1
|
Rimoldi M, Lucchiari S, Pagliarani S, Meola G, Comi GP, Abati E. Myotonic dystrophies: an update on clinical features, molecular mechanisms, management, and gene therapy. Neurol Sci 2025; 46:1599-1616. [PMID: 39643839 PMCID: PMC11919957 DOI: 10.1007/s10072-024-07826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
Myotonic dystrophies (DM) encompass a group of complex genetic disorders characterized by progressive muscle weakness with myotonia and multisystemic involvement. The aim of our paper is to synthesize key findings and advancements in the understanding of DM, and to underline the multidisciplinary approach to DM, emphasizing the importance of genetic counseling, comprehensive clinical care, and symptom management. We discuss the genetic basis of DM, emphasizing the role of repeat expansions in disease pathogenesis, as well as cellular and animal models utilized for studying DM mechanisms and testing potential therapies. Diagnostic challenges, such as determining the size of disease expansions and assessing mosaicism, are elucidated alongside emerging genetic testing methods. Therapeutic strategies, mainly for DM1, are also explored, encompassing small molecules, nucleic acid-based therapies (NATs), and genome/transcriptome engineering. The challenges of such a therapeutic delivery and immunogenic response and the importance of innovative strategies, including viral vectors and AAV serotypes, are highlighted within the text. While no curative treatments have been approved, supportive and palliative care remains essential, with a focus on addressing multisystemic complications and maintaining functional independence. Continued exploration of these therapeutic advancements offers hope for comprehensive disease management and potentially curative therapies for DM1 and related disorders.
Collapse
Affiliation(s)
- Martina Rimoldi
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Medical Genetic Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Serena Pagliarani
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Department of Neurorehabilitation Sciences, University of Milan, Casa di Cura Igea, Fondazione Malattie Miotoniche -FMM, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Elena Abati
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Liu S, Sadan AN, Bhattacharyya N, Zarouchlioti C, Szabo A, Costa MA, Hafford-Tear NJ, Kladny AMS, Dudakova L, Ciosi M, Moghul I, Wilkins MR, Allan B, Skalicka P, Hardcastle AJ, Pontikos N, Bunce C, Monckton DG, Muthusamy K, Liskova P, Tuft SJ, Davidson AE. Genetic and Demographic Determinants of Fuchs Endothelial Corneal Dystrophy Risk and Severity. JAMA Ophthalmol 2025; 143:338-347. [PMID: 40079965 PMCID: PMC11907363 DOI: 10.1001/jamaophthalmol.2025.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Importance Understanding the pathogenic mechanisms of Fuchs endothelial corneal dystrophy (FECD) could contribute to developing gene-targeted therapies. Objective To investigate associations between demographic data and age at first keratoplasty in a genetically refined FECD cohort. Design, Setting, and Participants This retrospective cohort study recruited 894 individuals with FECD at Moorfields Eye Hospital (London) and General University Hospital (Prague) from September 2009 to July 2023. Ancestry was inferred from genome-wide single nucleotide polymorphism array data. CTG18.1 status was determined by short tandem repeat and/or triplet-primed polymerase chain reaction. One or more expanded alleles (≥50 repeats) were classified as expansion-positive (Exp+). Expansion-negative (Exp-) cases were exome sequenced. Main Outcomes and Measures Association between variants in FECD-associated genes, demographic data, and age at first keratoplasty. Results Within the total cohort (n = 894), 77.3% of patients were Exp+. Most European (668 of 829 [80.6%]) and South Asian (14 of 22 [63.6%]) patients were Exp+. The percentage of female patients was higher (151 [74.4%]) in the Exp- cohort compared to the Exp+ cohort (395 [57.2%]; difference, 17.2%; 95% CI, 10.1%-24.3%; P < .001). The median (IQR) age at first keratoplasty of the Exp + patients (68.2 years [63.2-73.6]) was older than the Exp- patients (61.3 years [52.6-70.4]; difference, 6.5 years; 95% CI, 3.4-9.7; P < .001). The CTG18.1 repeat length of the largest expanded allele within the Exp+ group was inversely correlated with the age at first keratoplasty (β, -0.087; 95% CI, -0.162 to -0.012; P = .02). The ratio of biallelic to monoallelic expanded alleles was higher in the FECD cohort (1:14) compared to an unaffected control group (1:94; P < .001), indicating that 2 Exp+ alleles were associated with increased disease penetrance compared with 1 expansion. Potentially pathogenic variants (minor allele frequency, <0.01; combined annotation dependent depletion, >15) were only identified in FECD-associated genes in 13 Exp- individuals (10.1%). Conclusions and Relevance In this multicenter cohort study among individuals with FECD, CTG18.1 expansions were present in most European and South Asian patients, while CTG18.1 repeat length and zygosity status were associated with modifications in disease severity and penetrance. Known disease-associated genes accounted for only a minority of Exp- cases, with unknown risk factors associated with disease in the rest of this subgroup. These data may have implications for future FECD gene-targeted therapy development.
Collapse
Affiliation(s)
- Siyin Liu
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | | | | | | | | | | | - Anne-Marie S. Kladny
- UCL Institute of Ophthalmology, London, UK
- Eye Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ismail Moghul
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | | | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Catey Bunce
- National Institute for Health and Care Research (NIHR) BRC at the Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, UK
| | - Darren G. Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kirithika Muthusamy
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Petra Liskova
- UCL Institute of Ophthalmology, London, UK
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J. Tuft
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Alice E. Davidson
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
3
|
Todorow V, Hintze S, Schoser B, Meinke P. Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies. Biomedicines 2025; 13:606. [PMID: 40149583 PMCID: PMC11940573 DOI: 10.3390/biomedicines13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies-DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery-Dreifuss muscular dystrophy (EDMD)-to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers.
