1
|
Zhang H, Yang S, Lu YL, Zhou LQ, Dong MH, Chu YH, Pang XW, Chen L, Xu LL, Zhang LY, Zhu LF, Xu T, Wang W, Shang K, Tian DS, Qin C. Microglial Nrf2-mediated lipid and iron metabolism reprogramming promotes remyelination during white matter ischemia. Redox Biol 2025; 79:103473. [PMID: 39718294 PMCID: PMC11728325 DOI: 10.1016/j.redox.2024.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Oxidative stress and microglial activation are critical pathomechanisms in ischemic white matter injury. Microglia, as resident immune cells in the brain, are the main cells undergoing oxidative stress response. However, the role and molecular mechanism of oxidative stress in microglia have not been clearly elucidated during white matter ischemia. METHODS Extensive histological analysis of the corpus callosum was performed in BCAS mice at different time points to assess white matter injury, oxidative stress and microglial activation. Flow cytometric sorting and transcriptomic sequencing were combined to explore the underlying mechanisms regulating microglial oxidative stress and functional phenotypes. The expression of critical molecule in microglia was regulated using Cx3cr1CreER mice and clinical-stage drugs to assess its effect on white matter injury and cognitive function. RESULTS Our study identified nuclear factor erythroid-2 related factor 2 (Nrf2) as a key transcription factor regulating oxidative stress and functional phenotype in microglia. Interestingly, we found that the sustained decrease in transiently upregulated expression of Nrf2 following chronic cerebral hypoperfusion resulted in abnormal microglial activation and white matter injury. In addition, high loads of myelin debris promoted lipid peroxidation and ferroptosis in microglia with diminished antioxidant function. Microglia with pharmacologically or genetically stimulated Nrf2 expression exhibited enhanced resistance to ferroptosis and pro-regenerative properties to myelination due to lipid and iron metabolism reprogramming. CONCLUSION Weakened Nrf2-mediated antioxidant responses in microglia induced metabolic disturbances and ferroptosis during chronic cerebral hypoperfusion. Targeted enhancement of Nrf2 expression in microglia may be a potential therapeutic strategy for ischemic white matter injury.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yi-Lin Lu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lu-Lu Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
2
|
Saadati S, Kabthymer RH, Aldini G, Mousa A, Feehan J, de Courten B. Effects of carnosine and histidine-containing dipeptides on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis. Nutr Rev 2024; 82:1696-1709. [PMID: 38086332 PMCID: PMC11551452 DOI: 10.1093/nutrit/nuad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
CONTEXT Carnosine and histidine-containing dipeptides (HCDs) are suggested to have anti-inflammatory and antioxidative benefits, but their effects on circulating adipokines and inflammatory and oxidative stress biomarkers remain unclear. OBJECTIVES The aim of the present systematic review and meta-analysis was to determine the impact of HCD supplementation on inflammatory and oxidative stress biomarkers. DATA SOURCES A systematic search was performed on Medline via Ovid, Scopus, Embase, ISI Web of Science, and the Cochrane Library databases from inception to 25 January 2023. DATA EXTRACTION Using relevant key words, trials investigating the effects of carnosine/HCD supplementation on markers of inflammation and oxidative stress, including C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), adiponectin, malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (TAC), and catalase (CAT) were identified. Meta-analyses were conducted using random-effects models to calculate the weighted mean differences (WMDs) and 95% confidence intervals (CIs). DATA ANALYSIS A total of 9 trials comprising 350 participants were included in the present meta-analysis. Carnosine/HCD supplementation led to a significant reduction in CRP (WMD: -0.97 mg/L; 95% CI: -1.59, -0.36), TNF-α (WMD: -3.60 pg/mL; 95% CI: -7.03, -0.18), and MDA (WMD: -0.34 μmol/L; 95% CI: -0.56, -0.12) and an elevation in CAT (WMD: 4.48 U/mL; 95% CI: 2.43, 6.53) compared with placebo. In contrast, carnosine/HCD supplementation had no effect on IL-6, adiponectin, GSH, SOD, and TAC levels. CONCLUSION Carnosine/HCD supplementation may reduce inflammatory and oxidative stress biomarkers, and potentially modulate the cardiometabolic risks associated with chronic low-grade inflammation and lipid peroxidation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42017075354.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Robel Hussen Kabthymer
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- School of Health and Biomedical Sciences, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| |
Collapse
|
3
|
Rivi V, Caruso G, Caraci F, Alboni S, Pani L, Tascedda F, Lukowiak K, Blom JMC, Benatti C. Behavioral and transcriptional effects of carnosine in the central ring ganglia of the pond snail Lymnaea stagnalis. J Neurosci Res 2024; 102:e25371. [PMID: 39078068 DOI: 10.1002/jnr.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Silvia Alboni
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Deparment of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Zhou YT, An DD, Xu YX, Zhou Y, Li QQ, Dai HB, Zhang XN, Wang Y, Lou M, Chen Z, Hu WW. Activation of glutamatergic neurons in the somatosensory cortex promotes remyelination in ischemic vascular dementia. FUNDAMENTAL RESEARCH 2024; 4:188-198. [PMID: 38933843 PMCID: PMC11197523 DOI: 10.1016/j.fmre.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.
Collapse
Affiliation(s)
- Yi-Ting Zhou
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pharmacy, Sir Run Run Shaw Hospital, Hangzhou 310012, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Xin Xu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Qing-Qing Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
5
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Ahmed HA, Ismael S, Salman M, Devlin P, McDonald MP, Liao FF, Ishrat T. Direct AT2R Stimulation Slows Post-stroke Cognitive Decline in the 5XFAD Alzheimer's Disease Mice. Mol Neurobiol 2022; 59:4124-4140. [PMID: 35486224 PMCID: PMC10947502 DOI: 10.1007/s12035-022-02839-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD), currently the single leading cause of death still on the rise, almost always coexists alongside vascular cognitive impairment (VCI). In fact, the ischemic disease affects up to 90% of AD patients, with strokes and major infarctions representing over a third of vascular lesions. Studies also confirmed that amyloid plaques, typical of AD, are much more likely to cause dementia if strokes or cerebrovascular damage also exist, leading to the term "mixed pathology" cognitive impairment. Although its incidence is expected to grow, there are no satisfactory treatments. There is hence an urgent need for safe and effective therapies that preserve cognition, maintain function, and prevent the clinical deterioration that results from the progression of this irreversible, neurodegenerative disease. To our knowledge, this is the first study to investigate the effects of long-term treatment with C21, a novel angiotensin II type 2 receptor (AT2R) agonist, on the development of "mixed pathology" cognitive impairment. This was accomplished using a unique model that employs the fundamental elements of both AD and VCI. Treatment with C21/vehicle was started 1 h post-stroke and continued for 5 weeks in mice with concurrent AD pathology. Efficacy was established through a series of functional tests assessing various aspects of cognition, including spatial learning, short-term/working memory, long-term/reference memory, and cognitive flexibility, in addition to the molecular markers characteristic of AD. Our findings demonstrate that C21 treatment preserves cognitive function, maintains cerebral blood flow, and reduces Aβ accumulation and toxic tau phosphorylation in AD animals post-stroke.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Patrick Devlin
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Michael P McDonald
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Francesca-Fang Liao
