1
|
Nageswaran V, Carreras A, Reinshagen L, Beck KR, Steinfeldt J, Henricsson M, Ramezani Rad P, Peters L, Strässler ET, Lim J, Verhaar BJ, Döring Y, Weber C, König M, Steinhagen-Thiessen E, Demuth I, Kränkel N, Leistner DM, Potente M, Nieuwdorp M, Knaus P, Kuebler WM, Ferrell M, Nemet I, Hazen SL, Landmesser U, Bäckhed F, Haghikia A. Gut Microbial Metabolite Imidazole Propionate Impairs Endothelial Cell Function and Promotes the Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2025; 45:823-839. [PMID: 40143816 PMCID: PMC12017598 DOI: 10.1161/atvbaha.124.322346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The microbially produced amino acid-derived metabolite imidazole propionate (ImP) contributes to the pathogenesis of type 2 diabetes. However, the effects of ImP on endothelial cell (EC) physiology and its role in atherosclerotic coronary artery disease are unknown. Using both human and animal model studies, we investigated the potential contributory role of ImP in the development of atherosclerosis. METHODS Plasma levels of ImP were measured in patients undergoing elective cardiac angiography (n=831) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Odds ratios and corresponding 95% confidence intervals for coronary artery disease were calculated based on the ImP quartiles using both univariable and multivariable logistic regression models. The effects of ImP on functional properties of ECs were assessed using HAECs (human aortic endothelial cells). In a mouse model of carotid artery injury, the impact of ImP on vascular regeneration was examined. Additionally, atheroprone Apoe-/- mice fed a high-fat diet were treated with and without ImP (800 µg), and aortic atherosclerotic lesion area was evaluated after 12 weeks. Next-generation sequencing, Western blot analysis, small interfering RNA-based gene knockdown, and tamoxifen-inducible Cre-loxP experiments were performed to investigate ImP-mediated molecular mechanisms. RESULTS Plasma ImP levels in subjects undergoing cardiac evaluation were associated with increased risk of prevalent coronary artery disease. We found that ImP dose dependently impaired migratory and angiogenic properties of human ECs and promoted an increased inflammatory response. Long-term exposure to ImP compromised the repair potential of the endothelium after an arterial insult. In atheroprone Apoe-/- (apolipoprotein E-/-) mice, ImP increased atherosclerotic lesion size. Mechanistically, ImP attenuated insulin receptor signaling by suppressing the PI3K (phosphoinositide 3-kinase)/AKT pathway leading to sustained activation of the FOXO1 (forkhead box protein O1) transcription factor. Genetic inactivation of endothelial FOXO1 signaling in ImP-treated mice enhanced the angiogenic activity and preserved the vascular repair capacity of ECs after carotid injury. CONCLUSIONS Our findings reveal a hitherto unknown role of the microbially produced histidine-derived metabolite ImP in endothelial dysfunction and atherosclerosis, suggesting that ImP metabolism is a potential therapeutic target in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Vanasa Nageswaran
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany (V.N., P.K.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
| | - Alba Carreras
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Leander Reinshagen
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
| | - Katharina R. Beck
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Jakob Steinfeldt
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Pegah Ramezani Rad
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
| | - Lisa Peters
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (L.P., W.M.K.)
- Institute of Biology, Freie Universität Berlin, Germany (L.P.)
| | - Elisabeth T. Strässler
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
| | - Joseph Lim
- Angiogenesis and Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.L., M.P.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.L., M.P.)
| | - Barbara J.H. Verhaar
- Department of Internal Medicine-Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), the Netherlands (B.J.H.V., M.N.)
- Department of Vascular Medicine, Amsterdam UMC, the Netherlands (B.J.H.V., M.N.)
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Germany (Y.D., C.W.)
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland (Y.D.)
- Department for BioMedical Research (DBMR), University of Bern, Switzerland (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Germany (Y.D., C.W.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Germany (Y.D., C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Germany (Y.D., C.W.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands (C.W.)
- Munich Cluster for Systems Neurology, Germany (C.W.)
| | - Maximilian König
- Department of Internal Medicine D–Geriatrics, University Medicine Greifswald, Germany (M.K.)
| | - Elisabeth Steinhagen-Thiessen
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (E.S.-T., I.D.)
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (E.S.-T., I.D.)
- Charité–Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Germany (I.D.)
| | - Nicolle Kränkel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
| | - David M. Leistner
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhine-Main, Germany (D.M.L.)
- Department of Medicine, Cardiology and Angiology, Goethe University Hospital, Frankfurt, Germany (D.M.L.)
| | - Michael Potente
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Angiogenesis and Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.L., M.P.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.L., M.P.)
| | - Max Nieuwdorp
- Department of Internal Medicine-Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), the Netherlands (B.J.H.V., M.N.)
- Department of Vascular Medicine, Amsterdam UMC, the Netherlands (B.J.H.V., M.N.)
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany (V.N., P.K.)
- Berlin-Brandenburg School for Regenerative Therapies, Germany (P.K.)
- International Max-Planck Research School for Biology and Computation, Berlin, Germany (P.K.)
| | - Wolfgang M. Kuebler
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (L.P., W.M.K.)
- German Center for Lung Research (DZL), Berlin, Germany (W.M.K.)
- Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, Canada (W.M.K.)
- Departments of Surgery and Physiology, University of Toronto, Canada (W.M.K.)
| | - Marc Ferrell
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
| | - Ina Nemet
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
| | - Stanley L. Hazen
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, OH (S.L.H.)
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden (F.B.)
| | - Arash Haghikia
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| |
Collapse
|
2
|
Lei H, Chen S, Huang X, Ma D, Luo Y, Xiao S, Li P, Gan G, Cai Z. Monospecies Bacteria-Induced Chronic Apical Periodontitis Triggers the Aortic Inflammatory Response Via Modulation of Systemic Inflammation and Lipid Metabolism. J Transl Med 2025; 105:104095. [PMID: 39826684 DOI: 10.1016/j.labinv.2025.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and has been confirmed to be associated with a common oral bacterial infection-chronic apical periodontitis (CAP). However, the detailed mechanisms remain controversial. CAP can potentially alter systemic inflammation, lipid metabolism, and gut microbiota, all of which contribute to the progression of the aortic inflammatory response. This study aimed to explore the differential effects between Enterococcus faecalis and Porphyromonas gingivalis-CAP on the aortic inflammatory response, which focused on changes in systemic inflammation, lipid metabolism, and gut microbiota, to explore potential mechanisms linking oral disease to CVD. Our results showed P. gingivalis-CAP could activate more serious aortic inflammatory cytokine micro RNA expression (TNF-α, MCP-1, and ICAM-1) than E. faecalis-CAP by promoting higher serum inflammation (TNF-α, IL-6, IL-1α, and MCP-1) and lipid (low-density lipoprotein cholesterol and total cholesterol) levels. Simultaneously, there was no significant change in gut microbiota between them. Furthermore, all serum inflammatory cytokines showed substantial correlations with aortic inflammatory cytokine micro RNA expression, and certain serum lipid indicators showed significant correlations, but only 2 gut microorganisms (Ruminococcaceae and Prevotellaceae) showed significant correlations. The combined results suggest that CAP might activate the aortic inflammatory response in association with changes in the 3 potential mechanisms. However, the promotion of gut microbiota might be relatively weak. Using experimental CAP induced by specific bacteria, in which bacteria are sequestered in the medullary cavity, avoids the direct influence of blood or intestinal pathways and provides new perspectives for studying the mechanism of CVD associated with oral disease. Overall, these findings suggest that CAP may exacerbate systemic inflammation and serum lipid levels in patients with CVD, highlighting the importance of educating such patients on oral hygiene.
