1
|
Hu H, Liu H, Zeng Z, Xiao Y, Mai Y, Zhang Y, Meyers BC, Hao Y, Xia R. Genetic variation in a tandemly duplicated TPS gene cluster contributes to the diversity of aroma in lychee fruit. THE NEW PHYTOLOGIST 2025; 246:2652-2665. [PMID: 40148923 DOI: 10.1111/nph.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Fruits undergo a similar ripening process, yet they exhibit a range of differences in color, taste, and shape, both across different species and within the same species. How does this diversity arise? We uncovered a conserved fruit ripening process in lychee fruit in which a NAC transcription factor, LcNAC1, acts as a master regulator. LcNAC1 regulates the expression of two terpene synthase genes, LcTPSa1 and LcTPSa2, which belong to a gene cluster consisting of four TPS genes. LcTPSa1-LcTPSa3 are responsible for catalyzing the production of farnesol, which in turn dictates the aromatic diversity in fruit of different lychee varieties. Through comparative, transcriptomic, and genomic analyses across various lychee varieties, we found these four TPS genes exhibit distinct expression levels due to natural genetic variation. These include copy number variations, presence/absence variations, insertions and deletions, and single nucleotide polymorphisms, many of which affect the binding affinity of LcNAC1. A single nucleotide mutation in LcTPSa1 caused a premature translational termination, resulting in a truncated version of the TPS protein, which surprisingly remains functional. All these genomic changes in the LcNAC1-regulated TPS genes are likely to contribute to the great aromatic diversity observed in lychee fruit. This diversification of fruit aroma in lychee varieties offers a compelling example of how species- or variety-specific traits evolve - the phenotypic diversity is primarily derived from natural genetic variation accumulated in downstream structural genes within an evolutionarily conserved regulatory circuit.
Collapse
Affiliation(s)
- Huimin Hu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongsen Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zaohai Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yaxuan Xiao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yingxiao Mai
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanqing Zhang
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Blake C Meyers
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Yanwei Hao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Rui Xia
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in (South China) at Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
2
|
Li X, Xu D, Zhang L, Zhao L. ENDOGLUCANASE SlCEL2 and EXPANSIN SlEXP1 synergistically affect cellulose degrading and tomato fruit softening. BMC PLANT BIOLOGY 2025; 25:704. [PMID: 40419969 DOI: 10.1186/s12870-025-06749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Delayed fruit softening in tomato (Solanum lycopersicum) is highly desirable for extending shelf life, facilitating long-distance transportation, and reducing post-harvest losses caused by mechanical damage. Fruit softening is a natural ripening process characterized by the increased expression of genes involved in cell wall modification, leading to the breakdown of cell wall polysaccharides and the gradual disintegration of cellular structure. The yft1 mutant (yellow-fruited tomato 1, originally designated n3122) exhibits inhibited ethylene production, preventing normal ripening and resulting in firmer fruit. Concurrently, yft1 shows significant downregulation of several genes associated with cell wall degradation, including endoglucanase SlCEL2 and EXPANSIN SlEXP1. Both genes exhibit similar expression patterns, peaking during ripening, suggesting their importance in fruit softening. To investigate this further, RNAi silencing lines targeting SlCEL2 and SlEXP1 were generated. The double mutant, slcel2 slexp1, displayed increased firmness at the red ripe stage (54 days post-anthesis, dpa), whereas the single mutants showed similar softening to the wild-type M82. Anatomical analysis at 54 dpa revealed enhanced cell wall structure, slightly increased cuticle thickness, and significantly higher pericarp cellulose content in slcel2 slexp1 compared to M82, slcel2, and slexp1. Furthermore, this study found that SlEXP1 expression was significantly upregulated in slcel2 fruit, compared to M82 (wild type), at 54 dpa. This suggests a compensatory transcriptional regulation between these two genes in tomato fruit, potentially aimed at maintaining normal softening during ripening. These findings demonstrate that SlCEL2 and SlEXP1 act synergistically in cellulose degradation during tomato ripening, and promoting fruit softening.
Collapse
Affiliation(s)
- Xueou Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dawei Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Chen Z, Jin G, Zhi Z, Guo Y, Liu Y, Fan B, Zhu GP, Zhang M, Zhang S. Genome-wide identification and expression analysis of ACS and ACO gene family in Ziziphus jujuba mill during fruit ripening. Sci Rep 2025; 15:18106. [PMID: 40413254 PMCID: PMC12103539 DOI: 10.1038/s41598-025-03014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
The jujube (Ziziphus jujuba Mill.) cultivar 'Dongzao' is globally popular as a fresh fruit but faces challenges with shelf life, which is positively associated with ethylene production. The two key enzymes involved in ethylene biosynthesis, 1-Aminocyclopropane-1-Carboxylic acid Synthase (ACS) and 1-Aminocyclopropane-1-Carboxylic acid Oxidase (ACO), are encoded by ACS and ACO gene families, respectively. This study identified 7 ZjACS genes and 36 ZjACO genes in 'Dongzao' and revealed extensive evolutionary divergence between 'Dongzao' and Arabidopsis thaliana. Phylogenetic relationships were more apparent when analyzing genes with similar structures, motifs and subcellular localization predictions. Transcriptome profiling showed that a substantial number of the ZjACS and ZjACO genes displayed stage-specific expression tendency during fruit development. Co-expression analysis showed that 4 ZjACS and 9 ZjACO genes were linked to transcription factors (TFs) involved in fruit ripening. The diverse regulatory factors, including ERF, NAC and WRKY TFs and cis-acting regulatory elements, likely contribute to the complex roles of the ZjACSs and ZjACOs during ripening of jujube fruits. This study sheds light on the genetic regulation of ethylene biosynthesis in 'Dongzao' jujube ripening, providing insights for postharvest research in this economically important species.
Collapse
Affiliation(s)
- Zhuo Chen
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Gang Jin
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Zhaokun Zhi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanmeng Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yiteng Liu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Bingxin Fan
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Gao-Pu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Mengmeng Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| | - Shulin Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Jia H, Shi Y, Dai Z, Sun Y, Shu X, Li B, Wu R, Lv S, Shou J, Yang X, Jiang G, Zhang Y, Allan AC, Chen K. Phosphorylation of the strawberry MADS-box CMB1 regulates ripening via the catabolism of abscisic acid. THE NEW PHYTOLOGIST 2025; 246:1627-1646. [PMID: 40172024 PMCID: PMC12018792 DOI: 10.1111/nph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Research on the ripening of fleshy fruits has relied on techniques that measure transcriptional changes. How ripening is linked to posttranslational modifications such as protein phosphorylation remains less studied. Here, we characterize the MADS-box SEPALLATA 4 (SEP4) subfamily transcription factor FaCMB1, a key negative regulator controlling strawberry ripening, whose transcript and protein abundance decrease progressively with fruit development and are repressed by abscisic acid (ABA). Transient RNAi or overexpression of FaCMB1 significantly altered the fruit ripening process and affected the content of endogenous ABA and ripening-related quality. Transcriptome sequencing (RNA-seq) analysis suggested that manipulation of FaCMB1 expression levels affected the transcription of FaASR (ABA-, stress-, ripening-induced), while FaCMB1 can repress the gene expression of FaASR by directly binding to its promoter. Furthermore, FaASR inhibited the transcriptional activity of FaCYP707A4, a key ABA 8'-hydroxylase enzyme involved in ABA catabolism. We show that FaCMB1 can be phosphorylated by the kinase FaSTPK, and Phos-tag assays indicated that the phosphorylation level of FaCMB1 increases during fruit ripening. This phosphorylation of FaCMB1 affects the binding ability of FaCMB1 to the FaASR promoter and alleviates its transcriptional repression. In conclusion, we elucidated a feedback regulatory path involving FaCMB1-FaASR-FaCYP707A4-ABA. During the fruit ripening process, an increase in ABA content led to a decrease in FaCMB1 transcript and protein levels, which, combined with increased phosphorylation levels, collectively impaired the transcriptional repression of FaASR by FaCMB1. Meanwhile, the increased transcriptional level of FaASR further repressed the expression level of FaCYP707A4, leading to ABA accumulation and fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yanna Shi
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| | - Zhengrong Dai
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yunfan Sun
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiu Shu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Baijun Li
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureGuangxi UniversityNanning530004China
| | - Rongrong Wu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Shouzheng Lv
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Jiahan Shou
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Yuchao Zhang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research LtdPrivate Bag 92169Auckland1142New Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Kunsong Chen
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| |
Collapse
|
5
|
Zhang M, Fang Y, Jiang F, Liao Y, Pan C, Li J, Wu J, Yang Q, Qin R, Bai S, Teng Y, Ni J. CRY1-GAIP1 complex mediates blue light to hinder the repression of PIF5 on AGL5 to promote carotenoid biosynthesis in mango fruit. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40263966 DOI: 10.1111/pbi.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Carotenoids are essential natural pigments that not only determine the commercial value of horticultural crops through colouration but also serve as vital antioxidants and provitamin A precursors in the human diet. Our previous research has demonstrated that blue light induces carotenoid biosynthesis in mango fruit. However, a critical knowledge gap remains regarding how blue light regulates carotenoid biosynthesis in fruit. In this study, blue light-induced MiAGL5 was identified to promote carotenoid biosynthesis by activating the promoters of MiBCH1 and MiZEP. Subsequently, MiPIF5, a phytochrome interacting factor, transcriptionally inhibited MiAGL5 expression. MiGAIP1, a DELLA protein, promoted carotenoid biosynthesis by interacting with MiPIF5 and preventing its repression of MiAGL5. Furthermore, blue light stabilized MiGAIP1 protein through MiCRY1-MiGAIP1 interaction and reduced MiGAIP1 degradation by decreasing GA content in mango fruit. Additionally, MiGAIP1 mediated the antagonistic effects between blue light and GA in regulating carotenoid biosynthesis. Collectively, these results demonstrate that blue light induces carotenoid biosynthesis through a mechanism involving MiCRY1-MiGAIP1 complex-mediated inhibition of MiPIF5 repression on MiAGL5. Our work provides solid evidence for CRY-DELLA-PIF-AGL cross-talk in plant metabolism and establishes a new paradigm for light-hormone antagonism in the regulation of specialized metabolites.