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Zheng L, Jia J, Chen Y, Liu R, Cao R, Duan M, Zhang M, Xu Y. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation 2022; 19:128. [PMID: 35642056 PMCID: PMC9153105 DOI: 10.1186/s12974-022-02480-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vascular dementia (VAD) is the second most common type of dementia lacking effective treatments. Pentoxifylline (PTX), a nonselective phosphodiesterase inhibitor, displays protective effects in multiple cerebral diseases. In this study, we aimed to investigate the therapeutic effects and potential mechanisms of PTX in VAD. METHODS Bilateral common carotid artery stenosis (BCAS) mouse model was established to mimic VAD. Mouse behavior was tested by open field test, novel object recognition test, Y-maze and Morris water maze (MWM) tests. Histological staining, magnetic resonance imaging (MRI) and electron microscopy were used to define white matter integrity. The impact of PTX on microglia phagocytosis, peroxisome proliferator-activated receptors-γ (PPAR-γ) activation and Mer receptor tyrosine kinase (Mertk) expression was assessed by immunofluorescence, western blotting and flow cytometry with the application of microglia-specific Mertk knockout mice, Mertk inhibitor and PPAR-γ inhibitor. RESULTS Here, we found that PTX treatment alleviated cognitive impairment in novel object recognition test, Y-maze and Morris water maze tests. Furthermore, PTX alleviated white matter injury in corpus callosum (CC) and internal capsule (IC) areas as shown by histological staining and MRI analysis. PTX-treatment group presented thicker myelin sheath than vehicle group by electron microscopy. Mechanistically, PTX facilitated microglial phagocytosis of myelin debris by up-regulating the expression of Mertk in BCAS model and primary cultured microglia. Importantly, microglia-specific Mertk knockout blocked the therapeutic effects of PTX in BCAS model. Moreover, Mertk expression was regulated by the nuclear translocation of PPAR-γ. Through modulating PPAR-γ, PTX enhanced Mertk expression. CONCLUSIONS Collectively, our results demonstrated that PTX showed therapeutic potentials in VAD and alleviated ischemic white matter injury via modulating Mertk-mediated myelin clearance in microglia.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Runjing Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Manlin Duan
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
8
|
Ahmed HA, Ishrat T. Candesartan Effectively Preserves Cognition in Senescence Accelerated Mouse Prone 8 (SAMP8) mice. J Alzheimers Dis Rep 2022; 6:257-269. [PMID: 35891637 PMCID: PMC9277674 DOI: 10.3233/adr-220016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Alzheimer’s disease (AD) has become a worldwide crisis with no effective therapeutic options. The medications currently available for AD are only palliative; their effect is temporary, and they are associated with unfavorable side effects. Even the newest medication aducanumab, granted accelerated FDA approval in 2021, failed to show cognitive benefits in clinical trials and continued approval requires verification in subsequent clinical trials. There is an urgent need for safe and effective therapies to preserve cognition and effectively manage AD. Generally, a new drug product takes several years for FDA approval and exceeds 2.5 billion dollars in research and development, with most new drug products never even reaching the market. This has led to a recent shift for repurposing/repositioning existing FDA-approved medications, to new therapeutic indications. Objective: To investigate the effects of long-term treatment with candesartan, an FDA-approved angiotensin-II type-1 receptor blocker (ARB), on the development of cognitive impairment associated with premature aging. Methods: Candesartan was given at a dose of 1 mg/kg/d in an AD model of senescence-accelerated mouse prone-8 (SAMP8) and senescence-accelerated mouse resistant (SAMR1) mice. Oral treatment with candesartan or vehicle was started, in 2-month-old mice and administered continuously for 4-months. Results: Low-dose candesartan prevented the development of cognitive impairment, otherwise associated with accelerated aging, in SAMP8 mice, by reducing inflammation and nitro-oxidative stress. Candesartan did not affect the cognitive function of control SAMR1 mice. Conclusion: Early ARB treatment might be beneficial in preventing age-related cognitive deficits in AD-prone individuals.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis TN, USA
| |
Collapse
|
9
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
10
|
Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer's disease and mixed dementia in a sex-dependent manner. J Neuroinflammation 2022; 19:110. [PMID: 35568928 PMCID: PMC9107741 DOI: 10.1186/s12974-022-02466-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Approximately 70% of Alzheimer's disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes. Unlike metabolically healthy women, diabetic women are more likely to develop VCID than diabetic men. Prediabetes is 3× more prevalent than diabetes and is linked to earlier onset of dementia in women, but not men. How prediabetes influences underlying pathology and cognitive outcomes across different dementia subtypes is unknown. To fill this gap in knowledge, we investigated the impact of diet-induced prediabetes and biological sex on cognitive function and neuropathology in mouse models of AD and MxD. METHODS Male and female 3xTg-AD mice received a sham (AD model) or unilateral common carotid artery occlusion surgery to induce chronic cerebral hypoperfusion (MxD model). Mice were fed a control or high fat (HF; 60% fat) diet from 3 to 7 months of age. In both sexes, HF diet elicited a prediabetic phenotype (impaired glucose tolerance) and weight gain. RESULTS In females, but not males, metabolic consequences of a HF diet were more severe in AD or MxD mice compared to WT. In both sexes, HF-fed AD or MxD mice displayed deficits in spatial memory in the Morris water maze (MWM). In females, but not males, HF-fed AD and MxD mice also displayed impaired spatial learning in the MWM. In females, but not males, AD or MxD caused deficits in activities of daily living, regardless of diet. Astrogliosis was more severe in AD and MxD females compared to males. Further, AD/MxD females had more amyloid beta plaques and hippocampal levels of insoluble amyloid beta 40 and 42 than AD/MxD males. In females, but not males, more severe glucose intolerance (prediabetes) was correlated with increased hippocampal microgliosis. CONCLUSIONS High-fat diet had a wider array of metabolic, cognitive, and neuropathological consequences in AD and MxD females compared to males. These findings shed light on potential underlying mechanisms by which prediabetes may lead to earlier dementia onset in women.
Collapse
Affiliation(s)
- Olivia J. Gannon
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Lisa S. Robison
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA ,grid.261241.20000 0001 2168 8324Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314 USA ,grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Abigail E. Salinero
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Charly Abi-Ghanem
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Febronia M. Mansour
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Richard D. Kelly
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Alvira Tyagi
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Rebekah R. Brawley
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Jordan D. Ogg
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Kristen L. Zuloaga
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| |
Collapse
|
11
|
Wan YS, You Y, Ding QY, Xu YX, Chen H, Wang RR, Huang YW, Chen Z, Hu WW, Jiang L. Triptolide protects against white matter injury induced by chronic cerebral hypoperfusion in mice. Acta Pharmacol Sin 2022; 43:15-25. [PMID: 33824460 PMCID: PMC8724323 DOI: 10.1038/s41401-021-00637-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023]
Abstract
White matter injury is the major pathological alteration of subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion. It is characterized by progressive demyelination, apoptosis of oligodendrocytes and microglial activation, which leads to impairment of cognitive function. Triptolide exhibits a variety of pharmacological activities including anti-inflammation, immunosuppression and antitumor, etc. In this study, we investigated the effects of triptolide on white matter injury and cognitive impairments in mice with chronic cerebral hypoperfusion induced by the right unilateral common carotid artery occlusion (rUCCAO). We showed that triptolide administration alleviated the demyelination, axonal injury, and oligodendrocyte loss in the mice. Triptolide also improved cognitive function in novel object recognition test and Morris water maze test. In primary oligodendrocytes following oxygen-glucose deprivation (OGD), application of triptolide (0.001-0.1 nM) exerted concentration-dependent protection. We revealed that the protective effect of triptolide resulted from its inhibition of oligodendrocyte apoptosis via increasing the phosphorylation of the Src/Akt/GSK3β pathway. Moreover, triptolide suppressed microglial activation and proinflammatory cytokines expression after chronic cerebral hypoperfusion in mice and in BV2 microglial cells following OGD, which also contributing to its alleviation of white matter injury. Importantly, mice received triptolide at the dose of 20 μg·kg-1·d-1 did not show hepatotoxicity and nephrotoxicity even after chronic treatment. Thus, our results highlight that triptolide alleviates whiter matter injury induced by chronic cerebral hypoperfusion through direct protection against oligodendrocyte apoptosis and indirect protection by inhibition of microglial inflammation. Triptolide may have novel indication in clinic such as the treatment of chronic cerebral hypoperfusion-induced SIVD.
