (LNCaP, PC3, HFF-1). HPLC-DAD analysis, the Folin-Ciocalteu and aluminum chloride methods confirmed the qualitatively and quantitatively high content of phenolic compounds (130.02 ± 2.3 mg GAE/g extract), and a DPPH assay (IC50 = 100.00 ± 1.8 μg/mL), the related antioxidant activity. The biological investigation showed a significant cytotoxic effect, highlighted by an MTT test and the evident cellular morphological changes, on two prostate cancer cell lines. Remarkably, the extract was practically non-toxic on HFF-1 at the concentrations (100, 150, 300 µg/mL) and exposure times tested. Hence, the results are selective for tumor cells. The underlying cytotoxicity was associated with the decrease in ROS production (55% PC3, 42% LNCaP) and the increase in RSH levels (>50% PC3) and an LDH release assay (50% PC3, 40% LNCaP, established necrosis as the main cell death mechanism.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technology, University of Catania, Via Santa Sofia, 95123 Catania, Italy; (T.L.); (S.C.)
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Siracusa
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| | - Alfonsina La Mantia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy;
| | - Angelo Sergi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technology, University of Catania, Via Santa Sofia, 95123 Catania, Italy; (T.L.); (S.C.)
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy;
| |
Collapse
|
17
|
Kaushik A, Kaushik M, Kaur G, Gupta V. Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review. Infect Disord Drug Targets 2024; 24:40-52. [PMID: 38031773 DOI: 10.2174/0118715265210606231113105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.
Collapse
Affiliation(s)
- Aditi Kaushik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Manish Kaushik
- KC Group of Institutions, UNA, H.P, MMDU, Mullana, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vrinda Gupta
- Chitkara Group of Institutions, Chitkara University, Chandigarh, India
| |
Collapse
|
18
|
Rodríguez-Fernández R, Fernández-Gómez Á, Mejuto JC, Astray G. Modelling Polyphenol Extraction through Ultrasound-Assisted Extraction by Machine Learning in Olea europaea Leaves. Foods 2023; 12:4483. [PMID: 38137287 PMCID: PMC10742609 DOI: 10.3390/foods12244483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The study of the phenolic compounds present in olive leaves (Olea europaea) is of great interest due to their health benefits. In this research, different machine learning algorithms such as RF, SVM, and ANN, with temperature, time, and volume as input variables, were developed to model the extract yield and the total phenolic content (TPC) from experimental data reported in the literature. In terms of extract yield, the neural network-based ANNZ-L model presents the lowest root mean square error (RMSE) value in the validation phase (9.44 mg/g DL), which corresponds with a mean absolute percentage error (MAPE) of 3.7%. On the other hand, the best model to determine the TPC value was the neural network-based model ANNR, with an RMSE of 0.89 mg GAE/g DL in the validation phase (MAPE of 2.9%). Both models obtain, for the test phase, MAPE values of 4.9 and 3.5%, respectively. This affirms that ANN models would be good modelling tools to determine the extract yield and TPC value of the ultrasound-assisted extraction (UAE) process of olive leaves under different temperatures, times, and solvents.
Collapse
Affiliation(s)
| | | | | | - Gonzalo Astray
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, 32004 Ourense, Spain; (R.R.-F.); (Á.F.-G.); (J.C.M.)
| |
Collapse
|
19
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Özdamar B, Sürmeli Y, Şanlı-Mohamed G. Immobilization of Olive Leaf Extract with Chitosan Nanoparticles as an Adjunct to Enhance Cytotoxicity. ACS OMEGA 2023; 8:28994-29002. [PMID: 37599944 PMCID: PMC10433347 DOI: 10.1021/acsomega.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
We immobilized the olive leaf extract (OLE) with chitosan nanoparticles (CNPs) by optimizing the effect of various immobilization conditions, and OLE-loaded CNPs (OLE-CNPs) were then elaborately characterized physicochemically by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM). Under optimal conditions, CNPs were able to accommodate the OLE with a loading capacity of 97.5%. The resulting OLE-CNPs had a spherical morphology, and their average diameter was approximately 100 nm. The cytotoxic influence, cell cycle distribution, and apoptosis stage of OLE and OLE-CNPs were analyzed on lung carcinoma (A549) and breast adenocarcinoma (MCF-7) cell lines. In an in vitro cytotoxic assay, IC50 values of OLE-CNPs were determined to be 540 μg/mL for A549 and 810 μg/mL for MCF-7. The treatment of both A549 and MCF-7 with OLE-CNPs caused the highest cell arrest in G0/G1 in a dose-independent manner. OLE-CNPs affected cell cycle distribution in a manner different from free OLE treatment in both cancer cells. A549 and MCF-7 cells were predominantly found in the late apoptosis and necrosis phases, respectively, upon treatment of 1000 μM OLE-CNPs. Our results suggest that CNPs enhance the utility of OLEs as nutraceuticals in cancer and that OLE-CNPs can be utilized as an adjunct to cancer therapy.
