1
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Yu C, Jiang H, Wang L, Jiang Z, Jin C. Baseline (derived) neutrophil-lymphocyte ratio associated with survival in gastroesophageal junction or gastric cancer treated with ICIs. Front Oncol 2025; 15:1404695. [PMID: 39926278 PMCID: PMC11802431 DOI: 10.3389/fonc.2025.1404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Objective We carried out the meta-analysis to determine the predictive value of baseline neutrophil to lymphocyte ratio (NLR) and derived neutrophil to lymphocyte ratio (dNLR) levels in patients with gastroesophageal junction or gastric cancer (GJGC) who underwent immune checkpoint inhibitor (ICI) treatment. Methods Eligible articles were obtained through PubMed, the Cochrane Library, EMBASE, and Google Scholar, until April 15, 2023. The clinical outcomes evaluated in this study encompassed overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). Results A total of 24 articles with 2221 patients were included in this meta-analysis. The pooled results demonstrated that patients with high NLR levels had significantly poorer OS (HR: 1.860, 95% CI: 1.564-2.213, p < 0.001) and PFS (HR: 1.678, 95% CI: 1.354-2.079, p < 0.001), and lower ORR (OR: 0.754, 95% CI: 0.621-0.915, p = 0.004) and DCR (OR: 0.391, 95% CI: 0.262-0.582, p < 0.001). Besides, we also found that high dNLR levels were significantly associated with shorter OS (HR: 2.117, 95% CI: 1.590-2.820, p < 0.001) and PFS (HR: 1.803, 95% CI: 1.415-2.297, p < 0.001). Conclusion Low baseline (Derived) NLR has the potential to predict the good efficacy of ICIs and survival outcomes in patients with GJGC. (Derived) NLR could be useful in determining the optimal treatment strategies for these patients.
Collapse
Affiliation(s)
| | | | | | | | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Zheng W, Li J, Li J, Bie N, Wei Z, Qin J, Li S, Yong T, Du Q, Yang X, Gan L. In-situ nanoplatform with synergistic neutrophil intervention and chemotherapy to prevent postoperative tumor recurrence and metastasis. J Control Release 2024; 375:316-330. [PMID: 39251139 DOI: 10.1016/j.jconrel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.
Collapse
Affiliation(s)
- Wenxia Zheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaojiao Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Qin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Du
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Pascual G, Benitah SA. Lipids in the tumor microenvironment: immune modulation and metastasis. Front Oncol 2024; 14:1435480. [PMID: 39391242 PMCID: PMC11464260 DOI: 10.3389/fonc.2024.1435480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Tumor cells can undergo metabolic adaptations that support their growth, invasion, and metastasis, such as reprogramming lipid metabolism to meet their energy demands and to promote survival in harsh microenvironmental conditions, including hypoxia and acidification. Metabolic rewiring, and especially alterations in lipid metabolism, not only fuel tumor progression but also influence immune cell behavior within the tumor microenvironment (TME), leading to immunosuppression and immune evasion. These processes, in turn, may contribute to the metastatic spread of cancer. The diverse metabolic profiles of immune cell subsets, driven by the TME and tumor-derived signals, contribute to the complex immune landscape in tumors, affecting immune cell activation, differentiation, and effector functions. Understanding and targeting metabolic heterogeneity among immune cell subsets will be crucial for developing effective cancer immunotherapies that can overcome immune evasion mechanisms and enhance antitumor immunity.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
6
|
Li C, Wang L, Zhang K, Wang Z, Li Z, Li Z, Chen L. Overcoming neutrophil-induced immunosuppression in postoperative cancer therapy: Combined sialic acid-modified liposomes with scaffold-based vaccines. Asian J Pharm Sci 2024; 19:100906. [PMID: 38595333 PMCID: PMC11002593 DOI: 10.1016/j.ajps.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 04/11/2024] Open
Abstract
Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
7
|
Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. CURRENT CANCER THERAPY REVIEWS 2023; 19:292-297. [DOI: 10.2174/1573394719666230427094247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 08/19/2024]
Abstract
Abstract:Breast cancer is a major cause of cancer deaths in women, with approximately 1.2 million new cases per year. Current treatment options for breast cancer include surgery, radiation, hormone therapy, and chemotherapy. However, the non-selective cytotoxicity of chemotherapeutic agents often leads to severe side effects, while drug resistance can worsen patient outcomes. Therefore, the development of more effective and less toxic anticancer drugs is a critical need. This study aimed to review the literature on Echinococcus granulosus antigens with anticancer potential against triple-negative breast cancer. Recent studies have suggested that certain parasite antigens may have potential anticancer effects. Specifically, research has shown that echinococcosis, a disease caused by the parasitic cestode Echinococcus granulosus, may have a protective effect against cancer. These findings offer new insights into the potential use of E. granulosus antigens in the development of novel cancer therapies and tumor cell vaccines. The findings of recent studies suggested that E. granulosus antigens may have the potential to be used in effective and less toxic cancer treatments. However, further research is needed to fully understand the mechanisms behind the anticancer effects of these antigens and develop new cancer therapies and vaccines
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Zhao Y, Zhang H, Zhang Q, Tao H. Research Progress of Neutrophil-Mediated Drug Delivery Strategies for Inflammation-Related Disease. Pharmaceutics 2023; 15:1881. [PMID: 37514067 PMCID: PMC10384340 DOI: 10.3390/pharmaceutics15071881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
As the most abundant white blood cells in humans, neutrophils play a key role in acute and chronic inflammation, suggesting that these cells are a key component of targeted therapies for various inflammation-related diseases. Specific enzyme-responsive or specific ligand-modified polymer nanoparticles are beneficial for improving drug efficacy, reducing toxicity, and enhancing focal site retention. However, there remain significant challenges in biomedical applications of these synthetic polymer nanoparticles, mainly due to their rapid clearance by the reticuloendothelial system. In recent years, biomimetic drug delivery systems such as neutrophils acting directly as drug carriers or neutrophil-membrane-coated nanoparticles have received increasing attention due to the natural advantages of neutrophils. Thus, neutrophil-targeted, neutrophil-assisted, or neutrophil-coated nanoparticles exhibit a prolonged blood circulation time and improved accumulation at the site of inflammation. Despite recent advancements, further clinical research must be performed to evaluate neutrophil-based delivery systems for future biomedical application in the diagnosis and treatment of related inflammatory diseases. In this review, we have summarized new exciting developments and challenges in neutrophil-mediated drug delivery strategies for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutics, 96602 Hospital of Chinese People's Liberation Army, Kunming 650233, China
| | - Haigang Zhang
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Minor BMN, LeMoine D, Seger C, Gibbons E, Koudouovoh J, Taya M, Kurtz D, Xu Y, Hammes SR. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164:bqad061. [PMID: 37042477 PMCID: PMC10164661 DOI: 10.1210/endocr/bqad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.
Collapse
Affiliation(s)
- Briaunna M N Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dana LeMoine
- Division of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina Seger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jules Koudouovoh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, Department of Internal Medicine, UTSW Medical Center, Dallas, TX 75390, USA
| | - Daniel Kurtz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Xu
- Divisions of Pulmonary Biology & Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor. Brain Behav Immun Health 2022; 26:100544. [PMID: 36467126 PMCID: PMC9712818 DOI: 10.1016/j.bbih.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Extracellular adenosine, produced from ATP secreted by neuronal or immune cells, may play a role in endogenous regulation of inflammatory responses. Studies show that adenosine induces hypersecretion of IL-17A by CD4+ T cells upon treatment with an A2aR agonist (PSB0777), and that adenosine-mediated IL-17A hypersecretion is suppressed by the A2aR antagonist (Istradefylline) in humans. However, it is unclear whether A2aR downstream signaling is involved in IL-17A hypersecretion. Here, we show that inhibitors of adenyl cyclase (AC), protein kinase A (PKA), and cAMP response element binding protein (CREB) (which are signaling molecules downstream of the Gs protein coupled to the A2aR), suppress IL-17A production, suggesting that activation of A2aR signaling induces IL-17A production by CD4+ T cells. Furthermore, immune subset studies revealed that adenosine induces hypersecretion of IL-17A by T-helper (Th)17 cells. These results indicate that adenosine is an endogenous modulator of neutrophilic inflammation. Administration of an A2aR antagonist to mice with experimental autoimmune encephalomyelitis led to marked amelioration of symptoms. Thus, inhibitors of the novel A2aR-AC-cAMP-PKA-CREB signaling pathway for IL-17A hypersecretion by TCR-activated Th17 cells suppresses adenosine-mediated IL-17A production, suggesting that it may be an effective treatment for Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
12
|
Digklia A, Boughdad S, Homicsko K, Dromain C, Trimech M, Dolcan A, Peters S, Prior J, Schaefer N. First communication on the efficacy of combined <sup>177</sup>Lutetium-PSMA with immunotherapy outside prostate cancer. J Immunother Cancer 2022; 10:jitc-2022-005383. [PMID: 36288828 PMCID: PMC9615971 DOI: 10.1136/jitc-2022-005383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy is a validated treatment option for patients with advanced prostate cancer. Although PSMA expression is not limited to prostate tissue, little is known about its relevance to other types of cancer. Here, we present a case report of a patient with uterine leiomyosarcoma that is progressing while on immunotherapy and treated with <sup>177</sup>Lu-PSMA radionuclide therapy. We report for the first time that <sup>177</sup>Lu-PSMA radionuclide therapy combined with immunotherapy outside of prostate cancer. We did observe post-treatment reduction of tumor growth rate, although we did not notice disease response based on RECIST criteria. We suggest that <sup>177</sup>Lu-PSMA treatment especially combined with immunotherapy may be an option for patients with cancer without other therapeutic options. Insights: <sup>177</sup>Lu-PSMA radionuclide therapy should be considered for any tumor stained positive for PSMA.