Collapse
Affiliation(s)
- Yu-shan Wan
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Yi You
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Qian-yun Ding
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.268505.c0000 0000 8744 8924College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yi-xin Xu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Han Chen
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Rong-rong Wang
- grid.13402.340000 0004 1759 700XDepartment of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yu-wen Huang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Zhong Chen
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.268505.c0000 0000 8744 8924College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Wei-wei Hu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Lei Jiang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
12
|
Neuroprotective Potential of Carnosine in Cerebrovascular Diseases. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
14
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
15
|
Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T. Verapamil Prevents Development of Cognitive Impairment in an Aged Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:3374-3387. [PMID: 33704677 DOI: 10.1007/s12035-021-02350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Currently, dementia is the only leading cause of death that is still on the rise, with total costs already exceeding those of cancer and heart disease and projected to increase even further in the coming years. Unfortunately, there are no satisfactory treatments and attempts to develop novel, more effective treatments have been extremely costly, albeit unsuccessful thus far. This has led us to investigate the use of established drugs, licensed for other therapeutic indications, for their potential application in cognitive disorders. This strategy, referred to as "drug repositioning," has been successful in many other areas including cancer and cardiovascular diseases. To our knowledge, this is the first study to investigate the effects of long-term treatment with verapamil, a calcium channel blocker commonly prescribed for various cardiovascular conditions and recently applied for prevention of cluster headaches, on the development of cognitive impairment in aged animals. Verapamil was studied at a low dose (1mg/kg/d) in a mouse model of sporadic Alzheimer's disease (sAD). Oral treatment with verapamil or vehicle was started, 24 h post-intracerebroventricular (ICV) streptozotocin/(STZ), in 12-month-old animals and continued for 3 months. Cognitive function was assessed using established tests for spatial learning, short-term/working memory, and long-term/reference memory. Our findings demonstrate that long-term low-dose verapamil effectively prevents development of ICV/STZ-induced cognitive impairment. It mitigates the astrogliosis and synaptic toxicity otherwise induced by ICV/STZ in the hippocampus of aged animals. These findings indicate that long-term, low-dose verapamil may delay progression of sAD in susceptible subjects of advanced age.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Golnoush Mirzahosseini
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
| |
Collapse
|
16
|
Menon K, Cameron JD, de Courten M, de Courten B. Use of carnosine in the prevention of cardiometabolic risk factors in overweight and obese individuals: study protocol for a randomised, double-blind placebo-controlled trial. BMJ Open 2021; 11:e043680. [PMID: 33986049 PMCID: PMC8126302 DOI: 10.1136/bmjopen-2020-043680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Carnosine, an over the counter food supplement, has been shown to improve glucose metabolism as well as cardiovascular risk factors in animal and human studies through its anti-inflammatory, antioxidative, antiglycating and chelating properties. The aim of this study is to establish if carnosine supplementation improves obesity, insulin sensitivity, insulin secretion, cardiovascular risk factors including arterial stiffness and endothelial function, and other risk factors related to diabetes and cardiovascular disease in the overweight and obese population. METHODS AND ANALYSIS Fifty participants will be recruited to be enrolled in a double-blind randomised controlled trial. Eligible participants with a body mass index (BMI) between 25 and 40 kg/m2 will be randomly assigned to the intervention or placebo group. Following a medical review and oral glucose tolerance test to check eligibility, participants will then undergo testing. At baseline, participants will have anthropometric measurements (BMI, dual X-ray absorptiometry and peripheral quantitative CT scan), measurements of glucose metabolism (oral glucose tolerance test, intravenous glucose tolerance test and euglycaemic hyperinsulinaemic clamp), cardiovascular measurements (central blood pressure, endothelial function and arterial stiffness), a muscle and fat biopsy, physical activity measurement, liver fibroscan, cognitive function and questionnaires to assess dietary habits, sleep quality, depression, and quality of life. Following baseline assessments, participants will be randomised to either 2 g carnosine or placebo for 15 weeks. In the 15th week, all assessments will be repeated. The preplanned outcome metric is the change between baseline and follow-up measures. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of Monash Health and Monash University, Australia. TRIAL REGISTRATION NUMBER NCT02686996.
Collapse
Affiliation(s)
- Kirthi Menon
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - James D Cameron
- MonashHeart and Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Maximilian de Courten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Mitchell Institute, Victoria University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
The Therapeutic Potential of Carnosine/Anserine Supplementation against Cognitive Decline: A Systematic Review with Meta-Analysis. Biomedicines 2021; 9:biomedicines9030253. [PMID: 33806459 PMCID: PMC7998783 DOI: 10.3390/biomedicines9030253] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Carnosine is a natural occurring endogenous dipeptide that was proposed as an anti-aging agent more than 20 years ago. Carnosine can be found at low millimolar concentrations at brain level and different preclinical studies have demonstrated its antioxidant, anti-inflammatory, and anti-aggregation activity with neuroprotective effects in animal models of Alzheimer’s disease (AD). A selective deficit of carnosine has also been linked to cognitive decline in AD. Different clinical studies have been conducted to evaluate the impact of carnosine supplementation against cognitive decline in elderly and AD subjects. We conducted a systematic review with meta-analysis, in accordance with the PRISMA guidelines coupled to the PICOS approach, to investigate the therapeutic potential of carnosine against cognitive decline and depressive symptoms in elderly subjects. We found five studies matching the selection criteria. Carnosine/anserine was administered for 12 weeks at a dose of 1 g/day and improved global cognitive function, whereas no effects were detected on depressive symptoms. These data suggest a preliminary evidence of clinical efficacy of carnosine against cognitive decline both in elderly subjects and mild cognitive impairment (MCI) patients, although larger and long-term clinical studies are needed in MCI patients (with or without depression) to confirm the therapeutic potential of carnosine.
Collapse
|
18
|
Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis 2021; 12:308-326. [PMID: 33532143 PMCID: PMC7801279 DOI: 10.14336/ad.2020.0427] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 11/01/2022] Open
Abstract
Vascular dementia (VaD) is a neurodegenerative disease, with cognitive dysfunction attributable to cerebrovascular factors. At present, it is the second most frequently occurring type of dementia in older adults (after Alzheimer's disease). The underlying etiology of VaD has not been completely elucidated, which limits its management. Currently, there are no approved standard treatments for VaD. The drugs used in VaD are only suitable for symptomatic treatment and cannot prevent or reduce the occurrence and progression of VaD. This review summarizes the current status of pharmacological treatment for VaD, from the perspective of the molecular mechanisms specified in various pathogenic hypotheses, including oxidative stress, the central cholinergic system, neuroinflammation, neuronal apoptosis, and synaptic plasticity. As VaD is a chronic cerebrovascular disease with multifactorial etiology, combined therapy, targeting multiple pathophysiological factors, may be the future trend in VaD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Kai Wan
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi, China.
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| |
Collapse
|
19
|
Zhang J, Sun P, Zhou C, Zhang X, Ma F, Xu Y, Hamblin MH, Yin K. Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neurosci Ther 2020; 26:1207-1218. [PMID: 33459504 PMCID: PMC7702235 DOI: 10.1111/cns.13472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is defined as a progressive dementia disease related to cerebrovascular injury and often occurs in aged populations. Despite decades of research, effective treatment for VCID is still absent. The pathological processes of VCID are mediated by the molecular mechanisms that are partly modulated at the post-transcriptional level. As small endogenous non-coding RNAs, microRNAs (miRs) can regulate target gene expression through post-transcriptional gene silencing. miRs have been reported to play an important role in the pathology of VCID and have recently been suggested as potential novel pharmacological targets for the development of new diagnosis and treatment strategies in VCID. In this review, we summarize the current understanding of VCID, the possible role of miRs in the regulation of VCID and attempt to envision future therapeutic strategies. Since manipulation of miR levels by either pharmacological or genetic approaches has shown therapeutic effects in experimental VCID models, we also emphasize the potential therapeutic value of miRs in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ping Sun
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Chao Zhou
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Xuejing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Feifei Ma
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yang Xu
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLAUSA
| | - Ke‐Jie Yin
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Geriatric ResearchEducation and Clinical CenterVeterans Affairs Pittsburgh Healthcare SystemPittsburghPAUSA
| |
Collapse
|
20
|