Collapse
Affiliation(s)
- Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dianfu Ma
- Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Suli Xiao
- Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Pingping Li
- Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
González-Correa C, Moleón J, Miñano S, Robles-Vera I, de la Visitación N, Guerra-Hernández E, Toral M, Jiménez R, Duarte J, Romero M. Protective Effect of Dietary Fiber on Blood Pressure and Vascular Dysfunction Through Regulation of Sympathetic Tone and Immune Response in Genetic Hypertension. Phytother Res 2025; 39:1858-1875. [PMID: 40122676 DOI: 10.1002/ptr.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The mechanisms underlying the antihypertensive effect of dietary fibers remain poorly understood. This study investigates whether dietary fiber supplementation can prevent cardiovascular damage and high blood pressure in a genetic model of neurogenic hypertension. Six-week-old male spontaneously hypertensive rats (SHR) and their respective normotensive control, Wistar Kyoto rats (WKY), were divided into four groups: Untreated WKY, untreated SHR, SHR treated with resistant starch (SHR + RS), and SHR treated with inulin-type fructans (SHR + ITF) for 12 weeks. Additionally, a faecal microbiota transplantation (FMT) experiment was conducted, transferring faecal content from treated SHR donors to recipient SHRs. A diet rich in RS fiber reduced vascular oxidative stress, inflammation, and high blood pressure. These protective effects were associated with a reshaped gut microbiota, leading to increased short-chain fatty acid production, reduced endotoxemia, decreased sympathetic activity, and a restored balance between Th17 and Treg lymphocytes in mesenteric lymph nodes and aorta. Elevated plasma levels of acetate and butyrate in the SHR + RS group correlated with increased expression of aortic GPR41, GRP43 and PPARδ. Conversely, ITF treatment failed to prevent hypertension or endothelial dysfunction in SHR. FMT from the SHR + RS group to recipient SHR partially replicated these beneficial effects. This study highlights the antihypertensive benefits of dietary insoluble RS fiber, which are attributed to enhanced short-chain fatty acids production in the gut. This leads to improved gut permeability, reduced sympathetic tone, and diminished vascular T-cell accumulation. Therefore, dietary interventions with RS fiber may offer promising therapeutic strategies for preventing hypertension.
Collapse
Affiliation(s)
- Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Okunlola FO, Okunlola AR, Adetuyi BO, Soliman MES, Alexiou A, Papadakis M, Fawzy MN, El-Saber Batiha G. Beyond the gut: Unraveling the multifaceted influence of microbiome on cardiovascular health. Clin Nutr ESPEN 2025; 67:71-89. [PMID: 40064239 DOI: 10.1016/j.clnesp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
Collapse
Affiliation(s)
- Felix Oladele Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Abimbola Rafiat Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Babatunde Oluwafemi Adetuyi
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
5
|
Peng L, Yin Q, Wang X, Zhong Y, Wang Y, Cai W, Zhou R, Chen Y, Hu Y, Cheng Z, Jiang W, Yue X, Huang L. Pasteurized Akkermansia muciniphila Ameliorates Preeclampsia in Mice by Enhancing Gut Barrier Integrity, Improving Endothelial Function, and Modulating Gut Metabolic Dysregulation. Microorganisms 2024; 12:2483. [PMID: 39770686 PMCID: PMC11727688 DOI: 10.3390/microorganisms12122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While Akkermansia muciniphila (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized A. muciniphila (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation. A PE mouse model was induced via the nitric oxide synthase inhibitor L-NAME, followed by treatment with either pAKK or live AKK. Fecal metabolomic profiling was performed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in vivo and in vitro experiments were used to assess the effects of pAKK on endothelial function and metabolic pathways. pAKK exhibited therapeutic effects comparable to those of live AKK in improving L-NAME-induced PE-like phenotypes in mice, including enhanced gut barrier function and reduced endotoxemia. pAKK also promoted placental angiogenesis by restoring endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production. The in vitro experiments further confirmed that pAKK alleviated L-NAME-induced NO reduction and endothelial dysfunction in human umbilical vein endothelial cells (HUVECs). Metabolomic analysis revealed that both pAKK and live AKK reversed metabolic disturbances in PE by modulating key metabolites and pathways related to unsaturated fatty acid biosynthesis, folate, and linoleic acid metabolism. As a postbiotic, pAKK may support existing treatments for preeclampsia by improving gut barrier function, restoring endothelial function, and regulating metabolic dysregulation, offering a safer alternative to live bacteria. These findings highlight the potential clinical value of pAKK as an adjunctive therapy in managing PE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (L.P.)
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (L.P.)
| |
Collapse
|
6
|
Yaghmaei H, Bahanesteh A, Soltanipur M, Takaloo S, Rezaei M, Siadat SD. The Role of Gut Microbiota Modification in Nonalcoholic Fatty Liver Disease Treatment Strategies. Int J Hepatol 2024; 2024:4183880. [PMID: 39444759 PMCID: PMC11498984 DOI: 10.1155/2024/4183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/25/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most common chronic liver diseases is nonalcoholic fatty liver disease (NAFLD), which affects many people around the world. Gut microbiota (GM) dysbiosis seems to be an influential factor in the pathophysiology of NAFLD because changes in GM lead to fundamental changes in host metabolism. Therefore, the study of the effect of dysbiosis on the pathogenicity of NAFLD is important. European clinical guidelines state that the best advice for people with NAFLD is to lose weight and improve their lifestyle, but only 40% of people can achieve this goal. Accordingly, it is necessary to provide new treatment approaches for prevention and treatment. In addition to dietary interventions and lifestyle modifications, GM modification-based therapies are of interest. These therapies include probiotics, synbiotics, fecal microbiota transplantation (FMT), and next-generation probiotics. All of these treatments have had promising results in animal studies, and it can be imagined that acceptable results will be obtained in human studies as well. However, further investigations are required to generalize the outcomes of animal studies to humans.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masood Soltanipur
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Takaloo
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Mahdi Rezaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Vidya Bernhardt G, Shivappa P, R Pinto J, Ks R, Ramakrishna Pillai J, Kumar Srinivasamurthy S, Paul Samuel V. Probiotics-role in alleviating the impact of alcohol liver disease and alcohol deaddiction: a systematic review. Front Nutr 2024; 11:1372755. [PMID: 39290562 PMCID: PMC11406471 DOI: 10.3389/fnut.2024.1372755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Background There are few efficient treatment options for alcohol addiction, which continues to be a serious public health concern. The possible contribution of gut microbiota to the onset and progression of alcohol addiction has been brought to light by recent studies. Probiotics have become a cutting-edge intervention in the treatment of alcohol consumption disorder because of its favorable effects on gut health. The purpose of this systematic review is to assess the body of research on the advantages of probiotics in treating alcoholism and associated neuroinflammatory conditions. Methods To find pertinent research published from January 2012 to 2023, a thorough search of electronic databases, including PubMed, Scopus, Google Scholar and Web of Science, was carried out. Included were studies looking at how probiotics affect neuroinflammation, gut- brain axis regulation, alcohol addiction, and related behaviors. Findings Several investigations have shown how beneficial probiotics are in reducing systemic inflammation and alcoholic liver disease (ALD). Probiotic treatments successfully corrected the imbalance of microbiota, decreased intestinal permeability, and stopped the passage of bacterial constituents such lipopolysaccharides (LPS) into the bloodstream. Additionally, probiotics helped to regulate neurotransmitter pathways, especially those connected to GABA, glutamate, and dopamine, which are intimately linked to behaviors related to addiction. Furthermore, it was shown that probiotics altered the expression of neurotransmitter signaling and dopamine receptors. Conclusion There is strong evidence from this systematic study that probiotics have potential advantages in treating alcohol addiction. The potential of probiotic therapies is demonstrated by the way they modulate important neurotransmitter pathways implicated in addiction, decrease neuroinflammation, and restore the balance of gut flora. To fully investigate the therapeutic potential of probiotics in treating alcohol addiction and enhancing the general wellbeing of those afflicted by this condition, more research is necessary.