Collapse
Affiliation(s)
- Antonia Digklia
- Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,Sarcoma Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - Sarah Boughdad
- Nuclear Medicine and Molecular Imaging, University of Lausanne, Lausanne, Switzerland
| | - Krisztian Homicsko
- Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,University of Lausanne, Lausanne, Switzerland,Precision Oncology Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Clarisse Dromain
- University of Lausanne, Lausanne, Switzerland,Radiology and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Mounir Trimech
- University of Lausanne, Lausanne, Switzerland,Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ana Dolcan
- Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,Sarcoma Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Solange Peters
- Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - John Prior
- University of Lausanne, Lausanne, Switzerland,Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Niklaus Schaefer
- Sarcoma Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,University of Lausanne, Lausanne, Switzerland,Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
13
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
14
|
Ren L, Xu P, Yao J, Wang Z, Shi K, Han W, Wang H. Targeting the Mitochondria with Pseudo-Stealthy Nanotaxanes to Impair Mitochondrial Biogenesis for Effective Cancer Treatment. ACS NANO 2022; 16:10242-10259. [PMID: 35820199 DOI: 10.1021/acsnano.1c08008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.
Collapse
Affiliation(s)
- Lulu Ren
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Peirong Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jie Yao
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zihan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kewei Shi
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hangxiang Wang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
| |
Collapse
|
15
|
Ji X, Zhou B, Ding W, Wang J, Jiang W, Li Y, Hu J, Sun X. Efficacy of stereotactic body radiation therapy for locoregional recurrent pancreatic cancer after radical resection. Front Oncol 2022; 12:925043. [PMID: 35936670 PMCID: PMC9353056 DOI: 10.3389/fonc.2022.925043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to analyze the efficacy and toxicity of stereotactic body radiotherapy (SBRT) for locoregional recurrent pancreatic cancer after radical resection. Methods Patients with locoregional recurrent pancreatic cancer after surgery treated with SBRT in our institution were retrospectively investigated from January 2010 to January 2020. Absolute neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) recorded at pretreatment were analyzed. Endpoints included overall survival (OS), progression-free survival (PFS) and cumulative incidences of local failure (LF) and metastatic failure (MF). Results A total of 22 patients received SBRT with a median prescribed dose of 40 Gy (range of 30-50 Gy)/4 to 7 fractions. The median OS of all patients was 13.6 months (95% CI, 9.6-17.5 months). 0-1 performance status (HR 12.10, 95% CI 2.04-71.81, P=0.006) and ≤2.1 pre-SBRT NLR (HR 4.05, 95% CI 1.21-13.59, P=0.023) were significant predictors of higher OS on multivariable analysis. The median progression-free survival (PFS) of the cohort was 7.5 months (95% CI, 6.5-8.5 months). The median time to LF and MF were 15.6 months and 6.4 months, respectively. The rate of MF as a first event was higher than that of first event LF. Pain relief was observed in all patients (100%) 6 weeks after SBRT. In terms of acute toxicity, grade 1 including fatigue (6, 27.3%), anorexia (6, 27.3%), nausea (4, 18.2%) and leukopenia (4, 18.2%) was often observed. No acute toxicity of grade 4 or 5 was observed. In terms of late toxicity, no treatment-related toxicity was found during follow-up. Conclusion This study showed that SBRT can significantly reduce pain, effectively control local tumor progression, and have acceptable toxicity for patients with locoregional recurrence after radical resection of primary pancreatic cancer. Good performance status and lower pre-SBRT NLR were associated with improved overall survival.
Collapse
|
16
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Improving anticancer effect of aPD-L1 through lowering neutrophil infiltration by PLAG in tumor implanted with MB49 mouse urothelial carcinoma. BMC Cancer 2022; 22:727. [PMID: 35787261 PMCID: PMC9251917 DOI: 10.1186/s12885-022-09815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The PD-L1 antibody is an immune checkpoint inhibitor (ICI) attracting attention. The third-generation anticancer drug has been proven to be very effective due to fewer side effects and higher tumor-specific reactions than conventional anticancer drugs. However, as tumors produce additional resistance in the host immune system, the effectiveness of ICI is gradually weakening. Therefore, it is very important to develop a combination therapy that increases the anticancer effect of ICI by removing anticancer resistance factors present around the tumor. METHODS The syngeneic model was used (n = 6) to investigate the enhanced anti-tumor effect of PD-L1 antibody with the addition of PLAG. MB49 murine urothelial cancer cells were implanted into the C57BL/6 mice subcutaneously. PLAG at different dosages (50/100 mpk) was daily administered orally for another 4 weeks with or without 5 mpk PD-L1 antibody (10F.9G2). PD-L1 antibody was delivered via IP injection once a week. RESULTS The aPD-L1 monotherapy group inhibited tumor growth of 56% compared to the positive group, while the PLAG and aPD-L1 co-treatment inhibited by 89%. PLAG treatment effectively reduced neutrophils infiltrating localized in tumor and converted to a tumor microenvironment with anti-tumor effective T-cells. PLAG increased tumor infiltration of CD8 positive cytotoxic T-cell populations while effectively inhibiting the infiltration of neoplastic T-cells such as CD4/FoxP3. Eventually, neutrophil-induced tumor ICI resistance was resolved by restoring the neutrophil-to-lymphocyte ratio to the normal range. In addition, regulation of cytokine and chemokine factors that inhibit neutrophil infiltration and increase the killing activity of cytotoxic T cells was observed in the tumors of mice treated with PLAG + aPD-L1. CONCLUSIONS PLAG effectively turned the tumor-promoting microenvironment into a tumor-suppressing microenvironment. As a molecule that increases the anti-tumor effectiveness of aPD-L1, PLAG has the potential to be an essential and effective ICI co-therapeutic agent.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- grid.249967.70000 0004 0636 3099Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea
| |
Collapse
|
17
|
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, Zhang X, Li Y. Neutrophil Extracellular Traps (NETs) Promote Non-Small Cell Lung Cancer Metastasis by Suppressing lncRNA MIR503HG to Activate the NF-κB/NLRP3 Inflammasome Pathway. Front Immunol 2022; 13:867516. [PMID: 35707534 PMCID: PMC9190762 DOI: 10.3389/fimmu.2022.867516] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) that are produced in the tumour microenvironment (TME) have been suggested to play an essential role in the dissemination of metastatic cancer under multiple infectious and inflammatory conditions. However, the functions of NETs in promoting non-small cell lung cancer (NSCLC) metastasis and the underlying mechanisms remain incompletely understood. Here, we found that NETs promoted NSCLC cell invasion and migration by inducing epithelial to mesenchymal transition (EMT). To explore how NETs contribute to NSCLC metastasis, microarrays were performed to identify substantial numbers of long noncoding RNAs (lncRNAs) and mRNAs that were differentially expressed in NSCLC cells after stimulation with NETs. Interestingly, we observed that the expression of lncRNA MIR503HG was downregulated after NETs stimulation, and ectopic MIR503HG expression reversed the metastasis-promoting effect of NETs in vitro and in vivo. Notably, bioinformatics analysis revealed that differentially expressed genes were involved in the NOD-like receptor and NF-κB signalling pathways that are associated with inflammation. NETs facilitated EMT and thereby contributed to NSCLC metastasis by activating the NF-κB/NOD-like receptor protein 3 (NLRP3) signalling pathway. Further studies revealed that MIR503HG inhibited NETs-triggered NSCLC cell metastasis in an NF-κB/NLRP3-dependent manner, as overexpression of NF-κB or NLRP3 impaired the suppressive effect of MIR503HG on NETs-induced cancer cell metastasis. Together, these results show that NETs activate the NF-κB/NLRP3 pathway by downregulating MIR503HG expression to promote EMT and NSCLC metastasis. Targeting the formation of NETs may be a novel therapeutic strategy for treating NSCLC metastasis.