Banerjee S, Poddar MK. Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Arch Gerontol Geriatr 2020; 91:104239. [PMID: 32866926 DOI: 10.1016/j.archger.2020.104239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Carnosine, an endogenous dipeptide (β-Ala-l-His), is enriched in prefrontal cortex and olfactory bulb of the brain, blood and also in muscle. It has mainly antioxidant and antiglycating properties which makes this molecule unique. Its content reduces during aging and aging-induced neurodegenerative diseases. Aging is a progressive biological process that leads to develop the risk factors of diseases and death. During aging the morphological, biochemical, cellular and molecular changes occur in brain and blood including other tissues. The objective of this review is to combine the updated information from the existing literature about the aging-induced neurodegeneration and carnosine research to meet the lacuna of mechanism of carnosine. The grey matter and white matter loses its normal ratio in aging, and hence the brain volume and weight. Different aging related neurodegenerative disorders arise due to loss of neurons, and synapses as a result of proteinopathies in some cases. Carnosine, being an endogenous biomolecule and having antioxidant, antiglycating properties has shown its potency to counteract erroneous protein biosynthesis, stress, activated microglial and astrocyte activity, and different neurodegenerative disorders. It (carnosine) can also inhibit the metal ion-induced degeneration by acting as a metal chelator. In this review the trends in carnosine research in relation to aging brain and neurodegeneration have been discussed with a view to its (carnosine) eligibility (including its mechanism of action) to be used as a promising neurotherapeutic for the betterment of elderly populations of our society at the national and international levels in near future.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
21
|
Zhang H, Li CL, Wan F, Wang SJ, Wei XE, Hao YL, Leng HL, Li JM, Yan ZR, Wang BJ, Xu RS, Yu TM, Zhou LC, Fan DS. Efficacy of cattle encephalon glycoside and ignotin in patients with acute cerebral infarction: a randomized, double-blind, parallel-group, placebo-controlled study. Neural Regen Res 2020; 15:1266-1273. [PMID: 31960812 PMCID: PMC7047806 DOI: 10.4103/1673-5374.272616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cattle encephalon glycoside and ignotin (CEGI) injection is a compound preparation formed by a combination of muscle extract from healthy rabbits and brain gangliosides from cattle, and it is generally used as a neuroprotectant in the treatment of central and peripheral nerve injuries. However, there is still a need for high-level clinical evidence from large samples to support the use of CEGI. We therefore carried out a prospective, multicenter, randomized, double-blind, parallel-group, placebo-controlled study in which we recruited 319 patients with acute cerebral infarction from 16 centers in China from October 2013 to May 2016. The patients were randomized at a 3:1 ratio into CEGI (n = 239; 155 male, 84 female; 61.2 ± 9.2 years old) and placebo (n = 80; 46 male, 34 female; 63.2 ± 8.28 years old) groups. All patients were given standard care once daily for 14 days, including a 200 mg aspirin enteric-coated tablet and 20 mg atorvastatin calcium, both taken orally, and intravenous infusion of 250–500 mL 0.9% sodium chloride containing 40 mg sodium tanshinone IIA sulfonate. Based on conventional treatment, patients in the CEGI and placebo groups were given 12 mL CEGI or 12 mL sterile water, respectively, in an intravenous drip of 250 mL 0.9% sodium chloride (2 mL/min) once daily for 14 days. According to baseline National Institutes of Health Stroke Scale scores, patients in the two groups were divided into mild and moderate subgroups. Based on the modified Rankin Scale results, the rate of patients with good outcomes in the CEGI group was higher than that in the placebo group, and the rate of disability in the CEGI group was lower than that in the placebo group on day 90 after treatment. In the CEGI group, neurological deficits were decreased on days 14 and 90 after treatment, as measured by the National Institutes of Health Stroke Scale and the Barthel Index. Subgroup analysis revealed that CEGI led to more significant improvements in moderate stroke patients. No drug-related adverse events occurred in the CEGI or placebo groups. In conclusion, CEGI may be a safe and effective treatment for acute cerebral infarction patients, especially for moderate stroke patients. This study was approved by the Ethical Committee of Peking University Third Hospital, China (approval No. 2013-068-2) on May 20, 2013, and registered in the Chinese Clinical Trial Registry (registration No. ChiCTR1800017937).
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chuan-Ling Li
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Feng Wan
- Department of Neurology, Huang Gang Central Hospital, Huanggang, Hubei Province, China
| | - Su-Juan Wang
- Department of Neurology, The First People's Hospital of Luoyang City, Luoyang, Henan Province, China
| | - Xiu-E Wei
- Department of Neurology, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu Province, China
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Hui-Lin Leng
- Department of Neurology, People's Hospital of Yichun City, Yichun, Jiangxi Province, China
| | - Jia-Min Li
- Department of Neurology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, China
| | - Zhong-Rui Yan
- Department of Neurology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Bao-Jun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ting-Min Yu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li-Chun Zhou
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Yao KX, Lyu H, Liao MH, Yang L, Gao YP, Liu QB, Wang CK, Lu YM, Jiang GJ, Han F, Wang P. Effect of low-dose Levamlodipine Besylate in the treatment of vascular dementia. Sci Rep 2019; 9:18248. [PMID: 31796756 PMCID: PMC6890753 DOI: 10.1038/s41598-019-47868-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular dementia (VaD) is a complex disorder caused by reduced blood flow in the brain. However, there is no effective pharmacological treatment option available until now. Here, we reported that low-dose levamlodipine besylate could reverse the cognitive impairment in VaD mice model of right unilateral common carotid arteries occlusion (rUCCAO). Oral administration of levamlodipine besylate (0.1 mg/kg) could reduce the latency to find the hidden platform in the MWM test as compared to the vehicle group. Furthermore, vehicle-treated mice revealed reduced phospho-CaMKII (Thr286) levels in the hippocampus, which can be partially restored by levamlodipine besylate (0.1 mg/kg and 0.5 mg/kg) treatment. No significant outcome on microglia and astrocytes were observed following levamlodipine besylate treatment. This data reveal novel findings of the therapeutic potential of low-dose levamlodipine besylate that could considerably enhance the cognitive function in VaD mice.
Collapse
Affiliation(s)
- Kai-Xin Yao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hang Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei-Hua Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Yang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Cheng-Kun Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Guo-Jun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China.
| | - Feng Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
23
|
Lee J, Hamanaka G, Lo EH, Arai K. Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neurosci Ther 2019; 25:1290-1298. [PMID: 31733036 PMCID: PMC6887901 DOI: 10.1111/cns.13266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia are resident immune cells that play multiple roles in central nervous system (CNS) development and disease. Although the classical concept of microglia/macrophage activation is based on a biphasic beneficial‐versus‐deleterious polarization, growing evidence now suggests a much more heterogenous profile of microglial activation that underlie their complex roles in the CNS. To date, the majority of data are focused on microglia in gray matter. However, demyelination is a prominent pathologic finding in a wide range of diseases including multiple sclerosis, Alzheimer's disease, and vascular cognitive impairment and dementia. In this mini‐review, we discuss newly discovered functional subsets of microglia that contribute to white matter response in CNS disease onset and progression. Microglia show different molecular patterns and morphologies depending on disease type and brain region, especially in white matter. Moreover, in later stages of disease, microglia demonstrate unconventional immuno‐regulatory activities such as increased phagocytosis of myelin debris and secretion of trophic factors that stimulate oligodendrocyte lineage cells to facilitate remyelination and disease resolution. Further investigations of these multiple microglia subsets may lead to novel therapeutic approaches to treat white matter pathology in CNS injury and disease.
Collapse
Affiliation(s)
- Janice Lee
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
24
|
Ishrat T, Fouda AY, Pillai B, Eldahshan W, Ahmed H, Waller JL, Ergul A, Fagan SC. Dose-response, therapeutic time-window and tPA-combinatorial efficacy of compound 21: A randomized, blinded preclinical trial in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 2019; 39. [PMID: 29537907 PMCID: PMC6681526 DOI: 10.1177/0271678x18764773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this translational, randomized, controlled, blinded preclinical trial was to determine the effect of compound 21 (C21) in embolic stroke. Rats were subjected to embolic-middle cerebral artery occlusion (eMCAO). They received C21 (0.01, 0.03 and 0.06 mg/kg/d) or saline (orally) for five days, with the first-dose given IV at 3 h post-eMCAO. For the time-window study, the optimal-dose of C21 was initiated at 3, 6 or 24 h post-eMCAO and continued for five days. For the combinatorial study, animals received IV-tissue plasminogen activator (tPA) at either 2 or 4 h, with IV-C21 (0.01 mg/kg) or saline at 3 h post-eMCAO and daily thereafter for five days. After performing the behavior tests, brains were collected for analyses. The dose-response study showed significant motor improvements with the lowest-dose (0.01 mg/kg) of C21. In the time-window study, this same dose resulted in improvements when given 6 h and 24 h post-eMCAO. Moreover, C21-treated animals performed better on the novel object recognition test. Neither the single treatment with C21 or tPA (4 h) nor the combination therapy was effective in reducing the hemorrhage or infarct size, although C21 alone lowered sensorimotor deficit scores post-eMCAO. Future studies should focus on the long-term cognitive benefits of C21, rather than acute neuroprotection.