Collapse
Affiliation(s)
- Grisilda Vidya Bernhardt
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Pooja Shivappa
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Janita R Pinto
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rashmi Ks
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAKCOPS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Vijay Paul Samuel
- Department of Anatomy, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
8
|
Longtine AG, Greenberg NT, Gonzalez A, Lindquist A, VanDongen NS, Mahoney SA, Rahman G, Clayton ZS, Ziemba BP, Ludwig KR, Widlansky ME, Knight R, Seals DR, Brunt VE. Oral Supplementation with the Short-Chain Fatty Acid Acetate Ameliorates Age-Related Arterial Dysfunction in Mice. AGING BIOLOGY 2024; 2:20240033. [PMID: 39897133 PMCID: PMC11785404 DOI: 10.59368/agingbio.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adverse changes in the gut microbiome with aging are an emerging mediator of arterial dysfunction, which contributes to cardiovascular disease (CVD) development. We investigated the therapeutic potential of enhancing the bioavailability of gut-derived short-chain fatty acids (SCFAs; produced from dietary fiber) for improving age-related arterial dysfunction. We performed gut microbial whole-genome sequencing in young (3 months) versus old (24 months) male C57BL/6N mice to explore changes in bacterial taxonomic abundance and functional pathways with aging and relations to arterial function. We then supplemented young and old mice with the SCFA acetate in drinking water versus controls and versus a high-fiber diet for 8-10 weeks to test the effects of these interventions on vascular function and explore potential mechanisms. Of the various differences in the gut microbiomes of old mice, lower SCFA-producing capacity (taxonomic abundance and functional pathways) stood out as a key feature related to worse arterial function after adjusting for age. Acetate supplementation and a high-fiber diet reversed ~30% of the age-related increase in aortic pulse wave velocity (stiffness) and fully restored carotid artery endothelium-dependent dilation (endothelial function) to young levels. Acetate and a high-fiber diet reduced age-related increases in systemic inflammation. We also found that improvements in endothelial function were likely mediated by suppressed early growth response-1 signaling using innovative siRNA-based knockdown in isolated arteries. There were no effects of the interventions in young mice. Acetate supplementation was comparably effective for ameliorating arterial dysfunction with aging as a high-fiber diet and thus shows promise for reducing CVD risk in older adults.
Collapse
Affiliation(s)
- Abigail G. Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Alexandra Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A. Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Katelyn R. Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael E. Widlansky
- Departments of Medicine and Pharmacology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, Department of Computer Science and Engineering, and Halıcıoğlu Data Science Institute, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
10
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
11
|
Marshall-Jones ZV, Patel KV, Castillo-Fernandez J, Lonsdale ZN, Haydock R, Staunton R, Amos GCA, Watson P. Conserved signatures of the canine faecal microbiome are associated with metronidazole treatment and recovery. Sci Rep 2024; 14:5277. [PMID: 38438389 PMCID: PMC10912219 DOI: 10.1038/s41598-024-51338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Antibiotic resistance is recognised as one of the biggest global threats to human and animal health. Understanding the influence of antibiotics on the canine microbiome is important to know the potential mid-to-long term effects on dysbiosis and mitigate side-effects such as antibiotic-associated diarrhoea. In this study, metronidazole was prescribed to 22 dogs for suspected giardiasis after exhibiting gastrointestinal symptoms such as diarrhoea and/or vomiting. Faecal samples were collected before, during seven days of treatment, and six months post-cessation. Faecal microbiota was assessed with 16S rRNA sequencing. Shannon diversity was reduced for up to three days after the treatment ended, and an altered community persisted for four to six weeks. All dogs recovered to a similar microbiome composition as pre-treatment. Immediately after receiving metronidazole, an increase in the relative abundance of the genera Lactobacillus, Bifidobacterium, and Enterococcus was observed. This may be due to antibiotic resistance commonly exhibited by these organisms. One-to-two weeks post-cessation, several other genera that were sensitive to the antibiotic recovered in abundances, with taxa belonging to the Erysipelotrichaceae family particularly driving composition change. Many of the bacteria initially reduced were associated with carbohydrate fermentation. This suggests scope exists to explore interventions to augment gastrointestinal health and support the re-establishment of the microbiome.
Collapse
Affiliation(s)
- Zoe V Marshall-Jones
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Krusha V Patel
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | | | - Zoe N Lonsdale
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Richard Haydock
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Ruth Staunton
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
12
|
Ziaei R, Shahshahan Z, Ghasemi‐Tehrani H, Heidari Z, Nehls MS, Ghiasvand R. Inulin-type fructans with different degrees of polymerization improve insulin resistance, metabolic parameters, and hormonal status in overweight and obese women with polycystic ovary syndrome: A randomized double-blind, placebo-controlled clinical trial. Food Sci Nutr 2024; 12:2016-2028. [PMID: 38455215 PMCID: PMC10916604 DOI: 10.1002/fsn3.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with reproductive disorders and adverse cardiometabolic risk factors that can negatively impact the general health of women. Inulin-type fructans (ITFs) are proposed to beneficially affect risk factors associated with metabolic disorders. Whether ITFs can help with the management of PCOS by modifying insulin resistance (IR) and androgen levels has not yet been explored. The aim of this study was to investigate the effects of ITFs with different degrees of polymerization on insulin resistance, blood lipids, anthropometric measures, and hormonal status in overweight and obese women with PCOS. In a randomized double-blind placebo-controlled trial, seventy-five women with PCOS aged 18-40 years old were randomly assigned to receive 10 g/day of high-performance inulin (HPI) or oligofructose-enriched inulin (OEI) or maltodextrin for 12 weeks. Biochemical and clinical outcomes were measured at baseline and after the intervention. Participants in the HPI and OEI groups experienced improvements in waist circumference, total testosterone, free androgen index, sex hormone-binding globulin, and triglycerides compared to the placebo group. Also, the number of women with irregular menses or oligomenorrhoea decreased significantly in both ITF groups. Participants in the HPI group reported lower body mass, fasting insulin, and HOMA-IR, as well as a higher quantitative insulin sensitivity check index. ITF supplementation, especially with long-chain ITFs, when given for 12 weeks may improve metabolic outcomes, androgen status and clinical manifestations in women with PCOS.
Collapse
Affiliation(s)
- Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Shahshahan
- Department of Obstetrics and Gynecology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hatav Ghasemi‐Tehrani
- Fertility Department, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of HealthIsfahan University of Medical SciencesIsfahanIran
| | - Marilyn S. Nehls
- Department of Kinesiology and Health PromotionUniversity of KentuckyLexingtonKentuckyUSA
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
13
|
Theofilis P, Vlachakis PK, Oikonomou E, Tsioufis K, Tousoulis D. Targeting the Gut Microbiome to Treat Cardiometabolic Disease. Curr Atheroscler Rep 2024; 26:25-34. [PMID: 38180642 DOI: 10.1007/s11883-023-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Cardiometabolic diseases, which include obesity, type 2 diabetes, and cardiovascular diseases, constitute a worldwide health crisis of unparalleled proportions. The human gut microbiota has emerged as a prominent topic of inquiry in the search for novel treatment techniques. This review summarizes current research on the potential of addressing the gut microbiota to treat cardiometabolic disease. RECENT FINDINGS Recent studies have highlighted a complex link between the gut microbiota and host physiology, shedding light on the several processes through which gut microorganisms impact metabolic health, inflammation, and cardiovascular function. Furthermore, a growing corpus of research is available on microbiome-based therapies such as dietary interventions, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. These therapies show promise as methods for reshaping the gut microbiota and, as a result, improving cardiometabolic outcomes. However, hurdles remain, ranging from the intricacies of microbiome research to the necessity for tailored treatments that take individual microbial variations into consideration, emphasizing the significance of furthering research to bridge the gap between microbiome science and clinical practice. The gut microbiome is a beacon of hope for improving the management of cardiometabolic disease in the age of precision medicine, since its association with their pathophysiology is constantly being unraveled and strengthened. Available studies point to the potential of gut microbiome-based therapeutics, which remains to be tested in appropriately designed clinical trials. Further preclinical research is, however, essential to provide answers to the existing obstacles, with the ultimate goal of enhancing patient care.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Panayotis K Vlachakis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece.
| |
Collapse
|
14
|
Johnson SA, Weir TL. Gut microbiome-derived secondary bile acids: therapeutic targets for reducing cardiovascular disease in type 2 diabetes? Am J Clin Nutr 2024; 119:241-243. [PMID: 38309821 DOI: 10.1016/j.ajcnut.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 02/05/2024] Open
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
16
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
17
|
Sparfel L, Ratodiarivony S, Boutet-Robinet E, Ellero-Simatos S, Jolivet-Gougeon A. Akkermansia muciniphila and Alcohol-Related Liver Diseases. A Systematic Review. Mol Nutr Food Res 2024; 68:e2300510. [PMID: 38059838 DOI: 10.1002/mnfr.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.