Collapse
Affiliation(s)
- Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fen Liu
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Chen
- Department of Internal Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuangyan Li
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoying Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Yin
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Guida M, Bartolomeo N, Quaresmini D, Quaglino P, Madonna G, Pigozzo J, Di Giacomo AM, Minisini AM, Tucci M, Spagnolo F, Occelli M, Ridolfi L, Queirolo P, De Risi I, Valente M, Sciacovelli AM, Chiarion Sileni V, Ascierto PA, Stigliano L, Strippoli S. Basal and one-month differed neutrophil, lymphocyte and platelet values and their ratios strongly predict the efficacy of checkpoint inhibitors immunotherapy in patients with advanced BRAF wild-type melanoma. J Transl Med 2022; 20:159. [PMID: 35382857 PMCID: PMC8981693 DOI: 10.1186/s12967-022-03359-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background To evaluate the capability of basal and one-month differed white blood cells (WBC), neutrophil, lymphocyte and platelet values and their ratios (neutrophils-to-lymphocytes ratio, NLR, and platelets-to-lymphocytes ratio, PLR) in predicting the response to immune checkpoint inhibitors (ICI) in metastatic melanoma (MM). Methods We performed a retrospective study of 272 BRAF wild-type MM patients treated with first line ICI. Bivariable analysis was used to correlate patient/tumor characteristics with clinical outcomes. Variations between time 1 and time 0 (Δ) of blood parameters were also calculated and dichotomized using cut-off values assessed by ROC curve. Results At baseline, higher neutrophils and NLR negatively correlated with PFS, OS and disease control rate (DCR). Higher PLR was also associated with worse OS. In multivariable analysis, neutrophils (p = 0.003), WBC (p = 0.069) and LDH (p = 0.07) maintained their impact on PFS, while OS was affected by LDH (p < 0.001), neutrophils (p < 0.001) and PLR (p = 0.022), while DCR by LDH (p = 0.03) and neutrophils (p = 0.004). In the longitudinal analysis, PFS negatively correlated with higher Δplatelets (p = 0.039), ΔWBC (p < 0.001), and Δneutrophils (p = 0.020), and with lower Δlymphocytes (p < 0.001). Moreover, higher ΔNLR and ΔPLR identified patients with worse PFS, OS and DCR. In the multivariable model, only ΔNLR influenced PFS (p = 0.004), while OS resulted affected by higher ΔWBC (p < 0.001) and lower Δlymphocytes (p = 0.038). Higher ΔWBC also affected the DCR (p = 0.003). When clustering patients in 4 categories using basal LDH and ΔNLR, normal LDH/lower ΔNLR showed a higher PFS than high LDH/higher ΔNLR (20 vs 5 months). Moreover, normal LDH/higher Δlymphocytes had a higher OS than high LDH/lower Δlymphocytes (50 vs. 10 months). Conclusions Baseline and early variations of blood cells, together with basal LDH, strongly predict the efficacy of ICI in MM. Our findings propose simple, inexpensive biomarkers for a better selection of patient treatments. Prospective multicenter studies are warranted to confirm these data.
Collapse
Affiliation(s)
- Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco, 6570124, Bari, Italy.
| | - Nicola Bartolomeo
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Davide Quaresmini
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco, 6570124, Bari, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy
| | - Gabriele Madonna
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Jacopo Pigozzo
- Melanoma Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, University Hospital of Siena, University of Siena, Siena, Italy
| | | | - Marco Tucci
- Medical Oncology Unit, University of Bari Aldo Moro, Bari, Italy.,IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Marcella Occelli
- Oncology Unit, Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
| | - Laura Ridolfi
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Queirolo
- Division of Melanoma Sarcoma and Rare Tumors, IEO European Institute of Oncology IRCCS Milan, Milan, Italy
| | - Ivana De Risi
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco, 6570124, Bari, Italy
| | - Monica Valente
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
| | | | | | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Lucia Stigliano
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy
| | - Sabino Strippoli
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco, 6570124, Bari, Italy
| |
Collapse
|
19
|
Lee CM, Chang ML, Chen RH, Chen FW, Liu JC, Kuo SL, Peng HH. Thrombin-Activated Platelets Protect Vascular Endothelium against Tumor Cell Extravasation by Targeting Endothelial VCAM-1. Int J Mol Sci 2022; 23:ijms23073433. [PMID: 35408794 PMCID: PMC8998259 DOI: 10.3390/ijms23073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
When activated by thrombin, the platelets release their granular store of factors. These thrombin-activated platelets (TAPLT) have been shown to be capable of ameliorating pro-inflammatory processes. In this study, we tested if TAPLT could also protect the endothelium against tumor-related pro-inflammatory changes that promote angiogenesis and metastasis. Using endothelial cell (EC) models in vitro, we demonstrated that TAPLT protected EC against tumor conditioned medium (TCM)-induced increases of reactive oxygen species (ROS) production, EC permeability and angiogenesis, and inhibited transendothelial migration that was critical for cancer cell extravasation and metastasis. In vivo observations of TAPLT-mediated inhibition of angiogenesis and pulmonary colonization in a BALB/c nude mouse model were consistent with the in vitro findings. Neutralization of vascular cell adhesion molecule-1 (VCAM-1) binding significantly inhibited the ability of TAPLT to interact with EC and abrogated the TAPLT-mediated protection of EC against tumor angiogenesis and metastasis. Taken together, these findings suggest that VCAM-1-mediated linkage to EC is required for TAPLT to confer protection of EC against tumor-induced permeation and angiogenesis, thereby resisting tumor extravasation and metastasis.
Collapse
Affiliation(s)
- Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Ming-Ling Chang
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ren-Hao Chen
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (C.-M.L.); (R.-H.C.)
| | - Fan-Wen Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shun-Li Kuo
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3211-8800 (ext. 3772); Fax: +886-3211-8534
| |
Collapse
|
20
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Valero C, Adilbay D, Fitzgerald CWR, Yuan A, Mimica X, Gupta P, Wong RJ, Shah JP, Patel SG, Cohen MA, Ganly I. Predictors of distant metastases in sinonasal and skull base cancer patients treated with surgery. Oral Oncol 2021; 122:105575. [PMID: 34689008 DOI: 10.1016/j.oraloncology.2021.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Sinonasal and skull base tumors comprise a heterogeneous group of malignancies with a significant rate of distant recurrence (DR). The aim of this study was to analyze tumor and host factors, including pretreatment neutrophil-to-lymphocyte ratio (NLR), that predict DR in these patients. MATERIALS AND METHODS We retrospectively reviewed sinonasal tumors and/or tumors involving the skull base treated with surgery between 1973 and 2015 (n = 473). We stratified NLR using the top 5 percentile as cutoff. Factors predictive of outcome were determined by Cox proportional hazards model. RESULTS Most tumors were primary (81%) and 67% had skull base resection. The most common site was the nasal cavity (37%) and the most common histology was squamous cell carcinoma (34%). Most patients presented with advanced primary tumor stage (pT3/T4; 80%) and most had no regional neck disease (pNx/N0; 93%). A total of 104 patients developed DR. The 5-year overall and disease-specific survival for patients who developed DR were 36.4% and 35.8%, compared to 69.0% and 74.9% for patients who did not. Patients with DR had a higher percentage of NLR-high patients compared patients without DR (11% vs 3%, p = .006). In a multivariable analysis, melanoma histology (HR = 5.469, 95% CI 3.171-9.433), pT3/T4 (HR = 2.686, 95% CI 1.150-6.275), pN+ (HR = 6.864, 95% CI 3.450-13.653), and NLR-high (HR = 3.489, 95% CI 1.593-7.639) were independent predictors of DR. CONCLUSION Melanoma histology, pT, pN, and high NLR predict DR, suggesting that both tumor and host factors need to be considered. NLR may act as a surrogate marker of the host́s immune system.