Collapse
Affiliation(s)
- Burcu Özdamar
- Department
of Chemistry, İzmir Institute of
Technology, 35430 İzmir, Turkey
| | - Yusuf Sürmeli
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
- Department
of Agricultural Biotechnology, Namık
Kemal University, 59030 Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department
of Chemistry, İzmir Institute of
Technology, 35430 İzmir, Turkey
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| |
Collapse
|
21
|
Bal Y, Sürmeli Y, Şanlı-Mohamed G. Antiproliferative and Apoptotic Effects of Olive Leaf Extract Microcapsules on MCF-7 and A549 Cancer Cells. ACS OMEGA 2023; 8:28984-28993. [PMID: 37599941 PMCID: PMC10433482 DOI: 10.1021/acsomega.3c01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Alginate microcapsules are a talented means for the delivery of broad curative biomacromolecules. In this study, we immobilized olive leaf extract (OLE) by calcium alginate (CA) and chitosan-coated CA (CCA) and characterized the OLE-loaded CA and CCA. The cytotoxic effect, the cell cycle arrest, and the apoptotic effect of OLE and its microcapsules were investigated against breast adenocarcinoma (MCF-7) and lung carcinoma (A549). As a result, the loading capacity of OLE-CA and OLE-CCA was found to be 80 and 99%, respectively, in optimal conditions. Also, OLE-CA and OLE-CCA were characterized by unique FTIR peaks and morphological display relative to the empty CCA microcapsules. The cytotoxicity analysis showed that the IC50 values of OLE-CA and OLE-CCA were determined to be 312 and 0.94 μg mL-1 against A549, respectively, whereas these were found to be 865.4 and 425.5 μg mL-1 for MCF-7 cells. On the other hand, the OLE microcapsules did not possess in any concentration of cytotoxic influence on the BEAS 2B healthy cell line. Also, the exposure of OLE-CCA to MCF-7 and A549 resulted in the arrest of more MCF-7 and A549 cells at the G0/G1 phase compared to the OLE. A549 and MCF-7 cells were predominantly found in the late apoptosis phase and necrosis phase, respectively. Optical microscopy images confirmed that OLE microcapsules were more effective against MCF-7 and A549 than free OLE. The present work suggested that the OLE microcapsules might be administered as nutrition supplements for cancer therapy.
Collapse
Affiliation(s)
- Yıldız Bal
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| | - Yusuf Sürmeli
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
- Department
of Agricultural Biotechnology, Tekirdağ
Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
- Department
of Chemistry, İzmir Institute of
Technology, 35430 İzmir, Turkey
| |
Collapse
|
22
|
Vasarri M, Degl’Innocenti D, Albonetti L, Bilia AR, Bergonzi MC. Pentacyclic Triterpenes from Olive Leaves Formulated in Microemulsion: Characterization and Role in De Novo Lipogenesis in HepG2 Cells. Int J Mol Sci 2023; 24:12113. [PMID: 37569488 PMCID: PMC10419275 DOI: 10.3390/ijms241512113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Olea europaea L. leaves contain a wide variety of pentacyclic triterpenes (TTPs). TTPs exhibit many pharmacological activities, including antihyperlipidemic effects. Metabolic alterations, such as dyslipidemia, are an established risk factor for hepatocellular carcinoma (HCC). Therefore, the use of TTPs in the adjunctive treatment of HCC has been proposed as a possible method for the management of HCC. However, TTPs are characterized by poor water solubility, permeability, and bioavailability. In this work, a microemulsion (ME) loading a TTP-enriched extract (EXT) was developed, to overcome these limits and obtain a formulation for oral administration. The extract-loaded microemulsion (ME-EXT) was fully characterized, assessing its chemical and physical parameters and release characteristics, and the stability was evaluated for two months of storage at 4 °C and 25 °C. PAMPA (parallel artificial membrane permeability assay) was used to evaluate the influence of the formulation on the intestinal passive permeability of the TTPs across an artificial membrane. Furthermore, human hepatocarcinoma (HepG2) cells were used as a cellular model to evaluate the effect of EXT and ME-EXT on de novo lipogenesis induced by elevated glucose levels. The effect was evaluated by detecting fatty acid synthase expression levels and intracellular lipid accumulation. ME-EXT resulted as homogeneous dispersed-phase droplets, with significantly increased EXT aqueous solubility. Physical and chemical analyses showed the high stability of the formulation over 2 months. The formulation realized a prolonged release of TTPs, and permeation studies demonstrated that the formulation improved their passive permeability. Furthermore, the EXT reduced the lipid accumulation in HepG2 cells by inhibiting de novo lipogenesis, and the ME-EXT formulation enhanced the inhibitory activity of EXT on intracellular lipid accumulation.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| |
Collapse
|
23
|
Allegretta C, Difonzo G, Caponio F, Tamma G, Laselva O. Olive Leaf Extract (OLE) as a Novel Antioxidant That Ameliorates the Inflammatory Response in Cystic Fibrosis. Cells 2023; 12:1764. [PMID: 37443798 PMCID: PMC10340374 DOI: 10.3390/cells12131764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with chronic infection and inflammation which are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels in a dose-response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to LPS or IL-1β/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures. These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators therapy to improve their efficacy in CF patients.
Collapse
Affiliation(s)
- Caterina Allegretta
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (G.D.); (F.C.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
24
|
Narzary I, Swarnakar A, Kalita M, Middha SK, Usha T, Babu D, Mochahary B, Brahma S, Basumatary J, Goyal AK. Acknowledging the use of botanicals to treat diabetic foot ulcer during the 21 st century: A systematic review. World J Clin Cases 2023; 11:4035-4059. [PMID: 37388781 PMCID: PMC10303622 DOI: 10.12998/wjcc.v11.i17.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a serious health issue of diabetes mellitus that affects innumerable people worldwide. Management and treatment of this complication are challenging, especially for those whose immune system is weak. AIM To discuss the plants and their parts used to heal DFU, along with the mode of their administration in diabetic patients. METHODS The original articles on "the plants for the treatment of DFU" studied in clinical cases only were obtained from various bibliographic databases using different keywords. RESULTS The search resulted in 22 clinical cases records with 20 medicinal plants belonging to 17 families on 1553 subjects. The fruits and leaves were the most preferentially used parts for DFU treatment, regardless of whether they were being administered orally or applied topically. Of the 20 medicinal plants, 19 reported their effectiveness in increasing angiogenesis, epithelialization, and granulation, thus hastening the wound-healing process. The efficacy of these botanicals might be attributed to their major bioactive compounds, such as actinidin and ascorbic acid (in Actinidia deliciosa), 7-O-(β-D-glucopyranosyl)-galactin (in Ageratina pichinchensis), omega-3-fatty acid (in Linum usitatissimum), isoquercetin (in Melilotus officinalis), anthocyanins (in Myrtus communis), and plantamajoside (in Plantago major). CONCLUSION The validation of mechanisms of action underlying these phytocompounds contributing to the management of DFU can aid in our better understanding of creating efficient treatment options for DFU and its associated problems.