Collapse
Affiliation(s)
- Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fan Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiage Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Rongling Qin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
6
|
Li J, Lu Y, Cheng K, Zhu G, Wang X, Lin T, Zhang B, Ma L, Qu G, Zhu B, Fu D, Luo Y, Zhu H. ACS4 exerts a pivotal role in ethylene biosynthesis during the ripening of tomato fruits in comparison to ACS2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70043. [PMID: 40040541 DOI: 10.1111/tpj.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
In the climacteric fruit tomato (Solanum lycopersicum), 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 2 (ACS2) and ACS4 are jointly recognized as key enzymes in orchestrating System-2 ethylene biosynthesis during fruit ripening. However, the precise roles and individual contributions of ACS2 and ACS4 within this process remain elusive. Here, we generate acs2, acs4 single knockout, and acs2/4 double knockout mutants through the CRISPR/Cas9 system. Our results reveal that the knockout of ACS2 leads to a modest decrease in ethylene production, with minimal effects on fruit ripening. In contrast, the knockout of ACS4 unveils a severe ripening defect akin to that observed in the acs2/4 mutant, which stems from a profound disruption of ethylene autocatalytic biosynthesis, ultimately resulting in inadequate ethylene production vital for supporting fruit ripening. Transcriptome analysis, in conjunction with exogenous ethylene treatment, conclusively demonstrates a pronounced dose-dependent correlation between fruit ripening and ethylene, wherein varying doses of ethylene distinctly regulate the expression of a substantial number of ripening-related genes, eventually controlling both the ripening process and quality formation. These findings clarify the pivotal role of ACS4 in ethylene biosynthesis compared to ACS2 and deepen our understanding of the fine-tuned regulation of ethylene in climacteric fruit ripening.
Collapse
Affiliation(s)
- Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guoning Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyi Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- The College of Horticulture, China Agricultural University, Beijing, 100094, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
7
|
Xiao K, Fan J, Bi X, Tu X, Li X, Cao M, Liu Z, Lin A, Wang C, Xu P, Lian H. A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles. PLANT PHYSIOLOGY 2025; 197:kiaf043. [PMID: 40066641 DOI: 10.1093/plphys/kiaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/27/2024] [Indexed: 05/13/2025]
Abstract
Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose. Further investigation showed that FvNAC073 positively regulates the expression of sucrose-6-phosphate synthase 1 (FvSPS1), a gene associated with sucrose synthesis, and negatively regulates sucrose synthase 2 (FvSUS2), which is involved in sucrose breakdown, through direct promoter binding. Additionally, we uncovered that FvCMB1L, a MADS-box protein, exhibits high gene expression levels at the premature fruit stage and acts to repress FvSPS1 while activating FvSUS2, thus negatively affecting sucrose accumulation. Notably, we demonstrated a competitive interaction between FvNAC073 and FvCMB1L in binding to the promoters of FvSPS1 and FvSUS2, resulting in antagonistic regulation of these genes. This intricate dynamic between FvCMB1L and FvNAC073 elucidates a mechanism for balancing sugar content during strawberry fruit development. Our findings offer insights into the complex regulatory network governing sucrose accumulation in strawberries, highlighting the potential for targeted genetic interventions to enhance fruit quality.
Collapse
Affiliation(s)
- Kun Xiao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Junmiao Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyi Bi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Tu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minghao Cao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Bai F, Wu M, Huang W, Xu W, Wang Y, Zhang Y, Zhong Z, Hong Y, Pirrello J, Bouzayen M, Liu M. Removal of toxic steroidal glycoalkaloids and bitterness in tomato is controlled by a complex epigenetic and genetic network. SCIENCE ADVANCES 2025; 11:eads9601. [PMID: 39970214 PMCID: PMC11837996 DOI: 10.1126/sciadv.ads9601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The steroidal glycoalkaloids (SGAs) produced in Solanaceae crops, including tomato, are antinutritional because of their cellular toxicity and resultant bitter taste to humans. To make fruits palatable, SGA profiles shift from bitter and toxic α-tomatine to nonbitter and nontoxic esculeoside A during the ripening process. However, the mechanisms regulating this conversion remain unclear. In this study, we showed that removal of toxic and bitter SGAs is under the control of DNA demethylation, ethylene, and key transcription factors by forming a feedback loop that governs the expression of key GLYCOALKALOID METABOLISM (GAME) genes during ripening. Moreover, the ethylene-inducible transcription factors NON-RIPENING, RIPENING INHIBITOR, and FRUITFULL1 coordinately regulate the expression of GAME31, GAME40, GAME5, and the glycoalkaloid transporter gene GORKY, whereas jasmonic acid-induced MYC2 modulates the transcription of GAME36. Furthermore, DNA demethylation mediated by the DEMETER-LIKE 2 drives SGA detoxification during tomato domestication.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, Guang Dong 518083, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yikui Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhenhui Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Wang Y, Li X, Qiu H, Chen R, Xiong A, Xu Z, Miao W, Chen R, Wang P, Hou X, Yu H, Yang B, Yang S, Suo H, Zou X, Liu Z, Ou L. The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits. PLANT PHYSIOLOGY 2025; 197:kiaf013. [PMID: 39797909 DOI: 10.1093/plphys/kiaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025]
Abstract
Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient. Here, we identified the MADS-box transcription factor RIPENING INHIBITOR (MADS-RIN) in pepper (Capsicum annuum), which regulates ripening in climacteric tomato (Solanum lycopersicum) fruits, using weighted gene co-expression network analysis. We found MADS-RIN can directly bind to the promoters of carotenoid biosynthetic genes phytoene synthase 1 (PSY1) and capsanthin/capsorubin synthase (CCS) and the promoter of DIVARICATA1 to activate their expression, thereby regulating carotenoid biosynthesis directly or indirectly. The physical interaction between MADS-RIN and DIVARICATA1 enhances the transactivation effect on PSY1 and CCS. The self-transactivation of MADS-RIN demonstrates its capability to expedite the above process under specific conditions. Interestingly, chromatin immunoprecipitation sequencing assays revealed consistency and divergence of potential targets of MADS-RIN in climacteric tomato and nonclimacteric pepper fruits, suggesting potential conservation and variation of MADS-RIN in regulating ripening and carotenoid metabolism. The present study illustrates the regulatory mechanism of the MADS-RIN-DIVARICATA1 module in capsanthin biosynthesis in pepper, providing targets for breeding high-quality peppers. These findings enrich our understanding of the regulatory network of carotenoid biosynthesis and offer insights into the complex mechanisms of MADS-RIN in climacteric/nonclimacteric fruit ripening and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Yinggang Wang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Yuelushan Lab, Changsha 410128, China
| | - Xinhui Li
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huixia Qiu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Ruting Chen
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhisheng Xu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd., Changsha, Hunan 410119, China
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Wang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410125, China
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huiyang Yu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Bozhi Yang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Sha Yang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Huan Suo
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Xuexiao Zou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Yuelushan Lab, Changsha 410128, China
| | - Zhoubin Liu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| | - Lijun Ou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
10
|
Yang Q, Cai L, Wang M, Gan G, Li W, Li W, Jiang Y, Yuan Q, Qin C, Yu C, Wang Y. CRISPR/cas9 Allows for the Quick Improvement of Tomato Firmness Breeding. Curr Issues Mol Biol 2024; 47:9. [PMID: 39852124 PMCID: PMC11763693 DOI: 10.3390/cimb47010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F1 hybrids to enhance firmness. However, the undesirable traits introduced by these mutants often lead to a decline in the quality of the varieties. CRISPR/Cas9 has emerged as a crucial tool in accelerating plant breeding and improving specific target traits as technology iterates. In this study, we used a CRISPR/Cas9 system to simultaneously knock out two genes, FIS1 and PL, which negatively regulate firmness in tomato. We generated single and double gene knockout mutants utilizing the tomato genetic transformation system. The fruit firmness of all knockout mutants exhibited a significant enhancement, with the most pronounced improvement observed in the double mutant. Furthermore, we assessed other quality-related traits of the mutants; our results indicated that the fruit quality characteristics of the gene-edited lines remained statistically comparable to those of the wild type. This approach enabled us to create transgenic-free mutants with diverse genotypes across fewer generations, facilitating rapid improvements in tomato firmness. This study offers significant insights into molecular design breeding strategies for tomato.