Collapse
Affiliation(s)
- Cristina Valero
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dauren Adilbay
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conall W R Fitzgerald
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Avery Yuan
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ximena Mimica
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Piyush Gupta
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard J Wong
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jatin P Shah
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Snehal G Patel
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc A Cohen
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ian Ganly
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Seitlinger J, Prieto M, Guerrera F, Streit A, Gauchotte G, Siat J, Falcoz PE, Massard G, Ferri L, Spicer J, Renaud S. Neutrophil-to-lymphocyte ratio is correlated to driver gene mutations in surgically-resected non-small cell lung cancer and its post-operative evolution impacts outcomes. Clin Lung Cancer 2021; 23:e29-e42. [PMID: 34583910 DOI: 10.1016/j.cllc.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND We sought to evaluate prognostic value of neutrophil-to-lymphocyte ratio (NLR) in surgically resected non-small cell lung cancer (NSCLC) and its correlation to oncogenic drivers. We retrospectively reviewed data of patients who underwent anatomic lung resection for NSCLC and whose mutational status was known, from 4 department of thoracic surgery, over the period 2008 to 2019. Primary endpoints were overall survival (OS) and time to recurrence (TTR). Clinical and molecular factors were investigated in the univariate and multivariate analysis for their association with the primary endpoints. RESULTS 2027 patients were included in the analysis. Correlations between NLR and OS (R2=0.21), NLR and TTR (R2=0.085) were significant (P<0.0001), with corresponding Pearson R of -0.46 (P<0.0001) and -0.292 (P<0.001), respectively. ROC curve analysis defined NLR cut-off value at 4.07. In the univariable analysis, the median OS was 66 months (95% CI: 62.94 - 69.06) in case of pre-operative NLR ≤ 4.07 and 38 months (95% CI: 36.73 - 39.27) in case of pre-operative NLR > 4.07 (P<0.0001), with corresponding 5-y OS of 72% and 29% respectively. Median TTR was associated with pre-operative NLR. Median TTR was 25 months (95% CI: 21.52 - 28.48) in case of pre-operative NLR ≤ 4.07 and 17 months (95% CI: 16.04 - 17.96) in case of pre-operative NLR > 4.07 (P<0.0001), with corresponding 5-years TTR of 18% and 9% respectively. Significant correlations between NLR >4.07 and KRAS (Cramer's V = 0.082, P < 0.0001) and EGFR mutations (Cramer's V = 0.064, P = 0.004) were observed. CONCLUSIONS Low pre-operative NLR is associated with longer OS in patients with resected NSCLC. Low pre-operative NLR is not associated with longer TTR in multivariate analysis. Correlation between the high NLR and KRAS/EGFR mutations were observed.
Collapse
Affiliation(s)
- Joseph Seitlinger
- Department of Thoracic Surgery, Nancy Regional University Hospital, Nancy, France.
| | - Mathilde Prieto
- Department of Thoracic Surgery, Nancy Regional University Hospital, Nancy, France
| | | | - Arthur Streit
- Department of Thoracic Surgery, Nancy Regional University Hospital, Nancy, France
| | | | - Joelle Siat
- Department of Thoracic Surgery, Nancy Regional University Hospital, Nancy, France
| | | | - Gilbert Massard
- Department of Thoracic Surgery, Strasbourg University Hospital, Strasbourg, France
| | - Lorenzo Ferri
- Department of Thoracic Surgery and Upper Gastrointestinal Surgery, McGill University, Montreal, Canada
| | - Jonathan Spicer
- Department of Thoracic Surgery and Upper Gastrointestinal Surgery, McGill University, Montreal, Canada
| | - Stéphane Renaud
- Department of Thoracic Surgery, Nancy Regional University Hospital, Nancy, France
| |
Collapse
|
23
|
Sznurkowska MK, Aceto N. The gate to metastasis: key players in cancer cell intravasation. FEBS J 2021; 289:4336-4354. [PMID: 34077633 PMCID: PMC9546053 DOI: 10.1111/febs.16046] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Metastasis is a leading cause of cancer‐related death and consists of a sequence of events including tumor expansion, intravasation of cancer cells into the circulation, survival in the bloodstream, extravasation at distant sites, and subsequent organ colonization. Particularly, intravasation is a process whereby cancer cells transverse the endothelium and leave the primary tumor site, pioneering the metastatic cascade. The identification of those mechanisms that trigger the entry of cancer cells into the bloodstream may reveal fundamentally novel ways to block metastasis at its start. Multiple factors have been implicated in cancer progression, yet, signals that unequivocally provoke the detachment of cancer cells from the primary tumor are still under investigation. Here, we discuss the role of intrinsic properties of cancer cells, tumor microenvironment, and mechanical cues in the intravasation process, outlining studies that suggest the involvement of various factors and highlighting current understanding and open questions in the field.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland.,Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| |
Collapse
|
24
|
A risk signature with inflammatory and immune cells infiltration predicts survival and efficiency of chemotherapy in gastric cancer. Int Immunopharmacol 2021; 96:107589. [PMID: 34162126 DOI: 10.1016/j.intimp.2021.107589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Tumor immune microenvironment biomarkers might add predictive value for outcomes. This study aimed to construct a risk signature with tumor infiltration immune and inflammatory cells to improve the prediction of survival. METHODS A risk signature model in combination with CD66b + neutrophils, CD3+ T, CD8+ T lymphocytes, and FOXP3 + regulatory T cells was developed in a training cohort of 327 GC patients undergoing surgical resection between 2011 and 2012, and validated in a validation cohort of 285 patients from 2012 to 2013. RESULTS The high CD66b expression predicted the poor disease special survival (DSS) and inversely correlated with the CD8 (P < 0.05) and FOXP3 expression (P < 0.05) in the training cohort. This was comparable to the disease-free survival (DFS) findings observed in the validation cohort. Furthermore, a risk stratification was developed from the integration of CD66b + neutrophils and T immune cells. For DFS and DSS, both demonstrated the worse prognosis in the high-risk group, when compared to the low-risk group in both the training cohort and validation cohort (all P < 0.05). In addition, the high-risk group was associated with post-operative relapses, and this risk signature model increased the predictive accuracy and efficiency for post-operative relapses. Moreover, the high-risk group identified a subgroup of GC patients who tended not to benefit from the adjuvant chemotherapy. CONCLUSIONS The incorporation of neutrophils into T lymphocytes could provide more accurate prognostic information in GC and this risk stratification has potential for identifying the subgroup of GC patients who could benefit from adjuvant chemotherapy.
Collapse
|
25
|
Ruotsalainen J, Lopez‐Ramos D, Rogava M, Shridhar N, Glodde N, Gaffal E, Hölzel M, Bald T, Tüting T. The myeloid cell type I IFN system promotes antitumor immunity over pro-tumoral inflammation in cancer T-cell therapy. Clin Transl Immunology 2021; 10:e1276. [PMID: 33968406 PMCID: PMC8082713 DOI: 10.1002/cti2.1276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/24/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Type I interferons are evolutionally conserved cytokines, with broad antimicrobial and immunoregulatory functions. Despite well-characterised role in spontaneous cancer immunosurveillance, the function of type I IFNs in cancer immunotherapy remains incompletely understood. METHODS We utilised genetic mouse models to explore the role of the type I IFN system in CD8+ T-cell immunotherapy targeting the melanocytic lineage antigen gp100. RESULTS The therapeutic efficacy of adoptively transferred T cells was found to depend on a functional type I IFN system in myeloid immune cells. Compromised type I IFN signalling in myeloid immune cells did not prevent expansion, tumor infiltration or effector function of melanoma-specific Pmel-1 CD8+ T cells. However, melanomas growing in globally (Ifnar1-/-) or conditionally (Ifnar1ΔLysM) type I IFN system-deficient mice displayed increased myeloid infiltration, hypoxia and melanoma cell dedifferentiation. Mechanistically, hypoxia was found to induce dedifferentiation and loss of the gp100 target antigen in melanoma cells and type I IFN could directly inhibit the inflammatory activation of myeloid cells. Unexpectedly, the immunotherapy induced significant reduction in tumor blood vessel density and whereas host type I IFN system was not required for the vasculosculpting, it promoted vessel permeability. CONCLUSION Our results substantiate a complex and plastic phenotypic interconnection between melanoma and myeloid cells in the context of T-cell immunotherapy. Type I IFN signalling in myeloid cells was identified as a key regulator of the balance between antitumor immunity and disease-promoting inflammation, thus supporting the development of novel combinatorial immunotherapies targeting this immune cell compartment.