Collapse
Affiliation(s)
- Illora Narzary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
- Department of Zoology, Baosi Banikanta Kakati College, Barpeta 781311, Assam, India
| | - Amit Swarnakar
- Medical Unit, Bodoland University, Kokrajhar 783370, Assam, India
| | - Mrinal Kalita
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru 560012, Karnataka, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Banjai Mochahary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Jangila Basumatary
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar 783370, Assam, India
| |
Collapse
|
25
|
Angelopoulos N, Paparodis RD, Androulakis I, Boniakos A, Argyrakopoulou G, Livadas S. Low Dose Monacolin K Combined with Coenzyme Q10, Grape Seed, and Olive Leaf Extracts Lowers LDL Cholesterol in Patients with Mild Dyslipidemia: A Multicenter, Randomized Controlled Trial. Nutrients 2023; 15:2682. [PMID: 37375586 DOI: 10.3390/nu15122682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023] Open
Abstract
Certain nutraceuticals, mainly containing red yeast rice, might be considered as an alternative therapy to statins in patients with dyslipidemia, although there is still insufficient evidence available with respect to long-term safety and effectiveness on cardiovascular disease prevention and treatment. The aim of this study was to assess the lipid-lowering activity and safety of a dietary supplement containing a low dose of monacolin K combined with coenzyme Q10, grape seed and olive tree leaf extracts in patients with mild hypercholesterolemia. In total, 105 subjects with mild hypercholesterolemia (low-density lipoprotein cholesterol LDL-C levels 140-180 mg/dL) and low CV risk were randomly assigned into three treatment groups: lifestyle modification (LM), LM plus a low dosage of monacolin K (3 mg), and LM plus a high dosage of monacolin K (10 mg) and treated for 8 weeks. The primary endpoint was the reduction of LDL-C and total cholesterol (TC). LDL-C decreased by 26.46% on average (p < 0.001) during treatment with 10 mg of monacolin and by 16.77% on average during treatment with 3 mg of monacolin (p < 0.001). We observed a slight but significant reduction of the triglyceride levels only in the high-dose-treated group (mean -4.25%; 95% CI of mean -11.11 to 2.61). No severe adverse events occurred during the study. Our results confirm the LDL-C-lowering properties of monacolin are clinically meaningful even in lower doses of 3 mg/day.
Collapse
Affiliation(s)
- Nicholas Angelopoulos
- Endocrine Unit, Athens Medical Centre, 65403 Athens, Greece
- Private Practice, Venizelou Str., 65302 Kavala, Greece
| | - Rodis D Paparodis
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Private Practice, Gerokostopoulou 24, 26221 Patra, Greece
| | - Ioannis Androulakis
- Endocrine Unit, Athens Medical Centre, 65403 Athens, Greece
- Private Practice, Tzanaki Emmanouil 17, 73134 Chania, Greece
| | | | | | | |
Collapse
|
26
|
Politis P, Lepetsos P, Jelastopulu E, Megas P, Leotsinidis M. Prevalence, Risk Factors, and Economical Cost of Work-Related Injuries Among Olive Workers in the Achaia Region, Greece. Cureus 2023; 15:e39657. [PMID: 37388581 PMCID: PMC10306346 DOI: 10.7759/cureus.39657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Background Olive gathering involves tree climbing, carrying heavy loads, navigating rough terrain, and using sharp tools. However, little is known about occupational injuries among olive workers. The aim of this study is to evaluate the prevalence and risk factors of occupational injuries among olive workers in a rural Greek area and to assess the financial burden on the health system and insurance funds. Methods A questionnaire was administered to 166 olive workers in the Aigialeia municipality in the Achaia region, Greece. The questionnaire contained detailed information on demographic characteristics, medical history, working environment, protective measures, gathering tools, and type and site of injuries. Moreover, data were recorded about the duration of hospitalization, medical examinations and treatment received, sick leaves, complications, and rate of re-injury. Direct economic costs were calculated for hospitalized and non-hospitalized patients. The associations between olive workers' characteristics, risk factors, and occupational injury within the last year were examined using log-binomial regression models. Results In total, 85 injuries were recorded in 50 workers. The prevalence of one or more injuries in the last year was 30.1%. Factors associated with a higher rate of injury were male gender, age > 50 years, working experience > 24 years, history of arterial hypertension and diabetes mellitus, climbing habits, and non-use of protective gloves. The average cost of agricultural injuries was more than 1400 € per injury. The cost seems to be associated with the severity of the injury, as injuries requiring hospitalization were associated with increased costs, higher cost of medication, as well as more days of sick leave. Losses due to sick leave cause the greatest financial costs. Conclusions Farm-related injuries are quite usual among olive workers in Greece. Injury risk is influenced by gender, age, working experience, medical history, climbing habits, and use of protective gloves. Days off work have the greatest financial cost. These findings can be useful as a starting point to train olive workers to reduce the incidence of farm-related injuries in Greece. Knowledge of risk factors for farm-related injuries and diseases could help the development of proper interventions to minimize the problem.
