1
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Wang N, Zhang D, Wang F, Xu S, Ding X, Xie Y, Tian J, Li B, Cui Z, Jiang T. Composition and temporal dynamics of the phytoplankton community in Laizhou Bay revealed by microscopic observation and rbcL gene sequencing. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106734. [PMID: 39244953 DOI: 10.1016/j.marenvres.2024.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Laizhou Bay, a major breeding ground for economic marine organisms in the northern waters of China, is facing rapid environmental degradation. In this study, field surveys in this area were conducted in the spring, summer, and autumn of 2020. Microscopic observation and RuBisCO large subunit (rbcL) gene analysis were employed to understand the community structure and temporal dynamics of phytoplankton. The phytoplankton community structures detected by the two methods showed significant differences. Microscopic observation revealed the dominance of dinoflagellates in spring that shifted to the dominance of diatoms in summer and autumn. However, rbcL gene sequencing consistently identified diatoms as dominant throughout all three seasons, with their relative abundance showing an increasing trend. Conversely, the relative abundance of the second- and third-most abundant taxa, namely, haptophytes and ochrophytes, decreased as the seasons transitioned. rbcL gene sequencing annotated more species than microscopy. It could detect haptophytes and cryptophytes, which were overlooked by microscopy. In addition, rbcL gene sequencing detected a remarkable amount of Thalassiosira profunda, which was previously unidentified in this sea area. However, it appeared to underestimate the contribution of dinoflagellates considerably, with most taxa being only identified through microscopic identification. The two methods jointly identified 28 harmful algal bloom taxa with similar detection quantities but substantial differences in species composition. Phytoplankton communities were influenced by temperature, salinity, and nutrients. The results of this work suggest that a combination of multiple techniques is necessary for a comprehensive understanding of phytoplankton.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Nan Wang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Shiji Xu
- Yantai Ocean Center, Ministry of Natural Resources, Yantai, 264006, China
| | - Xiaokun Ding
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Yixuan Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jinghuan Tian
- School of Oceanography, Yantai University, Yantai, 264005, China
| | - Bin Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Tao Jiang
- School of Oceanography, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Tang L, Tam NFY, Lam W, Lee TCH, Xu SJL, Lee CL, Lee FWF. Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances. PLANT MOLECULAR BIOLOGY 2024; 114:114. [PMID: 39432142 DOI: 10.1007/s11103-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple "minicircles", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.
Collapse
Affiliation(s)
- Lu Tang
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Chak-Lam Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
5
|
Howe CJ, Barbrook AC. Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention. Protist 2024; 175:126048. [PMID: 38981407 DOI: 10.1016/j.protis.2024.126048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK; Stellenbosch Institute for Advanced Study, (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
6
|
Novák Vanclová AM, Nef C, Füssy Z, Vancl A, Liu F, Bowler C, Dorrell RG. New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates. EMBO Rep 2024; 25:1859-1885. [PMID: 38499810 PMCID: PMC11014865 DOI: 10.1038/s44319-024-00103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.
Collapse
Affiliation(s)
- Anna Mg Novák Vanclová
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- Institute Jacques Monod, Paris, France.
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Zoltán Füssy
- Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Adél Vancl
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Fuhai Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Centre de Recherches Interdisciplinaires, Paris, France
- Tsinghua-UC Berkeley Shenzhen Institute, Shenzhen, China
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Richard G Dorrell
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Sorbonne Université, Paris, France.
| |
Collapse
|
7
|
Bowazolo C, Morse D. Insights into daily metabolic changes of the dinoflagellate Lingulodinium from ribosome profiling. Cell Cycle 2023; 22:1343-1352. [PMID: 37125841 PMCID: PMC10228409 DOI: 10.1080/15384101.2023.2206771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/02/2023] Open
Abstract
The dinoflagellate Lingulodinium specializes its metabolism to perform different tasks better at specific times of day. For example, cells are specialized for photosynthesis during the day and bioluminescence and cell division at night. These rhythms are circadian as they are controlled by an endogenous circadian clock whose mechanism is currently unknown. Despite this, the metabolic rhythms follow coordinated changes in gene expression that occur at a translational level. These changes are revealed by ribosome profiling, a surrogate measure of protein synthesis rates in vivo. Lingulodinium regulates the synthesis rate of over three thousand transcripts. Peak synthesis rates for the different transcripts are clustered around three different times over a light/dark cycle. Furthermore, transcripts involved in the same metabolic process are coordinately regulated. We review the basic principles underlying the correlation of coordinated translation of cell metabolic pathway enzymes with known circadian rhythms, and offer examples where previously unsuspected rhythms are suggested by synchronized changes in gene expression.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Liu Q, Tang X, Zhang B, Li L, Zhao Y, Lv M, Li J, Kan C, Zhao Y. The effects of two sized polystyrene nanoplastics on the growth, physiological functions, and toxin production of Alexandrium tamarense. CHEMOSPHERE 2022; 291:132943. [PMID: 34793842 DOI: 10.1016/j.chemosphere.2021.132943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Micro- and nano-plastics (MNPs) are increasingly prevalent pollutants in marine ecosystems and result in various deleterious effects on marine organisms. There have been studies evaluated the toxic effects of MNPs on marine microalgae, but few of them focused on the effects of MNPs on dinoflagellate species and their toxins production, which could have significant implications on human health and ecological safety in coastal areas. In this study, the common harmful algal blooms-causing dinoflagellate Alexandrium tamarense was exposed to 0.1 and 1 μm sized polystyrene nanoplastics (NPs) to investigate the responding patterns of population growth, multiple physiological functions, as well as the intracellular paralytic shellfish toxins (PSTs) productions. The results indicated the population growth, photosynthetic parameters, nutrients (nitrate and phosphate) uptake rates and extracellular carbonic anhydrase activities (CAext) were all inhibited by the two sized NPs, accompanied by the prolonged and more aggregated microalgal cells under the observation of scanning electron microscope (SEM), and the inhibition effects were more severe under 1 μm sized NPs than 0.1 μm sized NPs. Finally, we found the intracellular PSTs contents increased 73.59% exposed to 0.1 μm sized NPs while decreased 85.50% exposed to 1 μm sized NPs comparing the controls at 96 h, without significant changes of relative compositions. These results provided evidence that MNPs were toxic to A. tamarense and affected their intracellular PSTs productions within 96 h, which is critical to consider when evaluating the potential risks of MNPs in marine ecosystems.