Collapse
Affiliation(s)
- Janne Ruotsalainen
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Dorys Lopez‐Ramos
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Meri Rogava
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Naveen Shridhar
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Nicole Glodde
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Evelyn Gaffal
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Tobias Bald
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Laboratory of Tumor‐ImmunobiologyInstitute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Thomas Tüting
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
26
|
Liu TW, Gammon ST, Yang P, Fuentes D, Piwnica-Worms D. Myeloid cell-derived HOCl is a paracrine effector that trans-inhibits IKK/NF-κB in melanoma cells and limits early tumor progression. Sci Signal 2021; 14:14/677/eaax5971. [PMID: 33824181 DOI: 10.1126/scisignal.aax5971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The myeloperoxidase (MPO) system of myeloid-derived cells (MDCs) is central to cellular innate immunity. Upon MDC activation, MPO is secreted into phagosomes where it catalyzes the production of hypochlorous acid (HOCl), a potent chlorinating oxidant. Here, we demonstrated that the myeloid lineage-restricted MPO-HOCl system had antitumor effects in early melanoma growth in aged mice. Orthotopic melanomas grew more slowly in immunocompetent MPO+/+ host mice compared to age-matched syngeneic MPO-/- mice. Real-time intravital tumor imaging in vivo and in cell cocultures revealed a cell-cell proximity-dependent association between MDC-derived MPO enzyme activity and blockade of ligand-induced IκBα degradation in tumor cells. HOCl directly trans-inhibited IκB kinase (IKK) activity in tumor cells, thereby decreasing nuclear factor κB (NF-κB) transcriptional activation and inducing changes in the expression of genes involved in metabolic pathways, cell cycle progression, and DNA replication. By contrast, HOCl induced transcriptional changes in CD8+ T cells related to ion transport and the MAPK and PI3K-AKT signaling pathways that are associated with T cell activation. MPO increased the circulating concentrations of the myeloid cell-attracting cytokines CXCL1 and CXCL5, enhanced local infiltration by CD8+ cytotoxic T cells, and decreased tumor growth. Overall, these data reveal a role for MDC-derived HOCl as a small-molecule paracrine signaling factor that trans-inhibits IKK in melanoma tumor cells, mediating antitumor responses during early tumor progression.
Collapse
Affiliation(s)
- Tracy W Liu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Ming H, Li B, Zhou L, Goel A, Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer 2021; 1875:188519. [PMID: 33548345 DOI: 10.1016/j.bbcan.2021.188519] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cancer metastasis, defined by the epithelial to mesenchymal transition (EMT) of tumor cells, disseminates from the primary site to progressively colonize in distant tissues, and accounts for most cancer-associated deaths. However, studies on the molecular basis of cancer metastasis are still in their infancy. Besides genetic mutations, accumulating evidence indicates that epigenetic alterations also contribute in a major way to the refractory nature of cancer metastasis. Considered as one of the essential epigenetic regulators, long non-coding RNAs (lncRNAs) can act as signaling regulators, decoys, guides and scaffolds, modulating key molecules in every step of cancer metastasis including dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Although still having limited clinical application, it is encouraging to witness that several lncRNAs, including CCAT1 and HOTAIR, are under clinical evaluation as potential biomarkers for cancer staging and assessment of metastatic potential. In this review, we focus on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis and discuss their clinical potential as novel therapeutic targets as well as their diagnostic and prognostic significance for cancer treatment. Gaining clear insights into the detailed molecular basis underlying lncRNA-modulated cancer metastasis may provide previously unrecognized diagnostic and therapeutic strategies for metastatic patients.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, 1218 S. Fifth Avenue, Suite 2226, Biomedical Research Center, Monrovia, CA 91016, USA.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
28
|
Zhou JG, Donaubauer AJ, Frey B, Becker I, Rutzner S, Eckstein M, Sun R, Ma H, Schubert P, Schweizer C, Fietkau R, Deutsch E, Gaipl U, Hecht M. Prospective development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with recurrent/metastatic cancer to immune checkpoint inhibitors. J Immunother Cancer 2021; 9:jitc-2020-001845. [PMID: 33593828 PMCID: PMC7888377 DOI: 10.1136/jitc-2020-001845] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background The predictive power of novel biological markers for treatment response to immune checkpoint inhibitors (ICI) is still not satisfactory for the majority of patients with cancer. One should identify valid predictive markers in the peripheral blood, as this is easily available before and during treatment. The current interim analysis of patients of the ST-ICI cohort therefore focuses on the development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with metastatic cancer to ICI targeting the programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis. Methods A total of 104 patients were prospectively enrolled. 54 immune cell subsets were prospectively analyzed in patients’ peripheral blood by multicolor flow cytometry before treatment with ICI (pre-ICI; n=89), and after the first application of ICI (n=65). Pre-ICI, patients were randomly allocated to a training (n=56) and a validation cohort (n=33). Univariate Cox proportional hazards regression analysis and least absolute shrinkage and selection operator Cox model were used to create a predictive immune signature, which was also checked after the first ICI, to consider the dynamics of changes in the immune status. Results Whole blood samples were provided by 89 patients pre-ICI and by 65 patients after the first ICI. We identified a LIPS which is based on five immune cell subtypes: CD14high monocytes, CD8+/PD-1+ T cells, plasmacytoid dendritic cells, neutrophils, and CD3+/CD56+/CD16+ natural killer (NK)T cells. The signature achieved a high accuracy (C-index 0.74 vs 0.71) for predicting overall survival (OS) benefit in both the training and the validation cohort. In both cohorts, the low-risk group had significantly longer OS than the high-risk group (HR 0.26, 95% CI 0.12 to 0.56, p=0.00025; HR 0.30, 95% CI 0.10 to 0.91, p=0.024, respectively). Regarding the whole cohort, LIPS also predicted progression-free survival (PFS). The identified LIPS was not affected by clinicopathological features with the exception of brain metastases. NKT cells and neutrophils of the LIPS can be used as dynamic predictive biomarkers for OS and PFS after first administration of the ICI. Conclusion Our study identified a predictive LIPS for survival of patients with cancer treated with PD-1/PD-L1 ICI, which is based on immune cell subsets in the peripheral whole blood. Trial registration number NCT03453892.
Collapse
Affiliation(s)
- Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sandra Rutzner
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Institute of Pathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany .,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
29
|
Qin L, Wang Y, Yang N, Zhang Y, Zhao T, Wu Y, Jiang J. Tissue inhibitor of metalloproteinase-1 (TIMP-1) as a prognostic biomarker in gastrointestinal cancer: a meta-analysis. PeerJ 2021; 9:e10859. [PMID: 33628641 PMCID: PMC7894117 DOI: 10.7717/peerj.10859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tissue inhibitor of metalloproteinase 1 (TIMP-1) has recently been shown to be dependent on or independent of Matrix metalloproteinases (MMPs) in its roles in tumorigenesis and progression. This appreciation has prompted various studies assessing the prognostic value of TIMP-1 in patients with gastrointestinal cancer, however, the conclusions were still inconsistent. The aim of this study was to assess the prognostic value of TIMP-1-immunohistochemistry (IHC) staining and pretreatment serum/plasma TIMP-1 level in gastrointestinal cancer survival as well as the association between TIMP-1 and clinicopathologic features. Methods The meta-analysis was registered in the International Prospective Register of Systematic Reviews (PROSPERO; Registration NO. CRD42020185407) and followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. A highly sensitive literature search was performed in electronic databases including PubMed, EMBASE and the Cochrane Library. Heterogeneity analysis was conducted using both chi-square-based Q statistics and the I2 test. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to assess the prognostic value of TIMP-1 using the fixed-effects model. Odds ratios (ORs) with 95% CIs were calculated to evaluate the associations between TIMP-1 and clinicopathological characteristics. The meta-analysis was conducted using STATA 12.0 software. Results A total of 3,958 patients from twenty-two studies were included in the meta-analysis. Elevated TIMP-1 levels were significantly associated with poor survival in gastrointestinal cancer (TIMP-1-IHC staining: HR = 2.04, 95% CI [1.59–2.61], I2 = 35.7%, PQ = 0.156; pretreatment serum/plasma TIMP-1 levels: HR = 2.02, 95% CI [1.80–2.28], I2 = 0%, PQ = 0.630). Moreover, clinicopathological parameter data analysis showed that elevated TIMP-1 levels were significantly associated with lymph node metastasis (N1/N2/N3 vs N0: OR = 2.92, 95% CI [1.95–4.38]) and higher TNM stages (III/IV vs I/II: OR = 2.73, 95% CI [1.23–6.04]). Conclusion Both TIMP-1-positive IHC staining and high serum/plasma TIMP-1 levels are poor prognostic factors for the survival of gastrointestinal cancer. In addition, TIMP-1 overexpression was correlated with more advanced clinicopathological features.