Collapse
Affiliation(s)
- Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Mila Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Qi Yuan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Chunchun Qin
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| |
Collapse
|
11
|
Yue Q, Xie Y, Yang X, Zhang Y, Li Z, Liu Y, Cheng P, Zhang R, Yu Y, Wang X, Liao L, Han Y, Zhao T, Li X, Zhang H, Ma F, Guan Q. An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening. THE PLANT CELL 2024; 37:koaf007. [PMID: 39873675 PMCID: PMC11773814 DOI: 10.1093/plcell/koaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yinpeng Xie
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xinyue Yang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yuxin Zhang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Liu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yue Yu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Zhao
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Fengwang Ma
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Lorenzo CD. The time is ripe: Natural variability of MdNAC18.1 promoter plays a major role in fruit ripening. THE PLANT CELL 2024; 37:koaf004. [PMID: 39847516 PMCID: PMC11756568 DOI: 10.1093/plcell/koaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Christian Damian Lorenzo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
13
|
Zheng X, Mo W, Zuo Z, Shi Q, Chen X, Zhao X, Han J. From Regulation to Application: The Role of Abscisic Acid in Seed and Fruit Development and Agronomic Production Strategies. Int J Mol Sci 2024; 25:12024. [PMID: 39596092 PMCID: PMC11593364 DOI: 10.3390/ijms252212024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Abscisic acid (ABA) is a crucial plant hormone that plays a decisive role in regulating seed and fruit development and is becoming increasingly important in agricultural applications. This article delves into ABA's regulatory functions in plant growth, particularly during the stages of seed and fruit development. In the seed phase, elevated ABA levels help maintain seed dormancy, aiding seed survival under unfavorable conditions. During fruit development, ABA regulates pigment synthesis and sugar accumulation, influencing the nutritional value and market quality of the fruit. This article highlights three main strategies for applying ABA in agricultural production: the use of ABA analogs, the development of ABA signal modulators, and breeding techniques based on ABA signaling. ABA analogs can mimic the natural functions of ABA, while ABA signal modulators, including enhancers and inhibitors, are used to finely tune plant responses to ABA, optimizing crop performance under specific growth conditions. Furthermore, breeding strategies based on ABA signaling aim to select crop varieties that effectively utilize ABA pathways through genetic engineering and other technologies. ABA is not only a key regulator of plant growth and development but also holds great potential for modern agricultural practices.
Collapse
Affiliation(s)
- Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| |
Collapse
|
14
|
Zhou Y, Li Z, Su X, Hou H, Jiang Y, Duan X, Qu H, Jiang G. Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato. HORTICULTURE RESEARCH 2024; 11:uhae234. [PMID: 39507699 PMCID: PMC11534877 DOI: 10.1093/hr/uhae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed the maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.
Collapse
Affiliation(s)
- Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Huiyu Hou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Qu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Wang J, He Y, Wang G, Li R, Niu Y, Liu K, Zhang J, Tang Z, Lyu J, Xie J, Wu Y, Yu J. Exogenous 5-aminolevulinic acid promotes carotenoid accumulation in tomato fruits by regulating ethylene biosynthesis and signaling. PHYSIOLOGIA PLANTARUM 2024; 176:e14648. [PMID: 39639852 DOI: 10.1111/ppl.14648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
5-Aminolevulinic acid (ALA) can not only improve fruit yield and quality, but also increase the lycopene content in tomato fruits. Furthermore, ALA has been shown to promote system-2 ethylene production in tomato fruits. However, the specific interactions between ALA and ethylene during fruit ripening remain unclear. In this study, we treated tomato fruits with ALA, 1-aminocyclopropane-1-carboxylic acid (ACC), aminooxyacetic acid (AOA) + AgNO3, and AOA + AgNO3 + ALA and analyzed ethylene emissions, carotenoid contents, and the relative gene expression levels related to fruit ripening, carotenoid contents, ethylene synthesis, and signal transduction. The ALA treatment significantly enhanced ethylene bursts and carotenoid accumulation, and significantly upregulated the expression of ethylene and carotenoid-related genes, such as SlACS2, SlACS4, SlACO1, SlPSY1, and SlPDS. We also observed that the gene expression levels associated with carotenoid synthesis were downregulated in fruits treated with a combination of ethylene inhibitors (AOA + AgNO3). However, there was a significant upregulation in the gene expression levels associated with carotenoid synthesis and an increase in carotenoid content when fruits were treated with AOA + AgNO3 + ALA. After silencing SlACO1 expression, the total carotenoid content and SlPSY1 expression decreased significantly, while this effect was reversed after exogenous application of ALA. These results indicated that ALA promotes carotenoid accumulation in tomato fruits by promoting ethylene biosynthesis. In conclusion, our results highlighted the role of ALA in promoting carotenoid accumulation and ripening in tomato fruits by regulating ethylene synthesis, thereby providing a novel strategy for improving fruit quality.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
16
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
17
|
Zhang Y, Zhang Y, Yu Z, Wang H, Ping B, Liu Y, Liang J, Ma F, Zou Y, Zhao T. Insights into ACO genes across Rosaceae: evolution, expression, and regulatory networks in fruit development. Genes Genomics 2024; 46:1209-1223. [PMID: 39141243 DOI: 10.1007/s13258-024-01551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND ACO (1-aminocyclopropane-1-carboxylic acid) serves as a pivotal enzyme within the plant ethylene synthesis pathway, exerting influence over critical facets of plant biology such as flowering, fruit ripening, and seed development. OBJECTIVE This study aims to identify ACO genes from representative Rosaceae genomes, reconstruct their phylogenetic relationships by integrating synteny information, and investigate their expression patterns and networks during fruit development. METHODS we utilize a specialized Hidden Markov Model (HMM), crafted on the sequence attributes of ACO gene-encoded proteins, to systematically identify and analyze ACO gene family members across 12 representative species within the Rosaceae botanical family. Through transcriptome analysis, we delineate the expression patterns of ACO genes in six distinct Rosaceae fruits. RESULTS Our investigation reveals the presence of 62 ACO genes distributed among the surveyed Rosaceae species, characterized by hydrophilic proteins predominantly expressed within the cytoplasm. Phylogenetic analysis categorizes these ACO genes into three discernible classes, namely Class I, Class II, and Class III. Further scrutiny via collinearity assessment indicates a lack of collinearity relationships among these classes, highlighting variations in conserved motifs and promoter types within each class. Transcriptome analysis unveils significant disparities in both expression levels and trends of ACO genes in fruits exhibiting respiratory bursts compared to those that do not. Employing Weighted Gene Co-Expression Network Analysis (WGCNA), we discern that the co-expression correlation of ACO genes within loquat fruit notably differs from that observed in apples. Our findings, derived from Gene Ontology (GO) enrichment results, signify the involvement of ACO genes and their co-expressed counterparts in biological processes linked to terpenoid metabolism and carbohydrate synthesis in loquat. Moreover, our exploration of gene regulatory networks (GRN) highlights the potential pivotal role of the GNAT transcription factor (Ejapchr1G00010380) in governing the overexpression of the ACO gene (Ejapchr10G00001110) within loquat fruits. CONCLUSION The constructed HMM of ACO proteins offers a precise and systematic method for identifying plant ACO proteins, facilitating phylogenetic reconstruction. ACO genes from representative Rosaceae fruits exhibit diverse expression and regulative patterns, warranting further function characterizations.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yirong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yunxiao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiakai Liang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
18
|
Xiao A, Wu J, Wang W, Guan Y, Zhuang M, Guo X, Zhu H, Yu H, Cao Y. Soybean ethylene response factors GmENS1 and GmENS2 promote nodule senescence. PLANT PHYSIOLOGY 2024; 196:1029-1041. [PMID: 38954501 DOI: 10.1093/plphys/kiae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 05/12/2024] [Indexed: 07/04/2024]
Abstract
The final phase in root nodule development is nodule senescence. The mechanism underlying the initiation of nodule senescence requires further elucidation. In this study, we investigate the intrinsic signals governing soybean (Glycine max L. Merr.) nodule senescence, uncovering ethylene as a key signal in this intricate mechanism. Two AP2/ethylene response factor (ERF) transcription factor (TF) genes, GmENS1 and GmENS2 (Ethylene-responsive transcription factors required for Nodule Senescence), exhibit heightened expression levels in both aged nodules and nodules treated with ethylene. An overexpression of either GmENS1 or GmENS2 accelerates senescence in soybean nodules, whereas the knockout or knockdown of both genes delays senescence and enhances nitrogenase activity. Furthermore, our findings indicate that GmENS1 and GmENS2 directly bind to the promoters of GmNAC039, GmNAC018, and GmNAC030, encoding 3 NAC (NAM, ATAF1/2, and CUC2) TFs essential for activating soybean nodule senescence. Notably, the nodule senescence process mediated by GmENS1 or GmENS2 overexpression is suppressed in the soybean nac039/018/030 triple mutant compared with the wild-type control. These data indicate GmENS1 and GmENS2 as pivotal TFs mediating ethylene-induced nodule senescence through the direct activation of GmNAC039/GmNAC018/GmNAC030 expression in soybean.