Collapse
Affiliation(s)
- Tauheed Ishrat
- 1 Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN, USA
| | - Abdelrahman Y Fouda
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Bindu Pillai
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Wael Eldahshan
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Heba Ahmed
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Jennifer L Waller
- 3 Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, USA
| | - Adviye Ergul
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,4 Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- 2 Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Athens, GA, USA.,5 Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
25
|
Kim Y, Kim E, Kim Y. l-histidine and l-carnosine accelerate wound healing via regulation of corticosterone and PI3K/Akt phosphorylation in d-galactose-induced aging models in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
27
|
The Prophylactic and Therapeutic Effects of Fermented Cordyceps sinensis Powder, Cs-C-Q80, on Subcortical Ischemic Vascular Dementia in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2018:4362715. [PMID: 30662512 PMCID: PMC6312590 DOI: 10.1155/2018/4362715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022]
Abstract
Corbrin Capsule, a preparation of Cordyceps sinensis analogue, is a pleiotropic traditional Chinese patent medicine with the main component of fermentative cordyceps fungus powder (Cs-C-Q80). The neuroprotective effects of Cs-C-Q80, as a substitution of Cordyceps sinensis, have not been fully identified. The objectives of this study were to explore the prophylactic and therapeutic effects of Cs-C-Q80 in vascular dementia mice model. The efficacy of Cs-C-Q80 was investigated in a molecular level as well. The subcortical ischemic vascular dementia was modelled by permanent right unilateral common carotid arteries occlusion (rUCCAO) in adult male mice. The animals were randomly divided and treated by gavage with vehicle (1% CMC-Na solution) (rUCCAO model) or Cs-C-Q80 powder at 0.2 g/kg or 1.0 g/kg, respectively. Preventive treatment was administrated by gavage daily for 7 days before rUCCAO, while therapeutic treatment was administrated continuously from 28 days after rUCCAO. Object recognition test and Morris water maze test were performed to evaluate the learning and working memory. The luxol fast blue stain (Kluver-Barrera method) and immunohistochemistry for myelin basic protein (MBP) were employed to determine the severity of white matter damage. Both preventive and therapeutic treatment with Cs-C-Q80 protected against the rUCCAO-induced memory impair in mice as determined by object recognition and Morris water maze tests. The histopathological analyses revealed significant white matter rarefaction and reduction of MBP expression in corpus callosum after rUCCAO, which could be counteracted by either preventive or therapeutic treatment with Cs-C-Q80. Moreover, the Cs-C-Q80 treatments inhibited rUCCAO-induced astrocytes activation and the tumor necrosis factor α (TNF-α) and interleukin-1β expression, indicating the anti-inflammatory roles of Cs-C-Q80 against subcortical ischemia. Cs-C-Q80 is a potential preparation for the prophylaxis and treatment of subcortical ischemic vascular dementia. The underlying pharmacological efficacy might be associated with suppression of myelin degeneration, glia activation, and inflammatory cytokines release.
Collapse
|
28
|
Dai YJ, Wu DC, Feng B, Chen B, Tang YS, Jin MM, Zhao HW, Dai HB, Wang Y, Chen Z. Prolonged febrile seizures induce inheritable memory deficits in rats through DNA methylation. CNS Neurosci Ther 2019; 25:601-611. [PMID: 30666786 PMCID: PMC6488897 DOI: 10.1111/cns.13088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 01/08/2023] Open
Abstract
Aims Febrile seizures (FSs) are the most common types of seizures in young children. However, little is known whether the memory deficits induced by early‐life FSs could transmit across generations or not. Methods The memory functions of different generations of FS rats were behaviorally evaluated by morris water maze, inhibitory avoidance task, and contextual fear conditioning task. Meanwhile, molecular biology and pharmacological methods were used to investigate the role of DNA methylation in transgenerational transmission of memory defects. Results Prolonged FSs in infant rats resulted in memory deficits in adult and transgenerationally transmitted to next generation, which was mainly through mothers. For these two generations, DNA methyltransferase (DNMT) 1 was upregulated, leading to transcriptional inhibition of the synaptic plasticity protein reelin but not the memory suppressor protein phosphatase 1. DNMT inhibitors prevented the high expression of DNMT1 and hypermethylation of reelin gene and reversed the transgenerationally memory deficits. In addition, enriched environment in juvenile rats rescued memory deficits induced by prolonged FSs. Conclusions Our study demonstrated early experience of prolonged FSs led to memory deficits in adult rats and their unaffected offspring, which involved epigenetic mechanisms, suggesting early environmental experiences had a significant impact on the transgenerational transmission of neurological diseases.
Collapse
Affiliation(s)
- Yun-Jian Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Pharmacy, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deng-Chang Wu
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bin Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang-Shun Tang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao-Miao Jin
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Wei Zhao
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Pharmacy, School of Medicine, Children's hospital, Zhejiang University, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
30
|
Mirzakhani N, Farshid AA, Tamaddonfard E, Imani M, Erfanparast A, Noroozinia F. Carnosine improves functional recovery and structural regeneration after sciatic nerve crush injury in rats. Life Sci 2018; 215:22-30. [DOI: 10.1016/j.lfs.2018.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
|
31
|
Angiotensin receptor (AT2R) agonist C21 prevents cognitive decline after permanent stroke in aged animals-A randomized double- blind pre-clinical study. Behav Brain Res 2018; 359:560-569. [PMID: 30296528 DOI: 10.1016/j.bbr.2018.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Post stroke cognitive impairment (PSCI) is an understudied, long-term complication of stroke, impacting nearly 30-40% of all stroke survivors. No cure is available once the cognitive deterioration manifests. To our knowledge, this is the first study to investigate the long-term effects of C21 treatment on the development of PSCI in aged animals. Treatments with C21 or vehicle were administered orally, 24 h post-stroke, and continued for 30 days. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline as well as at different time points post-stroke. Our findings demonstrate that the angiotensin receptor (AT2R) agonist C21 effectively prevents the development of PSCI in aged animals.
Collapse
|
32
|
Ahmed HA, Ishrat T, Pillai B, Fouda AY, Sayed MA, Eldahshan W, Waller JL, Ergul A, Fagan SC. RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. J Neuroinflammation 2018; 15:229. [PMID: 30103772 PMCID: PMC6090822 DOI: 10.1186/s12974-018-1262-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/29/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the aging population, the prevalence and incidence of cerebrovascular disease will continue to rise, as well as the number of individuals with vascular cognitive impairment/dementia (VCID). No specific FDA-approved treatments for VCID exist. Although clinical evidence supports that angiotensin receptor blockers (ARBs) prevent cognitive decline in older adults, whether ARBs have a similar effect on VCID after stroke is unknown. Moreover, these agents reduce BP, which is undesirable in the acute stroke period, so we believe that giving C21 in this acute phase or delaying ARB administration would enable us to achieve the neurovascular benefits without the risk of unintended and potentially dangerous, acute BP lowering. METHODS The aim of our study was to determine the impact of candesartan (ARB) or compound-21 (an angiotensin type 2 receptor--AT2R--agonist) on long-term cognitive function post-stroke, in spontaneously hypertensive rats (SHRs). We hypothesized that AT2R stimulation, either directly with C21, or indirectly by blocking the angiotensin type 1 receptor (AT1R) with candesartan, initiated after stroke, would reduce cognitive impairment. Animals were subjected to a 60-min transient middle cerebral artery occlusion and randomly assigned to either saline/C21 monotherapy, for the full study duration (30 days), or given sequential therapy starting with saline/C21 (7 days) followed by candesartan for the remainder of the study (21 days). Outcome measures included sensorimotor/cognitive-function, amyloid-β determination, and histopathologic analyses. RESULTS Treatment with RAS modulators effectively preserved cognitive function, reduced cytotoxicity, and prevented chronic-reactive microgliosis in SHRs, post-stroke. These protective effects were apparent even when treatment was delayed up to 7 days post-stroke and were independent of blood pressure and β-amyloid accumulation. CONCLUSION Collectively, our findings demonstrate that RAS modulators effectively prevent cognitive impairment after stroke, even when treatment is delayed.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Abdelrahman Y. Fouda