Collapse
Affiliation(s)
- Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
4
|
Morales F, Vargas D, Palma-Jiménez M, Rodríguez EJ, Azofeifa G, Hernández-Hernández O. Natural Antioxidants Reduce Oxidative Stress and the Toxic Effects of RNA-CUG (exp) in an Inducible Glial Myotonic Dystrophy Type 1 Cell Model. Antioxidants (Basel) 2025; 14:260. [PMID: 40227219 PMCID: PMC11939792 DOI: 10.3390/antiox14030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the toxic RNA gain-of-function and if natural antioxidants can revert some of the RNA-CUG(exp) toxic effects. Using an inducible glial DM1 model (MIO-M1 cells), we compared OS in expanded vs. unexpanded cells and investigated whether antioxidants can mitigate OS and RNA-CUG(exp) toxicity. OS was measured via superoxide anion and lipid peroxidation assays. RNA foci were identified using FISH, and the mis-splicing of selected exons was analyzed using semi-quantitative RT-PCR. Cells were treated with natural antioxidants, and the effects on OS, foci formation, and mis-splicing were compared between treated and untreated cells. The results showed significantly higher superoxide anion and lipid peroxidation levels in untreated DM1 cells, which decreased after antioxidant treatment (ANOVA, p < 0.001). Foci were present in 51% of the untreated cells but were reduced in a dose-dependent manner following treatment (ANOVA, p < 0.001). Antioxidants also improved the splicing of selected exons (ANOVA, p < 0.001), suggesting OS plays a role in DM1, and antioxidants may offer therapeutic potential.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Dayana Vargas
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Melissa Palma-Jiménez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Esteban J. Rodríguez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica;
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, INR-LGII, Mexico City 14389, Mexico;
| |
Collapse
|
5
|
Raaijmakers RHL, Ausems CRM, Willemse M, Cumming SA, van Engelen BGM, Monckton DG, van Bokhoven H, Wansink DG. Ameliorated cellular hallmarks of myotonic dystrophy in hybrid myotubes from patient and unaffected donor cells. Stem Cell Res Ther 2024; 15:302. [PMID: 39278936 PMCID: PMC11403792 DOI: 10.1186/s13287-024-03913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Cell-based strategies are being explored as a therapeutic option for muscular dystrophies, using a variety of cell types from different origin and with different characteristics. Primary pericytes are multifunctional cells found in the capillary bed that exhibit stem cell-like and myogenic regenerative properties. This unique combination allows them to be applied systemically, presenting a promising opportunity for body-wide muscle regeneration. We previously reported the successful isolation of ALP+ pericytes from skeletal muscle of patients with myotonic dystrophy type 1 (DM1). These pericytes maintained normal growth parameters and myogenic characteristics in vitro despite the presence of nuclear (CUG)n RNA foci, the cellular hallmark of DM1. Here, we examined the behaviour of DM1 pericytes during myogenic differentiation. METHODS DMPK (CTG)n repeat lengths in patient pericytes were assessed using small pool PCR, to be able to relate variation in myogenic properties and disease hallmarks to repeat expansion. Pericytes from unaffected controls and DM1 patients were cultured under differentiating conditions in vitro. In addition, the pericytes were grown in co-cultures with myoblasts to examine their regenerative capacity by forming hybrid myotubes. Finally, the effect of pericyte fusion on DM1 disease hallmarks was investigated. RESULTS Small pool PCR analysis revealed the presence of somatic mosaicism in pericyte cell pools. Upon differentiation to myotubes, DMPK expression was upregulated, leading to an increase in nuclear foci sequestering MBNL1 protein. Remarkably, despite the manifestation of these disease biomarkers, patient-derived pericytes demonstrated myogenic potential in co-culture experiments comparable to unaffected pericytes and myoblasts. However, only the unaffected pericytes improved the disease hallmarks in hybrid myotubes. From 20% onwards, the fraction of unaffected nuclei in myotubes positively correlated with a reduction of the number of RNA foci and an increase in the amount of free MBNL1. CONCLUSIONS Fusion of only a limited number of unaffected myogenic precursors to DM1 myotubes already ameliorates cellular disease hallmarks, offering promise for the development of cell transplantation strategies to lower disease burden.
Collapse
Affiliation(s)
- Renée H L Raaijmakers
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - Marieke Willemse
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behaviour, Department of Neurology, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behaviour, Department of Human Genetics, Radboud university medical center, Nijmegen, 6500 HB, The Netherlands.
| | - Derick G Wansink
- Department of Medical BioSciences, Radboud university medical center, Radboud Institute for Medical Innovation, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
6
|
Seifert BA, Reddi HV, Kang BE, Bean LJH, Shealy A, Rose NC. Myotonic dystrophy type 1 testing, 2024 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024; 26:101145. [PMID: 38836869 PMCID: PMC11298302 DOI: 10.1016/j.gim.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy causing progressive muscle loss and weakness. Although clinical features can manifest at any age, it is the most common form of muscular dystrophy with onset in adulthood. DM1 is an autosomal dominant condition, resulting from an unstable CTG expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The age of onset and the severity of the phenotype are roughly correlated with the size of the CTG expansion. Multiple methodologies can be used to diagnose affected individuals with DM1, including polymerase chain reaction, Southern blot, and triplet repeat-primed polymerase chain reaction. Recently, triplet repeat interruptions have been described, which may affect clinical outcomes of a fully-variable allele in DMPK. This document supersedes the Technical Standards and Guidelines for Myotonic Dystrophy originally published in 2009 and reaffirmed in 2015. It is designed for genetic testing professionals who are already familiar with the disease and the methods of analysis.
Collapse
Affiliation(s)
- Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Honey V Reddi
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Benjamin E Kang
- Department of Pathology and Pediatrics, University of Michigan Medical School, Ann Arbor, MI; Vanderbilt University Medical Center, Nashville, TN
| | | | - Amy Shealy
- Cleveland Clinic Center for Personalized Genetic Healthcare, Cleveland, OH
| | - Nancy C Rose
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Núñez-Manchón J, Capó J, Martínez-Piñeiro A, Juanola E, Pesovic J, Mosqueira-Martín L, González-Imaz K, Maestre-Mora P, Odria R, Cerro-Herreros E, Naldaiz-Gastesi N, López de Munain A, Artero R, Savic-Pavicevic D, Vallejo-Illarramendi A, Mamchaoui K, Bigot A, Mouly V, Suelves M, Nogales-Gadea G. Immortalized human myotonic dystrophy type 1 muscle cell lines to address patient heterogeneity. iScience 2024; 27:109930. [PMID: 38832025 PMCID: PMC11144749 DOI: 10.1016/j.isci.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Historically, cellular models have been used as a tool to study myotonic dystrophy type 1 (DM1) and the validation of therapies in said pathology. However, there is a need for in vitro models that represent the clinical heterogeneity observed in patients with DM1 that is lacking in classical models. In this study, we immortalized three DM1 muscle lines derived from patients with different DM1 subtypes and clinical backgrounds and characterized them at the genetic, epigenetic, and molecular levels. All three cell lines display DM1 hallmarks, such as the accumulation of RNA foci, MBNL1 sequestration, splicing alterations, and reduced fusion. In addition, alterations in early myogenic markers, myotube diameter and CTCF1 DNA methylation were also found in DM1 cells. Notably, the new lines show a high level of heterogeneity in both the size of the CTG expansion and the aforementioned molecular alterations. Importantly, these immortalized cells also responded to previously tested therapeutics. Altogether, our results show that these three human DM1 cellular models are suitable to study the pathophysiological heterogeneity of DM1 and to test future therapeutic options.