Collapse
Affiliation(s)
- Lili Qin
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Na Yang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianye Zhao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat Commun 2021; 12:729. [PMID: 33526794 PMCID: PMC7851155 DOI: 10.1038/s41467-021-20935-9] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Treatment with immune checkpoint inhibitors (ICI) has demonstrated clinical benefit for a wide range of cancer types. Because only a subset of patients experience clinical benefit, there is a strong need for biomarkers that are easily accessible across diverse practice settings. Here, in a retrospective cohort study of 1714 patients with 16 different cancer types treated with ICI, we show that higher neutrophil-to-lymphocyte ratio (NLR) is significantly associated with poorer overall and progression-free survival, and lower rates of response and clinical benefit, after ICI therapy across multiple cancer types. Combining NLR with tumor mutational burden (TMB), the probability of benefit from ICI is significantly higher (OR = 3.22; 95% CI, 2.26-4.58; P < 0.001) in the NLR low/TMB high group compared to the NLR high/TMB low group. NLR is a suitable candidate for a cost-effective and widely accessible biomarker, and can be combined with TMB for additional predictive capacity. There is an unmet clinical need for simple, accessible biomarkers to select patients who are more likely to respond to immune checkpoint therapy. Here the authors show that a lower neutrophil-to-lymphocyte ratio is associated with better overall and progressive-free survival, as well as higher rate of response, in a multi-cancer cohort of patients treated with immune checkpoint inhibitors.
Collapse
|
31
|
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021; 18:261-279. [PMID: 33469195 DOI: 10.1038/s41571-020-00459-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The immune system has crucial roles in cancer development and treatment. Whereas adaptive immunity can prevent or constrain cancer through immunosurveillance, innate immunity and inflammation often promote tumorigenesis and malignant progression of nascent cancer. The past decade has witnessed the translation of knowledge derived from preclinical studies of antitumour immunity into clinically effective, approved immunotherapies for cancer. By contrast, the successful implementation of treatments that target cancer-associated inflammation is still awaited. Anti-inflammatory agents have the potential to not only prevent or delay cancer onset but also to improve the efficacy of conventional therapeutics and next-generation immunotherapies. Herein, we review the current clinical advances and experimental findings supporting the utility of an anti-inflammatory approach to the treatment of solid malignancies. Gaining a better mechanistic understanding of the mode of action of anti-inflammatory agents and designing more effective treatment combinations would advance the clinical application of this therapeutic approach.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Liver Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
32
|
Pavlakis E, Neumann M, Stiewe T. Extracellular Vesicles: Messengers of p53 in Tumor-Stroma Communication and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21249648. [PMID: 33348923 PMCID: PMC7766631 DOI: 10.3390/ijms21249648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center of Lung Research (DZL), Philipps University, 35034 Marburg, Germany
- Correspondence:
| |
Collapse
|
33
|
Kalafati L, Mitroulis I, Verginis P, Chavakis T, Kourtzelis I. Neutrophils as Orchestrators in Tumor Development and Metastasis Formation. Front Oncol 2020; 10:581457. [PMID: 33363012 PMCID: PMC7758500 DOI: 10.3389/fonc.2020.581457] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil–mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
| | - Ioannis Mitroulis
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panayotis Verginis
- University of Crete, School of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
34
|
Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol Int 2020; 71:1-14. [PMID: 33074556 DOI: 10.1111/pin.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteolytic balance is crucial for the maintenance of tissue homeostasis. In cancer, dysregulated proteolysis is involved in unregulated tissue remodeling and inflammation, leading to the promotion of tumor growth, local invasion, and metastasis. Metalloproteinases, which were first identified as collagen cleaving enzymes, have been shown to extensively degrade extracellular matrix proteins or selectively release cell surface-bound cytokines, growth factors, or their receptors, thereby impacting extracellular matrix integrity, immune cell recruitment and tissue turnover. Although tumor cells produce various metalloproteinases, the major source is thought to be stromal cells infiltrating the tumor. Different types of stromal cells express specific sets of metalloproteinases and their inhibitors, which specifically alter the milieu within the tumor. In this review, recent findings and knowledge regarding metalloproteinases derived from stromal cells during the creation of the tumor microenvironment are described and their contribution to the tumor progression and metastasis discussed.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Wang Z, Yang C, Li L, Zhang Z, Pan J, Su K, Chen W, Li J, Qiu F, Huang J. CD62L dim Neutrophils Specifically Migrate to the Lung and Participate in the Formation of the Pre-Metastatic Niche of Breast Cancer. Front Oncol 2020; 10:540484. [PMID: 33178575 PMCID: PMC7593663 DOI: 10.3389/fonc.2020.540484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lung metastasis is one of the leading causes of death in patients with breast cancer. The mechanism of tumor metastasis remains controversial. Recently, the formation of a pre-metastatic niche has been considered a key factor contributing to breast cancer metastasis, which might also explain the tendency of organ metastasis. Our study initially re-examined the critical time of the niche formation and simultaneously detected a novel subset of neutrophils, CD62Ldim neutrophils, which had not previously been reported in tumor metastasis; the number of these cells progressively increased during breast cancer progression and was closely related to the formation of the pre-metastatic niche. Furthermore, we explored the mechanism of their aggregation in the pre-metastatic niche in the lung and found that they were specifically chemoattracted by the CXCL12-CXCR4 signaling pathway. Compared to the CD62Lhi neutrophils, CD62Ldim neutrophils exhibited stronger adhesion and increased survival. The results provide new insights into the subsequent targeted treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Valero C, Zanoni DK, Pillai A, Xu B, Katabi N, Ghossein RA, Ganly I, Morris LGT, Shah JP, Wong RJ, Patel SG. Nodal characteristics associated with adverse prognosis in oral cavity cancer are linked to host immune status. J Surg Oncol 2020; 123:141-148. [PMID: 32974936 DOI: 10.1002/jso.26235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Nodal metastasis is one of the strongest predictors of outcomes in oral cavity squamous cell carcinomas (OSCC). The aim was to analyze the interplay of nodal characteristics in OSCC prognosis. METHODS In this retrospective cohort study we included OSCC patients treated with primary surgery including neck dissection between 2005 and 2015 (n = 619). Disease-specific survival (DSS) was the primary endpoint. Optimal cutoffs were identified using recursive-partitioning analysis (RPA). A novel characteristic-metastatic focus-to-lymph node size ratio (MLR)-was introduced. We compared the American Joint Committee on Cancer, Eighth Edition (AJCC8) pN categories to a new categorization. RESULTS Patients with higher neutrophil-to-lymphocyte ratio had more adverse nodal characteristics. All nodal characteristics were significant predictors of DSS in univariable analysis. In multivariable analysis, only number of positive nodes and MLR remained significant. An RPA including all nodal covariates confirmed the results. Compared with AJCC8, our RPA categorization had better hazard discrimination (0.681 vs. 0.598), but poorer balance value (0.783 vs. 0.708). CONCLUSION Patients with higher neutrophil-to-lymphocyte ratio had more adverse nodal characteristics. Total number of metastatic lymph nodes is the strongest predictor of outcomes in OSCC. MLR is a more powerful predictor than metastatic lymph node size or metastatic focus size alone.
Collapse
Affiliation(s)
- Cristina Valero
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniella K Zanoni
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anjali Pillai
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ian Ganly
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Luc G T Morris
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jatin P Shah
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Oncology, Radiotherapy, and Plastic Surgery, Sechenov University, Moscow, Russia
| | - Richard J Wong
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Snehal G Patel
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
37
|
Abstract
The Hanahan and Weinberg "hallmarks of cancer" papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.