Collapse
Affiliation(s)
- Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sandy Ratodiarivony
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
- Teaching Hospital, CHU Rennes, 2 rue Henri Le Guilloux 35033, Rennes, F-35000, France
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241, INSERM 1241, Rennes, F-35000, France
| |
Collapse
|
18
|
Moleón J, González-Correa C, Miñano S, Robles-Vera I, de la Visitación N, Barranco AM, Gómez-Guzmán M, Sánchez M, Riesco P, Guerra-Hernández E, Toral M, Romero M, Duarte J. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol Res 2023; 198:106997. [PMID: 37972724 DOI: 10.1016/j.phrs.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Our objective was to investigate whether short-chain fatty acids (SCFAs), specifically acetate and butyrate, could prevent vascular dysfunction and elevated blood pressure (BP) in mice with systemic lupus erythematosus (SLE) induced by TLR7 activation using imiquimod (IMQ). Treatment with both SCFAs and dietary fibers rich in resistant starch (RS) or inulin-type fructans (ITF) effectively prevented the development of hypertension and cardiac hypertrophy. Additionally, these treatments improved aortic relaxation induced by acetylcholine and mitigated vascular oxidative stress. Acetate and butyrate treatments also contributed to the maintenance of colonic integrity, reduced endotoxemia, and decreased the proportion of helper T (Th)17 cells in mesenteric lymph nodes (MLNs), blood, and aorta in TLR7-induced SLE mice. The observed changes in MLNs were correlated with increased levels of GPR43 mRNA in mice treated with acetate and increased GPR41 levels along with decreased histone deacetylase (HDAC)- 3 levels in mice treated with butyrate. Notably, the effects attributed to acetate, but not butyrate, were nullified when co-administered with the GPR43 antagonist GLPG-0974. T cell priming and differentiation into Th17 cells in MLNs, as well as increased Th17 cell infiltration, were linked to aortic endothelial dysfunction and hypertension subsequent to the transfer of faecal microbiota from IMQ-treated mice to germ-free (GF) mice. These effects were counteracted in GF mice through treatment with either acetate or butyrate. To conclude, these findings underscore the potential of SCFA consumption in averting hypertension by restoring balance to the interplay between the gut, immune system, and vascular wall in SLE induced by TLR7 activation.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Pedro Riesco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
19
|
Moleón J, González-Correa C, Robles-Vera I, Miñano S, de la Visitación N, Barranco AM, Martín-Morales N, O’Valle F, Mayo-Martínez L, García A, Toral M, Jiménez R, Romero M, Duarte J. Targeting the gut microbiota with dietary fibers: a novel approach to prevent the development cardiovascular complications linked to systemic lupus erythematosus in a preclinical study. Gut Microbes 2023; 15:2247053. [PMID: 37615336 PMCID: PMC10453983 DOI: 10.1080/19490976.2023.2247053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
This study is to investigate whether dietary fiber intake prevents vascular and renal damage in a genetic mouse model of systemic lupus erythematosus (SLE), and the contribution of gut microbiota in the protective effects. Female NZBWF1 (SLE) mice were treated with resistant-starch (RS) or inulin-type fructans (ITF). In addition, inoculation of fecal microbiota from these experimental groups to recipient normotensive female C57Bl/6J germ-free (GF) mice was performed. Both fiber treatments, especially RS, prevented the development of hypertension, renal injury, improved the aortic relaxation induced by acetylcholine, and the vascular oxidative stress. RS and ITF treatments increased the proportion of acetate- and butyrate-producing bacteria, respectively, improved colonic inflammation and integrity, endotoxemia, and decreased helper T (Th)17 proportion in mesenteric lymph nodes (MLNs), blood, and aorta in SLE mice. However, disease activity (splenomegaly and anti-ds-DNA) was unaffected by both fibers. T cell priming and Th17 differentiation in MLNs and increased Th17 infiltration was linked to aortic endothelial dysfunction and hypertension after inoculation of fecal microbiota from SLE mice to GF mice, without changes in proteinuria and autoimmunity. All these effects were lower in GF mice after fecal inoculation from fiber-treated SLE mice. In conclusion, these findings support that fiber consumption prevented the development of hypertension by rebalancing of dysfunctional gut-immune system-vascular wall axis in SLE.
Collapse
Affiliation(s)
- Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Antonio Manuel Barranco
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, Instituto de Biopatología y Medicina Regenerativa (IBIMER) University of Granada, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Mayo-Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla del Monte, San Pablo, Spain
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
20
|
Li N, Wang L, Li L, Yang MZ, Wang QX, Bai XW, Gao F, Yuan YQ, Yu ZJ, Ren ZG. The correlation between gut microbiome and atrial fibrillation: pathophysiology and therapeutic perspectives. Mil Med Res 2023; 10:51. [PMID: 37936201 PMCID: PMC10629124 DOI: 10.1186/s40779-023-00489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Regulation of gut microbiota and its impact on human health is the theme of intensive research. The incidence and prevalence of atrial fibrillation (AF) are continuously escalating as the global population ages and chronic disease survival rates increase; however, the mechanisms are not entirely clarified. It is gaining awareness that alterations in the assembly, structure, and dynamics of gut microbiota are intimately engaged in the AF progression. Owing to advancements in next-generation sequencing technologies and computational strategies, researchers can explore novel linkages with the genomes, transcriptomes, proteomes, and metabolomes through parallel meta-omics approaches, rendering a panoramic view of the culture-independent microbial investigation. In this review, we summarized the evidence for a bidirectional correlation between AF and the gut microbiome. Furthermore, we proposed the concept of "gut-immune-heart" axis and addressed the direct and indirect causal roots between the gut microbiome and AF. The intricate relationship was unveiled to generate innovative microbiota-based preventive and therapeutic interventions, which shed light on a definite direction for future experiments.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Ling Wang
- Department of Cardiovascular Medicine, Henan Provincial Chest Hospital, Zhengzhou, 450008, China
| | - Lei Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Meng-Zhao Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Qing-Xiang Wang
- Department of Blood Collection, Xuchang Blood Center, Xuchang, 461000, Henan, China
| | - Xi-Wen Bai
- Nanchang University Queen Marry School, Nanchang, 330036, China
| | - Feng Gao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Yi-Qiang Yuan
- Department of Cardiovascular Medicine, Henan Provincial Chest Hospital, Zhengzhou, 450008, China.
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
21
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
22
|
Wu Z, Zhang M, Deng Y, Zhou G, Yang M, Wang H. Alterations of gut microbiome and metabolism induced by inulin associated with weight loss in obese female mice. Int J Food Sci Nutr 2023; 74:606-620. [PMID: 37469097 DOI: 10.1080/09637486.2023.2235901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Our previous work revealed the microbiota-dependent beneficial effects of inulin in obese male mice, but the effects in obese female mice were not determined. High-fat diet (HFD)-induced obese female mice were switched to normal diets and gavaged with normal saline or inulin for 10 weeks. Inulin supplementation significantly accelerated weight loss and reversed HFD-induced gut microbiota dysbiosis in obese female mice, and also reduced the ratio of Firmicutes/Bacteroidetes and enriched the abundance of norank_f_Muribaculaceae and Alistipes. In addition, 52 key serum metabolites were distinctly altered after inulin supplementation. Among them, andrographolide and monoacylglycerols (18:4) increased more than 9-fold and 14-fold, respectively, while phosphatidylcholine (PC) (18:1e/2:0), PC (20:1/20:2) and PC (19:1/19:1) decreased. In conclusion, gut microbiota and metabolites were closely associated with the beneficial effects of inulin in accelerating weight loss in obese female mice.
Collapse
Affiliation(s)
- Zeang Wu
- First Affiliated Hospital of Shihezi University, Shihezi, P.R. China
| | - Mei Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Xinjiang, P.R. China
- School of Medicine, Shihezi University, Shihezi, P.R. China
| | - Yuhong Deng
- First Affiliated Hospital of Shihezi University, Shihezi, P.R. China
| | - Guangyuan Zhou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Haixia Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Xinjiang, P.R. China
- School of Medicine, Shihezi University, Shihezi, P.R. China
| |
Collapse
|
23
|
Jingjie W, Jun S. Gut vascular barrier in the pathogenesis and resolution of Crohn's disease: A novel link from origination to therapy. Clin Immunol 2023; 253:109683. [PMID: 37406981 DOI: 10.1016/j.clim.2023.109683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The gut vascular barrier (GVB) is the deepest layer of the gut barrier. It mainly comprised gut vascular endothelial cells, enteric glial cells, and pericytes. The GVB facilitates nutrient absorption and blocks bacterial translocation through its size-restricted permeability. Accumulating evidence suggests that dysfunction of this barrier correlates with several clinical pathologies including Crohn's disease (CD). Significant progress has been made to elucidate the mechanism of GVB dysfunction and to confirm the participation of disrupted GVB in the course of CD. However, further analyses are required to pinpoint the specific roles of GVB in CD pathogenesis. Many preclinical models and clinical trials have demonstrated that various agents are effective in protecting the GVB integrity and thus providing a potential CD treatment strategy. Through this review, we established a systemic understanding of the role of GVB in CD pathogenesis and provided novel insights for GVB-targeting strategies in CD treatment.