Collapse
Affiliation(s)
- Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Chenxiang Kan
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
10
|
Shoguchi E. Gene clusters for biosynthesis of mycosporine-like amino acids in dinoflagellate nuclear genomes: Possible recent horizontal gene transfer between species of Symbiodiniaceae (Dinophyceae). JOURNAL OF PHYCOLOGY 2022; 58:1-11. [PMID: 34699617 PMCID: PMC9298759 DOI: 10.1111/jpy.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/12/2023]
Abstract
Global warming increases the temperature of the ocean surface, which can disrupt dinoflagellate-coral symbioses and result in coral bleaching. Photosynthetic dinoflagellates of the family Symbiodiniaceae include bleaching-tolerant and bleaching-sensitive coral symbionts. Therefore, understanding the molecular mechanisms for changing symbiont diversity is potentially useful to assist recovery of coral holobionts (corals and their associated microbes, including multiple species of Symbiodiniaceae), although sexual reproduction has not been observed in the Symbiodiniaceae. Recent molecular phylogenetic analyses estimate that the Symbiodiniaceae appeared 160 million years ago and diversified into 15 groups, five genera of which now have available draft genomes (i.e., Symbiodinium, Durusdinium, Breviolum, Fugacium, and Cladocopium). Comparative genomic analyses have suggested that crown groups have fewer gene families than early-diverging groups, although many genes that were probably acquired via gene duplications and horizontal gene transfers (HGTs) have been found in each decoded genome. Because UV stress is likely a contributor to coral bleaching, and because the highly conserved gene cluster for mycosporine-like amino acid (MAA) biosynthesis has been found in thermal-tolerant symbiont genomes, I reviewed genomic features of the Symbiodiniaceae, focusing on possible acquisition of a biosynthetic gene cluster for MAAs, which absorb UV radiation. On the basis of highly conserved noncoding sequences, I hypothesized that HGTs have occurred among members of the Symbiodiniaceae and have contributed to the diversification of Symbiodiniaceae-host relationships. Finally, I proposed that bleaching tolerance may be strengthened by multiple MAAs from both symbiotic dinoflagellates and corals.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawa904‐0495Japan
| |
Collapse
|
11
|
Biochemical Mapping of Pyrodinium bahamense Unveils Molecular Underpinnings behind Organismal Processes. Int J Mol Sci 2021; 22:ijms222413332. [PMID: 34948131 PMCID: PMC8706660 DOI: 10.3390/ijms222413332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Proteins, lipids, and carbohydrates from the harmful algal bloom (HAB)-causing organism Pyrodinium bahamense were characterized to obtain insights into the biochemical processes in this environmentally relevant dinoflagellate. Shotgun proteomics using label-free quantitation followed by proteome mapping using the P. bahamense transcriptome and translated protein databases of Marinovum algicola, Alexandrium sp., Cylindrospermopsis raciborskii, and Symbiodinium kawagutii for annotation enabled the characterization of the proteins in P. bahamense. The highest number of annotated hits were obtained from M. algicola and highlighted the contribution of microorganisms associated with P. bahamense. Proteins involved in dimethylsulfoniopropionate (DMSP) degradation such as propionyl CoA synthethase and acryloyl-CoA reductase were identified, suggesting the DMSP cleavage pathway as the preferred route in this dinoflagellate. Most of the annotated proteins were involved in amino acid biosynthesis and carbohydrate degradation and metabolism, indicating the active roles of these molecules in the vegetative stage of P. bahamense. This characterization provides baseline information on the cellular machinery and the molecular basis of the ecophysiology of P. bahamense.
Collapse
|
12
|
Insights into the Structure of Rubisco from Dinoflagellates-In Silico Studies. Int J Mol Sci 2021; 22:ijms22168524. [PMID: 34445230 PMCID: PMC8395205 DOI: 10.3390/ijms22168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is one of the best studied enzymes. It is crucial for photosynthesis, and thus for all of biosphere’s productivity. There are four isoforms of this enzyme, differing by amino acid sequence composition and quaternary structure. However, there is still a group of organisms, dinoflagellates, single-cell eukaryotes, that are confirmed to possess Rubisco, but no successful purification of the enzyme of such origin, and hence a generation of a crystal structure was reported to date. Here, we are using in silico tools to generate the possible structure of Rubisco from a dinoflagellate representative, Symbiodinium sp. We selected two templates: Rubisco from Rhodospirillum rubrum and Rhodopseudomonas palustris. Both enzymes are the so-called form II Rubiscos, but the first is exclusively a homodimer, while the second one forms homo-hexamers. Obtained models show no differences in amino acids crucial for Rubisco activity. The variation was found at two closely located inserts in the C-terminal domain, of which one extends a helix and the other forms a loop. These inserts most probably do not play a direct role in the enzyme’s activity, but may be responsible for interaction with an unknown protein partner, possibly a regulator or a chaperone. Analysis of the possible oligomerization interface indicated that Symbiodinium sp. Rubisco most likely forms a trimer of homodimers, not just a homodimer. This hypothesis was empowered by calculation of binding energies. Additionally, we found that the protein of study is significantly richer in cysteine residues, which may be the cause for its activity loss shortly after cell lysis. Furthermore, we evaluated the influence of the loop insert, identified exclusively in the Symbiodinium sp. protein, on the functionality of the recombinantly expressed R. rubrum Rubisco. All these findings shed new light onto dinoflagellate Rubisco and may help in future obtainment of a native, active enzyme.