Collapse
Affiliation(s)
- Pantelis Politis
- Department of Public Health, School of Medicine, University of Patras, Patras, GRC
| | | | - Eleni Jelastopulu
- Department of Public Health, School of Medicine, University of Patras, Patras, GRC
| | - Panagiotis Megas
- Department of Orthopedics, School of Medicine, University of Patras, Patras, GRC
| | - Michalis Leotsinidis
- Department of Public Health, School of Medicine, University of Patras, Patras, GRC
| |
Collapse
|
27
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
28
|
Miao F, Geng S, Ning D. Hydroxytyrosol ameliorates LPS-induced acute liver injury (ALI) in mice by modulating the balance between M1/M2 phenotype macrophage and inhibiting TLR4/NF-κB activation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
29
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
30
|
Abulnaja K, Bakkar A, Kannan K, Al-Manzlawi AM, Kumosani T, Qari M, Moselhy S. Olive leaf (Olea europaea L. folium) extract influences liver microsomal detoxifying enzymes in rats orally exposed to 2-amino-l-methyI-6-phenyI-imidazo pyridine (PhIP). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16346-16354. [PMID: 36181589 DOI: 10.1007/s11356-022-23341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Olive tree (Olea europaea, Oleaceae) leaf extract (OLE) exerts many biological activities. One of the most common polycyclic aromatic hydrocarbons (PAHs) that pollute the environment is 2-amino-l-methyI-6-phenyI-imidazo pyridine (PhIP). It is a food-derived carcinogen that is present in fish and meat that has been cooked at high temperatures. Due to the generation of reactive electrophilic species, phase I enzymes have the potential to cause oxidative damage. In order to safely remove these reactive species from the body, phase II detoxification (conjugation) enzymes are necessary. It is not known whether OLE could influence their activities and hence reduce the carcinogenic effects of PhIP. This study evaluated whether OLE could modulate phase I detoxifying enzymes as well as phase II enzymes that metabolize PhIP in rat liver microsomes. Four groups of rats were used: group I: no treatment; group II: OLE (10 mg/kg bw orally); group III: PhIP (0.1 mg/kg bw orally); and group IV: PhIP followed by OLE. After 4 weeks, the activities of phase I enzymes such as CYP1A1 (ethoxyresorufin O-deethylase), CYP2E1 (p-nitrophenol hydroxylase), CYP1A2 (methoxyresorufin O-demethylase), UDP-glucuronyl transferase, sulphotransferase, and glutathione-S transferase were evaluated in rat liver microsomes. Analysis of OLE by gas chromatography-mass spectrometry (GC/MS) showed various active ingredients in OLE, including 3,5-Heptadienal (C10H14O), 3,4-dimethoxy benzoic acid (C8H10O3), 4-hydroxy-3-methoxy (C8H8O4), 1,3,5-Benzenetriol (C6H6O3), hexadecanoic acid (C16H32O2), and hexadecanoic acid ethyl ester (C18H36O2). Our results showed that rats given PhIP were found to have a statistically significant (p < 0.001) reduction in the activities of CYP1A1, CYP1A2, and CYP2E1 in comparison with the control group. However, treatment with OLE enhanced their activities but not to a normal level compared with untreated groups. Administration of PhIP decreased the activities of phase II enzymes (glutathione S-transferase, UDP-glucuronyltransferase, or sulphotransferase) (p < 0.01) in comparison with the control group. Histological examination of rat livers was consistent with the biochemical changes. The administration of OLE improved the phase II enzyme activities in animals injected with PhIP. We conclude that OLE influences phase I and phase II detoxification enzymes exposed to PhIP, which may represent a new approach to attenuating carcinogenesis induced by it.
Collapse
Affiliation(s)
- Khalid Abulnaja
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf Bakkar
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), 6Th of October Giza-Egypt, Giza, Egypt
| | - Kurunthachalam Kannan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Environmental Medicine, University School of Medicine, New York, NY, 10016, USA
| | | | - Taha Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bio-Products for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Qari
- Department of Hematology, Faculty of Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Said Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
31
|
Leite PM, Miranda APN, Gomes I, Rodrigues ML, Camargos LM, Amorim JM, Duarte RCF, Faraco AAG, Carvalho MG, Castilho RO. Antithrombotic potential of Lippia alba: A mechanistic approach. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115744. [PMID: 36181984 DOI: 10.1016/j.jep.2022.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson is traditionally used in Brazil as an adjunct in the relief of mild anxiety, as an antispasmodic, and as an antidyspeptic. This medicinal species was included in the Phytotherapeutic Form of the Brazilian Pharmacopeia 2nd edition (2021) and has already been described as the most used medicinal plant in a study with patients from an Anticoagulation Clinic in Brazil. Meanwhile, no studies were found that support the safety of the use of L. alba in patients using anticoagulants, a drug with several safety limitations. AIM OF THE STUDY Provide scientific evidence to ensure the safety of the concomitant use of L. alba and warfarin and support the management of these patients by evaluating its in vitro anticoagulant effect and chemical composition. And, as a timely complementation, evaluate the potential of this medicinal species in the development of new antithrombotics. METHODS The chemical profile of L. alba derivatives was analyzed by chromatographic methods such as Ultra-Performance Liquid Chromatography (UPLC) coupled with electrospray ionization mass spectrometry (ESI-MS), qualitative UPLC using Diode-Array Detection, and Thin Layer Chromatography. The anticoagulant activity was evaluated by the innovative Thrombin Generation Assay by Calibrated Automated Thrombogram method and using traditional coagulometric tests: prothrombin time, activated partial thromboplastin time, and plasma fibrinogen measurement. RESULTS Extracts and fractions prolonged the coagulation time in all the tests and reduced thrombin formation in thrombin generation assay. Coagulation times with the addition of ethanloic extract (2.26 mg/mL) was 17.78s, 46.43s and 14.25s respectively in prothrombin time, activated partial thromboplastin time and fibrinogren plasma measurement. In thrombin generation test, this same extract showed ETP as 323 nM/min compared to control (815 nM/min) with high tissue factor and 582 nM/min compared to control (1147 nM/min) using low tissue factor. Presence of flavonoids, phenylpropanoids, and triterpenes were confirmed by chromatographic methods and 13 compounds were identified by UPLC-ESI-MS. Based on these results and on the scientific literature, it is possible to propose that phenylpropanoids and flavonoids are related to the anticoagulant activity observed. CONCLUSION The results demonstrate the in vitro anticoagulant activity of L. alba, probably due to the activation of intrinsic and extrinsic pathways. It is concluded, then, that there is a potential for interaction, which needs to be further studied, between L. alba and warfarin. Also, this medicinal species shows a great potential for use in the development of new antithrombotics.