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Jennifer L. Waller
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA USA
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
- Department of Physiology, Augusta University, Augusta, GA USA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
- Department of Neurology, Augusta University, Augusta, GA USA
| |
Collapse
|
33
|
Ma J, Yan H, Wang R, Bo S, Lu X, Zhang J, Xu A. Protective effect of carnosine on white matter damage in corpus striatum induced by chronic cerebral hypoperfusion. Neurosci Lett 2018; 683:54-60. [PMID: 29928953 DOI: 10.1016/j.neulet.2018.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/25/2018] [Accepted: 06/17/2018] [Indexed: 11/27/2022]
Abstract
Subcortical ischemic vascular dementia caused by chronic cerebral hypoperfusion due to small-artery disease is a common subtype of vascular dementia, which is recognized as the second most prevalent type of dementia. The aim of this study was to determine the effect of carnosine on white matter damage in corpus striatum. Adult male mice (C57BL/6 strain) were subjected to right unilateral common carotid arteries occlusion (rUCCAO), and treated with carnosine or saline. Klüver-Barrera staining, immunohistochemical analyses, Western blots and neurochemical analysis were performed after rUCCAO. The white matter in corpus striatum was damaged at day 37 after rUCCAO, which was largely rescued by carnosine (200, 500 mg/kg). Carnosine (200, 500 mg/kg) significantly recovered the expression of myelin basic protein, suppressed the activation of microglia and reversed the decrease of 5-hydroxytryptamine and dopamine levels in corpus striatum. Moreover, carnosine (200, 500 mg/kg) significantly inhibited the apoptosis in corpus striatum. These data suggest that carnosine has the neuroprotective effect in corpus striatum on rUCCAO in mice, may be due to its protection of neurotransmitters and inhibition of apoptosis.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Haijing Yan
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Shuhong Bo
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaotong Lu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
34
|
Tiwari N, Bhatia P, Kumar A, Jaggi AS, Singh N. Potential of carnosine, a histamine precursor in rat model of bilateral common carotid artery occlusion-induced vascular dementia. Fundam Clin Pharmacol 2018; 32:516-531. [DOI: 10.1111/fcp.12376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Nidhi Tiwari
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Pankaj Bhatia
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amit Kumar
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
- Pharmacology Division; Maharaja Agrasen School of Pharmacy; Maharaja Agrasen University; Baddi 174103 Himachal Pradesh India
| | - Amteshwar S. Jaggi
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Nirmal Singh
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
35
|
Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals - A randomized double- blind pre-clinical study. Behav Brain Res 2017; 346:29-40. [PMID: 29229547 DOI: 10.1016/j.bbr.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that renin angiotensin system (RAS) modulators support cognitive function in various animal models. However, little is known about their long-term effects on the brain structure in aged hypertensive animals with chronic cerebral hypoperfusion as well as which specific domains of cognition are most affected. Therefore, in the current study we examined the effects of Candesartan and Compound 21 (C21) (RAS modulators) on aspects of cognition known to diminish with advanced age and accelerate with hypertension and vascular disease. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline and after 4 and 8 weeks of chronic hypoxic hypoperfusion and treatment. Magnetic resonance imaging (MRI) was performed at the end of the 8 week study period followed by animal sacrifice and tissue collection. Both Candesartan and C21 effectively preserved cognitive function and prevented progression of vascular cognitive impairment (VCI) but only candesartan prevented loss of brain volume in aged hypertensive animals. Collectively, our findings demonstrate that delayed administration of RAS modulators effectively preserve cognitive function and prevent the development / progression of VCI in aged hypertensive animals with chronic cerebral hypoperfusion.
Collapse
|
36
|
Baye E, Menon K, de Courten MPJ, Earnest A, Cameron J, de Courten B. Does supplementation with carnosine improve cardiometabolic health and cognitive function in patients with pre-diabetes and type 2 diabetes? study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 2017; 7:e017691. [PMID: 28864708 PMCID: PMC5588946 DOI: 10.1136/bmjopen-2017-017691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Carnosine, an over-the-counter food supplement, has a promising potential for the prevention and treatment of chronic diseases such as type 2 diabetes (T2DM), cardiovascular and neurodegenerative diseases through its anti-inflammatory, antiglycation, antioxidative and chelating effects. We have previously shown that supplementation with carnosine preserves insulin sensitivity and secretion in non-diabetic overweight and obese individuals. The effect of carnosine on cardiometabolic risk and related cognitive outcomes in patients with pre-diabetes and T2DM has thus far not been studied. We therefore aim to investigate whether supplementation with carnosine improves cardiometabolic health and cognitive function in patients with pre-diabetes and T2DM. METHODS AND ANALYSIS We will employ a parallel design randomised controlled trial. Fifty participants with pre-diabetes (impaired fasting glycaemia and impaired glucose tolerance) and T2DM (with HbA1c level < 8%) aged between 18 to 70 years will be randomly assigned to the intervention or control group. At baseline, participants will undergo a medical review and series of tests including anthropometric measurements (body mass index, a dual X-ray absorptiometry and peripheral quantitative computed tomography scan), an oral glucose tolerance test, cardiovascular measurements (central blood pressure, endothelial function and arterial stiffness), cognitive function, physical activity measurement, heart rate variability and liver fibroscan as well as questionnaires to assess dietary habits, sleep quality, depression and quality of life. The intervention group will receive 2 g of carnosine daily in two divided doses while the control group will receive identical placebo capsules for 14 weeks. All baseline measurements will be repeated at the end of the intervention. The change in glycaemic, cardiovascular and cognitive parameters as well as other measures will be compared between the groups. ETHICS AND DISSEMINATION This study is approved by the Human Research Ethics Committee of Monash Health and Monash University, Australia. The findings will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NCT02917928; Pre-results.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Maximilian PJ de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Arul Earnest
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - James Cameron
- Monash Cardiovascular Research Centre, Monash Heart, Monash Health, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Zhou Y, Zhang J, Wang L, Chen Y, Wan Y, He Y, Jiang L, Ma J, Liao R, Zhang X, Shi L, Qin Z, Zhou Y, Chen Z, Hu W. Interleukin-1β impedes oligodendrocyte progenitor cell recruitment and white matter repair following chronic cerebral hypoperfusion. Brain Behav Immun 2017; 60:93-105. [PMID: 27663285 DOI: 10.1016/j.bbi.2016.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 10/24/2022] Open
Abstract
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion exhibits progressive white matter and cognitive impairments. However, its pathogenetic mechanisms are poorly understood. We investigated the role of interleukin-1β (IL-1β) and its receptor IL-1 receptor type 1 (IL-1R1) in an experimental SIVD model generated via right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that IL-1β expression was elevated in the corpus callosum at the early stages after rUCCAO. IL-1 receptor antagonist (IL-1Ra), when delivered at an early stage, as well as IL-1R1 knockout, rescued the downregulation of myelin basic protein (MBP) and improved remyelination at the later stage after rUCCAO. Our data suggest that the recruitment of OPCs, but not the proliferation or differentiation of OPCs, is the only compromised step of remyelination following chronic cerebral ischemia. IL-1Ra treatment and IL-1R1 knockout had no effect on the oligodendrocyte progenitor cell (OPC) proliferation, but did promote the recruitment of newly generated OPCs to the corpus callosum, which can be reversed by compensatory expression of IL-1R1 in the SVZ of IL-1R1 knockout mice. Further, we found that recruited OPCs contribute to oligodendrocyte regeneration and functional recovery. In transwell assays, IL-1β inhibited OPC migration through IL-1R1. Moreover, KdPT which can enter the brain to block IL-1R1 also showed comparable protection when intraperitoneally delivered. Our results suggest that IL-1β during the early stages following chronic cerebral hypoperfusion impedes OPC recruitment via IL-1R1, which inhibits white matter repair and functional recovery. IL-1R1 inhibitors may have potential uses in the treatment of SIVD.