Collapse
|
13
|
Brandenburg KM, Krock B, Klip HCL, Sluijs A, Garbeva P, Van de Waal DB. Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO 2. HARMFUL ALGAE 2021; 101:101970. [PMID: 33526186 DOI: 10.1016/j.hal.2020.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO2, and measured traits including growth rate, cell volume, elemental composition, 13C fractionation, toxin content, and volatile organic compounds (VOCs). Strains largely increased their growth rates and particulate organic carbon and nitrogen production with higher pCO2 and showed significant changes in their VOC profile. One strain showed a significant decrease in both PSP and cyclic imine content and thereby in cellular toxicity. Fractionation against 13C increased in response to elevated pCO2, which may point towards enhanced CO2 acquisition and/or a downscaling of the carbon concentrating mechanisms. Besides consistent responses in some traits, other traits showed large variation in both direction and strength of responses towards elevated pCO2. The observed intraspecific variation in phenotypic plasticity of important functional traits within the same population may help A. ostenfeldii to negate the effects of immediate environmental fluctuations and allow populations to adapt more quickly to changing environments.
Collapse
Affiliation(s)
- Karen M Brandenburg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands.
| | - Bernd Krock
- Section Ecological Chemistry, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Helena C L Klip
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands; Section Shelf Sea System Ecology, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Biologische Anstalt Helgoland (BAH), Kurpromenade 201, 27498 Helgoland, Germany
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB Wageningen, Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| |
Collapse
|
14
|
Subong BJJ, Lluisma AO, Azanza RV, Salvador-Reyes LA. Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics. Toxins (Basel) 2020; 13:toxins13010007. [PMID: 33374829 PMCID: PMC7823455 DOI: 10.3390/toxins13010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10-12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis. The complementary proteomics approach provided insights into the biochemistry of these two closely related HAB-causing organisms. The identified proteins are potential biomarkers for organismal toxicity and could be explored for environmental monitoring.
Collapse
Affiliation(s)
- Bryan John J Subong
- Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan
| | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines
| | - Rhodora V Azanza
- Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines
| | - Lilibeth A Salvador-Reyes
- Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines
| |
Collapse
|
15
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
16
|
|
17
|
Koch JC, Verde EA, Weis VM. Carbonic anhydrases are influenced by the size and symbiont identity of the aggregating sea anemone Anthopleura elegantissima. J Exp Biol 2020; 223:jeb221424. [PMID: 32487669 DOI: 10.1242/jeb.221424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
Abstract
Carbonic anhydrases (CA; EC 4.2.1.1) play a vital role in dissolved inorganic carbon (DIC) transport to photosynthetic microalgae residing in symbiotic cnidarians. The temperate sea anemone Anthopleura elegantissima can occur in three symbiotic states: hosting Breviolum muscatinei (brown), hosting Elliptochloris marina (green) or without algal symbionts (aposymbiotic). This provides a basis for A. elegantissima to be a model for detailed studies of the role of CA in DIC transport. This study investigated the effects of symbiosis, body size and light on CA activity and expression, and suggests that A. elegantissima has a heterotrophy-dominated trophic strategy. We identified putative A. elegantissima CA genes and performed phylogenetic analyses to infer subcellular localization in anemones. We performed experiments on field-collected anemones to compare: (1) CA activity and expression from anemones in different symbiotic states, (2) CA activity in brown anemones as a function of size, and (3) CA activity in anemones of different symbiotic states that were exposed to different light intensities. CA activity in brown anemones was highest, whereas activity in green and aposymbiotic anemones was low. Several CAs had expression patterns that mirrored activity, while another had expression that was inversely correlated with activity, suggesting that symbionts may induce different DIC transport pathways. Finally, CA activity was inversely correlated with anemone size. Our results suggest that the observed CA activity and expression patterns are affected not only by symbiosis, but also by other factors in the host physiology, including trophic strategy as it relates to body size and cellular pH homeostasis.
Collapse
Affiliation(s)
- Jack Cushman Koch
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - E Alan Verde
- Corning School of Ocean Studies, Maine Maritime Academy, Castine, ME 04420, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Bowazolo C, Tse SPK, Beauchemin M, Lo SCL, Rivoal J, Morse D. Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135430. [PMID: 31818571 DOI: 10.1016/j.scitotenv.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Protein levels were assessed in the dinoflagellate Lingulodinium polyedra over the course of a diurnal cycle using a label-free LC-MS/MS approach. Roughly 1700 proteins were quantitated in a triplicate dataset over a daily period, and 13 were found to show significant rhythmic changes. Included among the proteins found to be most abundant at night were the two bioluminescence proteins, luciferase and luciferin binding protein, as well as a proliferating cell nuclear protein involved in the nightly DNA replication. Aconitase and a pyrophosphate fructose-6-phosphate-1-phosphotransferase were also found to be more abundant at night, suggestive of an increased ability to generate ATP by glucose catabolism when photosynthesis does not occur. Among the proteins more abundant during the day were found a 2-epi-5-epi-valiolone synthase, potentially involved in synthesis of mycosporin-like amino acids that can act as a "microbial sunscreen", and an enzyme synthesizing vitamin B6 which is known to protect against oxidative stress. A lactate oxidoreductase was also found to be more abundant during the day, perhaps to counteract the pH changes due to carbon fixation by facilitating conversion of pyruvate to lactate. This unbiased proteomic approach reveals novel insights into the daily metabolic changes of this dinoflagellate. Furthermore, the observation that only a limited number of proteins vary support a model where metabolic flux through pathways can be controlled by variations in a select few, possibly rate limiting, steps. Data are available via ProteomeXchange with identifier PXD006994.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mathieu Beauchemin
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Samuel C-L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean Rivoal
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
19
|
Iñiguez C, Capó-Bauçà S, Niinemets Ü, Stoll H, Aguiló-Nicolau P, Galmés J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO 2 concentrating mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:897-918. [PMID: 31820505 DOI: 10.1111/tpj.14643] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Heather Stoll