Collapse
Affiliation(s)
- Judit Núñez-Manchón
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Júlia Capó
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eduard Juanola
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Jovan Pesovic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Laura Mosqueira-Martín
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Klaudia González-Imaz
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Pau Maestre-Mora
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Renato Odria
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Estefania Cerro-Herreros
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Neia Naldaiz-Gastesi
- Neurosciences Area, Institute Biodonostia-Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, an Sebastián, Spain
- CIBERNED, CIBER, Instituto Carlos III, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Institute Biodonostia-Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, an Sebastián, Spain
- CIBERNED, CIBER, Instituto Carlos III, Madrid, Spain
- Department of Neurosciences. University of the Basque Country, San Sebastian, Spain
- Faculty of Health Sciences. University of Deusto, Bilbao-San Sebastian, Spain
| | - Rubén Artero
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| | - Dusanka Savic-Pavicevic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Universitario Donostia - IIS Biodonostia, 20014 San Sebastian, Spain
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Mònica Suelves
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Grup de REcerca Neuromuscular de BAdalona (GRENBA), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
9
|
Visconti VV, Macrì E, D'Apice MR, Centofanti F, Massa R, Novelli G, Botta A. In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5' and 3' Ends of the CTG Array. Int J Mol Sci 2023; 24:10129. [PMID: 37373276 DOI: 10.3390/ijms241210129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disease caused by a CTG repeat expansion in the 3'-untranslated region (UTR) of DMPK gene. DM1 alleles containing non-CTG variant repeats (VRs) have been described, with uncertain molecular and clinical consequences. The expanded trinucleotide array is flanked by two CpG islands, and the presence of VRs could confer an additional level of epigenetic variability. This study aims to investigate the association between VR-containing DMPK alleles, parental inheritance and methylation pattern of the DM1 locus. The DM1 mutation has been characterized in 20 patients using a combination of SR-PCR, TP-PCR, modified TP-PCR and LR-PCR. Non-CTG motifs have been confirmed by Sanger sequencing. The methylation pattern of the DM1 locus was determined by bisulfite pyrosequencing. We characterized 7 patients with VRs within the CTG tract at 5' end and 13 patients carrying non-CTG sequences at 3' end of the DM1 expansion. DMPK alleles with VRs at 5' end or 3' end were invariably unmethylated upstream of the CTG expansion. Interestingly, DM1 patients with VRs at the 3' end showed higher methylation levels in the downstream island of the CTG repeat tract, preferentially when the disease allele was maternally inherited. Our results suggest a potential correlation between VRs, parental origin of the mutation and methylation pattern of the DMPK expanded alleles. A differential CpG methylation status could play a role in the phenotypic variability of DM1 patients, representing a potentially useful diagnostic tool.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Elisa Macrì
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Rosaria D'Apice
- Laboratory of Medical Genetics, Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Oliwa A, Hocking C, Hamilton MJ, McLean J, Cumming S, Ballantyne B, Jampana R, Longman C, Monckton DG, Farrugia ME. Masseter muscle volume as a disease marker in adult-onset myotonic dystrophy type 1. Neuromuscul Disord 2022; 32:893-902. [PMID: 36207221 DOI: 10.1016/j.nmd.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/21/2022] [Accepted: 09/20/2022] [Indexed: 01/10/2023]
Abstract
The advent of clinical trials in myotonic dystrophy type 1 (DM1) necessitates the identification of reliable outcome measures to quantify different disease manifestations using minimal number of assessments. In this study, clinical correlations of mean masseter volume (mMV) were explored to evaluate its potential as a marker of muscle involvement in adult-onset DM1 patients. We utilised data from a preceding study, pertaining to 39 DM1 patients and 20 age-matched control participants. In this study participants had undergone MRI of the brain, completed various clinical outcome measures and had CTG repeats measured by small-pool PCR. Manual segmentation of masseter muscles was performed by a single rater to estimate mMV. The masseter muscle was atrophied in DM1 patients when compared to controls (p<0.001). Significant correlations were found between mMV and estimated progenitor allele length (p = 0.001), modal allele length (p = 0.003), disease duration (p = 0.009) and and the Muscle Impairment Rating Scale (p = 0.008). After correction for lean body mass, mMV was also inversely correlated with self-reported myotonia (p = 0.014). This study demonstrates that changes in mMV are sensitive in reflecting the underlying disease process. Quantitative MRI methods demonstrate that data concerning both central and peripheral disease could be acquired from MR brain imaging studies in DM1 patients.
Collapse
Affiliation(s)
- Agata Oliwa
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Clarissa Hocking
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mark J Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - John McLean
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Ravi Jampana
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow G12 0XH, United Kingdom
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
12
|
Taylor A, Barros D, Gobet N, Schuepbach T, McAllister B, Aeschbach L, Randall E, Trofimenko E, Heuchan E, Barszcz P, Ciosi M, Morgan J, Hafford-Tear N, Davidson A, Massey T, Monckton D, Jones L, network REGISTRYH, Xenarios I, Dion V. Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genom Bioinform 2022; 4:lqac089. [PMID: 36478959 PMCID: PMC9719798 DOI: 10.1093/nargab/lqac089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Targeted DNA sequencing approaches will improve how the size of short tandem repeats is measured for diagnostic tests and preclinical studies. The expansion of these sequences causes dozens of disorders, with longer tracts generally leading to a more severe disease. Interrupted alleles are sometimes present within repeats and can alter disease manifestation. Determining repeat size mosaicism and identifying interruptions in targeted sequencing datasets remains a major challenge. This is in part because standard alignment tools are ill-suited for repetitive and unstable sequences. To address this, we have developed Repeat Detector (RD), a deterministic profile weighting algorithm for counting repeats in targeted sequencing data. We tested RD using blood-derived DNA samples from Huntington's disease and Fuchs endothelial corneal dystrophy patients sequenced using either Illumina MiSeq or Pacific Biosciences single-molecule, real-time sequencing platforms. RD was highly accurate in determining repeat sizes of 609 blood-derived samples from Huntington's disease individuals and did not require prior knowledge of the flanking sequences. Furthermore, RD can be used to identify alleles with interruptions and provide a measure of repeat instability within an individual. RD is therefore highly versatile and may find applications in the diagnosis of expanded repeat disorders and in the development of novel therapies.
Collapse
Affiliation(s)
- Alysha S Taylor
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dinis Barros
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Nastassia Gobet
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Thierry Schuepbach
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Newbiologix, Ch. De la corniche 6-8, 1066 Epalinges, Switzerland
| | - Branduff McAllister
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorene Aeschbach
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Emma L Randall
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Evgeniya Trofimenko
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Eleanor R Heuchan
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Paula Barszcz
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Joanne Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Alice E Davidson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Thomas H Massey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Ioannis Xenarios
- Centre for Integrative Genomics, University of Lausanne, Bâtiment Génopode, 1015 Lausanne, Switzerland
- Health2030 Genome Center, Ch des Mines 14, 1202 Genève, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are genetic disorders affecting skeletal and smooth muscle, heart, brain, eyes, and other organs. The multisystem involvement and disease variability of myotonic dystrophy have presented challenges for clinical care and research. This article focuses on the diagnosis and management of the disease. In addition, recent advances in characterizing the diverse clinical manifestations and variability of the disease are discussed. RECENT FINDINGS Studies of the multisystem involvement of myotonic dystrophy, including the most lethal cardiac and respiratory manifestations and their molecular underpinnings, expand our understanding of the myotonic dystrophy phenotype. Advances have been made in understanding the molecular mechanisms of both types of myotonic dystrophy, providing opportunities for developing targeted therapeutics, some of which have entered clinical trials in DM1. SUMMARY Continued efforts focus on advancing our molecular and clinical understanding of DM1 and DM2. Accurately measuring and monitoring the diverse and variable clinical manifestations of myotonic dystrophy in clinic and in research is important to provide adequate care, prevent complications, and find treatments that improve symptoms and life quality.
Collapse
|
14
|
van Cruchten RTP, van As D, Glennon JC, van Engelen BGM, 't Hoen PAC, Wenninger S, Daidj F, Cumming S, Littleford R, Monckton DG, Lochmüller H, Catt M, Faber CG, Hapca A, Donnan PT, Gorman G, Bassez G, Schoser B, Knoop H, Treweek S, Wansink DG, Impens F, Gabriels R, Claeys T, Ravel-Chapuis A, Jasmin BJ, Mahon N, Nieuwenhuis S, Martens L, Novak P, Furling D, Baak A, Gourdon G, MacKenzie A, Martinat C, Neault N, Roos A, Duchesne E, Salz R, Thompson R, Baghdoyan S, Varghese AM, Blom P, Spendiff S, Manta A. Clinical improvement of DM1 patients reflected by reversal of disease-induced gene expression in blood. BMC Med 2022; 20:395. [PMID: 36352383 PMCID: PMC9646470 DOI: 10.1186/s12916-022-02591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expansion in the DM1 protein kinase (DMPK) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with the clinical improvement in the OPTIMISTIC cohort. METHODS Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome measures. RESULTS We identified 608 genes for which their expression was significantly associated with the CTG-repeat expansion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were DNAJB12, HDAC5, and TRIM8, each belonging to a protein family that is being studied in the context of neurological disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Furthermore, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was found, suggesting a partial overlap in blood-based gene dysregulation. CONCLUSIONS DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening new avenues for drug discovery and therapy efficacy assessments.