Collapse
Affiliation(s)
- Paula M Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana P N Miranda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Izabella Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria L Rodrigues
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Layla M Camargos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana M Amorim
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rita C F Duarte
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - André A G Faraco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel O Castilho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, Brazil.
| |
Collapse
|
32
|
Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents. Molecules 2023; 28:molecules28010353. [PMID: 36615544 PMCID: PMC9823617 DOI: 10.3390/molecules28010353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf phenolic compounds. The resultant extracts were evaluated for their total phenol content (TPC), phenolic profile and antioxidant activity and compared with those of water and ethanol:water 70% v/v extracts. HAE was proven to be the most efficient method for the recovery of olive leaf phenolic compounds. The highest TPC (55.12 ± 1.08 mg GAE/g d.w.) was found in CCA extracts after HAE at 60 °C and 12,000 rpm, and the maximum antioxidant activity (3.32 ± 0.39 g d.w./g DPPH) was found in CGL extracts after UAE at 60 °C for 30 min. The TPCs of ethanol extracts were found to be higher than those of NADES extracts in most cases. The predominant phenolic compounds in the extracts were oleuropein, hydrohytyrosol and rutin.
Collapse
|
33
|
Tunisian Wild Olive Leaves: Phenolic Compounds and Antioxidant Activity as an Important Step Toward Their Valorization. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Asghari AA, Mahmoudabady M, Mousavi Emadi Z, Hosseini SJ, Salmani H. Cardiac hypertrophy and fibrosis were attenuated by olive leaf extract treatment in a rat model of diabetes. J Food Biochem 2022; 46:e14494. [PMID: 36322398 DOI: 10.1111/jfbc.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/29/2022]
Abstract
The key role of fibrosis and hypertrophy processes in developing diabetes-induced heart injury has been demonstrated. Considering the known hypoglycemic effects of olive leaf extract (OLE), we decided to investigate its potential effect and associated mechanisms on cardiac fibrosis and myocardial hypertrophy in streptozotocin (STZ)-induced diabetic rats. Eight groups were included in this study: control, diabetic, diabetic-OLEs (100, 200 and 400 mg/kg), diabetic-metformin (300 mg/kg), diabetic-valsartan (30 mg/kg), and diabetic-metformin/valsartan (300/30 mg/kg). After a treatment period of 6 weeks, echocardiography was used to assess cardiac function. Heart-to-body weight ratio (HW/BW) and fasting blood sugar (FBS) were measured. Myocardial histology was examined by Masson's trichrome staining. Gene expressions of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC), TGF-β1, TGF-β3, angiotensin II type 1 receptor (AT1), alpha-smooth muscle actin (α-SMA), and collagen were evaluated by the quantitative real-time PCR in heart tissue. A reduction in the FBS level and HW/BW ratio in the extract groups was obvious. The improvement of left ventricular dysfunction, cardiac myocytes hypertrophy, and myocardial interstitial fibrosis was also observed in treated groups. A lowering trend in the expression of all hypertrophic and fibrotic indicator genes was evident in the myocardium of OLE treated rats. Our data indicated that OLE could attenuate fibrosis and reduce myocardial hypertrophy markers, thus improving the cardiac function and structure in the STZ-induced diabetic rats. PRACTICAL APPLICATIONS: This study demonstrates that olive leaf extract in addition to lowering blood glucose levels and the heart-to-body weight ratio (HW/BW) may also improve cardiac function and reduce cardiac hypertrophy and fibrosis in cardiac tissue, which leads to inhibition of diabetic heart damage. Thus it is possible that including olive leaf extracts in the diets of individuals with diabetes may assist in lowering cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mousavi Emadi
- Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
35
|
Novel Copper Oxide Bio-Nanocrystals to Target Outer Membrane Lectin of Vancomycin-Resistant Enterococcus faecium (VREfm): In Silico, Bioavailability, Antimicrobial, and Anticancer Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227957. [PMID: 36432057 PMCID: PMC9696412 DOI: 10.3390/molecules27227957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
In present study, we used Olea europaea leaf extract to biosynthesize in situ Copper Oxide nanocrystals (CuO @OVLe NCs) with powerful antibacterial and anti-cancer capabilities. Physio-chemical analyses, such as UV/Vis, FTIR, XRD, EDX, SEM, and TEM, were applied to characterize CuO @OVLe NCs. The UV/Vis spectrum demonstrated a strong peak at 345 nm. Furthermore, FTIR, XRD, and EDX validated the coating operation's contact with colloidal CuO @OVLe NCs. According to TEM and SEM analyses, CuO @OVLe NCs exhibited a spherical shape and uniform distribution of size with aggregation, for an average size of ~75 nm. The nanoparticles demonstrated a considerable antibacterial effect against E. faecium bacterial growth, as well as an increased inhibition rate in a dose-dependent manner on the MCF-7, PC3, and HpeG2 cancer cell lines and a decreased inhibition rate on WRL-68. Molecular docking and MD simulation were used to demonstrate the high binding affinity of a ligand (Oleuropein) toward the lectin receptor complex of the outer membrane to vancomycin-resistant E. faecium (VREfm) via amino acids (Leu 195, Thr 288, His 165, and Ser 196). Hence, our results expand the accessibility of OVLe's bioactive components as a promising natural source for the manufacture of physiologically active components and the creation of green biosynthesis of metal nanocrystals.