- Department of Earth Sciences, ETH Zürich, Sonnegstrasse 5, 8092, Zürich, Switzerland
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
20
|
Seto DS, Karp-Boss L, Wells ML. Effects of increasing temperature and acidification on the growth and competitive success of Alexandrium catenella from the Gulf of Maine. HARMFUL ALGAE 2019; 89:101670. [PMID: 31672235 DOI: 10.1016/j.hal.2019.101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Climate driven increases in ocean temperature and pCO2 have the potential to alter the growth and prevalence of future Harmful Algal Blooms (HABs), but systematic studies on how climate drivers influence toxic algal species relative to non-toxic phytoplankton are lacking. In particular, little is known about how future climate scenarios will affect the growth of the toxic dinoflagellate Alexandrium catenella, which is responsible for the paralytic shellfish poisoning (PSP) events that threaten the health and economy of coastal communities in the Gulf of Maine and elsewhere. The growth responses of A. catenella and two other naturally co-occurring dinoflagellates in the Gulf of Maine-Scrippsiella sp., and Amphidinium carterae-were studied in mono and mixed species cultures. Experimental treatments tested the effects of elevated temperature (20 °C), lower pH (7.8), and the combination of elevated temperature and lower pH on growth rates relative to those in near-current conditions (15 °C; pH 8.1). Growth rates of A. catenella decreased under elevated temperature and lower pH conditions, a response that was largely attributable to the effect of temperature. In contrast, growth rates of Scrippsiella sp. and A. carterae increased under elevated temperature and lower pH conditions, with temperature also being the primary driver of the response. These trends did not change substantially when these species were grown in mixed cultures (A. catenella + Scrippsiella sp., and A. catenella + A. carterae), indicating that allelopathic or competitive interactions did not affect the experimental outcome under the conditions tested. These findings suggest that A. catenella blooms may become less prevalent in the southern regions of the Gulf of Maine, but potentially more prevalent in the northeastern regions of the Gulf of Maine with continued climate change.
Collapse
Affiliation(s)
- Drajad S Seto
- School of Marine Science, University of Maine, Orono, ME, 04469, USA.
| | - Lee Karp-Boss
- School of Marine Science, University of Maine, Orono, ME, 04469, USA.
| | - Mark L Wells
- School of Marine Science, University of Maine, Orono, ME, 04469, USA; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, China.
| |
Collapse
|
21
|
Rickaby REM, Eason Hubbard MR. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic Biol Med 2019; 140:295-304. [PMID: 31075497 PMCID: PMC6856715 DOI: 10.1016/j.freeradbiomed.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Evidence is compiled to demonstrate a redox scale within Earth's photosynthesisers that correlates the specificity of their RuBisCO with organismal metabolic tolerance to anoxia, and ecological selection by dissolved O2/CO2 and nutrients. The Form 1B RuBisCO found in the chlorophyte green algae, has a poor selectivity between the two dissolved substrates, O2 and CO2, at the active site. This enzyme appears adapted to lower O2/CO2 ratios, or more "anoxic" conditions and therefore requires additional energetic or nutrient investment in a carbon concentrating mechanism (CCM) to boost the intracellular CO2/O2 ratio and maintain competitive carboxylation rates under increasingly high O2/CO2 conditions in the environment. By contrast the coccolithophores and diatoms evolved containing the more selective Rhodophyte Form 1D RuBisCO, better adapted to a higher O2/CO2 ratio, or more oxic conditions. This Form 1D RuBisCO requires lesser energetic or nutrient investment in a CCM to attain high carboxylation rates under environmentally high O2/CO2 ratios. Such a physiological relationship may underpin the succession of phytoplankton in the Phanerozoic oceans: the coccolithophores and diatoms took over the oceanic realm from the incumbent cyanobacteria and green algae when the upper ocean became persistently oxygenated, alkaline and more oligotrophic. The facultatively anaerobic green algae, able to tolerate the anoxic conditions of the water column and a periodically inundated soil, were better poised to adapt to the fluctuating anoxia associated with periods of submergence and emergence and transition onto the land. The induction of a CCM may exert a natural limit to the improvement of RuBisCO efficiency over Earth history. Rubisco specificity appears to adapt on the timescale of ∼100 Myrs. So persistent elevation of CO2/O2 ratios in the intracellular environment around the enzyme, may induce a relaxation in RuBisCO selectivity for CO2 relative to O2. The most efficient RuBisCO for net carboxylation is likely to be found in CCM-lacking algae that have been exposed to hyperoxic conditions for at least 100 Myrs, such as intertidal brown seaweeds.
Collapse
Affiliation(s)
- Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
| | - M R Eason Hubbard
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
22
|
Pujari L, Wu C, Kan J, Li N, Wang X, Zhang G, Shang X, Wang M, Zhou C, Sun J. Diversity and Spatial Distribution of Chromophytic Phytoplankton in the Bay of Bengal Revealed by RuBisCO Genes ( rbcL). Front Microbiol 2019; 10:1501. [PMID: 31333613 PMCID: PMC6624743 DOI: 10.3389/fmicb.2019.01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Phytoplankton are the basis of primary production and play important roles in regulating energy export in marine ecosystems. Compared to other regions, chromophytic phytoplankton are considerably understudied in the Bay of Bengal (BOB). Here, we investigated community structure and spatial distribution of chromophytic phytoplankton in the BOB by using RuBisCO genes (Form ID rbcL). High throughput sequencing of rbcL genes revealed that diatoms, cyanobacteria (Cyanophyceae), Pelagophyceae, Haptophyceae, Chrysophyceae, Eustigamatophyceae, Xanthophyceae, Cryptophyceae, Dictyochophyceae, and Pinguiophyceae were the most abundant groups recovered in the BOB. Abundances and distribution of diatoms and Pelagophyceae were further verified using quantitative PCR analyses which showed the dominance of these groups near the Equator region (p < 0.01) where upwelling was likely the source of nutrients. Further, redundancy analysis demonstrated that temperature was an important environmental driver in structuring distributions of Cyanophyceae and dominant chromophytic phytoplankton. Morphological identification and quantification confirmed the dominance of diatoms, and also detected other cyanobacteria and dinoflagellates that were missing in our molecular characterizations. Pearson’s correlations of these morphologically identified phytoplankton with environmental gradients also indicated that nutrients and temperature were key variables shaping community structure. Combination of molecular characterization and morphological identification provided a comprehensive overview of chromophytic phytoplankton. This is the first molecular study of chromophytic phytoplankton accomplished in the BOB, and our results highlight a combination of molecular analysis targeting rbcL genes and microscopic detection in examining phytoplankton composition and diversity.