Collapse
Affiliation(s)
- Remco T P van Cruchten
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniël van As
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Timchenko L. Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics. Int J Mol Sci 2022; 23:ijms231911954. [PMID: 36233257 PMCID: PMC9570427 DOI: 10.3390/ijms231911954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Raymond K, Gagnon C, Levasseur M. Multiple Case Study of Changes in Participation of Adults with Myotonic Dystrophy Type 1: Importance of Redesigning Accomplishment and Resilience. J Neuromuscul Dis 2022; 9:731-755. [DOI: 10.3233/jnd-210780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Myotonic dystrophy type 1 (DM1) is the most prevalent adult form of neuromuscular disorders, for which a decrease of participation with age is known. However, little is known about facilitators and barriers to participation, especially from the perspective of both patients and caregivers. Objective: This study explored and explained changes in participation post-diagnosis with myotonic dystrophy type 1 from the perspective of six adults, their relatives and nurse case managers. Methods: A multiple case study was carried out with these triads (n = 6) using semi-structured individual interviews, medical charts, and a participation patient-reported outcome measure. The six cases were built around three women and three men (age: 40–56 years; disease duration: 19–39 years). Their “relatives” were mainly family members. Nurse case managers had done annual follow-ups with all the adults for approximately ten years. Changes in participation were characterized generally by: 1) heterogeneity, 2) insidious increase in restrictions, and more specifically by: 3) redesigning accomplishment, 4) progressive social isolation, 5) restrictions in life-space mobility, and 6) increasingly sedentary activities. Results: Important facilitators of participation were the adult’s resilience, highly meaningful activities, social support, living arrangement, and willingness to use technical aids. Barriers were mostly related to symptoms and a precarious social network, and were affected by misfit and potential syndemic interactions between personal (e.g., comorbidities) and environmental (e.g., stigma) factors. Conclusion: This study identified key facilitators and barriers and their underlying processes, which should be integrated into the evaluation and intervention framework to optimize participation over time.
Collapse
Affiliation(s)
- Kateri Raymond
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Jonquière, Canada. 2230, rue de l’Hôpital, C.P. 1200, Jonquière (Québec), G7X 7X2, Canada
- Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada. 1036, rue Belvédère Sud, Sherbrooke (Québec), J1H 4C4, Canada
- Centre de recherche Charles-Le Moyne (CR-CLM), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Chicoutimi, Canada. 305, rue Saint-Vallier, Chicoutimi (Québec), G7H 5H6, Canada
| | - Cynthia Gagnon
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Jonquière, Canada. 2230, rue de l’Hôpital, C.P. 1200, Jonquière (Québec), G7X 7X2, Canada
- Centre de recherche Charles-Le Moyne (CR-CLM), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Chicoutimi, Canada. 305, rue Saint-Vallier, Chicoutimi (Québec), G7H 5H6, Canada
| | - Mélanie Levasseur
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada. 1036, rue Belvédère Sud, Sherbrooke (Québec), J1H 4C4, Canada
| |
Collapse
|
17
|
Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J Mol Diagn 2022; 24:1143-1154. [PMID: 36084803 DOI: 10.1016/j.jmoldx.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.
Collapse
|
18
|
Hamel J, Creigh PD, Dekdebrun J, Eichinger K, Thornton CA. Remote assessment of myotonic dystrophy type 1: A feasibility study. Muscle Nerve 2022; 66:336-339. [PMID: 35426155 PMCID: PMC11629705 DOI: 10.1002/mus.27559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS Remote study visits (RSVs) are emerging as important tools for clinical research. We tested the feasibility of using RSVs to evaluate patients with myotonic dystrophy type 1 (DM1), including remote quantitative assessment of muscle function, and we assessed correlations of remote assessments with patient-reported function. METHODS Twenty three subjects with DM1 were consented remotely. Toolkits containing a tablet computer, grip dynamometer, and spirometer were shipped to participants. The tablets were loaded with software for video-conferencing and questionnaires about functional impairment, patient experience with technology, and willingness to participate in future remote studies. Grip strength, forced vital capacity, peak cough flow, timed-up-and-go (TUG), and grip myotonia (hand opening time) were determined during RSVs. We assessed correlations of remote assessments with patient-reported outcomes of muscle function and with CTG repeat size. RESULTS All 23 subjects completed RSVs. 95% of participants were able to complete all components of the remote study. All toolkit components were returned upon completion. Grip strength and TUG demonstrated moderate to strong correlations with self-reported inventories of upper and lower extremity impairment, respectively (ρ = 0.7 and ρ = -0.52). A total of 91% of subjects expressed interest in participating in future RSVs. DISCUSSION Results of this study support the feasibility of using portable devices and video-conferencing for remote collection of patient-reported outcomes and quantitative assessment of muscle function in DM1.
Collapse
Affiliation(s)
- Johanna Hamel
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Peter D Creigh
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
19
|
Alfano M, De Antoni L, Centofanti F, Visconti VV, Maestri S, Degli Esposti C, Massa R, D'Apice MR, Novelli G, Delledonne M, Botta A, Rossato M. Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. eLife 2022; 11:80229. [PMID: 36018009 PMCID: PMC9462847 DOI: 10.7554/elife.80229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is caused by CCTG repeat expansions in the CNBP gene, comprising 75 to >11,000 units and featuring extensive mosaicism, making it challenging to sequence fully expanded alleles. To overcome these limitations, we used PCR-free Cas9-mediated nanopore sequencing to characterize CNBP repeat expansions at the single-nucleotide level in nine DM2 patients. The length of normal and expanded alleles can be assessed precisely using this strategy, agreeing with traditional methods, and revealing the degree of mosaicism. We also sequenced an entire ~50 kbp expansion, which has not been achieved previously for DM2 or any other repeat-expansion disorders. Our approach precisely counted the repeats and identified the repeat pattern for both short interrupted and uninterrupted alleles. Interestingly, in the expanded alleles, only two DM2 samples featured the expected pure CCTG repeat pattern, while the other seven presented also TCTG blocks at the 3′ end, which have not been reported before in DM2 patients, but confirmed hereby with orthogonal methods. The demonstrated approach simultaneously determines repeat length, structure/motif, and the extent of somatic mosaicism, promising to improve the molecular diagnosis of DM2 and achieve more accurate genotype–phenotype correlations for the better stratification of DM2 patients in clinical trials.