Collapse
|
36
|
Baccouri B, Sieren T, Rajhi I, Willenberg I. Characterization of the fingerprint profile of bioactive constituents of extra virgin olive oils from Peninsula Tunisian Cap Bon with regard to altitude. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Razmpoosh E, Abdollahi S, Mousavirad M, Clark CCT, Soltani S. The effects of olive leaf extract on cardiovascular risk factors in the general adult population: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2022; 14:151. [PMID: 36271405 PMCID: PMC9585795 DOI: 10.1186/s13098-022-00920-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The aim of this systematic review and meta-analysis was to determine the effect of olive leaf extract (OLE) supplementation on cardiovascular-related variables, including lipid, glycemic, inflammatory, liver and renal-related factors, as well as blood pressure. METHODS PubMed, ISI Web of Science, Scopus, and Cochrane library were searched, up to October 2021, for relevant controlled trials. Mean differences and standard deviations were pooled for all outcomes, using a random-effects model. The methodological quality, as well as quality of evidence were assessed using standard tools. RESULTS Twelve studies (n = 819 participants) were included in our analyses. Overall analyses showed that OLE supplementation significantly decreased triglyceride (TG) levels (WMD = - 9.51 mg/dl, 95% CI - 17.83, - 1.18; P = 0.025; I2 = 68.7%; P-heterogeneity = 0.004), and systolic blood pressure (SBP) (WMD = - 3.86 mmHg, 95% CI - 6.44, - 1.28 mmHg; P = 0.003; I2 = 19.9%; P-heterogeneity = 0.28). Subgroup analyses also revealed a significant improvement in SBP (- 4.81 mmHg) and diastolic blood pressure (- 2.45 mmHg), TG (- 14.42 mg/dl), total cholesterol (TC) (- 9.14 mg/dl), and low-density lipoprotein-C (LDL-C) (- 4.6 mg/dl) measurements, in patients with hypertension. Significant reductions were also observed in TC (- 6.69 mg/dl), TG (- 9.21 mg/dl), and SBP (- 7.05 mmHg) in normal-weight individuals. However, no meaningful changes were seen in glucose hemostasis, liver and kidney, or inflammatory markers. CONCLUSION The present study revealed that supplementation with OLE yielded beneficial effects for blood pressure and lipid profile in adults, especially in patients with hypertension. As the quality of evidence for glucose hemostasis variables, liver, kidney, and inflammatory markers, were low-to-very low, higher quality RCTs may impact the overarching results. This study was registered at PROSPERO with the code CRD42022302395.
Collapse
Affiliation(s)
- Elham Razmpoosh
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdieh Mousavirad
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
38
|
Montes A, Merino E, Valor D, Guamán-Balcázar MC, Pereyra C, Martínez de la Ossa EJ. From olive leaves to spherical nanoparticles by one-step RESS process precipitation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Galicia-Campos E, García-Villaraco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Bacillus H47 triggers Olea europaea metabolism activating DOXP and shikimate pathways simultaneously and modifying leaf extracts’ antihypertensive activity. Front Microbiol 2022; 13:1005865. [PMID: 36267177 PMCID: PMC9577608 DOI: 10.3389/fmicb.2022.1005865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Improvement of plant adaptation by beneficial bacteria (PGPB) may be achieved by triggering multiple pathways to overcome the environmental stress on plant’s growth cycle, activating plant’s metabolism. The present work reports the differential ability of three Bacillus strains to trigger olive tree metabolism, among which, only H47 was outstanding increasing iridoid and flavonol concentration. One-year old olive seedlings grown open air, under harsh conditions of water shortage in saline soils, were root-inoculated with three Bacillus PGPB strains throughout a 12-month period after which, photosynthesis was determined; photosynthetic pigments and bioactive secondary metabolites (iridoids and flavonols) were analyzed, and a study of gene expression of both pathways involved was undertaken to unravel molecular targets involved in the activation. All three strains increased plant fitness based on photosynthetic values, increasing energy dissipation capacity to lower oxidative stress; only H47 increased CO2 fixation and transpiration. Bacillus H47 was found to trigger synthases in the DOXP pathway (up to 5-fold in DOXP-synthase, 3.5-fold in Iridoid synthase, and 2-fold in secologanin synthase) associated to a concomitant increase in iridoids (up to 5-fold in oleuropein and 2-fold in its precursor secologanin). However, despite the 2-fold increases detected in the two predominant flavonols, gene expression was not enhanced, suggesting involvement of a pulse activation model proposed for innate immunity. Furthermore, the activity of leaf extracts to inhibit Angiotensin Converting Enzyme was evaluated, to explore further uses of plant debris with higher added value. Despite the increases in iridoids, leaf extracts from H47 did not increase ACE inhibition, and still, increased antihypertensive potential in oil obtained with this strain is to be explored, as leaves are the source for these metabolites which further translocate to fruits. In summary, Bacillus H47 is an effective strain to increase plant adaptation to dry and saline environments, activates photosynthesis and secondary metabolism in olive tree.