Collapse
Affiliation(s)
- Lucy MacCarthy-Morrogh
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
38
|
Tang L, Wang Z, Mu Q, Yu Z, Jacobson O, Li L, Yang W, Huang C, Kang F, Fan W, Ma Y, Wang M, Zhou Z, Chen X. Targeting Neutrophils for Enhanced Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002739. [PMID: 32656801 DOI: 10.1002/adma.202002739] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Indexed: 05/18/2023]
Abstract
Improving tumor accumulation and delivery efficiency is an important goal of nanomedicine. Neutrophils play a vital role in both chemically mediating inflammatory response through myeloperoxidase (MPO) and biologically promoting metastasis during inflammation triggered by the primary tumor or environmental stimuli. Herein, a novel theranostic nanomedicine that targets both the chemical and biological functions of neutrophils in tumor is designed, facilitating the enhanced retention and sustained release of drug cargos for improved cancer theranostics. 5-hydroxytryptamine (5-HT) is equipped onto nanoparticles (NPs) loaded with photosensitizers and Zileuton (a leukotriene inhibitor) to obtain MPO and neutrophil targeting NPs, denoted as HZ-5 NPs. The MPO targeting property of 5-HT modified NPs is confirmed by noninvasive positron emission tomography imaging studies. Furthermore, photodynamic therapy is used to initiate the inflammatory response which further mediated the accumulation and retention of neutrophil targeting NPs in a breast cancer model. This design renders a greatly improved theranostic nanomedicine for efficient tumor suppression, and more importantly, inhibition of neutrophil-mediated lung metastasis via the sustained release of Zileuton. This work presents a novel strategy of targeting neutrophils for improved tumor theranostics, which may open up new avenues in designing nanomedicine through exploiting the tumor microenvironment.
Collapse
Affiliation(s)
- Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chunming Huang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maosheng Wang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
39
|
Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, Zuo J, Zhang J, Chen J, Hao H. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer 2020; 11:4384-4396. [PMID: 32489457 PMCID: PMC7255375 DOI: 10.7150/jca.44215] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Host and tumorous inflammation actively affect liver metastasis of colorectal cancer (CRC). Neutrophils have been recognized as one active participant in metastasis procedure, with controversial roles however. Activated neutrophils release extracellular traps (NETs) which are involved in infection and multiple pathological conditions. NETs on cancer metastasis is getting recognized but less elucidated in mechanism. How NETs interact with cancer cells is still largely unknown. In this study, we found that neutrophils from CRC patients, especially those with liver metastatic, underwent remarkably enhanced NETs. Clinically, sera and pathological NETs marker closely correlated with onset of liver metastasis. Through in vivo and in vitro studies, we proved that increased NETs positively contribute to onset of CRC liver metastasis. Digesting NETs with DNase 1 diminished the increased liver metastasis associated with NETs. In detail, NETs trapped CRC cells in liver and exerted no cytotoxicity on tumor cells, but boosted tumorous proliferation and invasion capacity. We further found this enhanced malignancy of trapped CRC cells was due to the elevated tumorous interleukin (IL)-8 expression triggered by NETs. Blocking IL-8 activity effectively abrogated the enhanced proliferation and invasion triggered by NETs. Moreover, overproduced IL-8 in turn activate neutrophils towards NETs formation, thus forming a positive loop optimizing CRC liver metastasis. Collectively, our study propose a novel positive feedback between elevated tumorous IL-8 and NETs to promote CRC liver metastasis, and identify potential strategy against liver metastasis.
Collapse
Affiliation(s)
- Luyu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Caner Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Infection Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Hong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jieliang Zuo
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jubo Zhang
- Department of Infection Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hankun Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Calabretta E, Carlo-Stella C. The Many Facets of CD38 in Lymphoma: From Tumor-Microenvironment Cell Interactions to Acquired Resistance to Immunotherapy. Cells 2020; 9:E802. [PMID: 32225002 PMCID: PMC7226059 DOI: 10.3390/cells9040802] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
The CD38 antigen is expressed in several hematological malignancies, and the anti-CD38 monoclonal antibodies Daratumumab and Isatuximab have an established role in the therapy of multiple myeloma. However, data on the therapeutic utility of CD38 targeting in other lymphoid malignancies are limited. In chronic lymphocytic leukemia, the prognostic significance of CD38 expression is well accepted, and preclinical studies on the use of Daratumumab in monotherapy or combination therapy have demonstrated considerable efficacy. In other lymphoproliferative disorders, preclinical and clinical data have not been as compelling; however, CD38 overexpression likely contributes to resistance to checkpoint inhibitors, prompting numerous clinical trials in Hodgkin and non-Hodgkin lymphoma to investigate whether blocking CD38 enhances the efficacy of checkpoint inhibitors. Furthermore, due to its widespread expression in hematological tumors, CD38 represents an attractive target for cellular therapies such as CAR-T cells. The present review discusses current knowledge of CD38 expression and its implications in various lymphoid malignancies. Furthermore, it addresses current and future therapeutic perspectives, with a particular emphasis on the significance of CD38 interaction with immune cells of the tumor microenvironment. Lastly, results of ongoing studies using anti-CD38 antibodies will be reviewed.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milano, Italy
| |
Collapse
|
41
|
Rayes RF, Vourtzoumis P, Bou Rjeily M, Seth R, Bourdeau F, Giannias B, Berube J, Huang YH, Rousseau S, Camilleri-Broet S, Blumberg RS, Beauchemin N, Najmeh S, Cools-Lartigue J, Spicer JD, Ferri LE. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 204:2285-2294. [PMID: 32169849 DOI: 10.4049/jimmunol.1900240] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Phil Vourtzoumis
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Marianne Bou Rjeily
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Rashmi Seth
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Yu-Hwa Huang
- Department of Medicine, Harvard University, Boston, MA 02115
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; and
| | | | - Nicole Beauchemin
- Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Sara Najmeh
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
42
|
The UDP/P2y6 axis promotes lung metastasis of melanoma by remodeling the premetastatic niche. Cell Mol Immunol 2020; 17:1269-1271. [PMID: 32144377 DOI: 10.1038/s41423-020-0392-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
|
43
|
Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020; 52:55-81. [PMID: 31940273 DOI: 10.1016/j.immuni.2019.12.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cancer is a complex disease whose outcome depends largely on the cross-talk between the tumor and its microenvironment. Here, we review the evolution of the field of tumor immunology and the advances, in lockstep, of our understanding of cancer as a disease. We discuss the involvement of different immune cells at distinct stages of tumor progression and how immune contexture determinants shaping tumor development are being exploited therapeutically. Current clinical stratification schemes focus on the tumor histopathology and the molecular characteristics of the tumor cell. We argue for the importance of revising these stratification systems to include immune parameters so as to address the immediate need for improved prognostic and/or predictive information to guide clinical decisions.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
44
|
Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, Lin ZF, Wang XY, Wang CQ, Lu M, Jia HL, Chen JH, Zhang JB, Qin LX. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol 2020; 13:3. [PMID: 31907001 PMCID: PMC6945602 DOI: 10.1186/s13045-019-0836-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The propensity of the activated neutrophils to form extracellular traps (NETs) is demonstrated in multiple inflammatory conditions. In this study, we investigated the roles of NETs in metastasis of hepatocellular carcinoma (HCC) and further explored the underlying mechanism of how NETs affect metastasis as well as the therapeutic value. METHODS The neutrophils were isolated from the blood of human HCC patients and used to evaluate the formation of NETs. The expression of NET markers was detected in tumor specimens. A LPS-induced NET model was used to investigate the role of NETs on HCC metastasis. RNA-seq was performed to identify the key molecular event triggered by NETs, and their underlying mechanism and therapeutic significance were explored using both in vitro and in vivo assays. RESULTS NET formation was enhanced in neutrophils derived from HCC patients, especially those with metastatic HCCs. NETs trapped HCC cells and subsequently induced cell-death resistance and enhanced invasiveness to trigger their metastatic potential, which was mediated by internalization of NETs into trapped HCC cells and activation of Toll-like receptors TLR4/9-COX2 signaling. Inhibition of TLR4/9-COX2 signaling abrogated the NET-aroused metastatic potential. A combination of DNase 1 directly wrecking NETs with anti-inflammation drugs aspirin/hydroxychloroquine effectively reduced HCC metastasis in mice model. CONCLUSIONS NETs trigger tumorous inflammatory response and fuel HCC metastasis. Targeting NETs rather than neutrophils themselves can be a practice strategy against HCC metastasis.