Collapse
Affiliation(s)
- Wang Jingjie
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
24
|
Ding L, Teng R, Zhu Y, Liu F, Wu L, Qin L, Wu X, Liu T. Electroacupuncture treatment ameliorates metabolic disorders in obese ZDF rats by regulating liver energy metabolism and gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1207574. [PMID: 37441502 PMCID: PMC10335763 DOI: 10.3389/fendo.2023.1207574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolic disorders represent a major therapeutic challenge to public health worldwide due to their dramatically increasing prevalence. Acupuncture is widely used as adjuvant therapy for multiple metabolic diseases. However, detailed biological interpretation of the acupuncture stimulations is still limited. The gut and the liver are intrinsically connected and related to metabolic function. Microbial metabolites might affect the gut-liver axis through multiple mechanisms. Liver metabolomics and 16S rRNA sequencing were used to explore the specific mechanism of electroacupuncture in treating ZDF rats in this study. Electroacupuncture effectively improved glycolipid metabolism disorders of the ZDF rats. Histopathology confirmed that electroacupuncture improved diffuse hepatic steatosis and hepatocyte vacuolation, and promoted glycogen accumulation in the liver. The treatment significantly improved microbial diversity and richness and upregulated beneficial bacteria that maintain intestinal epithelial homeostasis and decreased bacteria with detrimental metabolic features on host metabolism. Liver metabolomics showed that the main effects of electroacupuncture include reducing the carbon flow and intermediate products in the TCA cycle, regulating the metabolism of various amino acids, and inhibiting hepatic glucose output and de novo lipogenesis. The gut-liver axis correlation analysis showed a strong correlation between the liver metabolites and the gut microbiota, especially allantoin and Adlercreutzia. Electroacupuncture treatment can improve abnormal energy metabolism by reducing oxidative stress, ectopic fat deposition, and altering metabolic fluxes. Our results will help us to further understand the specific mechanism of electroacupuncture in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lei Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Teng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Zhu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengming Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Wu
- Department of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Zhang L, Xia X, Wu H, Liu X, Zhu Q, Wang M, Hao H, Cui Y, Li DP, Chen SY, Martinez-Lemus LA, Hill MA, Xu C, Liu Z. Helicobacter pylori infection selectively attenuates endothelial function in male mice via exosomes-mediated ROS production. Front Cell Infect Microbiol 2023; 13:1142387. [PMID: 37274312 PMCID: PMC10233065 DOI: 10.3389/fcimb.2023.1142387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Background Substantial sex differences exist in atherosclerosis. Excessive reactive oxygen species (ROS) formation could lead to endothelial dysfunction which is critical to atherosclerosis development and progression. Helicobacter pylori (H. pylori) infection has been shown to attenuate endothelial function via exosomes-mediated ROS formation. We have demonstrated that H. pylori infection selectively increases atherosclerosis risk in males with unknown mechanism(s). The present study was to test the hypothesis that H. pylori infection impaired endothelial function selectively in male mice through exosome-mediated ROS formation. Methods and results Age-matched male and female C57BL/6 mice were infected with CagA+ H. pylori to investigate sex differences in H. pylori infection-induced endothelial dysfunction. H. pylori infection attenuated acetylcholine (ACh)-induced endothelium-dependent aortic relaxation without changing nitroglycerine-induced endothelium-independent relaxation in male but not female mice, associated with increased ROS formation in aorta compared with controls, which could be reversed by N-acetylcysteine treatment. Treatment of cultured mouse brain microvascular endothelial cells with exosomes from H. pylori infected male, not female, mice significantly increased intracellular ROS production and impaired endothelial function with decreased migration, tube formation, and proliferation, which could be prevented with N-acetylcysteine treatment. Conclusions H. pylori infection selectively impairs endothelial function in male mice due to exosome-mediated ROS formation.
Collapse
Affiliation(s)
- Linfang Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - De-Pei Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
26
|
Djekkoun N, Depeint F, Guibourdenche M, Sabbouri HEKE, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Biendo M, Al-Salameh A, Lalau JD, Bach V, Khorsi-Cauet H. Perigestational exposure of a combination of a high-fat diet and pesticide impacts the metabolic and microbiotic status of dams and pups; a preventive strategy based on prebiotics. Eur J Nutr 2023; 62:1253-1265. [PMID: 36510012 DOI: 10.1007/s00394-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Metabolic changes during the perinatal period are known to promote obesity and type-2 diabetes in adulthood via perturbation of the microbiota. The risk factors for metabolic disorders include a high-fat diet (HFD) and exposure to pesticide residues. The objective of the present study was to evaluate the effects of perigestational exposure to a HFD and chlorpyrifos (CPF) on glycemia, lipid profiles, and microbial populations in Wistar dams and their female offspring. We also tested a preventive strategy based on treatment with the prebiotic inulin. METHODS From 4 months before gestation to the end of the lactation period, six groups of dams were exposed to either a standard diet, a HFD alone, CPF alone, a combination of a HFD and CPF, and/or inulin supplementation. All female offspring were fed a standard diet from weaning to adulthood. We measured the impacts of these exposures on glycemia, the lipid profile, and the microbiota (composition, metabolite production, and translocation into tissues). RESULTS HFD exposure and CPF + HFD co-exposure induced dysmetabolism and an imbalance in the gut flora in both the dams and the female offspring. Inulin mitigated the impact of exposure to a HFD alone but not that of CPF + HFD co-exposure. CONCLUSION Our results provide a better understanding of the complex interactions between environmental pollutants and diet in early life, including in the context of metabolic diseases.
Collapse
Affiliation(s)
- Narimane Djekkoun
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Flore Depeint
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Marion Guibourdenche
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hiba El Khayat Et Sabbouri
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Aurélie Corona
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Larbi Rhazi
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Jerome Gay-Queheillard
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Leila Rouabah
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Maurice Biendo
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Abdallah Al-Salameh
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Jean-Daniel Lalau
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Véronique Bach
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hafida Khorsi-Cauet
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France.
| |
Collapse
|
27
|
Haywood NJ, Kearney MT. Emerging paracrine functions of the endothelium in the setting of Diabetes. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
28
|
Tang J, Chen X, Shi H, Zhang M, Zhou Z, Zhang C, Ke T, Kong D, Li C. Prebiotic inulin nanocoating for pancreatic islet surface engineering. Biomater Sci 2023; 11:1470-1485. [PMID: 36602201 DOI: 10.1039/d2bm01009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic islet surface engineering has been proposed as an "easy-to-adopt" approach to enhance post-transplantation islet engraftment for treatment against diabetes. Inulin is an FDA-approved dietary prebiotic with reported anti-diabetic, anti-inflammatory, anti-hypoxic and pro-angiogenic properties. We therefore assessed whether inulin would be a viable option for islet surface engineering. Inulin was oxidized to generate inulin-CHO, which would bind to the cell membrane via covalent bond formation between -CHO and -NH2 across the islet cell membrane. In vitro assessments demonstrated enhanced islet viability and better glucose-induced insulin secretion from inulin-coated (5 mg mL-1) islets, which was accompanied by enhanced revascularization, shown as significantly enhanced tube formation and branching of islet endothelial MS1 cells following co-culture with inulin-coated islets. Reduction of cytokine-induced cell death was also observed from inulin-coated islets following exposure to pro-inflammatory cytokine LPS. LPS-induced ROS production was significantly dampened by 44% in inulin-coated islets when compared to controls. RNA-seq analysis of inulin-coated and control islets identified expression alterations of genes involved in islet function, vascular formation and immune regulation, supporting the positive impact of inulin on islet preservation. In vivo examination using streptozotocin (STZ)-induced hyperglycemic mice further showed moderately better maintained plasma glucose levels in mice received transplantation of inulin-coated islets, attributable to ameliorated CD45+ immune cell infiltration and improved in vivo graft vascularization. We therefore propose islet surface engineering with inulin as safe and beneficial, and further assessment is required to verify its applicability in clinical islet transplantation.