Collapse
Affiliation(s)
- Laxman Pujari
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Chao Wu
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, United States
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Xingzhou Wang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomei Shang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Chun Zhou
- Key Laboratory of Physical Oceanography/CIMST, Ocean University of China, Qingdao, China
| | - Jun Sun
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Riaz S, Sui Z, Niaz Z, Khan S, Liu Y, Liu H. Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. Microorganisms 2018; 6:E128. [PMID: 30558155 PMCID: PMC6313786 DOI: 10.3390/microorganisms6040128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates "dinokaryon" have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Haoxin Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
24
|
Function of three RuBisCO enzymes under different CO2 conditions in Hydrogenovibrio marinus. J Biosci Bioeng 2018; 126:730-735. [DOI: 10.1016/j.jbiosc.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
|
25
|
Morse D, Tse SPK, Lo SCL. Exploring dinoflagellate biology with high-throughput proteomics. HARMFUL ALGAE 2018; 75:16-26. [PMID: 29778222 DOI: 10.1016/j.hal.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates are notorious for their ability to form the harmful algal blooms known as "red tides," yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada.
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
26
|
Hennon GMM, Hernández Limón MD, Haley ST, Juhl AR, Dyhrman ST. Diverse CO 2-Induced Responses in Physiology and Gene Expression among Eukaryotic Phytoplankton. Front Microbiol 2017; 8:2547. [PMID: 29312232 PMCID: PMC5742204 DOI: 10.3389/fmicb.2017.02547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/08/2017] [Indexed: 01/15/2023] Open
Abstract
With rising atmospheric CO2, phytoplankton face shifts in ocean chemistry including increased dissolved CO2 and acidification that will likely influence the relative competitive fitness of different phytoplankton taxa. Here we compared the physiological and gene expression responses of six species of phytoplankton including a diatom, a raphidophyte, two haptophytes, and two dinoflagellates to ambient (~400 ppm) and elevated (~800 ppm) CO2. Dinoflagellates had significantly slower growth rates and higher, yet variable, chlorophyll a per cell under elevated CO2. The other phytoplankton tended to have increased growth rates and/or decreased chlorophyll a per cell. Carbon and nitrogen partitioning of cells shifted under elevated CO2 in some species, indicating potential changes in energy fluxes due to changes in carbon concentrating mechanisms (CCM) or photorespiration. Consistent with these phenotypic changes, gene set enrichment analyses revealed shifts in energy, carbon and nitrogen metabolic pathways, though with limited overlap between species in the genes and pathways involved. Similarly, gene expression responses across species revealed few conserved CO2-responsive genes within CCM and photorespiration categories, and a survey of available transcriptomes found high diversity in biophysical CCM and photorespiration expressed gene complements between and within the four phyla represented by these species. The few genes that displayed similar responses to CO2 across phyla were from understudied gene families, making them targets for further research to uncover the mechanisms of phytoplankton acclimation to elevated CO2. These results underscore that eukaryotic phytoplankton have diverse gene complements and gene expression responses to CO2 perturbations and highlight the value of cross-phyla comparisons for identifying gene families that respond to environmental change.
Collapse
Affiliation(s)
- Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Palisades, NY, United States
| | - María D Hernández Limón
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Palisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Palisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Palisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Palisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Ip YK, Koh CZY, Hiong KC, Choo CYL, Boo MV, Wong WP, Neo ML, Chew SF. Carbonic anhydrase 2-like in the giant clam, Tridacna squamosa: characterization, localization, response to light, and possible role in the transport of inorganic carbon from the host to its symbionts. Physiol Rep 2017; 5:e13494. [PMID: 29199178 PMCID: PMC5727267 DOI: 10.14814/phy2.13494] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022] Open
Abstract
The fluted giant clam, Tridacna squamosa, lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (Ci) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO2 and HCO3-, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog (CA2-like) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa, to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2-like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2-like sequence denoted an animal origin. CA2-like was not detectable in the shell-facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2-like is unlikely to participate directly in light-enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2-like expression, and CA2-like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2-like in the outer mantle. Hence, CA2-like could probably take part in the increased supply of inorganic carbon (Ci) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix Ci during light exposure.
Collapse
Affiliation(s)
- Yuen K. Ip
- Department of Biological SciencesNational University of SingaporeSingapore
- The Tropical Marine Science InstituteNational University of SingaporeSingapore
| | - Clarissa Z. Y. Koh
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Kum C. Hiong
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Celine Y. L. Choo
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Mel V. Boo
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Wai P. Wong
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Mei L. Neo
- St. John's Island National Marine LaboratoryNational University of SingaporeSingapore
| | - Shit F. Chew
- Natural Sciences and Science EducationNational Institute of EducationNanyang Technological UniversitySingapore
| |
Collapse
|
28
|
Udenigwe CC, Okolie CL, Qian H, Ohanenye IC, Agyei D, Aluko RE. Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
30
|
Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3797-3814. [PMID: 28645178 DOI: 10.1093/jxb/erx201] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context.