Collapse
Affiliation(s)
- Aifang Xiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiashan Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weiyun Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuxin Guan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengting Zhuang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
19
|
Zamorano-Curaqueo M, Valenzuela-Riffo F, Herrera R, Moya-León MA. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108985. [PMID: 39084168 DOI: 10.1016/j.plaphy.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.
Collapse
Affiliation(s)
- Macarena Zamorano-Curaqueo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - María A Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile.
| |
Collapse
|
20
|
Teng Y, Wang Y, Zhang S, Zhang X, Li J, Wu F, Chen C, Long X, Li A. Integration of full-length Iso-Seq, Illumina RNA-Seq, and flavor testing reveals potential differences in ripened fruits between two Passiflora edulis cultivars. PeerJ 2024; 12:e17983. [PMID: 39282122 PMCID: PMC11401511 DOI: 10.7717/peerj.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Background Passion fruit (Passiflora edulis) is loved for its delicious flavor and nutritious juice. Although studies have delved into the cultivation and enhancement of passion fruit varieties, the underlying factors contributing to the fruit's appealing aroma remain unclear. Methods This study analyzed the full-length transcriptomes of two passion fruit cultivars with different flavor profiles: "Tainong 1" (TN1), known for its superior fruit flavor, and "Guihan 1" (GH1), noted for its strong environmental resilience but lackluster taste. Utilizing PacBio Iso-Seq and Illumina RNA-Seq technologies, we discovered terpene synthase (TPS) genes implicated in fruit ripening that may help explain the flavor disparities. Results We generated 15,913 isoforms, with N50 lengths of 1,500 and 1,648 bp, and mean lengths of 1,319 and 1,463 bp for TN1 and GH1, respectively. Transcript and isoform lengths ranged from a maximum of 7,779 bp to a minimum of 200 and 209 bp. We identified 14,822 putative coding DNA sequences (CDSs) averaging 1,063 bp, classified 1,007 transcription factors (TFs) into 84 families. Additionally, differential expression analysis of ripening fruit from both cultivars revealed 314 upregulated and 43 downregulated unigenes in TN1 compared to GH1. The top 10 significantly enriched Gene Ontology (GO) terms for the differentially expressed genes (DEGs) indicated that TN1's upregulated genes were primarily involved in nutrient transport, whereas GH1's up-regulated genes were associated with resistance mechanisms. Meanwhile, 17 PeTPS genes were identified in P. edulis and 13 of them were TPS-b members. A comparative analysis when compared PeTPS with AtTPS highlighted an expansion of the PeTPS-b subfamily in P. edulis, suggesting a role in its fruit flavor profile. Conclusion Our findings explain that the formation of fruit flavor is attributed to the upregulation of essential genes in synthetic pathway, in particular the expansion of TPS-b subfamily involved in terpenoid synthesis. This finding will also provide a foundational genetic basis for understanding the nuanced flavor differences in this species.
Collapse
Affiliation(s)
- Yao Teng
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Ye Wang
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Sunjian Zhang
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Xiaoying Zhang
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Jiayu Li
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Fengchan Wu
- Guizhou Academy of Sciences, Guizhou Institute of Biology, Guiyang, China
| | - Caixia Chen
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Xiuqin Long
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Anding Li
- Guizhou Academy of Sciences, Guizhou Institute of Biology, Guiyang, China
| |
Collapse
|
21
|
Li Z, Zeng J, Zhou Y, Ding X, Jiang G, Wu K, Jiang Y, Duan X. Histone H3K27 demethylase SlJMJ3 modulates fruit ripening in tomato. PLANT PHYSIOLOGY 2024; 195:2727-2742. [PMID: 38669310 DOI: 10.1093/plphys/kiae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. In this study, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as an H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation. Overexpression of SlJMJ3 leads to accelerated fruit ripening, whereas loss of function of SlJMJ3 delays this process. Furthermore, we determined that SlJMJ3 exerts its regulatory function by modulating the expression of multiple ripening-related genes involved in ethylene biosynthesis and response, carotenoid metabolism, cell wall modification, transcriptional control, and DNA methylation modification. SlJMJ3 binds directly to the promoters of ripening-related genes harboring the CTCTGYTY motif and activates their expression. Additionally, SlJMJ3 reduces the levels of H3K27me3 at its target genes, thereby upregulating their expression. In summary, our findings highlight the role of SlJMJ3 in the regulation of fruit ripening in tomato. By removing the methyl group from trimethylated histone H3 lysine 27 at ripening-related genes, SlJMJ3 acts as an epigenetic regulator that orchestrates the complex molecular processes underlying fruit ripening.
Collapse
Affiliation(s)
- Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Jia H, Xu Y, Deng Y, Xie Y, Gao Z, Lang Z, Niu Q. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato. PLANT PHYSIOLOGY 2024; 195:2256-2273. [PMID: 38561990 PMCID: PMC11213253 DOI: 10.1093/plphys/kiae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Fruit ripening is a complex process involving dynamic changes to metabolites and is controlled by multiple factors, including transcription factors (TFs). Several TFs are reportedly essential regulators of tomato (Solanum lycopersicum) fruit ripening. To evaluate the effects of specific TFs on metabolite accumulation during fruit ripening, we combined CRISPR/Cas9-mediated mutagenesis with metabolome and transcriptome analyses to explore regulatory mechanisms. Specifically, we generated various genetically engineered tomato lines that differed regarding metabolite contents and fruit colors. The metabolite and transcript profiles indicated that the selected TFs have distinct functions that control fruit metabolite contents, especially carotenoids and sugars. Moreover, a mutation to ELONGATED HYPOCOTYL5 (HY5) increased tomato fruit fructose and glucose contents by approximately 20% (relative to the wild-type levels). Our in vitro assay showed that HY5 can bind directly to the G-box cis-element in the Sugars Will Eventually be Exported Transporter (SWEET12c) promoter to activate expression, thereby modulating sugar transport. Our findings provide insights into the mechanisms regulating tomato fruit ripening and metabolic networks, providing the theoretical basis for breeding horticultural crops that produce fruit with diverse flavors and colors.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaping Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yuanwei Deng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yinhuan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| |
Collapse
|
23
|
Xiao H, Verboven P, Tong S, Pedersen O, Nicolaï B. Hypoxia in tomato (Solanum lycopersicum) fruit during ripening: Biophysical elucidation by a 3D reaction-diffusion model. PLANT PHYSIOLOGY 2024; 195:1893-1905. [PMID: 38546393 DOI: 10.1093/plphys/kiae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 06/30/2024]
Abstract
Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.
Collapse
Affiliation(s)
- Hui Xiao
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
| | | | - Shuai Tong
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bart Nicolaï
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Leuven B-3001, Belgium
| |
Collapse
|
24
|
Wang Y, Deng C, Zhao L, Dimkpa CO, Elmer WH, Wang B, Sharma S, Wang Z, Dhankher OP, Xing B, White JC. Time-Dependent and Coating Modulation of Tomato Response upon Sulfur Nanoparticle Internalization and Assimilation: An Orthogonal Mechanistic Investigation. ACS NANO 2024; 18:11813-11827. [PMID: 38657165 DOI: 10.1021/acsnano.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.