Collapse
Affiliation(s)
- Yiting Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Pharmacy, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, PR China
| | - Lu Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Ying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, PR China
| | - Yushan Wan
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yang He
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lei Jiang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Rujia Liao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiangnan Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China
| | - Liyun Shi
- Department of Basic Medical Science, Key Laboratory of Immunology and Molecular Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, PR China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, PR China
| | - Yudong Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| | - Weiwei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
38
|
Wang XJ, Gao YP, Lu NN, Li WS, Xu JF, Ying XY, Wu G, Liao MH, Tan C, Shao LX, Lu YM, Zhang C, Fukunaga K, Han F, Du YZ. Endogenous Polysialic Acid Based Micelles for Calmodulin Antagonist Delivery against Vascular Dementia. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35045-35058. [PMID: 27750011 DOI: 10.1021/acsami.6b13052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical treatment for vascular dementia still remains a challenge mainly due to the blood-brain barrier (BBB). Here, a micelle based on polysialic acid (PSA), which is a hydrophilic and endogenous carbohydrate polymer, was designed to deliver calmodulin antagonist for therapy of vascular dementia. PSA was first chemically conjugated with octadecylamine (ODA), and the obtained PSA-ODA copolymer could self-assemble into micelle in aqueous solution with a 120.0 μg/mL critical micelle concentration. The calmodulin antagonist loaded PSA-ODA micelle, featuring sustained drug release behavior over a period of 72 h with a 3.6% (w/w) drug content and a 107.0 ± 4.0 nm size was then fabricated. The PSA-ODA micelle could cross the BBB mainly via active endocytosis by brain endothelial cells followed by transcytosis. In a water maze test for spatial learning, calmodulin antagonist loaded PSA-ODA micelle significantly reduced the escape latencies of right unilateral common carotid arteries occlusion (rUCCAO) mice with dosage significantly reduced versus free drug. The decrease of hippocampal phospho-CaMKII (Thr286/287) and phospho-synapsin I (Ser603) was partially restored in rUCCAO mice following calmodulin antagonist loaded PSA-ODA micelle treatment. Consistent with the restored CaMKII phosphorylation, the elevation of BrdU/NeuN double-positive cells in the same context was also observed. Overall, the PSA-ODA micelle developed from the endogenous material might promote the development of therapeutic approaches for improving the efficacy of brain-targeted drug delivery and have great potential for vascular dementia treatment.
Collapse
Affiliation(s)
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8574, Japan
| | | | | |
Collapse
|
39
|
Stress-responsive heme oxygenase-1 isoenzyme participates in Toll-like receptor 4-induced inflammation during brain ischemia. Neuroreport 2016; 27:445-54. [PMID: 26966782 DOI: 10.1097/wnr.0000000000000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Toll-like receptors (TLRs) are involved in the progression of ischemic brain injury and hence vascular dementia; however, the underlying mechanisms are largely unknown. Here, we have investigated the interrelationship between stress-responsive heme oxygenase (HO)-1 isoenzyme and TLR4 during chronic brain hypoperfusion. The right unilateral common carotid artery occlusion was performed by ligation of the right common carotid artery in C57BL/6J mice. The brain cortex or hippocampus was removed for western blotting and confocal immunofluorescence analysis. The link between HO-1 and TLR4 was further examined by silencing TLR4 and pharmacological inhibition of HO-1 in primary cultured cortical neurons. Cognitive dysfunction and decrease in cerebral blood flow in mice were observed 4 weeks after the occlusion. Our data further show that common carotid artery occlusion induced an increase in TLR4 and HO-1 protein levels. Although the administration of CoPP (10 mg/kg), HO-1 agonist, improved the cognitive dysfunction in a mice model of occlusion, western blot analysis in primary cultured cortical neurons showed that HO-1 was upregulated after lipopolysaccharide treatment; this was partially abolished by the TLR4 siRNA interference. The flow cytometry analysis showed that pharmacological inhibition of HO-1 by ZnPP (100 μM) further exaggerated lipopolysaccharide-induced neuronal cell death. Hence, stress-responsive HO-1 isoenzyme participates in TLR4-induced inflammation during chronic brain ischemia. The pharmacological manipulation of TLR4 or the HO-1 antioxidant defense pathway may represent a novel treatment strategy for neuronal protection in vascular dementia.
Collapse
|
40
|
Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides 2016; 86:102-111. [PMID: 27777064 DOI: 10.1016/j.peptides.2016.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022]
Abstract
Diabetic patients are at increased risk to develop cognitive deficit and senile dementia. This study was planned to assess the benefits of chronic carnosine administration on prevention of learning and memory deterioration in streptozotocin (STZ)-diabetic rats and to explore some of the involved mechanisms. Rats were divided into 5 groups: i.e., control, carnosine100-treated control, diabetic, and carnosine-treated diabetics (50 and 100mg/kg). Carnosine was injected i.p. at doses of 50 or 100mg/kg for 7 weeks, started 1 week after induction of diabetes using streptozotocin. Treatment of diabetic rats with carnosine at a dose of 100mg/kg at the end of the study lowered serum glucose, improved spatial recognition memory in Y maze, improved retention and recall in elevated plus maze, and prevented reduction of step-through latency in passive avoidance task. Furthermore, carnosine at a dose of 100mg/kg reduced hippocampal acetylcholinesterase (AChE) activity, lowered lipid peroxidation, and improved superoxide dismutase (SOD) activity and non-enzymatic antioxidant defense element glutathione (GSH), but not activity of catalase. Meanwhile, hippocampal level of nuclear factor-kappaB (NF-κB), tumor necrosis factor α (TNF-α), and glial fibrillary acidic protein (GFAP) decreased and level of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) increased upon treatment of diabetic group with carnosine at a dose of 100mg/kg. Taken together, chronic carnosine treatment could ameliorate learning and memory disturbances in STZ-diabetic rats through intonation of NF-κB/Nrf2/HO-1 signaling cascade, attenuation of astrogliosis, possible improvement of cholinergic function, and amelioration of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
| | | | | | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
41
|
Li R, Ma K, Zhao H, Feng Z, Yang Y, Ge H, Zhang X, Tang J, Yin Y, Liu X, Tan L, Feng H. Cattle encephalon glycoside and ignotin reduced white matter injury and prevented post-hemorrhagic hydrocephalus in a rat model of intracerebral hemorrhage. Sci Rep 2016; 6:35923. [PMID: 27782218 PMCID: PMC5080569 DOI: 10.1038/srep35923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
The morbidity, mortality, and disability associated with intraventricular hemorrhage (IVH) secondary to intracerebral hemorrhage (ICH) represent a global burden. To date, there is no effective therapy for ICH other than supportive care. In this study, we assessed the neuroprotective effects of Cattle encephalon glycoside and ignotin (CEGI) injection in a rat model of ICH with ventricular extension (IVH/ICH). The IVH/ICH rat model was induced via injection of type IV collagenase in the caudate nucleus of Sprague-Dawley rats. The experimental animals were randomized to receive CEGI, monosialotetrahexosyl ganglioside (GM-1), or normal saline. The modified Garcia scale, corner turn test, immunofluorescence staining for myelin basic protein (MBP) and microtubule associated protein 2 (MAP-2), transmission electron microscopy (TEM), and magnetic resonance imaging were employed to evaluate the neuroprotective effect of CEGI in the IVH/ICH rat model. CEGI treatment significantly alleviated the neurobehavioral dysfunction, reduced the lateral ventricular enlargement, promoted hematoma absorption, effectively up-regulated MBP/MAP-2 expression, and ameliorated white matter fiber damage post-ICH induction. Our results demonstrate that CEGI has significant neuroprotective effects in a rat model of IVH/ICH. Therefore, it can be used as a candidate drug for the clinical treatment of IVH/ICH.
Collapse
Affiliation(s)
- Rongwei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kang Ma
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
42
|
Wada N, Yamanaka S, Shibato J, Rakwal R, Hirako S, Iizuka Y, Kim H, Matsumoto A, Kimura A, Takenoya F, Yasunaga G, Shioda S. Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8. GENOMICS DATA 2016; 10:38-50. [PMID: 27672559 PMCID: PMC5030327 DOI: 10.1016/j.gdata.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023]
Abstract
This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME), supplementation on senescence-accelerated mouse prone 8 (SAMP8), an Alzheimer's disease (AD) model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+ WME) supplemented diet for 26 weeks were subjected to four behavioral tests – open field, Y-maze, novel object recognition, and water-filled multiple T-maze – to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO) diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah) were revealed over the SAMR1 (senescence-accelerated mouse resistant 1) mouse, to be oppositely regulated/recovered under the balenine (+ WME) supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO): GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.
Collapse
Affiliation(s)
- Nobuhiro Wada
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Satoru Yamanaka
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Junko Shibato
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Randeep Rakwal
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan; Faculty of Health and Sport Sciences, Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
| | - Satoshi Hirako
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yuzuru Iizuka
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hyounju Kim
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ai Kimura
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Genta Yasunaga
- The Institute of Cetacean Research, Toyomi-cho 4-5, Chuo-ku, Tokyo 104-0055, Japan
| | - Seiji Shioda
- Department of Anatomy I, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
43
|
Zuloaga KL, Johnson LA, Roese NE, Marzulla T, Zhang W, Nie X, Alkayed FN, Hong C, Grafe MR, Pike MM, Raber J, Alkayed NJ. High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J Cereb Blood Flow Metab 2016; 36:1257-70. [PMID: 26661233 PMCID: PMC4929700 DOI: 10.1177/0271678x15616400] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 11/16/2022]
Abstract
Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology.