Collapse
Affiliation(s)
| | - Luca De Antoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Roberto Massa
- Department of Systems Medicine (Neurology), University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Novelli
- Laboratory of Medical Genetics, University of Rome Tor Vergata, Rome, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13081465. [PMID: 36011377 PMCID: PMC9408469 DOI: 10.3390/genes13081465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common autosomal-dominant disorder caused by the CTG repeat expansion of the DMPK, and it has been categorized into three phenotypes: mild, classic, and congenital DM1. Here, we reviewed the intergenerational influence of gender and phenotype of the transmitting parent on the occurrence of Korean DM1. A total of 44 parent–child pairs matched for the gender of the transmitting parent and the affected child and 29 parent–child pairs matched for the gender and DM1 phenotype of the transmitting parent were reviewed. The CTG repeat size of the DMPK in the affected child was found to be significantly greater when transmitted by a female parent to a female child (DM1-FF) (median, 1309 repeats; range, 400–2083) than when transmitted by a male parent to a male child (650; 160–1030; p = 0.038 and 0.048 using the Tukey HSD and the Bonferroni test) or by a male parent to a female child (480; 94–1140; p = 0.003). The difference in the CTG repeat size of the DMPK between the transmitting parent and the affected child was also lower when transmitted from a male parent with classic DM1 (−235; −280 to 0) compared to when it was transmitted from a female parent with mild DM1 (866; 612–905; p = 0.015 and 0.019) or from a female parent with classic DM1 (DM1-FC) (605; 10–1393; p = 0.005). This study highlights that gender and the DM1 phenotype of the transmitting parent had an impact on the CTG repeat size of the DMPK in the affected child, with greater increases being inherited from the DM1-FF or DM1-FC situations in Korean DM1.
Collapse
|
21
|
Rasmussen A, Hildonen M, Vissing J, Duno M, Tümer Z, Birkedal U. High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1. Genes (Basel) 2022; 13:genes13060970. [PMID: 35741732 PMCID: PMC9222588 DOI: 10.3390/genes13060970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder caused by the expansion of a CTG repeat in the 3′-UTR of DMPK, which is transcribed to a toxic gain-of-function RNA that affects splicing of a range of genes. The expanded repeat is unstable in both germline and somatic cells. The variable age at disease onset and severity of symptoms have been linked to the inherited CTG repeat length, non-CTG interruptions, and methylation levels flanking the repeat. In general, the genetic biomarkers are investigated separately with specific methods, making it tedious to obtain an overall characterisation of the repeat for a given individual. In the present study, we employed Oxford nanopore sequencing in a pilot study to simultaneously determine the repeat lengths, investigate the presence and nature of repeat interruptions, and quantify methylation levels in the regions flanking the CTG-repeats in four patients with DM1. We determined the repeat lengths, and in three patients, we observed interruptions which were not detected using repeat-primed PCR. Interruptions may thus be more common than previously anticipated and should be investigated in larger cohorts. Allele-specific analyses enabled characterisation of aberrant methylation levels specific to the expanded allele, which greatly increased the sensitivity and resolved cases where the methylation levels were ambiguous.
Collapse
Affiliation(s)
- Astrid Rasmussen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Ulf Birkedal
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark; (A.R.); (M.H.); (U.B.)
| |
Collapse
|
22
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
23
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Fujino H, Saito T, Takahashi MP, Takada H, Nakayama T, Imura O, Matsumura T. Quality of life and subjective symptom impact in Japanese patients with myotonic dystrophy type 1. BMC Neurol 2022; 22:55. [PMID: 35164706 PMCID: PMC8842550 DOI: 10.1186/s12883-022-02581-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although functional impairment in patients with myotonic dystrophy is an important determinant of the quality of life (QoL), patients' subjective evaluation of their symptoms may also affect their QoL. The aim of this study was to investigate the association between subjective symptom impact and the QoL of patients with myotonic dystrophy, after controlling for functional impairment. METHODS Eligible patients with myotonic dystrophy type 1 (DM1) were recruited from four hospitals in Japan. The subjective symptom impact of four symptoms (muscle weakness, fatigue, pain, and myotonia) and overall QoL were evaluated using the Individualized Neuromuscular Quality of Life (INQoL) questionnaire. Functional impairment was assessed using the modified Rankin Scale. RESULTS Seventy-seven patients with DM1 were included in this study. Overall QoL was significantly associated with subjective symptom impact of muscular weakness, fatigue, pain, myotonia, swallowing difficulty, and droopy eyelids. In the regression models, disease duration (beta = 0.11) and moderate to severe functional impairment (beta = 0.33) explained a significant part of the overall QoL. Furthermore, muscular weakness, fatigue, and myotonia significantly explained additional variance of the overall QoL (beta = 0.17-0.43). CONCLUSIONS Subjective symptom impact and functional impairment are independent features influencing the QoL of Japanese patients with DM1.
Collapse
Affiliation(s)
- Haruo Fujino
- Department of Child Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan. .,Department of Special Needs Education, Oita University, 700 Dannoharu, Oita, Japan. .,Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Japan.
| | - Toshio Saito
- Division of Child Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Japan.,Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Japan
| | - Masanori P Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Japan
| | - Hiroto Takada
- Department of Neurology, National Hospital Organization Aomori National Hospital, 155-1 Megasawa-Hirano, Aomori, Japan
| | - Takahiro Nakayama
- Department of Neurology, Yokohama Rosai Hospital, 3211 Kozukue, Yokohama, Japan
| | - Osamu Imura
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Japan.,Faculty of Social Sciences, Nara University, 1500 Misasagi, Nara, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Japan
| |
Collapse
|
25
|
Rogers R, Moyer K, Moise KJ. Congenital Myotonic Dystrophy: An Overlooked Diagnosis Not Amenable to Detection by Sequencing. Prenat Diagn 2022; 42:233-235. [PMID: 35083764 DOI: 10.1002/pd.6105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To increase the clinical awareness of the need for genetic evaluation for congenital myotonic dystrophy in cases of fetal akinesia sequence and idiopathic polyhydramnios. METHODS Retrospective case review. RESULT A 27 y.o. G1P0 with no significant family history presented for ultrasound at 25 weeks gestation. Notable findings included lack of extension of the fetal arms and legs with bilateral talipes consistent with fetal akinesia sequence. Polyhydramnios with an amniotic fluid index of 32.2cm was also present. Amniotic fluid obtained by amniocentesis revealed normal results for a chromosomal microarray and a next generation sequencing panel for arthrogryposis. The patient underwent serial amnioreductions for recurrent severe polyhydramnios with removal of a total of 9.3 L. Further amniotic fluid testing for CDM1 identified >200 repeats in one copy of the fetal DMPK gene, consistent with a diagnosis of congenital myotonic dystrophy type 1. The patient was delivered at 35 weeks gestation and neonatal demise occurred on the second day of life. CONCLUSION Congenital myotonic dystrophy should be a consideration for cases of severe polyhydramnios identified on ultrasound. Myotonic dystrophy is detected using PCR and southern blot and is not typically included on next generation sequencing panels that test for similar conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rosemary Rogers
- From the Department of Women's Health, Dell Medical School - UT Health Austin, and the Comprehensive Fetal Center, Dell Children's Medical Center, Austin, Texas
| | - Kelly Moyer
- From the Department of Women's Health, Dell Medical School - UT Health Austin, and the Comprehensive Fetal Center, Dell Children's Medical Center, Austin, Texas
| | - Kenneth J Moise
- From the Department of Women's Health, Dell Medical School - UT Health Austin, and the Comprehensive Fetal Center, Dell Children's Medical Center, Austin, Texas
| |
Collapse
|
26
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
27
|
Visconti VV, Centofanti F, Fittipaldi S, Macrì E, Novelli G, Botta A. Epigenetics of Myotonic Dystrophies: A Minireview. Int J Mol Sci 2021; 22:ijms222212594. [PMID: 34830473 PMCID: PMC8623789 DOI: 10.3390/ijms222212594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Elisa Macrì
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- IRCCS (Institute for Treatment and Research) Neuromed, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- Correspondence: ; Tel.: +39-6-7259-6078
| |
Collapse
|
28
|
Hanoun S, Sun Y, Ebrahimi F, Ghasemi M. Speech and language abnormalities in myotonic dystrophy: An overview. J Clin Neurosci 2021; 96:212-220. [PMID: 34789418 DOI: 10.1016/j.jocn.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular and multisystem disease that is divided into two types, DM1 and DM2, according to mutations in DMPK and CNBP genes, respectively. DM patients may manifest with various speech and language abnormalities. In this review, we had an overview on speech and language abnormalities in both DM1 and DM2. Our literature search highlights that irrespective of age, all DM patients (i.e. congenital, juvenile, and adult onset DM1 as well as DM2 patients) exhibit various degrees of speech impairments. These problems are related to both cognitive dysfunction (e.g. difficulties in written and spoken language) and bulbar/vocal muscles weakness and myotonia. DM1 adult patients have also a significant decrease in speech rate and performance due to myotonia and flaccid dysarthria, which can improve with warming up. Weakness, tiredness, and hypotonia of oral and velopharyngeal muscles can cause flaccid dysarthria. Hearing impairment also plays a role in affecting speech recognition in DM2. A better understanding of different aspects of speech and language abnormalities in DM patients may provide better characterization of these abnormalities as markers that can be potentially used as outcome measures in natural history studies or clinical trials.