Collapse
Affiliation(s)
- Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, 13 402 Marseille, Cedex 20, France
| |
Collapse
|
31
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
32
|
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Meibom A, Fine M. Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170038. [PMID: 28573008 PMCID: PMC5451809 DOI: 10.1098/rsos.170038] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
Collapse
Affiliation(s)
- Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Authors for correspondence: Thomas Krueger e-mail:
| | - Noa Horwitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria-Evangelia Giovani
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- Authors for correspondence: Anders Meibom e-mail:
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
- Authors for correspondence: Maoz Fine e-mail:
| |
Collapse
|
33
|
Wang L, Cheung MK, Liu R, Wong CK, Kwan HS, Hwang JS. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan. MICROBIAL ECOLOGY 2017; 73:571-582. [PMID: 27909749 DOI: 10.1007/s00248-016-0898-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.
Collapse
Affiliation(s)
- Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Chong Kim Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
34
|
Pierangelini M, Raven JA, Giordano M. The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate Protoceratium reticulatum to elevated CO 2. JOURNAL OF PHYCOLOGY 2017; 53:298-307. [PMID: 27624862 DOI: 10.1111/jpy.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3- concentration was always 2.5 mmol · L-1 ) or constant (NO3- concentration varied to maintain the same Ci /NO3- ratio at all pCO2 ) Ci /NO3- ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2 . The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci /NO3- ratio. In the variable Ci /NO3- conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci /NO3- . Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci /NO3- ratio in the environment and not only by the pCO2 , both with respect to the size of the main organic pools and the composition of the expressed proteome.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mario Giordano
- Laboratorio di Fisiologia delle Alghe e delle Piante, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň, 379 01, Czech Republic
- Institute of Marine Science, National Research Council, Arsenale Castello, 2737/F, 30122, Venezia, Italy
- Istituto di Biologia Agro-Ambientale e Forestale, National Research Council, Via G. Marconi n. 2, Porano, 05010, Terni, Italy
| |
Collapse
|
35
|
Dorrell RG, Klinger CM, Newby RJ, Butterfield ER, Richardson E, Dacks JB, Howe CJ, Nisbet ER, Bowler C. Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Mol Biol Evol 2016; 34:361-379. [DOI: 10.1093/molbev/msw235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Ryan DE, Campbell L. Identification and phylogeny of putative PEPC genes in three toxin-producing Karenia (Dinophyta) species. JOURNAL OF PHYCOLOGY 2016; 52:618-625. [PMID: 27136041 DOI: 10.1111/jpy.12423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Dense blooms of toxin-producing Karenia brevis increase local surface ocean pH through CO2 uptake. To identify genes that may contribute to bloom-related environmental pH and pCO2 changes, transcriptomes with RNA from K. brevis Wilson cultures that had been acclimated to low CO2 (250 ppm) or recent CO2 (350 ppm) pCO2 levels were assembled. Among the annotated transcripts were PEPC, PPDK, and PEPCK enzymes found in the model C4 carbon fixation pathway. Previous studies have demonstrated that the enzymatic activity of PEPC, PPDK, and/or PEPCK in some algae species, including marine diatoms, is influenced by variations in dissolved inorganic carbon. We found significantly similar PEPC, PPDK, and PEPCK enzymes in the transcriptomes of K. brevis and two sister species Karenia papilionacea, and Karenia mikimotoi. One or more isoforms of PEPC were also identified in the transcriptomes of thirty additional photosynthetic phytoplankton species from nine phyla. Phylogenetic trees were constructed with neighbor joining and maximum likelihood techniques to characterize the evolutionary relationship among phytoplankton, terrestrial plant C4, and terrestrial plant C3 PEPC sequences. Based on the nucleotide trees constructed during this study, the Karenia PEPC transcripts were more closely related to the terrestrial C4 genes than the terrestrial C3 genes. Furthermore, PEPC phylogeny among phytoplankton closely resembles phylogenetic trees constructed with ribosomal RNA. This study confirmed that the toxin-producing dinoflagellates K. brevis, K. mikimotoi, and K. papilionacea express putative PEPC, PEPCK, and PPDK transcripts.
Collapse
Affiliation(s)
- Darcie E Ryan
- Department of Oceanography, Texas A & M University, College Station, Texas, 77843, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A & M University, College Station, Texas, 77843, USA
- Department of Oceanography and Department of Biology, Texas A & M University, College Station, Texas, 77843, USA
| |
Collapse
|
37
|
Comolli JC, Fagan T, Hastings JW. A Type-1 Phosphoprotein Phosphatase from a Dinoflagellate as a Possible Component of the Circadian Mechanism. J Biol Rhythms 2016; 18:367-76. [PMID: 14582853 DOI: 10.1177/0748730403254103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indicative of the importance of protein phosphorylation in the core circadian clock mechanism, chronically applied inhibitors of both protein kinases and phosphoprotein phosphatases have significant effects on the period, phase, and light-dependent regulation of circadian rhythms in the dinoflagellate Lingulodinium polyedrum. This study was aimed at identifying the presence of the affected phosphatase(s). Dephosphorylation of a PP1/PP2A-specific substrate by L. polyedrum extracts was inhibited by okadaic acid only at concentrations greater than 100 nM, as in vivo, by mammalian inhibitor-2 (I-2), and by an endogenous inhibitor with properties similar to I-2, indicating that a type-1 protein phosphatase (PP1) was predominant. A cDNA encoding a highly conserved PP1 was isolated, the 1st such signaling molecule identified in dinoflagellates. Anti-sera specific for this type of phosphatase recognized a 34 kDa protein in L. polyedrum extract, this being the same size as the PP1 encoded by the isolated cDNA. These findings are consistent with the suggestion that the L. polyedrum PP1 may be a part of the clock mechanism in this species.