Collapse
Affiliation(s)
- Lu-Yu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qin Luo
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ran Wei
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhi-Fei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma. Int J Mol Sci 2019; 20:ijms20215503. [PMID: 31694167 PMCID: PMC6862619 DOI: 10.3390/ijms20215503] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is a B-cell malignancy that, typically, responds well to standard therapies. However, patients who relapse after standard regimens or are refractory to induction therapy have a dismal outcome. The implementation of novel therapies such as the anti-CD30 monoclonal antibody Brentuximab Vedotin and immune checkpoint inhibitors has provided curative options for many of these patients. Nonetheless, responses are rarely durable, emphasizing the need for new agents. cHL is characterized by a unique microenvironment in which cellular and humoral components interact to promote tumor survival and dissemination. Knowledge of the complex composition of cHL microenvironment is constantly evolving; in particular, there is growing interest in certain cell subsets such as tumor-associated macrophages, myeloid-derived suppressor cells and neutrophils, all of which have a relevant role in the pathogenesis of the disease. The unique biology of the cHL microenvironment has provided opportunities to develop new drugs, many of which are currently being tested in preclinical and clinical settings. In this review, we will summarize novel insights in the crosstalk between tumor cells and non-malignant inflammatory cells. In addition, we will discuss the relevance of tumor-microenvironment interactions as potential therapeutic targets.
Collapse
|
46
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
47
|
Bekeschus S, Seebauer C, Wende K, Schmidt A. Physical plasma and leukocytes - immune or reactive? Biol Chem 2019; 400:63-75. [PMID: 30030959 DOI: 10.1515/hsz-2018-0224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Leukocytes are professionals in recognizing and removing pathogenic or unwanted material. They are present in virtually all tissues, and highly motile to enter or leave specific sites throughout the body. Less than a decade ago, physical plasmas entered the field of medicine to deliver their delicate mix of reactive species and other physical agents for mainly dermatological or oncological therapy. Plasma treatment thus affects leukocytes via direct or indirect means: immune cells are either present in tissues during treatment, or infiltrate or exfiltrate plasma-treated areas. The immune system is crucial for human health and resolution of many types of diseases. It is therefore vital to study the response of leukocytes after plasma treatment in vitro and in vivo. This review gathers together the major themes in the plasma treatment of innate and adaptive immune cells, and puts these into the context of wound healing and oncology, the two major topics in plasma medicine.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Christian Seebauer
- Greifswald University Medical Center, Department of Oral and Maxillofacial Surgery/Plastic Surgery, Ferdinand-Sauerbruch-Str. DZ 7, D-17475 Greifswald, Germany
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis, Felix-Hausdorff-Str. 2, D-17489 Greifswald, Germany
| |
Collapse
|
48
|
Schuldner M, Dörsam B, Shatnyeva O, Reiners KS, Kubarenko A, Hansen HP, Finkernagel F, Roth K, Theurich S, Nist A, Stiewe T, Paschen A, Knittel G, Reinhardt HC, Müller R, Hallek M, von Strandmann EP. Exosome-dependent immune surveillance at the metastatic niche requires BAG6 and CBP/p300-dependent acetylation of p53. Theranostics 2019; 9:6047-6062. [PMID: 31534536 PMCID: PMC6735508 DOI: 10.7150/thno.36378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles released by tumor cells contribute to the reprogramming of the tumor microenvironment and interfere with hallmarks of cancer including metastasis. Notably, melanoma cell-derived EVs are able to establish a pre-metastatic niche in distant organs, or on the contrary, exert anti-tumor activity. However, molecular insights into how vesicles are selectively packaged with cargo defining their specific functions remain elusive. Methods: Here, we investigated the role of the chaperone Bcl2-associated anthogene 6 (BAG6, synonym Bat3) for the formation of pro- and anti-tumor EVs. EVs collected from wildtype cells and BAG6-deficient cells were characterized by mass spectrometry and RNAseq. Their tumorigenic potential was analyzed using the B-16V transplantation mouse melanoma model. Results: We demonstrate that EVs from B-16V cells inhibit lung metastasis associated with the mobilization of Ly6Clow patrolling monocytes. The formation of these anti-tumor-EVs was dependent on acetylation of p53 by the BAG6/CBP/p300-acetylase complex, followed by recruitment of components of the endosomal sorting complexes required for transport (ESCRT) via a P(S/T)AP double motif of BAG6. Genetic ablation of BAG6 and disruption of this pathway led to the release of a distinct EV subtype, which failed to suppress metastasis but recruited tumor-promoting neutrophils to the pre-metastatic niche. Conclusion: We conclude that the BAG6/CBP/p300-p53 axis is a key pathway directing EV cargo loading and thus a potential novel microenvironmental therapeutic target.
Collapse
|
49
|
Hu X, Li YQ, Ma XJ, Zhang L, Cai SJ, Peng JJ. A Risk Signature With Inflammatory and T Immune Cells Infiltration in Colorectal Cancer Predicting Distant Metastases and Efficiency of Chemotherapy. Front Oncol 2019; 9:704. [PMID: 31456937 PMCID: PMC6700227 DOI: 10.3389/fonc.2019.00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
In order to accurately predict oncological outcomes of colorectal cancer (CRC), we established a risk signature with tumor infiltrating neutrophils and T immune cells for prognosis. A total of 276 CRC patients from FUSCC, and 434 patients from TCGA cohort were enrolled in the study. A risk signature model in combination with CEACAM8+ neutrophils, CD3+, CD8+ T lymphocytes, and FOXP3+ regulatory T cells was established, and the relationships with patient clinicopathological characteristics and prognosis were evaluated. In TCGA cohort, high CEACAM8 expression was observed as an independent factor of poor disease-free survival (DFS), as well as inversely correlated with CD8 (P = 0.0035) and FOXP3 expression (P = 0.05). In the FUSCC cohort for validation, the association between CEACAM8+ neutrophils and DFS had been confirmed in CRC tissue (P = 0.026). Furthermore, a risk stratification was derived from integration of CEACAM8+ neutrophils and T immune cells. In both OS and DFS, the high-risk group all demonstrated worse prognosis than low-risk group, with statistical significance (all P < 0.001). In addition, the high-risk group was correlated with post-operative relapses with accurate prediction. Furthermore, the high-risk group identified a subgroup of CRC patients who appeared not to benefit from adjuvant chemotherapy. At last, predictive nomograms were constructed with recognized independent prognosticators, showing this risk signature increasing the predictive accuracy and efficiency for OS and DFS. In conclusion, incorporation of neutrophil into T lymphocytes could provide more accurate prognostic information in CRC, and this risk stratification predicted for survival benefit from post-operative chemotherapy.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Qi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Ji Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, Quail D, Walsh L, Sangwan V, Bertos N, Cools-Lartigue J, Ferri LE, Spicer JD. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 2019; 5:128008. [PMID: 31343990 DOI: 10.1172/jci.insight.128008] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Targeting the dynamic tumor immune microenvironment (TIME) can provide effective therapeutic strategies for cancer. Neutrophils are the predominant leukocyte population in mice and humans, and mounting evidence implicates these cells during tumor growth and metastasis. Neutrophil extracellular traps (NETs) are networks of extracellular neutrophil DNA fibers that are capable of binding tumor cells to support metastatic progression. Here we demonstrate for the first time that circulating NET levels are elevated in advanced esophageal, gastric and lung cancer patients compared to healthy controls. Using pre-clinical murine models of lung and colon cancer in combination with intravital video microscopy, we show that NETs functionally regulate disease progression and that blocking NETosis through multiple strategies significantly inhibits spontaneous metastasis to the lung and liver. Further, we visualize how inhibiting tumor-induced NETs decreases cancer cell adhesion to liver sinusoids following intrasplenic injection - a mechanism previously thought to be driven primarily by exogenous stimuli. Thus, in addition to neutrophil abundance, the functional contribution of NETosis within the TIME has critical translational relevance and represents a promising target to impede metastatic dissemination.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jack G Mouhanna
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Ioana Nicolau
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the MUHC, Montreal, Québec, Canada
| | - Daniela Quail
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| | - Logan Walsh
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| | - Veena Sangwan
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Nicholas Bertos
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| |
Collapse
|