Collapse
Affiliation(s)
- Sakhaa Hanoun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yuyao Sun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Farzad Ebrahimi
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
29
|
Wenninger S. Online Surveys Are a Useful Additional Tool in Combination with Clinical Assessments to Easily Assess Demographic and Clinical Data. Eur Neurol 2021; 85:74-76. [PMID: 34749358 DOI: 10.1159/000519773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Stephan Wenninger
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Klinikum Munich, Munich, Germany
| |
Collapse
|
30
|
Devi SS, Yadav R, Mashangva F, Chaudhary P, Sharma S, Arya R. Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Mol Neurobiol 2021; 58:6316-6334. [PMID: 34510381 DOI: 10.1007/s12035-021-02549-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022]
Abstract
UDP-N-Acetyl glucosamine-2 epimerase/N-acetyl mannosamine kinase (GNE) catalyzes key enzymatic reactions in the biosynthesis of sialic acid. Mutation in GNE gene causes GNE myopathy (GNEM) characterized by adult-onset muscle weakness and degeneration. However, recent studies propose alternate roles of GNE in other cellular processes beside sialic acid biosynthesis, particularly interaction of GNE with α-actinin 1 and 2. Lack of appropriate model system limits drug and treatment options for GNEM as GNE knockout was found to be embryonically lethal. In the present study, we have generated L6 rat skeletal muscle myoblast cell-based model system carrying one single Gne allele where GNE gene is knocked out at exon-3 using AAV mediated SEPT homology recombination (SKM-GNEHz). The cell line was heterozygous for GNE gene with one wild type and one truncated allele as confirmed by sequencing. The phenotype showed reduced GNE epimerase activity with little reduction in sialic acid content. In addition, the heterozygous GNE knockout cells revealed altered cytoskeletal organization with disrupted actin filament. Further, we observed increased levels of RhoA leading to reduced cofilin activity and causing reduced F-actin polymerization. The disturbed signaling cascade resulted in reduced migration of SKM-GNEHz cells. Our study indicates possible role of GNE in regulating actin dynamics and cell migration of skeletal muscle cell. The skeletal muscle cell-based system offers great potential in understanding pathomechanism and target identification for GNEM.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | - Priyanka Chaudhary
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India. .,Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India.
| |
Collapse
|
31
|
Morales F, Vásquez M, Corrales E, Vindas-Smith R, Santamaría-Ulloa C, Zhang B, Sirito M, Estecio MR, Krahe R, Monckton DG. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum Mol Genet 2021; 29:2496-2507. [PMID: 32601694 DOI: 10.1093/hmg/ddaa123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8-15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
33
|
van As D, Okkersen K, Bassez G, Schoser B, Lochmüller H, Glennon JC, Knoop H, van Engelen BGM, 't Hoen PAC. Clinical Outcome Evaluations and CBT Response Prediction in Myotonic Dystrophy. J Neuromuscul Dis 2021; 8:1031-1046. [PMID: 34250945 PMCID: PMC8673496 DOI: 10.3233/jnd-210634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The European OPTIMISTIC clinical trial has demonstrated a significant, yet heterogenous effect of Cognitive Behavioural Therapy (CBT) for Myotonic Dystrophy type 1 (DM1) patients. One of its remaining aims was the assessment of efficacy and adequacy of clinical outcome measures, including the relatively novel primary trial outcome, the DM1-Activ-c questionnaire. OBJECTIVES Assessment of the relationship between the Rasch-built DM1-Activ-c questionnaire and 26 commonly used clinical outcome measurements. Identification of variables associated with CBT response in DM1 patients. METHODS Retrospective analysis of the to date largest clinical trial in DM1 (OPTIMISTIC), comprising of 255 genetically confirmed DM1 patients randomized to either standard care or CBT with optionally graded exercise therapy. Correlations of 27 different outcome measures were calculated at baseline (cross-sectional) and of their respective intervention induced changes (longitudinal). Bootstrap enhanced Elastic-Net (BeEN) regression was validated and implemented to select variables associated with CBT response. RESULTS In cross-sectional data, DM1-Activ-c correlated significantly with the majority of other outcome measures, including Six Minute Walk Test and Myotonic Dystrophy Health Index. Fewer and weaker significant longitudinal correlations were observed. Nine variables potentially associated with CBT response were identified, including measures of disease severity, executive cognitive functioning and perceived social support. CONCLUSIONS The DM1-Activ-c questionnaire appears to be a well suited cross-sectional instrument to assess a variety of clinically relevant dimensions in DM1. Yet, apathy and experienced social support measures were less well captured. CBT response was heterogenous, requiring careful selection of outcome measures for different disease aspects.
Collapse
Affiliation(s)
- Daniël van As
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guillaume Bassez
- Neuromuscular Reference Centre, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität München, Ludwig Maximilians-Universität München, Munich, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Conway Institute of Biomolecular and Biomedical Sciences, School of Medicine, University College Dublin, Ireland
| | - Hans Knoop
- Department of Medical Psychology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Hintze S, Mensel R, Knaier L, Schoser B, Meinke P. CTG-Repeat Detection in Primary Human Myoblasts of Myotonic Dystrophy Type 1. Front Neurosci 2021; 15:686735. [PMID: 34262431 PMCID: PMC8274452 DOI: 10.3389/fnins.2021.686735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by unstable CTG-repeat expansions in the DMPK gene. Tissue mosaicism has been described for the length of these repeat expansions. The most obvious affected tissue is skeletal muscle, making it the first target for therapy development. To date there is no approved therapy despite some existing approaches. Thus, there is the demand to further advance therapeutic developments, which will in return require several well-characterized preclinical tools and model systems. Here we describe a modified method to identify the CTG-repeat length in primary human myoblasts isolated from DM1 patients that requires less genomic DNA and avoids radioactive labeling. Using this method, we show that primary human DM1 myoblast cultures represent a population of cells with different CTG-repeat length. Comparing DNA from the identical muscle biopsy specimen, the range of CTG-repeat length in the myoblast culture is within the same range of the muscle biopsy specimen. In conclusion, primary human DM1 myoblast cultures are a well-suited model to investigate certain aspects of the DM1 pathology. They are a useful platform to perform first-line investigations of preclinical therapies.