Collapse
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Bofei Wang
- Computational Sciences, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, Texas 79968, United States
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| |
Collapse
|
25
|
Yu H, Bi X, Li Z, Fu X, Li Y, Li Y, Yang Y, Liu D, Li G, Dong W, Hu F. Transcriptomic Analysis of Alternative Splicing Events during Different Fruit Ripening Stages of Coffea arabica L. Genes (Basel) 2024; 15:459. [PMID: 38674393 PMCID: PMC11050144 DOI: 10.3390/genes15040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
To date, genomic and transcriptomic data on Coffea arabica L. in public databases are very limited, and there has been no comprehensive integrated investigation conducted on alternative splicing (AS). Previously, we have constructed and sequenced eighteen RNA-seq libraries of C. arabica at different ripening stages of fruit development. From this dataset, a total of 3824, 2445, 2564, 2990, and 3162 DSGs were identified in a comparison of different fruit ripening stages. The largest proportion of DSGs, approximately 65%, were of the skipped exon (SE) type. Biologically, 9 and 29 differentially expressed DSGs in the spliceosome pathway and carbon metabolism pathway, respectively, were identified. These DSGs exhibited significant variations, primarily in S1 vs. S2 and S5 vs. S6, and they involve many aspects of organ development, hormone transduction, and the synthesis of flavor components. Through the examination of research findings regarding the biological functions and biochemical pathways associated with DSGs and DEGs, it was observed that six DSGs significantly enriched in ABC transporters, namely, LOC113712394, LOC113726618, LOC113739972, LOC113725240, LOC113730214, and LOC113707447, were continually down-regulated at the fruit ripening stage. In contrast, a total of four genes, which were LOC113732777, LOC113727880, LOC113690566, and LOC113711936, including those enriched in the cysteine and methionine metabolism, were continually up-regulated. Collectively, our findings may contribute to the exploration of alternative splicing mechanisms for focused investigations of potential genes associated with the ripening of fruits in C. arabica.
Collapse
Affiliation(s)
- Haohao Yu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Xiaofei Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Zhongxian Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yang Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Dexin Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| |
Collapse
|
26
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
27
|
Nizampatnam NR, Sharma K, Gupta P, Pamei I, Sarma S, Sreelakshmi Y, Sharma R. Introgression of a dominant phototropin1 mutant enhances carotenoids and boosts flavour-related volatiles in genome-edited tomato RIN mutants. THE NEW PHYTOLOGIST 2024; 241:2227-2242. [PMID: 38151719 DOI: 10.1111/nph.19510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation is known to completely repress fruit ripening. The heterozygous (RIN/rin) fruits have extended shelf life, ripen normally, but have inferior taste/flavour. To address this, we used genome editing to generate newer alleles of RIN (rinCR ) by targeting the K-domain. Unlike previously reported CRISPR alleles, the rinCR alleles displayed delayed onset of ripening, suggesting that the mutated K-domain represses the onset of ripening. The rinCR fruits had extended shelf life and accumulated carotenoids at an intermediate level between rin and progenitor line. Besides, the metabolites and hormonal levels in rinCR fruits were more akin to rin. To overcome the negative attributes of rin, we crossed the rinCR alleles with Nps1, a dominant-negative phototropin1 mutant, which enhances carotenoid levels in tomato fruits. The resulting Nps1/rinCR hybrids had extended shelf life and 4.4-7.1-fold higher carotenoid levels than the wild-type parent. The metabolome of Nps1/rinCR fruits revealed higher sucrose, malate, and volatiles associated with tomato taste and flavour. Notably, the boosted volatiles in Nps1/rinCR were only observed in fruits bearing the homozygous Nps1 mutation. The Nps1 introgression into tomato provides a promising strategy for developing cultivars with extended shelf life, improved taste, and flavour.
Collapse
Grants
- BT/COE/34/SP15209/2015 Department of Biotechnology, Ministry of Science and Technology, India
- BT/INF/22/SP44787/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR6983/PBD/16/1007/2012 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR/7002/PBD/16/1009/2012 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR11671/PBD/16/828/2008 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Narasimha Rao Nizampatnam
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Biological Sciences, SRM University-AP, Neerukonda, Andhra Pradesh, 522240, India
| | - Injangbuanang Pamei
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
28
|
Xiong Z, Yin H, Wang N, Han G, Gao Y. Chromosome-level genome assembly of navel orange cv. Gannanzao (Citrus sinensis Osbeck cv. Gannanzao). G3 (BETHESDA, MD.) 2024; 14:jkad268. [PMID: 38001056 PMCID: PMC10849316 DOI: 10.1093/g3journal/jkad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Navel orange cv. Gannanzao is a variant of the navel orange cv. Newhall (Citrus sinensis Osbeck cv. Newhall) that exhibits an earlier maturation, making it commercially valuable. However, the mechanisms underlying its early maturation remain obscure. To address this question, we conducted genome sequencing and de novo assembly of navel orange cv. Gannanzao. The assembled genome sequence is 334.57 Mb in length with a GC content of 31.48%. It comprises 318 contigs (N50 = 3.23 Mb) and 187 scaffolds (N50 = 31.86 Mb). The Benchmarking Universal Single-Copy Orthologs test demonstrates 94.6% completeness. The annotation revealed 23,037 gene models, 164.95 Mb of repetitive sequences, and 2,554 noncoding RNAs. A comparative analysis identified 323 fruit ripening-related genes in navel orange cv. Gannanzao genome, while navel orange cv. Newhall genome contained 345 such genes. These genes were organized into 320 orthologous gene families, with 30.3% of them exhibiting differences in gene copy numbers between the 2 genomes. Additionally, we identified 15 fruit ripening-related genes that have undergone adaptive evolution, suggesting their potential role in advancing fruit maturation in navel orange cv. Gannanzao. Whole-genome sequencing and annotation of navel orange cv. Gannanzao provides a valuable resource to unravel the early maturation mechanism of citrus and enriches the genomic resources for citrus research.
Collapse
Affiliation(s)
- Zhiwei Xiong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Hui Yin
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| | - Guanzhu Han
- College of Life Sciences, Nanjing Normal University, Jiangsu 210098, China
| | - Yuxia Gao
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
29
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
30
|
You S, Wu Y, Li W, Liu X, Tang Q, Huang F, Li Y, Wang H, Liu M, Zhang Y. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:165-180. [PMID: 37750661 PMCID: PMC10754011 DOI: 10.1111/pbi.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
The tomato ripening process contains complex changes, including ethylene signalling, cell wall softening and numerous metabolic changes. So far, much is still unknown about how tomato plants precisely coordinate fruit maturation and metabolic regulation. In this paper, the ERF family transcription factor SlERF.G3-Like in tomato was found to be involved in the regulation of ethylene synthesis, cell wall degradation and the flavonoid pathway. We show that the master ripening regulator SlRIN was found to directly bind to the promoter region of SlERF.G3-Like to activate its expression. In addition, we managed to increase the production of resveratrol derivatives from ~1.44 mg/g DW in E8:VvStSy line to ~2.43 mg/g DW by crossing p35S: SlERF.G3-Like with the E8:VvStSy line. Our data provide direct evidence that SlERF.G3-Like, a hierarchical transcriptional factor, can directly manipulate pathways in which tomatoes can coordinate fruit maturation and metabolic changes. We also attest that SlERF.G3-Like can be used as an effective tool for phenylpropanoid metabolic engineering.