Collapse
Affiliation(s)
- James C Comolli
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
38
|
Dorrell RG, Howe CJ. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 2015; 112:10247-54. [PMID: 25995366 PMCID: PMC4547248 DOI: 10.1073/pnas.1421380112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; School of Biology, École Normale Superieure, Paris 75005, France
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
39
|
Kroth PG. The biodiversity of carbon assimilation. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:76-81. [PMID: 25239594 DOI: 10.1016/j.jplph.2014.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
As all plastids that have been investigated so far can be traced back to endosymbiotic uptake of cyanobacteria by heterotrophic host cells, they accordingly show a high similarity regarding photosynthesis, which includes both the photosystems and the biochemical reactions around the CO2 fixation via the Calvin-Bassham cycle. Major differences between the different algal and plant groups may include the presence or absence of carbon concentrating mechanisms, pyrenoids, Rubisco activases, carbonic anhydrases as well as differences in the regulation of the Calvin-Bassham cycle. This review describes the diversity of primary carbon fixation steps in algae and plants and the respective regulatory mechanisms.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, Universitaetsstr. 10, 78457 Konstanz, Germany.
| |
Collapse
|
40
|
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666-84. [PMID: 24572015 PMCID: PMC3971594 DOI: 10.1093/gbe/evu043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Yousuf B, Kumar R, Mishra A, Jha B. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities. PLoS One 2014; 9:e107025. [PMID: 25225969 PMCID: PMC4167329 DOI: 10.1371/journal.pone.0107025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Raghawendra Kumar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Avinash Mishra
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| |
Collapse
|
42
|
Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2014; 5:2368-81. [PMID: 24259313 PMCID: PMC3879968 DOI: 10.1093/gbe/evt179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.
Collapse
|
43
|
Mayfield AB, Hsiao YY, Chen HK, Chen CS. Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:371-384. [PMID: 24449387 DOI: 10.1007/s10126-014-9558-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/10/2013] [Indexed: 06/03/2023]
Abstract
Although the importance of anthozoan-dinoflagellate (genus Symbiodinium) endosymbioses in the establishment of coral reef ecosystems is evident, little is known about the molecular regulation of photosynthesis in the intra-gastrodermal symbiont communities, particularly with respect to the rate-limiting Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). In this study, we analyzed rubisco mRNA (rbcL) and protein (RBCL) concentrations over the diel cycle in both cultured and endosymbiotic Symbiodinium samples. In the former, rbcL expression increased upon illumination and decreased during the dark, a pattern that was upheld under continual dark incubation. A different trend in rbcL expression was observed in endosymbiotic Symbiodinium residing within sea anemone (Aiptasia pulchella) tissues, in which illumination gradually led to decreased rbcL mRNA expression. Unexpectedly, RBCL protein expression did not vary over time within anemone tissues, and in neither cultured nor endosymbiotic samples was a correlation between gene and protein expression documented. It appears, then, that photoperiod, lifestyle, and posttranscriptional regulation are all important drivers of RBCL expression in this ecologically important dinoflagellate.
Collapse
Affiliation(s)
- Anderson B Mayfield
- Taiwan Coral Research Center (TCRC), National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung 944, Taiwan, Republic of China
| | | | | | | |
Collapse
|
44
|
Eberlein T, Van de Waal DB, Rost B. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. PHYSIOLOGIA PLANTARUM 2014; 151:468-79. [PMID: 24320746 PMCID: PMC4277689 DOI: 10.1111/ppl.12137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 05/22/2023]
Abstract
Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom-forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180-1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane-inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species-specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2-dependent contribution of HCO3(-) uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2-independent carbonic anhydrase activity. Comparing both species, a general trade-off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2 .
Collapse
Affiliation(s)
- Tim Eberlein
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
| | - Dedmer B Van de Waal
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW)6700 AB, Wageningen, The Netherlands
| | - Björn Rost
- Department of Marine Biogeoscience, Alfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany
| |
Collapse
|
45
|
The impact of automated filtering of BLAST-determined homologs in the phylogenetic detection of horizontal gene transfer from a transcriptome assembly. Mol Phylogenet Evol 2014; 71:184-92. [DOI: 10.1016/j.ympev.2013.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 10/09/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
|
46
|
Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis marina: Current Status and Future Directions. Microorganisms 2013; 1:33-57. [PMID: 27694763 PMCID: PMC5029500 DOI: 10.3390/microorganisms1010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/02/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
Heterotrophic dinoflagellates are prevalent protists in marine environments, which play an important role in the carbon cycling and energy flow in the marine planktonic community. Oxyrrhismarina (Dinophyceae), a widespread heterotrophic dinoflagellate, is a model species used for a broad range of ecological, biogeographic, and evolutionary studies. Despite the increasing research effort on this species, there lacks a synthesis of the existing data and a coherent picture of this organism. Here we reviewed the literature to provide an overview of what is known regarding the biology of O. marina, and identify areas where further studies are needed. As an early branch of the dinoflagellate lineage, O. marina shares similarity with typical dinoflagellates in permanent condensed chromosomes, less abundant nucleosome proteins compared to other eukaryotes, multiple gene copies, the occurrence of trans-splicing in nucleus-encoded mRNAs, highly fragmented mitochondrial genome, and disuse of ATG as a start codon for mitochondrial genes. On the other hand, O. marina also exhibits some distinct cytological features (e.g., different flagellar structure, absence of girdle and sulcus or pustules, use of intranuclear spindle in mitosis, presence of nuclear plaque, and absence of birefringent periodic banded chromosomal structure) and genetic features (e.g., a single histone-like DNA-associated protein, cob-cox3 gene fusion, 5' oligo-U cap in the mitochondrial transcripts of protein-coding genes, the absence of mRNA editing, the presence of stop codon in the fused cob-cox3 mRNA produced by post-transcriptional oligoadenylation, and vestigial plastid genes). The best-studied biology of this dinoflagellate is probably the prey and predators types, which include a wide range of organisms. On the other hand, the abundance of this species in the natural waters and its controlling factors, genome organization and gene expression regulation that underlie the unusual cytological and ecological characteristics are among the areas that urgently need study.