Collapse
Affiliation(s)
- Stefan Hintze
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raphaela Mensel
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Knaier
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Meinke
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
35
|
New developments in myotonic dystrophies from a multisystemic perspective. Curr Opin Neurol 2021; 34:738-747. [PMID: 33990102 DOI: 10.1097/wco.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The multisystemic involvement of myotonic dystrophies (DMs) intricates disease monitoring, patients' care and trial design. This update of the multifaceted comorbidities observed in DMs aims to assist neurologists in the complex management of patients and to encourage further studies for still under-investigated aspects of the disease. RECENT FINDINGS We reviewed the most recent studies covering pathogenesis and clinical aspects of extra-muscular involvement in DM1 and DM2. The largest body of evidence regards the cardiac and respiratory features, for which experts' recommendations have been produced. Gastrointestinal symptoms emerge as one of the most prevalent complaints in DMs. The alteration of insulin signaling pathways, involved in gastrointestinal manifestations, carcinogenesis, muscle function, cognitive and endocrinological aspects, gain further relevance in the light of recent evidence of metformin efficacy in DM1. Still, too few studies are performed on large DM2 cohorts, so that current recommendations mainly rely on data gathered in DM1 that cannot be fully translated to DM2. SUMMARY Extra-muscular manifestations greatly contribute to the overall disease burden. A multidisciplinary approach is the key for the management of patients. Consensus-based recommendations for DM1 and DM2 allow high standards of care but further evidence are needed to implement these recommendations.
Collapse
|
36
|
van der Plas E, Gutmann L, Thedens D, Shields RK, Langbehn K, Guo Z, Sonka M, Nopoulos P. Quantitative muscle MRI as a sensitive marker of early muscle pathology in myotonic dystrophy type 1. Muscle Nerve 2021; 63:553-562. [PMID: 33462896 PMCID: PMC8442354 DOI: 10.1002/mus.27174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Quantitative muscle MRI as a sensitive marker of early muscle pathology and disease progression in adult-onset myotonic dystrophy type 1. The utility of muscle MRI as a marker of muscle pathology and disease progression in adult-onset myotonic dystrophy type 1 (DM1) was evaluated. METHODS This prospective, longitudinal study included 67 observations from 36 DM1 patients (50% female), and 92 observations from 49 healthy adults (49% female). Lower-leg 3T magnetic resonance imaging (MRI) scans were acquired. Volume and fat fraction (FF) were estimated using a three-point Dixon method, and T2-relaxometry was determined using a multi-echo spin-echo sequence. Muscles were segmented automatically. Mixed linear models were conducted to determine group differences across muscles and image modality, accounting for age, sex, and repeated observations. Differences in rate of change in volume, T2-relaxometry, and FF were also determined with mixed linear regression that included a group by elapsed time interaction. RESULTS Compared with healthy adults, DM1 patients exhibited reduced volume of the tibialis anterior, soleus, and gastrocnemius (GAS) (all, P < .05). T2-relaxometry and FF were increased across all calf muscles in DM1 compared to controls. (all, P < .01). Signs of muscle pathology, including reduced volume, and increased T2-relaxometry and FF were already noted in DM1 patients who did not exhibit clinical motor symptoms of DM1. As a group, DM1 patients exhibited a more rapid change than did controls in tibialis posterior volume (P = .05) and GAS T2-relaxometry (P = .03) and FF (P = .06). CONCLUSIONS Muscle MRI renders sensitive, early markers of muscle pathology and disease progression in DM1. T2 relaxometry may be particularly sensitive to early muscle changes related to DM1.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital & Clinics, Iowa City, IA, USA
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Hospital & Clinics, Iowa City, IA, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dan Thedens
- Department of Radiology, University of Iowa Hospital & Clinics, Iowa City, IA, USA
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, University of Iowa Hospital & Clinics, Iowa City, IA, USA
| | - Kathleen Langbehn
- Department of Psychiatry, University of Iowa Hospital & Clinics, Iowa City, IA, USA
| | - Zhihui Guo
- Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, IA, USA
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, IA, USA
| | - Peggy Nopoulos
- Department of Psychiatry, University of Iowa Hospital & Clinics, Iowa City, IA, USA
| |
Collapse
|
37
|
Wenninger S, Cumming SA, Gutschmidt K, Okkersen K, Jimenez-Moreno AC, Daidj F, Lochmüller H, Hogarth F, Knoop H, Bassez G, Monckton DG, van Engelen BGM, Schoser B. Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1. NEUROLOGY-GENETICS 2021; 7:e572. [PMID: 33884298 PMCID: PMC8054967 DOI: 10.1212/nxg.0000000000000572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Objective To assess the association between variant repeat (VR) interruptions in patients with myotonic dystrophy type 1 (DM1) and clinical symptoms and outcome measures after cognitive behavioral therapy (CBT) intervention. Methods Adult patients with DM1 were recruited within the OPTIMISTIC trial (NCT02118779). Disease-related history, current clinical symptoms and comorbidities, functional assessments, and disease- and health-related questionnaires were obtained at baseline and after 5 and 10 months. After genetic analysis, we assessed the association between the presence of VR interruptions and clinical symptoms' long-term outcomes and compared the effects of CBT in patients with and without VR interruptions. Core trial outcome measures analyzed were: 6-minute walking test, DM1-Activ-C, Checklist Individual Strength Fatigue Score, Myotonic Dystrophy Health Index, McGill-Pain questionnaire, and Beck Depression inventory—fast screen. Blood samples for DNA testing were obtained at the baseline visit for determining CTG length and detection of VR interruptions. Results VR interruptions were detectable in 21/250 patients (8.4%)—12 were assigned to the standard-of-care group (control group) and 9 to the CBT group. Patients with VR interruptions were significantly older when the first medical problem occurred and had a significantly shorter disease duration at baseline. We found a tendency toward a milder disease severity in patients with VR interruptions, especially in ventilation status, mobility, and cardiac symptoms. Changes in clinical outcome measures after CBT were not associated with the presence of VR interruptions. Conclusions The presence of VR interruptions is associated with a later onset of the disease and a milder phenotype. However, based on the OPTIMISTIC trial data, the presence of VR interruptions was not associated with significant changes on outcome measures after CBT intervention. Trial Registration Information ClinicalTrials.gov NCT02118779.