Collapse
Affiliation(s)
- Shengjie You
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yu Wu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Wen Li
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiaofeng Liu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Qinlan Tang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Fengkun Huang
- Sanya Nanfan Research Institute of Hainan UniversityHainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical CropsHainan UniversityHaikouChina
| | - Yan Li
- Sanya Nanfan Research Institute of Hainan UniversityHainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical CropsHainan UniversityHaikouChina
| | - Hsihua Wang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Mingchun Liu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
31
|
Ding Y, Dong Y, Ma M, Luo L, Wang X, Fang B, Li Y, Liu L, Ren F. CO 2 electrocatalytic reduction to ethylene and its application outlook in food science. iScience 2023; 26:108434. [PMID: 38125022 PMCID: PMC10730755 DOI: 10.1016/j.isci.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The efficient conversion of CO2 is considered to be an important step toward carbon emissions peak and carbon neutrality. Presently, great efforts have been devoted to the study of efficient nanocatalysts, electrolytic cell, and electrolytes to achieve high reactivity and selectivity in the electrochemical reduction of CO2 to mono- and multi-carbon (C2+) compounds. However, there are very few reviews focusing on highly reactive and selective ethylene production and application in the field of electrochemical carbon dioxide reduction reaction (CO2RR). Ethylene is a class of multi-carbon compounds that are widely applied in industrial, ecological, and agricultural fields. This review focuses especially on the convertibility of CO2 reduction to generate ethylene technology in practical applications and provides a detailed summary of the latest technologies for the efficient production of ethylene by CO2RR and suggests the potential application of CO2RR systems in food science to further expand the application market of CO2RR for ethylene production.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lili Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xifan Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Zhao J, Xu Y, Li H, Zhu X, Yin Y, Zhang X, Qin X, Zhou J, Duan L, Liang X, Huang T, Zhang B, Wan R, Shi Z, Cao Y, An W. ERF5.1 modulates carotenoid accumulation by interacting with CCD4.1 in Lycium. HORTICULTURE RESEARCH 2023; 10:uhad230. [PMID: 38143484 PMCID: PMC10745278 DOI: 10.1093/hr/uhad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Carotenoids are important natural pigments and have medical and health functions for humans. Carotenoid cleavage dioxygenase 4 (CCD4) and ethylene responsive factor (ERF) participate in carotenoid metabolism, but their roles in Lycium have not been discovered. Here, we annotated LbCCDs from the Lycium reference genome and found that LbCCD4.1 expression was significantly correlated with the carotenoid metabolites during Lycium five fruit developmental stages. Over-expression of LbCCD4.1 in NQ's leaves resulted in a series of significantly lower contents of carotenoid metabolites, including β-carotene and β-cryptoxanthin. Moreover, LbERF5.1, a transcription factor belonging to the ERF family that was located in the nucleus, was isolated. Significant reductions in the carotenoids, especially lutein, violaxanthin and their derivatives, were observed in over-expressing ERF5.1 transgenic NQ's leaves. Over-expression or virus-induced gene silencing of LbERF5.1 in NQ's leaves induced a consistent up- or down-expression, respectively, of LbCCD4.1. Furthermore, yeast one-hybrid and dual-luciferase reporter assays showed that ERF5.1 interacted with the promoter of CCD4.1 to increase its expression, and LbERF5.1 could bind to any one of the three predicted binding sites in the promoter of LbCCD4.1. A transcriptome analysis of LbERF5.1 and LbCCD4.1 over-expressed lines showed similar global transcript expression, and geranylgeranyl diphosphate synthase, phytoene synthase, lycopene δ-cyclase cytochrome, cytochrome P450-type monooxygenase 97A, cytochrome P450-type monooxygenase 97C, and zeaxanthin epoxidase in the carotenoid biosynthesis pathway were differentially expressed. In summary, we uncovered a novel molecular mechanism of carotenoid accumulation that involved an interaction between ERF5.1 and CCD4.1, which may be used to enhance carotenoid in Lycium.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yuhui Xu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Haoxia Li
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xinlei Zhu
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | | | - Jun Zhou
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| |
Collapse
|
33
|
Sharma D, Koul A, Bhushan S, Gupta S, Kaul S, Dhar MK. Insights into microRNA-mediated interaction and regulation of metabolites in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1142-1153. [PMID: 37681459 DOI: 10.1111/plb.13572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
microRNAs direct regulation of various metabolic pathways in plants and animals. miRNAs may be useful in developing novel/elite genotypes, with enhanced metabolites and disease resistance. We examined miRNAs in tomato. In tomato, miRNAs in the carotenoid pathway have not been fully elucidated. We examined the potential role of miRNAs in biosynthesis of carotenoids, transcript profiling of miRNAs and their possible targets (genes and transcription factors) at different development stages of tomato using stem-loop PCR and RT-qPCR. We also identified miRNAs targeting key flavonoid genes, such as chalcone isomerase (CHI), and dihydroflavonol-4-reductase (DFR). Distinct expression profiles of miRNAs and their targets were found in fruits of three tomato accessions, suggesting carotenoid regulation by miRNAs at various stages of fruit development. This was also confirmed using HPLC of the carotenoids. The present study may help in understanding possible regulation of carotenoid biosynthesis. The identified miRNAs can be exploited to enhance biosynthesis of different carotenoids in plants.
Collapse
Affiliation(s)
- D Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - A Koul
- Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - S Bhushan
- Department of Botany, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, India
| | - S Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - S Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - M K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
34
|
Duan W, Yang C, Cao X, Wei C, Chen K, Li X, Zhang B. Chilling-induced peach flavor loss is associated with expression and DNA methylation of functional genes. J Adv Res 2023; 53:17-31. [PMID: 36496174 PMCID: PMC10658238 DOI: 10.1016/j.jare.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Flavor is a major contributor to consumer preference. Despite being effective at extending the fruit's commercial life, cold storage also results in a significant loss of flavor volatiles. To date, there has been few studies on the metabolic dynamics and the mechanism underlying the regulatory networks that modulate flavor loss during cold storage for fruit. METHODS The volatile contents were detected by Gas Chromatography-Mass Spectrometer (GC-MS). Weighted gene co-expression network analysis (WGCNA) was used to identify structure genes and transcription factors (TFs). DNA methylation was analyzed by whole-genome methylation sequencing during cold storage. RESULTS We generated a temporal map, over hourly to weekly timescales, for the effects of chilling on flavor volatiles by combining metabolome, transcriptome, and DNA methylome in peach fruit. Based on the big data analysis, we developed a regulatory network for volatile formation and found that a decrease in volatiles during cold storage was significantly correlated with a decrease in the expression of synthesis genes. Moreover, TFs associated with these structure genes were identified. Expression of genes involved in ethylene biosynthesis was reduced while cold tolerance pathway was activated in response to low temperature. Functions of those genes were confirmed through transgenic experiments and across peach cultivars, suggesting our dataset is a useful tool for elucidating regulatory factors that have not yet been clarified in relation to flavor and cold tolerance. Genome wide DNA methylation was induced by chilling and peaked at 7 d followed by a decline during 28 d cold storage. Reduction of gene expression was accompanied by major changes in the methylation status of their promoters, including PpACS1, PpAAT1, PpTPS3 and PpMADS2. CONCLUSION Our study revealed the mechanism for chilling-induced flavor loss of peach fruit through time-course transcriptome and DNA methylome analysis.
Collapse
Affiliation(s)
- Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Can Yang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Shandong (Linyi) Institute of Morden Agriculture, Zhejiang University, Linyin 276000, China.
| |
Collapse
|
35
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Ming Y, Jiang L, Ji D. Epigenetic regulation in tomato fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1269090. [PMID: 37780524 PMCID: PMC10539587 DOI: 10.3389/fpls.2023.1269090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Fruit ripening is a crucial stage in quality development, influenced by a diverse array of internal and external factors. Among these factors, epigenetic regulation holds significant importance and has garnered substantial research attention in recent years. Here, this review aims to discuss the breakthrough in epigenetic regulation of tomato (Solanum lycopersicum) fruit ripening, including DNA methylation, N6-Methyladenosine mRNA modification, histone demethylation/deacetylation, and non-coding RNA. Through this brief review, we seek to enhance our understanding of the regulatory mechanisms governing tomato fruit ripening, while providing fresh insights for the precise modulation of these mechanisms.
Collapse
Affiliation(s)
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
37
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
38
|
Di Giacomo M, Vega TA, Cambiaso V, Picardi LA, Rodríguez GR, Pereira da Costa JH. An Integrative Transcriptomics and Proteomics Approach to Identify Putative Genes Underlying Fruit Ripening in Tomato near Isogenic Lines with Long Shelf Life. PLANTS (BASEL, SWITZERLAND) 2023; 12:2812. [PMID: 37570966 PMCID: PMC10421356 DOI: 10.3390/plants12152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The elucidation of the ripening pathways of climacteric fruits helps to reduce postharvest losses and improve fruit quality. Here, we report an integrative study on tomato ripening for two near-isogenic lines (NIL115 and NIL080) with Solanum pimpinellifolium LA0722 introgressions. A comprehensive analysis using phenotyping, molecular, transcript, and protein data were performed. Both NILs show improved fruit firmness and NIL115 also has longer shelf life compared to the cultivated parent. NIL115 differentially expressed a transcript from the APETALA2 ethylene response transcription factor family (AP2/ERF) with a potential role in fruit ripening. E4, another ERF, showed an upregulated expression in NIL115 as well as in the wild parent, and it was located physically close to a wild introgression. Other proteins whose expression levels changed significantly during ripening were identified, including an ethylene biosynthetic enzyme (ACO3) and a pectate lyase (PL) in NIL115, and an alpha-1,4 glucan phosphorylase (Pho1a) in NIL080. In this study, we provide insights into the effects of several genes underlying tomato ripening with potential impact on fruit shelf life. Data integration contributed to unraveling ripening-related genes, providing opportunities for assisted breeding.