Collapse
|
40
|
De Cicco P, Ercolano G, Tenore GC, Ianaro A. Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition. Phytother Res 2022; 36:4002-4013. [PMID: 36222190 DOI: 10.1002/ptr.7587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023]
Abstract
Olive tree leaves are an abundant source of bioactive compounds with several beneficial effects for human health, including a protective role against many types of cancer. In this study, we investigated the effect of an extract, obtained from olive tree (Olea europaea L.) leaves (OLE), on proliferation, invasion, and epithelial to mesenchymal transition (EMT) on metastatic melanoma, the highly aggressive form of skin cancer and the deadliest diseases. Our results demonstrated that OLE inhibited melanoma cells proliferation through cell cycle arrest and induction of apoptotic cell death. Moreover, OLE suppressed the migration, invasion, and colonies formation of human melanoma cells. Similar to our in vitro findings, we demonstrated that the oral administration of OLE inhibited cutaneous tumor growth and lung metastasis formation in vivo by modulating the expression of EMT related factors. In addition, the anti-proliferative and anti-invasive effects of OLE against melanoma were also related to a simultaneous targeting of mitogen-activated protein kinase and PI3K pathways, both in vitro and in vivo. In conclusion, our findings suggest that OLE has the potential to inhibit the metastatic spread of melanoma cells thanks to its multifaceted mechanistic effects, and may represent a new add-on therapy for the management of metastatic melanoma.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Li W, Chountoulesi M, Antoniadi L, Angelis A, Lei J, Halabalaki M, Demetzos C, Mitakou S, Skaltsounis LA, Wang C. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chem 2022; 384:132470. [DOI: 10.1016/j.foodchem.2022.132470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022]
|
42
|
Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, Pathak S, Duttaroy AK. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother 2022; 153:113384. [PMID: 35820317 DOI: 10.1016/j.biopha.2022.113384] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is the third most predominant cancer caused by genetic, environmental and nutritional factors. Plant-based compounds are very well known to regress colon cancer in many ways, like delaying tumor growth, managing chemotherapy and radiation therapy side-effects, and working at the molecular levels. Medicinal plants contain many bioactive phytochemicals such as flavonoids, polyphenol compounds, caffeic acid, catechins, saponins, polysaccharides, triterpenoids, alkaloids, glycosides, phenols, quercetin, luteolin, kaempferol and luteolin glycosides, carnosic acid, oleanolic acid, rosmarinic acid, emodin, and eugenol and anthricin. These bioactive compounds can reduce tumor cell proliferation via several mechanisms, such as blocking cell cycle checkpoints and promoting apoptosis through activating initiator and executioner caspase. Traditional medicines have been used globally to treat cancers because of their anti-cancer effects, antioxidant properties, anti-inflammatory properties, anti-mutagenic effects, and anti-angiogenic effects. In addition, these medicines effectively suppress early and intermediate stages of carcinogenesis when administered in their active and pure form. However, traditional medicine is not very popular due to some critical challenges. These include poor solubility and absorption of these compounds, intellectual property-related issues, involvement of drug synergism, absence of drug-likeness, and unsure protocols for their extraction from the plant source. Using bioactive compounds in colon cancer has equal advantages and limitations. This review highlights the benefits and challenges of using bioactive compounds derived from plants for colon cancer. We have also discussed using these compounds to target cancer stem cell self-renewal, its effects on cancer cell metabolism, safety parameters, easy modulation, and their bioavailability.
Collapse
Affiliation(s)
- Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Subhamay Adhikary
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - V Dharshnaa
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - P Swarnamughi
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Z Ummul Maqsummiya
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
43
|
Dietary olive leaves improve the quality and the consumer preferences of a model sheep cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Romeh GH, El-Safty FENAH, El-Mehi AES, Faried MA. Antioxidant, anti-inflammatory, and anti-fibrotic properties of olive leaf extract protect against L-arginine induced chronic pancreatitis in the adult male albino rat. Anat Cell Biol 2022; 55:205-216. [PMID: 35773220 PMCID: PMC9256495 DOI: 10.5115/acb.21.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease affects the pancreas with upcoming fibrosis and notable parenchymal destruction. CP poses a high risk for pancreatic carcinoma. The present study aimed to investigate, for the first time up to our knowledge, the effect of olive leaf extract on L-arginine induced CP with referral to some of its underlying mechanisms. Forty adult male albino rats were divided equally into four groups; control, olive leaf extract treated (200 mg/kg orally once daily), CP group (300 mg L-arginine/100 g body weight intraperitoneally, once daily for 3 weeks then every 3 days for the subsequent 3 weeks), and CP treated with olive leaf extract group. At the end of the experiment, body weight, serum glucose, serum insulin, homeostatic model assessment of insulin resistance (HOMA-IR), serum amylase and lipase as well as tissue superoxide dismutase (SOD), and malondialdehyde (MDA) levels were assessed. Pancreatic tissues were subjected to histological and immuno-histochemical studies. The CP group revealed significant decrease in body weight and increase in serum glucose, serum insulin, HOMA-IR score, serum amylase, and serum lipase levels. Significant increase in MDA level and decrease in SOD level were detected. Marked degenerative changes and fibrosis were detected. Upregulation of alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β), caspase-3, and interleukin-6 (IL-6) immunoreactions were implicated in CP pathogenesis. Olive leaf extract alleviated all the examined parameters via its-antioxidant, anti-inflammatory, and anti-fibrotic properties. Olive leaf extract can protect against CP and restore pancreatic functions.
Collapse
Affiliation(s)
- Ghada Hamed Romeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Abeer El-Said El-Mehi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Manar Ali Faried
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
45
|
Papageorgiou CS, Lyri P, Xintaropoulou I, Diamantopoulos I, Zagklis DP, Paraskeva CA. High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants (Basel) 2022; 11:antiox11061042. [PMID: 35739939 PMCID: PMC9220257 DOI: 10.3390/antiox11061042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of the present study was to explore the high-yield production of hydroxytyrosol, a phenolic compound with very high antioxidant capacity. Olea europaea leaves were chosen as feedstock as they contain significant amounts of oleuropein, which can be hydrolyzed to hydroxytyrosol. The chosen techniques are widely used in the industry and can be easily scaled up. Olive leaves underwent drying and mechanical pretreatment and extractives were transported to a solvent by solid–liquid extraction using water–ethanol mixtures. The use of approximately 60–80% ethanol showed an almost 2-fold increase in extracted phenolics compared to pure water, to approximately 45 g/kg of dry leaves. Extracted oleuropein was hydrolyzed with hydrochloric acid and the hydrolysate was extracted with ethyl acetate after pH adjustment. This step led to a hydroxytorosol content increase from less than 4% to approximately 60% w/w of dry extract, or 10–15 g of hydroxytyrosol recovery per kg of dry leaves.