Collapse
Affiliation(s)
- Jianghai Tang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Xuanjin Chen
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Hang Shi
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
29
|
Makki K, Brolin H, Petersen N, Henricsson M, Christensen DP, Khan MT, Wahlström A, Bergh PO, Tremaroli V, Schoonjans K, Marschall HU, Bäckhed F. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut 2023; 72:314-324. [PMID: 35697422 PMCID: PMC9872241 DOI: 10.1136/gutjnl-2021-326541] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/31/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet. DESIGN To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects. RESULTS We show that oligofructose sustains the production of 6α-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6α-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6α-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism. CONCLUSION Modulation of the gut microbiota with oligofructose enriches bacteria involved in 6α-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.
Collapse
Affiliation(s)
- Kassem Makki
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus Henricsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Ploug Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Tanweer Khan
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Wahlström
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Olof Bergh
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Hanns-Ulrich Marschall
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Liu B, Zhang L, Yang H, Zheng H, Liao X. Microbiota: A potential orchestrator of antidiabetic therapy. Front Endocrinol (Lausanne) 2023; 14:973624. [PMID: 36777348 PMCID: PMC9911464 DOI: 10.3389/fendo.2023.973624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
The gut microbiota, as a 'new organ' of humans, has been identified to affect many biological processes, including immunity, inflammatory response, gut-brain neural circuits, and energy metabolism. Profound dysbiosis of the gut microbiome could change the metabolic pattern, aggravate systemic inflammation and insulin resistance, and exacerbate metabolic disturbance and the progression of type 2 diabetes (T2D). The aim of this review is to focus on the potential roles and functional mechanisms of gut microbiota in the antidiabetic therapy. In general, antidiabetic drugs (α-glucosidase inhibitor, biguanides, incretin-based agents, and traditional Chinese medicine) induce the alteration of microbial diversity and composition, and the levels of bacterial component and derived metabolites, such as lipopolysaccharide (LPS), short chain fatty acids (SCFAs), bile acids and indoles. The altered microbial metabolites are involved in the regulation of gut barrier, inflammation response, insulin resistance and glucose homeostasis. Furthermore, we summarize the new strategies for antidiabetic treatment based on microbial regulation, such as pro/prebiotics administration and fecal microbiota transplantation, and discuss the need for more basic and clinical researches to evaluate the feasibility and efficacy of the new therapies for diabetes.
Collapse
Affiliation(s)
| | | | | | - Hongting Zheng
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoyu Liao
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Régnier M, Van Hul M, Roumain M, Paquot A, de Wouters d’Oplinter A, Suriano F, Everard A, Delzenne NM, Muccioli GG, Cani PD. Inulin increases the beneficial effects of rhubarb supplementation on high-fat high-sugar diet-induced metabolic disorders in mice: impact on energy expenditure, brown adipose tissue activity, and microbiota. Gut Microbes 2023; 15:2178796. [PMID: 36803220 PMCID: PMC9980659 DOI: 10.1080/19490976.2023.2178796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Consumption of prebiotics and plant-based compounds have many beneficial health effects through modulation of gut microbiota composition and are considered as promising nutritional strategy for the treatment of metabolic diseases. In the present study, we assessed the separated and combined effects of inulin and rhubarb on diet-induced metabolic disease in mice. We showed that supplementation with both inulin and rhubarb abolished the total body and fat mass gain upon high-fat and high-sucrose diet (HFHS) as well as several obesity-associated metabolic disorders. These effects were associated with increased energy expenditure, lower whitening of the brown adipose tissue, higher mitochondria activity and increased expression of lipolytic markers in white adipose tissue. Despite modifications of intestinal gut microbiota and bile acid compositions by inulin or rhubarb alone, combination of both inulin and rhubarb had minor additional impact on these parameters. However, the combination of inulin and rhubarb increased the expression of several antimicrobial peptides and higher goblet cell numbers, thereby suggesting a reinforcement of the gut barrier. Together, these results suggest that the combination of inulin and rhubarb in mice potentiates beneficial effects of separated rhubarb and inulin on HFHS-related metabolic disease and could be considered as nutritional strategy for the prevention and treatment of obesity and related pathologies.
Collapse
Affiliation(s)
- Marion Régnier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Alice de Wouters d’Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium,current address: Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,WELBIO asbl, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium,CONTACT Patrice D. Cani LDRI, Metabolism and Nutrition Research Group, UCLouvain, Université Catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Av. E. Mounier, 73 box B1.73.11, B-1200, Brussels, Belgium
| |
Collapse
|
32
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
33
|
Song J, liu Q, Hao M, Zhai X, Chen J. Effects of neutral polysaccharide from Platycodon grandiflorum on high-fat diet-induced obesity via the regulation of gut microbiota and metabolites. Front Endocrinol (Lausanne) 2023; 14:1078593. [PMID: 36777345 PMCID: PMC9908743 DOI: 10.3389/fendo.2023.1078593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic has become a global problem with far-reaching health and economic impact. Despite the numerous therapeutic efficacies of Platycodon grandiflorum, its role in modulating obesity-related metabolic disorders has not been clarified. In this study, a purified neutral polysaccharide, PGNP, was obtained from Platycodon grandiflorum. Based on methylation and NMR analyses, PGNP was found to be composed of 2,1-β-D-Fruf residues ending with a (1→2)-bonded α-D-Glcp. The protective effects of PGNP on high-fat HFD-induced obesity were assessed. According to our results, PGNP effectively alleviated the signs of metabolic syndrome, as demonstrated by reductions in body weight, hepatic steatosis, lipid profile, inflammatory response, and insulin resistance in obese mice. Under PGNP treatment, intestinal histomorphology and the tight junction protein, ZO-1, were well maintained. To elucidate the underlying mechanism, 16S rRNA gene sequencing and LC-MS were employed to assess the positive influence of PGNP on the gut microbiota and metabolites. PGNP effectively increased species diversity of gut microbiota and reversed the HFD-induced imbalance in the gut microbiota by decreasing the Firmicutes to Bacteroidetes ratio. The abundance of Bacteroides and Blautia were increased after PGNP treatment, while the relative abundance of Rikenella, Helicobacter were reduced. Furthermore, PGNP notably influenced the levels of microbial metabolites, including the increased levels of cholic and gamma-linolenic acid. Overall, PGNP might be a potential supplement for the regulation of gut microbiota and metabolites, further affecting obesity.
Collapse
Affiliation(s)
- Jing Song
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Qin liu
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengqi Hao
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaohu Zhai
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Juan Chen
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, China
- *Correspondence: Juan Chen,
| |
Collapse
|
34
|
Lund PJ, Gates LA, Leboeuf M, Smith SA, Chau L, Lopes M, Friedman ES, Saiman Y, Kim MS, Shoffler CA, Petucci C, Allis CD, Wu GD, Garcia BA. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep 2022; 41:111809. [PMID: 36516747 PMCID: PMC9994635 DOI: 10.1016/j.celrep.2022.111809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/09/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Collapse
Affiliation(s)
- Peder J Lund
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leah A Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Marylene Leboeuf
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Sarah A Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elliot S Friedman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yedidya Saiman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Soo Kim
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarissa A Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Gary D Wu
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Wang Q, Shi J, Zhao M, Ruan G, Dai Z, Xue Y, Shi D, Xu C, Yu O, Wang F, Xue Z. Microbial treatment of alcoholic liver disease: A systematic review and meta-analysis. Front Nutr 2022; 9:1054265. [PMID: 36479298 PMCID: PMC9719948 DOI: 10.3389/fnut.2022.1054265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is characterized by impaired liver function due to chronic alcohol consumption, even fatal in severe cases. We performed a meta-analysis to determine whether microbial agents have therapeutic potential for ALD and elucidate the underlying mechanisms. Methods and results Forty-one studies were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. The combined analysis showed that microbial therapy significantly decreased hepatic enzymatic parameters, including alanine transaminase [standardized mean difference (SMD): -2.70, 95% confidence interval (CI): -3.33 to -2.07], aspartate aminotransferase (SMD: -3.37, 95% CI: -4.25 to -2.49), γ-glutamyl transpeptidase (SMD: -2.07, 95% CI: -3.01 to -1.12), and alkaline phosphatase (SMD: -2.12, 95% CI: -3.32 to -0.92). Microbial agents endotoxin to enter the portal circulation and increasing reduced total cholesterol (SMD = -2.75, 95%CI -4.03 to -1.46) and triglycerides (SMD = -2.64, 95% CI: -3.22 to -2.06). Microbial agents increased amounts of the beneficial flora Lactobacillus (SMD: 4.40, 95% CI: 0.97-7.84) and Bifidobacteria (SMD: 3.84, 95% CI: 0.22-7.45), Bacteroidetes (SMD: 2.51, 95% CI: 0.29-4.72) and decreased harmful Proteobacteria (SMD: -4.18, 95% CI: -6.60 to -1.77), protecting the integrity of the intestinal epithelium and relieving endotoxin (SMD: -2.70, 95% CI: -3.52 to -2.17) into the portal vein, thereby reducing the production of inflammatory factors such as tumor necrosis factor-α (SMD: -3.35, 95% CI: -4.31 to -2.38), interleukin-6 (SMD: -4.28, 95% CI: -6.13 to -2.43), and interleukin-1β (SMD: -4.28, 95% CI: -6.37 to -2.19). Oxidative stress was also relieved, as evidenced by decreased malondialdehyde levels (SMD: -4.70, 95% CI: -6.21 to -3.20). Superoxide dismutase (SMD: 2.65, 95% CI: 2.16-3.15) and glutathione levels (SMD: 3.80, 95% CI: 0.95-6.66) were elevated. Conclusion Microbial agents can reverse dysbiosis in ALD, thus significantly interfering with lipid metabolism, relieving inflammatory response and inhibiting oxidative stress to improve liver function.