Collapse
Affiliation(s)
- Melisa Di Giacomo
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Tatiana Alejandra Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Liliana Amelia Picardi
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Javier Hernán Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| |
Collapse
|
39
|
Mitalo OW, Kang SW, Tran LT, Kubo Y, Ariizumi T, Ezura H. Transcriptomic analysis in tomato fruit reveals divergences in genes involved in cold stress response and fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1227349. [PMID: 37575935 PMCID: PMC10416649 DOI: 10.3389/fpls.2023.1227349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Cold storage is widely used to extend the postharvest life of most horticultural crops, including tomatoes, but this practice triggers cold stress and leads to the development of undesirable chilling injury (CI) symptoms. The underlying mechanisms of cold stress response and CI development in fruits remain unclear as they are often intermingled with fruit ripening changes. To gain insight into cold responses in fruits, we examined the effect of the potent ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) on fruit ripening, CI occurrence and gene expression in mature green tomatoes during storage at 20°C and 5°C. 1-MCP treatments effectively inhibited ethylene production and peel color changes during storage at 20°C. Storage at 5°C also inhibited both ethylene production and peel color change; during rewarming at 20°C, 1-MCP treatments inhibited peel color change but failed to inhibit ethylene production. Furthermore, fruits stored at 5°C for 14 d developed CI symptoms (surface pitting and decay) during the rewarming period at 20°C regardless of 1-MCP treatment. Subsequent RNA-Seq analysis revealed that cold stress triggers a large-scale transcriptomic adjustment, as noticeably more genes were differentially expressed at 5°C (8,406) than at 20°C (4,814). More importantly, we have found some important divergences among genes involved in fruit ripening (up- or down-regulated at 20°C; inhibited by 1-MCP treatment) and those involved in cold stress (up- or down-regulated at 5°C; unaffected by 1-MCP treatment). Transcriptomic adjustments unique to cold stress response were associated with ribosome biogenesis, NcRNA metabolism, DNA methylation, chromatin formation/remodeling, and alternative splicing events. These data should foster further research into cold stress response mechanisms in fruits with the ultimate aim of improving tolerance to low temperature and reduction of CI symptoms during cold storage.
Collapse
Affiliation(s)
- Oscar W. Mitalo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seung Won Kang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Long T. Tran
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
41
|
Lin Z, He Z, Ye D, Deng H, Lin L, Wang J, Lv X, Deng Q, Luo X, Liang D, Xia H. Genome-wide identification of the AcMADS-box family and functional validation of AcMADS32 involved in carotenoid biosynthesis in Actinidia. FRONTIERS IN PLANT SCIENCE 2023; 14:1159942. [PMID: 37404538 PMCID: PMC10315656 DOI: 10.3389/fpls.2023.1159942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
MADS-box is a large transcription factor family in plants and plays a crucial role in various plant developmental processes; however, it has not been systematically analyzed in kiwifruit. In the present study, 74 AcMADS genes were identified in the Red5 kiwifruit genome, including 17 type-I and 57 type-II members according to the conserved domains. The AcMADS genes were randomly distributed across 25 chromosomes and were predicted to be mostly located in the nucleus. A total of 33 fragmental duplications were detected in the AcMADS genes, which might be the main force driving the family expansion. Many hormone-associated cis-acting elements were detected in the promoter region. Expression profile analysis showed that AcMADS members had tissue specificity and different responses to dark, low temperature, drought, and salt stress. Two genes in the AG group, AcMADS32 and AcMADS48, had high expression levels during fruit development, and the role of AcMADS32 was further verified by stable overexpression in kiwifruit seedlings. The content of α-carotene and the ratio of zeaxanthin/β-carotene was increased in transgenic kiwifruit seedlings, and the expression level of AcBCH1/2 was significantly increased, suggesting that AcMADS32 plays an important role in regulating carotenoid accumulation. These results have enriched our understanding of the MADS-box gene family and laid a foundation for further research of the functions of its members during kiwifruit development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hui Xia
- *Correspondence: Dong Liang, ; Hui Xia,
| |
Collapse
|
42
|
Wang X, Huang Q, Shen Z, Baron GC, Li X, Lu X, Li Y, Chen W, Xu L, Lv J, Li W, Zong Y, Guo W. Genome-Wide Identification and Analysis of the MADS-Box Transcription Factor Genes in Blueberry ( Vaccinium spp.) and Their Expression Pattern during Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:1424. [PMID: 37050050 PMCID: PMC10096547 DOI: 10.3390/plants12071424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MADS-box is a class of transcriptional regulators that are ubiquitous in plants and plays important roles in the process of plant growth and development. Identification and analysis of blueberry MADS-box genes can lay a foundation for their function investigations. In the present study, 249 putative MADS-box genes were identified in the blueberry genome. Those MADS-box genes were distributed on 47 out of 48 chromosomes. The phylogenetic and evolutionary analyses showed that blueberry MADS-box genes were divided into 131 type I members and 118 type II members. The type I genes contained an average of 1.89 exons and the type II genes contained an average of 7.83 exons. Motif analysis identified 15 conserved motifs, of which 4 were related to the MADS domain and 3 were related to the K-box domain. A variety of cis-acting elements were found in the promoter region of the blueberry MADS-box gene, indicating that the MADS-box gene responded to various hormones and environmental alterations. A total of 243 collinear gene pairs were identified, most of which had a Ka/Ks value of less than 1. Nine genes belonging to SEP, AP3/PI, and AGL6 subfamilies were screened based on transcriptomic data. The expression patterns of those nine genes were also verified using quantitative PCR, suggesting that VcMADS6, VcMADS35, VcMADS44, VcMADS58, VcMADS125, VcMADS188, and VcMADS212 had potential functions in blueberry fruit ripening. The results of this study provide references for an in-depth understanding of the biological function of the blueberry MADS-box genes and the mechanism of blueberry fruit ripening.
Collapse
Affiliation(s)
- Xuxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qiaoyu Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhuli Shen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | | | - Xiaoyi Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoying Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Lishan Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Jinchao Lv
- Zhejiang Jinguo Environmental Protection Technology Company Limited, Jinhua 321000, China
| | - Wenjian Li
- Zhejiang Jinguo Environmental Protection Technology Company Limited, Jinhua 321000, China
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| |
Collapse
|
43
|
Zhao Y, Wang Y, Yan M, Liu C, Yuan Z. BELL1 interacts with CRABS CLAW and INNER NO OUTER to regulate ovule and seed development in pomegranate. PLANT PHYSIOLOGY 2023; 191:1066-1083. [PMID: 36477345 PMCID: PMC9922403 DOI: 10.1093/plphys/kiac554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Pomegranate (Punica granatum) flowers are classified as bisexual flowers and functional male flowers. Functional male flowers have sterile pistils that show abnormal ovule development. In previous studies, we identified INNER NO OUTER (INO), CRABS CLAW (CRC), and BELL1 (BEL1), which were specifically expressed in bisexual and functional male flowers. However, the functions of ovule identity genes and the mechanism underlying ovule sterility in pomegranate remain unknown. Here, we found that the integument primordia formed and then ceased developing in the ovules of functional male flowers with a vertical diameter of 8.1-13.0 mm. Megaspore mother cells were observed in bisexual flowers when the vertical diameters of flowers were 10.1-13.0 mm, but not in functional male flowers. We analyzed the expression patterns of ovule-related genes in pomegranate ovule sterility and found that PgCRC mRNA was highly expressed at a critical stage of ovule development in bisexual flowers. Ectopic expression of PgCRC and PgINO was sufficient to increase seed number in transgenic lines. PgCRC partially complemented the Arabidopsis (Arabidopsis thaliana) crc mutant, and PgINO successfully rescued the seeds set in the Arabidopsis ino mutant. The results of yeast two-hybrid assays, bimolecular fluorescence complementation assays, and genetic data analyses showed that PgCRC and PgINO directly interact with PgBEL1. Our results also showed that PgCRC and PgINO could not interact directly with MADS-box proteins and that PgBEL1 interacted with SEPALLATA proteins. We report the function of PgCRC and PgINO in ovule and seed development and show that PgCRC and PgINO interact with PgBEL1. Thus, our results provide understanding of the genetic regulatory networks underlying ovule development in pomegranate.