Collapse
Affiliation(s)
- Costas S. Papageorgiou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Patras, Greece
| | - Paraskevi Lyri
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
| | - Ioanna Xintaropoulou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
| | - Ioannis Diamantopoulos
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
| | - Dimitris P. Zagklis
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Patras, Greece
| | - Christakis A. Paraskeva
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (C.S.P.); (P.L.); (I.X.); (I.D.); (D.P.Z.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
46
|
Optimizing the Extraction Conditions of Hydroxytyrosol from Olive Leaves Using a Modified Spherical Activated Carbon: A New Experimental Design. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6199627. [PMID: 35620226 PMCID: PMC9129965 DOI: 10.1155/2022/6199627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/07/2022]
Abstract
The purification of hydroxytyrosol from olive leaves extract by modified activated carbon was studied experimentally in a batch system and a column by adsorption and desorption processes. The extraction yield reached 90% of hydroxytyrosol, which is the major compound found in the extract. Despite the abundance of research on extracts of hydroxytyrosol from olive leaves, it seems that the applied methods can be further improved. In this study, several approaches were applied to optimize the extraction conditions of this molecule. Hence, the response surface method and the Box-Behnken design (BBD) were used to evaluate the effect of the temperature, time, and adsorbent dose on the hydroxytyrosol recovery. Moreover, adsorption isotherm, kinetics, and thermodynamic studies were also performed to clarify the nature of the process. The main finding was the obtainment of a maximum adsorption yield of 97.5% at an adsorbent/adsorbate ratio of 1 : 20, after a 6 h cycle and at a temperature of 30°C. Furthermore, adsorption process seemed to fit best with Freundlich model. In addition, the thermodynamic study describes a spontaneous and endothermic process. Desorption assay using ethanol helped to recover 73% of hydroxytyrosol. Furthermore, the HPLC analysis of fractions after column adsorption showed a simple peak of hydroxytyrosol with purity higher than 97% and a flavonoids-rich fraction. These findings would indicate that this separation method for the recovery of phenolic compounds with high antioxidant activity can be a very promising one.
Collapse
|
47
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
48
|
Natural aldose reductase inhibitors for treatment and prevention of diabetic cataract: A review. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Aldose reductase (AR) is an enzyme that catalyzes the reduction of glucose to sorbitol responsible for the development of diabetic complications like cataracts. Medicinal plants contain several phytocompounds that can inhibit this enzyme.
Objective: The purpose of this review is to cite medicinal plants that have been tested for their ability to inhibit aldose reductase and consequently prevent cataracts and classify the major isolated compounds that have this activity.
Methods: We reviewed 154 articles published between 1954 and 2020 in English via three databases: ScienceDirect, Web of Science, and PubMed. We have classified the plants that showed a significant anti-cataract effect, in the form of a list including the scientific and family names of each plant. Also, we have cited the IC50 values and the active constituents of each plant that showed inhibitory activity towards AR.
Results: We have described 38 herbs belonging to 29 families. Besides, 47 isolated compounds obtained from the cited herbs have shown an AR inhibitory effect: luteolin, luteolin-7-O-β-D-glucopyranoside, apigenin, 3,5-di-O-caffeoyl-epi-quinic acid, delphinidin 3-O-β-galactopyranoside-3’-O-β-glucopyranoside, 3,5-di-O-caffeoylquinic acid methyl ester, andrographolide, 1,2,3,6-tetra-O-galloyl-β-D-glucose, 1,2,4,6-tetra-O-galloyl-β-D-glucose, 7-(3-hydroxypropyl)-3-methyl-8-β-O-D-glucoside-2H-chromen-2-one, E-4-(60-hydroxyhex-30-en-1-yl)phenyl propionate, delphinidin 3-O-β-galactopyranoside-3’,5’-di-O-β-glucopyranoside, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,4,6-penta-O-galloyl-β-D-glucose, 1,2,6-tri-O-galloyl-β-D-glucose, 2-(4-hydroxy-3-methoxyphenyl)ethanol, (4-hydroxy-3-methoxyphenyl)methanol, trans-anethole, gallic acid 4-O-β-D-(6’-O-galloyl)-glucoside, β-glucogallin, puerariafuran, quercetin, gallic acid 4-O-β-D-glucoside, 2,5-dihydroxybenzoic acid, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone, protocatechuic acid, trans-cinnamic acid, gallic acid, p-coumaric acid and syringic acid.
Conclusion: natural therapy becomes an interesting alternative in the treatment and prevention of cataract by using medicinal plants rich in active compounds considered as AR inhibitors.
Collapse
|
49
|
Cokgezme OF, Icier F. Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Malekjani N, Jafari SM. Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Crit Rev Food Sci Nutr 2022; 63:9797-9815. [PMID: 35475951 DOI: 10.1080/10408398.2022.2068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Olive by-products are rich sources of phenolic compounds and their valorization is a favorable approach in line with sustainable development goals of the United Nations (UN) organization to promote well-being and production of healthier products; also, to deal with the environmental and economic subjects resulting in more profitability in the olive oil industry. The production of value-added ingredients from these by-products is not extensively exploited on the industrial scale. Drying is a critical pretreatment before extraction that can have a direct impact on the recovery and yield of the available bioactive compounds in olive by-products. In order to produce more stable and high quality phenolic products, encapsulation using spray and freeze drying is used. In this study, the effect of the drying process before and after extraction of bioactive compounds from olive by-products as a valuable source of phenolic compounds is reviewed. In addition, fortification using these ingredients and their incorporation in food formulations is also investigated.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|