Collapse
Affiliation(s)
- Kristen L Zuloaga
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Lance A Johnson
- The Knight Cardiovascular Institute, Portland, OR, USA Department of Behavioral Neuroscience, Portland, OR, USA
| | - Natalie E Roese
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Portland, OR, USA
| | - Wenri Zhang
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Xiao Nie
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farah N Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Christine Hong
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Marjorie R Grafe
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA Department of Pathology, Portland, OR, USA
| | - Martin M Pike
- Advanced Imaging Resource Center, Oregon Health and Science University, Portland, OR, USA
| | - Jacob Raber
- The Knight Cardiovascular Institute, Portland, OR, USA Department of Behavioral Neuroscience, Portland, OR, USA Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA The Knight Cardiovascular Institute, Portland, OR, USA
| |
Collapse
|
44
|
Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B. Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 2016; 48:1131-49. [PMID: 26984320 DOI: 10.1007/s00726-016-2208-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Obesity, type 2 diabetes (T2DM) and cardiovascular disease (CVD) are the most common preventable causes of morbidity and mortality worldwide. They represent major public health threat to our society. Increasing prevalence of obesity and T2DM contributes to escalating morbidity and mortality from CVD and stroke. Carnosine (β-alanyl-L-histidine) is a dipeptide with anti-inflammatory, antioxidant, anti-glycation, anti-ischaemic and chelating roles and is available as an over-the-counter food supplement. Animal evidence suggests that carnosine may offer many promising therapeutic benefits for multiple chronic diseases due to these properties. Carnosine, traditionally used in exercise physiology to increase exercise performance, has potential preventative and therapeutic benefits in obesity, insulin resistance, T2DM and diabetic microvascular and macrovascular complications (CVD and stroke) as well as number of neurological and mental health conditions. However, relatively little evidence is available in humans. Thus, future studies should focus on well-designed clinical trials to confirm or refute a potential role of carnosine in the prevention and treatment of chronic diseases in humans, in addition to advancing knowledge from the basic science and animal studies.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia.,Department of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alan Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia. .,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, 3168, Australia.
| |
Collapse
|
45
|
Ma J, Bo SH, Lu XT, Xu AJ, Zhang J. Protective effects of carnosine on white matter damage induced by chronic cerebral hypoperfusion. Neural Regen Res 2016; 11:1438-1444. [PMID: 27857746 PMCID: PMC5090845 DOI: 10.4103/1673-5374.191217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Carnosine is a dipeptide that scavenges free radicals, inhibits inflammation in the central nervous system, and protects against ischemic and hypoxic brain damage through its anti-oxidative and anti-apoptotic actions. Therefore, we hypothesized that carnosine would also protect against white matter damage caused by subcortical ischemic injury. White matter damage was induced by right unilateral common carotid artery occlusion in mice. The animals were treated with 200, 500 or 750 mg/kg carnosine by intraperitoneal injection 30 minutes before injury and every other day after injury. Then, 37 days later, Klüver-Barrera staining, toluidine blue staining and immunofluorescence staining were performed. Carnosine (200, 500 mg/kg) substantially reduced damage to the white matter in the corpus callosum, internal capsule and optic tract, and it rescued expression of myelin basic protein, and alleviated the loss of oligodendrocytes. However, carnosine at the higher dose of 750 mg/kg did not have the same effects as the 200 and 500 mg/kg doses. These findings show that carnosine, at a particular dose range, protects against white matter damage caused by chronic cerebral ischemia in mice, likely by reducing oligodendroglial cell loss.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hong Bo
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Tong Lu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - A-Jing Xu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Ma J, Chen J, Bo S, Lu X, Zhang J. Protective effect of carnosine after chronic cerebral hypoperfusion possibly through suppressing astrocyte activation. Am J Transl Res 2015; 7:2706-2715. [PMID: 26885268 PMCID: PMC4731668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
AIM Subcortical ischemic vascular dementia (SIVD) induced by chronic hypoperfusion is a common cause of vascular dementia. The aim of this study was to determine whether the protective effect of carnosine on white matter lesion after chronic cerebral hypoperfusion through suppressing astrocyte activation. METHODS Adult male mice (C57BL/6 strain) were subjected to permanent occlusion of the right unilateral common carotid arteries (rUCCAO) and treated with carnosine or histidine. Open field test, freezing test, Klüver-Barrera staining, immunohistochemical analyses and western blot were performed after rUCCAO. RESULTS We found that carnosine ameliorated white matter lesion and cognitive impairment after rUCCAO. Carnosine suppressed the activation of astrocyte in both wide type mice and histidine decarboxylase knockout mice. However, administration of histidine did not show the same effect. We found that there were no differences between rUCCAO group and sham group for the expression of glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST). Furthermore, carnosine significantly attenuated the increase of inflammatory cytokine interferon gama. CONCLUSION These data suggest carnosine induced neuroprotection during SIVD in mice is not dependent on the histaminergic pathway or the regulation of the expression of GLT-1 and GLAST, but may be due to a suppression of astrocyte activation and inflammatory cytokine release.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200092, P. R. China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200092, P. R. China
| | - Shuhong Bo
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200092, P. R. China
| | - Xiaotong Lu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200092, P. R. China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200092, P. R. China
| |
Collapse
|
47
|
Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci Rep 2015; 5:15356. [PMID: 26481857 PMCID: PMC4611873 DOI: 10.1038/srep15356] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/09/2015] [Indexed: 11/24/2022] Open
Abstract
The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes.
Collapse
|
48
|
Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, Zhang H, Jin J, Chen W, Pang M, Yu J, He Y, Xu J. Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate. BIOMED RESEARCH INTERNATIONAL 2015; 2015:412946. [PMID: 26523278 PMCID: PMC4615854 DOI: 10.1155/2015/412946] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 02/06/2023]
Abstract
Probiotics actively participate in neuropsychiatric disorders. However, the role of gut microbiota in brain disorders and vascular dementia (VaD) remains unclear. We used a mouse model of VaD induced by a permanent right unilateral common carotid arteries occlusion (rUCCAO) to investigate the neuroprotective effects and possible underlying mechanisms of Clostridium butyricum. Following rUCCAO, C. butyricum was intragastrically administered for 6 successive weeks. Cognitive function was estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The BDNF-PI3K/Akt pathway-related proteins were assessed by western blot and immunohistochemistry. The diversity of gut microbiota and the levels of butyrate in the feces and the brains were determined. The results showed that C. butyricum significantly attenuated the cognitive dysfunction and histopathological changes in VaD mice. C. butyricum not only increased the levels of BDNF and Bcl-2 and decreased level of Bax but also induced Akt phosphorylation (p-Akt) and ultimately reduced neuronal apoptosis. Moreover, C. butyricum could regulate the gut microbiota and restore the butyrate content in the feces and the brains. These results suggest that C. butyricum might be effective in the treatment of VaD by regulating the gut-brain axis and that it can be considered a new therapeutic strategy against VaD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangyan Wang
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xichong Yu
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haixiao Li
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiqing Zhang
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiangtao Jin
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenqian Chen
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengqi Pang
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junjie Yu
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiwen He
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiru Xu
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
49
|
Ma J, Zhang J, Hou WW, Wu XH, Liao RJ, Chen Y, Wang Z, Zhang XN, Zhang LS, Zhou YD, Chen Z, Hu WW. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion. Sci Rep 2015; 5:12079. [PMID: 26174710 PMCID: PMC4502604 DOI: 10.1038/srep12079] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022] Open
Abstract
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0-3), but not the late stage after rUCCAO (day 4-32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| | - Jing Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, P. R. China
| | - Wei Wei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiao Hua Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ru Jia Liao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ying Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhe Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Nan Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, P. R. China
| | - Li San Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Dong Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, P. R. China
| | - Wei Wei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, P. R. China
| |
Collapse
|
50
|
Li F, Yan CQ, Lin LT, Li H, Zeng XH, Liu Y, Du SQ, Zhu W, Liu CZ. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats. Altern Ther Health Med 2015; 15:133. [PMID: 25928206 PMCID: PMC4426171 DOI: 10.1186/s12906-015-0656-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. METHODS Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. RESULTS We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P < 0.05) and tended to decrease the number of astrocytes (P = 0.063). However, there was no significant change in the synaptic bouton number of hippocampal CA1 area in any of the groups (P > 0.05). CONCLUSIONS These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.
Collapse
|