Collapse
Affiliation(s)
- Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cuiyu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
44
|
Zhang A, He H, Li Y, Wang L, Liu Y, Luan X, Wang J, Liu H, Liu S, Zhang J, Yao D. MADS-Box Subfamily Gene GmAP3 from Glycine max Regulates Early Flowering and Flower Development. Int J Mol Sci 2023; 24:ijms24032751. [PMID: 36769078 PMCID: PMC9917172 DOI: 10.3390/ijms24032751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
AP3 has been studied and is reported to affect structural changes in floral organs in various plants. However, the function of the soybean AP3 genes in flower development is unknown. Here, the full-length cDNA sequence of GmAP3 was obtained by RACE and it was verified that it belongs to the MADS-box subfamily by a bioinformatics analysis. The expression of GmAP3 is closely related to the expression of essential enzyme genes related to flower development. Yeast two-hybrid assays demonstrated that GmAP3 interacts with AP1 to determine the identity of flower organ development. A follow-up analysis showed that overexpression of the GmAP3 gene advanced flowering time and resulted in changes in floral organ morphology. The average flowering time of overexpressed soybean and tobacco plants was 6-8 days earlier than that of wild-type plants, and the average flowering time of gene-edited soybean and tobacco plants was 6-11 days later than that of wild-type plants. In conclusion, GmAP3 may directly or indirectly affect the flower development of soybean. The results of this study lay the foundation for further research on the biological functions of MADS transcriptional factors in soybeans.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Haobo He
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.Z.); (D.Y.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.Z.); (D.Y.)
| |
Collapse
|
45
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
46
|
Zheng M, Deng Y, Zhou Y, Liu R, Liu Y, Wang H, Zhu W, Zhou Z, Diao J. Multifaceted effects of difenoconazole in tomato fruit ripening: Physiology, flavour and nutritional quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:223-235. [PMID: 36434985 DOI: 10.1016/j.plaphy.2022.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Difenoconazole is widely used in crop growth, however, its effects on the quality of agricultural products are poorly studied. In this study, the application of difenoconazole on tomato plants could increase soluble sugar content, reduce organic acid and raise accumulation of nutrient-related metabolites during late fruit ripening. Consumer surveys in our study showed that the treatment of difenoconazole tomatoes group had higher sweetness and lower acidity, and those tomatoes were preferred by consumers. Alterations in fruit flavor-related attributes were at least in part corroborated by the abundance of transcripts related to sucrose (SlLin5, SlLin7, SlSuS2, SlSuS6, SlSPS1, SlSPS3) and organic acids (CS, ICDH, cMDH) anabolism. Furthermore, the difenoconazole also significantly promoted the expression of phytohormones synthesis genes, and consequently increased abscisic acid and ethylene levels. Our study not only provides theoretical support for the use of difenoconazole on tomatoes at the level of flavor quality and nutritional health, but also provides valuable information on the mechanism of triazole fungicides in the flavor quality of tomato fruits.
Collapse
Affiliation(s)
- Meiling Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yihui Zhou
- Center of Disease Control and Prevention, Shijingshan District, Beijing, 100043, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Hongmei Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
47
|
Ren S, Yuan Y, Wang H, Zhang Y. G2-LIKE CAROTENOID REGULATOR (SlGCR) is a positive regulator of lutein biosynthesis in tomato. ABIOTECH 2022; 3:267-280. [PMID: 36533268 PMCID: PMC9755792 DOI: 10.1007/s42994-022-00088-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Lutein is an oxygen-containing carotenoid synthesized in plant chloroplasts and chromoplasts. It plays an indispensable role in promoting plant growth and maintaining eye health in humans. The rate-limiting step of lutein biosynthesis is catalyzed by the lycopene ε-cyclase enzyme (LCYE). Although great progress has been made in the identification of transcription factors involved in the lutein biosynthetic pathway, many systematic molecular mechanisms remain to be elucidated. Here, using co-expression analysis, we identified a gene, G2-LIKE CAROTENOID REGULATOR (SlGCR), encoding a GARP G2-like transcription factor, as the potential regulator of SlLCYE in tomato. Silencing of SlGCR reduced the expression of carotenoid biosynthetic genes and the accumulation of carotenoids in tomato leaves. By contrast, overexpression of SlGCR in tomato fruit significantly increased the expression of relevant genes and enhanced the accumulation of carotenoids. SlGCR can directly bind to the SlLCYE promoter and activate its expression. In addition, we also discovered that expression of SlGCR was negatively regulated by the master regulator SlRIN, thereby inhibiting lutein synthesis during tomato fruit ripening. Taken together, we identified SlGCR as a novel regulator involved in tomato lutein biosynthesis, elucidated the regulatory mechanism, and provided a potential tool for tomato lutein metabolic engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00088-z.
Collapse
Affiliation(s)
- Siyan Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025 China.,Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Hsihua Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
48
|
Sang K, Li J, Qian X, Yu J, Zhou Y, Xia X. The APETALA2a/DWARF/BRASSINAZOLE-RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1238-1251. [PMID: 36271694 DOI: 10.1111/tpj.16009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Ethylene (ET) signaling plays a critical role in the ripening of climacteric fruits such as tomato. Brassinosteroids (BRs) were found to promote the ripening of both climacteric and non-climacteric fruits. However, the mechanism of interaction between ET and BRs during fruit ripening is unclear. Here, we found that BR synthesis and signaling increased after the onset of fruit ripening. Overexpression of the BR synthesis gene DWARF (DWF) promotedfruit softening, lycopene synthesis and ET production, whereas defect of DWF inhibited them. BRASSINAZOLE RESISTANT 1 (BZR1) as a key component of BR signaling, enhanced fruit lycopene content by directly activating the transcription of PSY1 gene. Interestingly, the increases in BR synthesis and BZR1 protein levels were dependent on ET signaling. Knocking out the ET-induced APETALA2a (AP2a) suppressed the expression of DWF and BR accumulation. Molecular assays demonstrated that AP2a was a positive regulator of DWF expression. Furthermore, 28-homobrassinolide, a bioactive BR, partially compensated the defects of lycopene accumulation and expression of PSY1 in ap2a mutant fruits. The results demonstrated that AP2a mediated ET signaling to regulate BR synthesis and signaling. BRs played critical roles in lycopene synthesis after onset of fruit ripening.
Collapse
Affiliation(s)
- Kangqi Sang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Junjie Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiangjie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| |
Collapse
|
49
|
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, Sharma AK. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. PLANT PHYSIOLOGY 2022; 190:2775-2796. [PMID: 36130295 PMCID: PMC9706452 DOI: 10.1093/plphys/kiac441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the obligatory role of ethylene in climacteric fruit ripening and the identification of 77 ethylene response factors (ERFs) in the tomato (Solanum lycopersicum) genome, the role of few ERFs has been validated in the ripening process. Here, using a comprehensive morpho-physiological, molecular, and biochemical approach, we demonstrate the regulatory role of ERF D7 (SlERF.D7) in tomato fruit ripening. SlERF.D7 expression positively responded to exogenous ethylene and auxin treatments, most likely in a ripening inhibitor-independent manner. SlERF.D7 overexpression (OE) promoted ripening, and its silencing had the opposite effect. Alterations in its expression modulated ethylene production, pigment accumulation, and fruit firmness. Consistently, genes involved in ethylene biosynthesis and signaling, lycopene biosynthesis, and cell wall loosening were upregulated in the OE lines and downregulated in RNAi lines. These transgenic lines also accumulated altered levels of indole-3-acetic acid at late-breaker stages. A positive association between auxin response factor 2 (ARF2) paralog's transcripts and SlERF.D7 mRNA levels and that SlARF2A and SlARF2B are direct targets of SlERF.D7 underpinned the perturbed auxin-ethylene crosstalk for the altered ripening program observed in the transgenic fruits. Overall, this study uncovers that SlERF.D7 positively regulates SlARF2A/B abundance to amalgamate auxin and ethylene signaling pathways for controlling tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
50
|
Qi X, Dong Y, Liu C, Song L, Chen L, Li M. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). PHYSIOLOGIA PLANTARUM 2022; 174:e13834. [PMID: 36437693 DOI: 10.1111/ppl.13834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The rapid softening of sweet cherry fruits during ripening results in the deterioration of fruit quality. However, few genes related to sweet cherry fruit ripening and softening have been identified, and the molecular regulatory mechanisms underlying this process are poorly understood. Here, we identified and functionally characterized PavNAC56, a NAC transcription factor that positively regulates sweet cherry fruit ripening and softening. Gene expression analyses showed that PavNAC56 was specifically and abundantly expressed in the fruit, and its transcript levels increased in response to abscisic acid (ABA). A subcellular localization analysis revealed that PavNAC56 is a nucleus-localized protein. Virus-induced gene silencing of PavNAC56 inhibited fruit ripening, enhanced fruit firmness, decreased the contents of ABA, anthocyanins, and soluble solids, and down-regulated several fruit ripening-related genes. Yeast one-hybrid and dual-luciferase assays showed that PavNAC56 directly binds to the promoters of several genes related to cell wall metabolism (PavPG2, PavEXPA4, PavPL18, and PavCEL8) and activates their expression. Overall, our findings show that PavNAC56 plays an indispensable role in controlling the ripening and softening of sweet cherry fruit and provides new insights into the regulatory mechanisms by which NAC transcription factors affect nonclimacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|