Collapse
Affiliation(s)
- Qinjian Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Zhao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zebin Dai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilang Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ouyue Yu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Marynowska M, Herosimczyk A, Lepczyński A, Barszcz M, Konopka A, Dunisławska A, Ożgo M. Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources. Animals (Basel) 2022; 12:3147. [PMID: 36428375 PMCID: PMC9687048 DOI: 10.3390/ani12223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, two different ITFs sources were incorporated into a cereal-based diet to evaluate possible aortic protein and gene changes in nursery pigs. The animals were fed two different experimental diets from the 10th day of life, supplemented with either 4% of dried chicory root (CR) or with 2% of native inulin (IN). After a 40-day dietary intervention trial, pigs were sacrificed at day 50 and the aortas were harvested. Our data indicate that dietary ITFs have the potential to influence several structural and physiological changes that are reflected both in the mRNA and protein levels in porcine aorta. In contrast to our hypothesis, we could not show any beneficial effects of a CR diet on vascular functions. The direction of changes of several proteins and genes may indicate disrupted ECM turnover (COL6A1 and COL6A2, MMP2, TIMP3, EFEMP1), increased inflammation and lipid accumulation (FFAR2), as well as decreased activity of endothelial nitric oxide synthase (TXNDC5, ORM1). On the other hand, the IN diet may counteract a highly pro-oxidant environment through the endothelin-NO axis (CALR, TCP1, HSP8, PDIA3, RCN2), fibrinolytic activity (ANXA2), anti-atherogenic (CAVIN-1) and anti-calcification (LMNA) properties, thus contributing to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Adrianna Konopka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
37
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
38
|
Li JY, Gillilland M, Lee AA, Wu X, Zhou SY, Owyang C. Secondary bile acids mediate high-fat diet-induced upregulation of R-spondin 3 and intestinal epithelial proliferation. JCI Insight 2022; 7:e148309. [PMID: 36099053 PMCID: PMC9675439 DOI: 10.1172/jci.insight.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) contributes to the increased incidence of colorectal cancer, but the mechanisms are unclear. We found that R-spondin 3 (Rspo3), a ligand for leucine-rich, repeat-containing GPCR 4 and 5 (LGR4 and LGR5), was the main subtype of R-spondins and was produced by myofibroblasts beneath the crypts in the intestine. HFD upregulated colonic Rspo3, LGR4, LGR5, and β-catenin gene expression in specific pathogen-free rodents, but not in germ-free mice, and the upregulations were prevented by the bile acid (BA) binder cholestyramine or antibiotic treatment, indicating mediation by both BA and gut microbiota. Cholestyramine or antibiotic treatments prevented HFD-induced enrichment of members of the Lachnospiraceae and Rumincoccaceae, which can transform primary BA into secondary BA. Oral administration of deoxycholic acid (DCA), or inoculation of a combination of the BA deconjugator Lactobacillus plantarum and 7α-dehydroxylase-containing Clostridium scindens with an HFD to germ-free mice increased serum DCA and colonic Rspo3 mRNA levels, indicating that formation of secondary BA by gut microbiota is responsible for HFD-induced upregulation of Rspo3. In primary myofibroblasts, DCA increased Rspo3 mRNA via TGR5. Finally, we showed that cholestyramine or conditional deletion of Rspo3 prevented HFD- or DCA-induced intestinal proliferation. We conclude that secondary BA is responsible for HFD-induced upregulation of Rspo3, which, in turn, mediates HFD-induced intestinal epithelial proliferation.
Collapse
|
39
|
Johnson SA, Weir TL. Fresh Take on the Relationship between Diet, Gut Microbiota, and Atherosclerosis: A Food-Based Approach with Brussels Chicory. J Nutr 2022; 152:2181-2183. [PMID: 36054765 PMCID: PMC9535444 DOI: 10.1093/jn/nxac147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
Wei S, Wang J, Wang C, Wang Y, Jin M. Inulin mitigates high fructose-induced gut dysbiosis and metabolic dysfunction in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Wu Z, Du Z, Tian Y, Liu M, Zhu K, Zhao Y, Wang H. Inulin accelerates weight loss in obese mice by regulating gut microbiota and serum metabolites. Front Nutr 2022; 9:980382. [PMID: 36245535 PMCID: PMC9554005 DOI: 10.3389/fnut.2022.980382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies indicated that the gut microbiota might participate in the beneficial effect of inulin on obesity. However, the mechanisms involved were still largely unknown. Sixteen high-fat diets (HFDs)-induced obese C57BL/6 mice were converted to a normal diet and then randomized into two groups, OND (obese mice + normal diet) group gavage-fed for 10 weeks with normal saline and ONDI (obese mice + normal diet + inulin) group with inulin at 10 g/kg/day. The body weight of HFD-induced obese mice showed different degrees of decrease in both groups. However, the ONDI group lost more weight and returned to normal earlier. Compared to the OND group, inulin supplementation significantly shifted the composition and structure of gut microbiota, such as higher α diversity. The β diversity analysis also confirmed the changes in gut microbiota composition between groups. At the genus level, the abundance of Alistipes was considerably increased, and it was significantly correlated with inulin supplementation (r = 0.72, P = 0.002). Serum metabolite levels were distinctly altered after inulin supplementation, and 143 metabolites were significantly altered in the ONDI group. Among them, indole-3-acrylic acid level increased more than 500-fold compared to the OND group. It was also strongly positive correlation with Alistipes (r = 0.72, P = 0.002) and inulin supplementation (r = 0.99, P = 9.2e−13) and negatively correlated with obesity (r = −0.72, P = 0.002). In conclusion, inulin supplementation could accelerate body weight loss in obese mice by increasing Alistipes and indole-3-acrylic acid level.
Collapse
Affiliation(s)
- Zeang Wu
- First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhenzhu Du
- Analysis and Testing Center, Shihezi University, Shihezi, China
| | - Yuanyuan Tian
- School of Medicine, Shihezi University, Shihezi, China
| | - Miao Liu
- School of Medicine, Shihezi University, Shihezi, China
| | - Kailong Zhu
- School of Medicine, Shihezi University, Shihezi, China
| | - Yufan Zhao
- School of Medicine, Shihezi University, Shihezi, China
| | - Haixia Wang
- School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Haixia Wang,
| |
Collapse
|
42
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
43
|
Golzarand M, Bahadoran Z, Mirmiran P, Azizi F. Inulin intake and the incidence of cardiometabolic diseases: a prospective cohort study. Food Funct 2022; 13:10516-10524. [PMID: 36148807 DOI: 10.1039/d2fo00063f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inulin is a prebiotic and has beneficial effects on health, such as improving the immune function, lipid profile, and gut microbiota. Some previous studies have assessed the effects of inulin supplementation on cardiometabolic diseases, but the relationship between dietary inulin and these diseases has not been investigated yet. Thus, this survey was designed to assess the potential association between the dietary intake of inulin and the incidence of cardiometabolic diseases, including cardiovascular disease (CVD), hypertension (HTN), chronic kidney disease (CKD), and type 2 diabetes (T2D) among adults. The present prospective cohort study was conducted on participants in the third wave of the Tehran Lipid and Glucose Study (2006-2008) and was followed up until March 2018. The dietary intake of inulin was estimated using a special database that reports values of inulin and oligofructose in grams per 100 g of each food. Cox proportional hazards regression showed that higher consumption of inulin was associated with a lower risk of HTN (HR: 0.79, 95% CI: 0.63 to 0.99) and T2D (HR: 0.94, 95% CI: 0.89 to 1.00). We found no relationship between higher consumption of dietary inulin and the incidence of CKD and CVD in our population. According to our results, it seems inulin from foods had a preventive effect against HTN and T2D, which are major risk factors for cardiovascular and renal events. However, more investigations are warranted.