Collapse
|
47
|
Brading P, Warner ME, Smith DJ, Suggett DJ. Contrasting modes of inorganic carbon acquisition amongst Symbiodinium (Dinophyceae) phylotypes. THE NEW PHYTOLOGIST 2013; 200:432-442. [PMID: 23815769 DOI: 10.1111/nph.12379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Growing concerns over ocean acidification have highlighted the need to critically understand inorganic carbon acquisition and utilization in marine microalgae. Here, we contrast these characteristics for the first time between two genetically distinct dinoflagellate species of the genus Symbiodinium (phylotypes A13 and A20) that live in symbiosis with reef-forming corals. Both phylotypes were grown in continuous cultures under identical environmental conditions. Rubisco was measured using quantitative Western blots, and radioisotopic (14) C uptake was used to characterize light- and total carbon dioxide (TCO2 )-dependent carbon fixation, as well as inorganic carbon species preference and external carbonic anhydrase activity. A13 and A20 exhibited similar rates of carbon fixation despite cellular concentrations of Rubisco being approximately four-fold greater in A13. The uptake of CO2 over HCO3 - was found to support the majority of carbon fixation in both phylotypes. However, A20 was also able to indirectly utilize HCO3 - by first converting it to CO2 via external carbonic anhydrase. These results show that adaptive differences in inorganic carbon acquisition have evolved within the Symbiodinium genus, which thus carries fundamental implications as to how this functionally key genus will respond to ocean acidification, but could also represent a key trait factor that influences their productivity when in hospite of their coral hosts.
Collapse
Affiliation(s)
- Patrick Brading
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mark E Warner
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Rd, Lewes, DE 19958, USA
| | - David J Smith
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - David J Suggett
- Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
48
|
Tandem repeats, high copy number and remarkable diel expression rhythm of form II RuBisCO in Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e71232. [PMID: 23976999 PMCID: PMC3747160 DOI: 10.1371/journal.pone.0071232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
Gene structure and expression regulation of form II RuBisCO (rbcII) in dinoflagellates are still poorly understood. Here we isolated this gene (Pdrbc) and investigated its diel expression pattern in a harmful algal bloom forming dinoflagellate Prorocentrum donghaiense. We obtained cDNA sequences with triple tandem repeats of the coding unit (CU); the 5′ region has the sequence of a typical dinoflagellate plastid gene, encoding an N-terminus with two transmembrane regions separated by a plastid transit peptide. The CUs (1,455 bp except 1464 bp in last CU) are connected through a 63 bp spacer. Phylogenetic analysis showed that rbcII CUs within species formed monophyletic clusters, indicative of intraspecific gene duplication or purifying evolution. Using quantitative PCR (qPCR) we estimated 117±40 CUs of Pdrbc in the P. donghaiense genome. Although it is commonly believed that most dinoflagellate genes lack transcriptional regulation, our RT-qPCR analysis on synchronized cultures revealed remarkable diel rhythm of Pdrbc expression, showing significant correlations of transcript abundance with the timing of the dark-to-light transition and cell cycle G2M-phase. When the cultures were shifted to continuous light, Pdrbc expression remained significantly correlated with the G2M-phase. Under continuous darkness the cell cycle was arrested at the G1 phase, and the rhythm of Pdrbc transcription disappeared. Our results suggest that dinoflagellate rbcII 1) undergoes duplication or sequence purification within species, 2) is organized in tandem arrays in most species probably to facilitate efficient translation and import of the encoded enzyme, and 3) is regulated transcriptionally in a cell cycle-dependent fashion at least in some dinoflagellates.
Collapse
|
49
|
Orr RJS, Stüken A, Murray SA, Jakobsen KS. Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Mar Drugs 2013; 11:2814-28. [PMID: 23966031 PMCID: PMC3766867 DOI: 10.3390/md11082814] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022] Open
Abstract
Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Microbial Evolution Research Group (MERG), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; E-Mails: (R.J.S.O.); (A.S.)
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
| | - Anke Stüken
- Microbial Evolution Research Group (MERG), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; E-Mails: (R.J.S.O.); (A.S.)
| | - Shauna A. Murray
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, PO Box 123 Broadway, NSW 2007, Australia; E-Mail:
- Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | - Kjetill S. Jakobsen
- Microbial Evolution Research Group (MERG), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; E-Mails: (R.J.S.O.); (A.S.)
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-22854602; Fax: +47-22854001
| |
Collapse
|
50
|
Mackiewicz P, Bodył A, Moszczyński K. The case of horizontal gene transfer from bacteria to the peculiar dinoflagellate plastid genome. Mob Genet Elements 2013; 3:e25845. [PMID: 24195014 PMCID: PMC3812789 DOI: 10.4161/mge.25845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/19/2022] Open
Abstract
Organelle genomes lose their genes by transfer to host nuclear genomes, but only occasionally are enriched by foreign genes from other sources. In contrast to mitochondria, plastid genomes are especially resistant to such horizontal gene transfer (HGT), and thus every gene acquired in this way is notable. An exceptional case of HGT was recently recognized in the peculiar peridinin plastid genome of dinoflagellates, which is organized in plasmid-like minicircles. Genomic and phylogenetic analyses of Ceratium horridum and Pyrocystis lunula minicircles revealed four genes and one unannotated open reading frame that probably were gained from bacteria belonging to the Bacteroidetes. Such bacteria seem to be a good source of genes because close endosymbiotic associations between them and dinoflagellates have been observed. The HGT-acquired genes are involved in plastid functions characteristic of other photosynthetic eukaryotes, and their arrangement resembles bacterial operons. These studies indicate that the peridinin plastid genome, usually regarded as having resulted from reduction and fragmentation of a typical plastid genome derived from red algae, may have a chimeric origin that includes bacterial contributions. Potential contamination of the Ceratium and Pyrocystis plastid genomes by bacterial sequences and the controversial localization of their minicircles in the nucleus are also discussed.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Genomics; Faculty of Biotechnology; University of Wrocław; Wrocław, Poland
| | | | | |
Collapse
|