Collapse
Affiliation(s)
- Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clin Nutr 2022; 41:2333-2344. [DOI: 10.1016/j.clnu.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2022]
|
45
|
Ziaei R, Shahshahan Z, Ghasemi-Tehrani H, Heidari Z, Ghiasvand R. Effects of inulin-type fructans with different degrees of polymerization on inflammation, oxidative stress and endothelial dysfunction in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf) 2022; 97:319-330. [PMID: 35261049 DOI: 10.1111/cen.14712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with several cardiovascular risk factors. Prebiotics were proposed to beneficially affect risk factors associated with metabolic disorders. The aim of this study was to investigate and compare the effects of inulin-type fructans (ITFs), as well-studied prebiotics, with different degrees of polymerization, on markers of inflammation, oxidative stress and endothelial dysfunction in PCOS patients. DESIGN A randomized, double-blind, placebo-controlled trial. PATIENTS Seventy-five PCOS women were randomly assigned to receive 10 g/day of either high-performance inulin (HPI) or oligofructose-enriched inulin (OEI) or placebo for 12 weeks. MEASUREMENTS Biochemical indices and blood pressure levelswere assessed before and after the intervention. RESULTS In the intent-to-treat analysis, high-sensitive C-reactive protein (hs-CRP) decreased in HPI and OEI groups, over the 12 weeks, and the changes were significant in the HPI group, compared to placebo (changes from baseline in the HPI group: -0.11 vs. placebo group: 0.004 mg/L [conversion factor to SI units (nmol/L): 9/5238]; p = .007). Serum levels of nitric oxide (NO) increased, and endothelin-1 and total oxidant status decreased in HPI and OEI groups, at the end of the trial; however, these changes were not significantly compared to placebo (p = .07, .36 and .22, respectively). No differences in systolic and diastolic blood pressure were found. Per-protocol analysis (n = 68) yielded consistent results for all endpoints, with the exception that the significant effect of ITFs on serum hs-CRP levels in the unadjusted ITT analysis became nonsignificant in the per-protocol analysis (p = .06). CONCLUSION A 12-week supplementation with long-chain ITFs had favourable effects on inflammatory status among PCOS patients.
Collapse
Affiliation(s)
- Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shahshahan
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hatav Ghasemi-Tehrani
- Fertility Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
46
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
47
|
Mutalub YB, Abdulwahab M, Mohammed A, Yahkub AM, AL-Mhanna SB, Yusof W, Tang SP, Rasool AHG, Mokhtar SS. Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods 2022; 11:2575. [PMID: 36076760 PMCID: PMC9455664 DOI: 10.3390/foods11172575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
The human gut harbors microbial ecology that is in a symbiotic relationship with its host and has a vital function in keeping host homeostasis. Inimical alterations in the composition of gut microbiota, known as gut dysbiosis, have been associated with cardiometabolic diseases. Studies have revealed the variation in gut microbiota composition in healthy individuals as compared to the composition of those with cardiometabolic diseases. Perturbation of host-microbial interaction attenuates physiological processes and may incite several cardiometabolic disease pathways. This imbalance contributes to cardiometabolic diseases via metabolism-independent and metabolite-dependent pathways. The aim of this review was to elucidate studies that have demonstrated the complex relationship between the intestinal microbiota as well as their metabolites and the development/progression of cardiometabolic diseases. Furthermore, we systematically itemized the potential therapeutic approaches for cardiometabolic diseases that target gut microbiota and/or their metabolites by following the pathophysiological pathways of disease development. These approaches include the use of diet, prebiotics, and probiotics. With the exposition of the link between gut microbiota and cardiometabolic diseases, the human gut microbiota therefore becomes a potential therapeutic target in the development of novel cardiometabolic agents.
Collapse
Affiliation(s)
- Yahkub Babatunde Mutalub
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
- Department of Clinical Pharmacology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Monsurat Abdulwahab
- Department of Midwifery, College of Nursing Sciences, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi 74027, Nigeria
| | - Alkali Mohammed
- Department of Medicine, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Aishat Mutalib Yahkub
- College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Sameer Badri AL-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wardah Yusof
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suk Peng Tang
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| |
Collapse
|
48
|
Evaluation of Full-Length Versus V4-Region 16S rRNA Sequencing for Phylogenetic Analysis of Mouse Intestinal Microbiota After a Dietary Intervention. Curr Microbiol 2022; 79:276. [PMID: 35907023 PMCID: PMC9338901 DOI: 10.1007/s00284-022-02956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
The composition of microbial communities is commonly determined by sequence analyses of one of the variable (V) regions in the bacterial 16S rRNA gene. We aimed to assess whether sequencing the full-length versus the V4 region of the 16S rRNA gene affected the results and interpretation of an experiment. To test this, mice were fed a diet without and with the prebiotic inulin and from cecum samples, two primary data sets were generated: (1) a 16S rRNA full-length data set generated by the PacBio platform; (2) a 16S rRNA V4 region data set generated by the Illumina MiSeq platform. A third derived data set was generated by in silico extracting the 16S rRNA V4 region data from the 16S rRNA full-length PacBio data set. Analyses of the primary and derived 16S rRNA V4 region data indicated similar bacterial abundances, and α- and β-diversity. However, comparison of the 16S rRNA full-length data with the primary and derived 16S rRNA V4 region data revealed differences in relative bacterial abundances, and α- and β-diversity. We conclude that the sequence length of 16S rRNA gene and not the sequence analysis platform affected the results and may lead to different interpretations of the effect of an intervention that affects the microbiota.
Collapse
|
49
|
Luo L, Luo J, Cai Y, Fu M, Li W, Shi L, Liu J, Dong R, Xu X, Tu L, Yang Y. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy. Pharmacol Res 2022; 183:106367. [PMID: 35882293 DOI: 10.1016/j.phrs.2022.106367] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueting Cai
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingrui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
50
|
Joly Condette C, Djekkoun N, Reygner J, Depeint F, Delanaud S, Rhazi L, Bach V, Khorsi-Cauet H. Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:118961. [PMID: 35183667 DOI: 10.1016/j.envpol.2022.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The intestinal microbiota has a key role in human health via the interaction with the somatic and immune cells in the digestive tract environment. Food, through matrix effect, nutrient and non-nutrient molecules, is a key regulator of microbiota diversity. As a food contaminant, the pesticide chlorpyrifos (CPF) has an effect on the composition of the intestinal microbiota and induces perturbation of microbiota. Prebiotics (and notably inulin) are known for their ability to promote an equilibrium of the microbiota that favours saccharolytic bacteria. The SHIME® dynamic in vitro model of the human intestine was exposed to CPF and inulin concomitantly for 30 days, in order to assess variations in both the bacterial populations and their metabolites. Various analyses of the microbiota (notably temporal temperature gradient gel electrophoresis) revealed a protective effect of the prebiotic through inhibition of the enterobacterial (E. coli) population. Bifidobacteria were only temporarily inhibited at D15 and recovered at D30. Although other potentially beneficial populations (lactobacilli) were not greatly modified, their activity and that of the saccharolytic bacteria in general were highlighted by an increase in levels of short-chain fatty acids and more specifically butyrate. Given the known role of host-microbiota communication, CPF's impact on the body's homeostasis remains to be determined.
Collapse
Affiliation(s)
| | | | - Julie Reygner
- Laboratoire PériTox UMR_I 01, CURS-UPJV, F-80054, Amiens, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle - Université D'Artois, F-60026, Beauvais, France
| | | | - Larbi Rhazi
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle - Université D'Artois, F-60026, Beauvais, France
| | - Veronique Bach
- Laboratoire PériTox UMR_I 01, CURS-UPJV, F-80054, Amiens, France
| | | |
Collapse
|