Collapse
Affiliation(s)
- Stephan Wenninger
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah A Cumming
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kristina Gutschmidt
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kees Okkersen
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Aura Cecilia Jimenez-Moreno
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ferroudja Daidj
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Hanns Lochmüller
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Fiona Hogarth
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Hans Knoop
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Guillaume Bassez
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Darren G Monckton
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Benedikt Schoser
- Department of Neurology (S.W., K.G., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Germany; Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow, United Kingdom; Department of Neurology (K.O., B.G.M.v.E.), Radboud University, Nijmegen, The Netherlands; Institute of Genetic Medicine (A.C.J.-M.), Institute for Ageing and Health, Newcastle University, United Kingdom; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; Department of Neuropediatrics and Muscle Disorders (H.L.), University of Freiburg, Breisgau, Germany; Center for Genomic Regulation (H.L.), Barcelona Institute of Science and Technology, Spain; Tayside Clinical Trials Unit (F.H.), The University of Dundee, United Kingdom; and Department of Medical Psychology (H.K.), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M, Boisseau P, Mercier S, Ziegle J, Harting J, Heiner C, Gourdon G, Tomé S. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:2616. [PMID: 33807660 PMCID: PMC7962047 DOI: 10.3390/ijms22052616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.
Collapse
Affiliation(s)
- Antoine Mangin
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
- Dementia Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Laure de Pontual
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Yu-Chih Tsai
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Laetitia Monteil
- Genetics Department of the Hospital of Toulouse, F-31059 Toulouse, France;
| | - Mathilde Nizon
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Pierre Boisseau
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Centre de Référence des Maladies Neuromusculaires AOC, F-44000 Nantes, France;
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - John Harting
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Cheryl Heiner
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Stéphanie Tomé
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| |
Collapse
|
39
|
Butterfield RJ, Imburgia C, Mayne K, Newcomb T, Dunn DM, Duval B, Feldkamp ML, Johnson NE, Weiss RB. High throughput screening for expanded CTG repeats in myotonic dystrophy type 1 using melt curve analysis. Mol Genet Genomic Med 2021; 9:e1619. [PMID: 33624941 PMCID: PMC8123750 DOI: 10.1002/mgg3.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is caused by CTG repeat expansions in the DMPK gene and is the most common form of muscular dystrophy. Patients can have long delays from onset to diagnosis, since clinical signs and symptoms are often nonspecific and overlapping with other disorders. Clinical genetic testing by Southern blot or triplet‐primed PCR (TP‐PCR) is technically challenging and cost prohibitive for population surveys. Methods Here, we present a high throughput, low‐cost screening tool for CTG repeat expansions using TP‐PCR followed by high resolution melt curve analysis with saturating concentrations of SYBR GreenER dye. Results We determined that multimodal melt profiles from the TP‐PCR assay are a proxy for amplicon length stoichiometry. In a screen of 10,097 newborn blood spots, melt profile analysis accurately reflected the tri‐modal distribution of common alleles from 5 to 35 CTG repeats, and identified the premutation and full expansion alleles. Conclusion We demonstrate that robust detection of expanded CTG repeats in a single tube can be achieved from samples derived from specimens with minimal template DNA such as dried blood spots (DBS). This technique is readily adaptable to large‐scale testing programs such as population studies and newborn screening programs.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA.,Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Carina Imburgia
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Katie Mayne
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Tara Newcomb
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Marcia L Feldkamp
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
40
|
Cumming SA, Oliwa A, Stevens G, Ballantyne B, Mann C, Razvi S, Longman C, Monckton DG, Farrugia ME. A DM1 patient with CCG variant repeats: Reaching the diagnosis. Neuromuscul Disord 2021; 31:232-238. [PMID: 33546847 DOI: 10.1016/j.nmd.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
We report the case of a male patient presenting in his 50s with ptosis, facial and distal limb muscle weakness, clinical and electrical myotonia, and a prior history of cataract extraction. He had a dominant family history in keeping with a similar phenotype. Myotonic dystrophy type 1 was clinically suspected. Triplet-primed polymerase chain reaction in a diagnostic laboratory did not identify a typical CTG repeat expansion on two separate blood samples. However, subsequent genetic testing on a research basis identified a heterozygous repeat expansion containing CCG variant repeats. Our case highlights the point that variant repeats are not detectable on triplet-primed polymerase chain reaction and result in a milder phenotype of myotonic dystrophy. It is crucial to maintain a high clinical index of suspicion of this common neuromuscular condition.
Collapse
Affiliation(s)
- Sarah A Cumming
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, United Kingdom
| | - Agata Oliwa
- Undergraduate Medical School, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Stevens
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Bob Ballantyne
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Cameron Mann
- Neurophysiology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom
| | - Saif Razvi
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Darren G Monckton
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, United Kingdom
| | - Maria Elena Farrugia
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom.
| |
Collapse
|
41
|
Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, Kimura T, Hagerman KA, Sampson JB, Day JW, Wang ET. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep 2021; 34:108634. [PMID: 33472074 PMCID: PMC9272850 DOI: 10.1016/j.celrep.2020.108634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.
Collapse
Affiliation(s)
- Brittney A Otero
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kiril Poukalov
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo College of Medicine, Nichinomiya, Japan
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
42
|
Leddy S, Serra L, Esposito D, Vizzotto C, Giulietti G, Silvestri G, Petrucci A, Meola G, Lopiano L, Cercignani M, Bozzali M. Lesion distribution and substrate of white matter damage in myotonic dystrophy type 1: Comparison with multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 29:102562. [PMID: 33516936 PMCID: PMC7848627 DOI: 10.1016/j.nicl.2021.102562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The supratentorial distribution of lesions is similar in DM1 and MS. Patients with DM1 do not show infratentorial lesions. Quantitative magnetization transfer supports the presence of demyelination in DM1 lesions, but not in the NAWM. Anterior temporal lobe lesions in DM1 might have a different substrate than periventricular ones.
Myotonic Dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein of the kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.
Collapse
Affiliation(s)
- Sara Leddy
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Davide Esposito
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Camilla Vizzotto
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gabriella Silvestri
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy; Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Leonardo Lopiano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Marco Bozzali
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy.
| |
Collapse
|
43
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
44
|
van der Plas E, Long JD, Koscik TR, Magnotta V, Monckton DG, Cumming SA, Gottschalk AC, Hefti M, Gutmann L, Nopoulos PC. Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1. Front Neurol 2021; 12:791065. [PMID: 35126292 PMCID: PMC8810511 DOI: 10.3389/fneur.2021.791065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The present study had four aims. First, neuronal injury markers, including neurofilament light (NF-L), total tau, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), were compared between individuals with and without adult-onset myotonic dystrophy type 1 (DM1). Second, the impact of age and CTG repeat on brain injury markers was evaluated. Third, change in brain injury markers across the study period was quantified. Fourth, associations between brain injury markers and cerebral white matter (WM) fractional anisotropy (FA) were identified. METHODS Yearly assessments, encompassing blood draws and diffusion tensor imaging on a 3T scanner, were conducted on three occasions. Neuronal injury markers were quantified using single molecule array (Simoa). RESULTS The sample included 53 patients and 70 controls. NF-L was higher in DM1 patients than controls, with individuals in the premanifest phases of DM1 (PreDM1) exhibiting intermediate levels ( χ ( 2 ) 2 = 38.142, P < 0.001). Total tau was lower in DM1 patients than controls (Estimate = -0.62, 95% confidence interval [CI] -0.95: -0.28, P < 0.001), while GFAP was elevated in PreDM1 only (Estimate = 30.37, 95% CI 10.56:50.19, P = 0.003). Plasma concentrations of UCH-L1 did not differ between groups. The age by CTG interaction predicted NF-L: patients with higher estimated progenitor allelege length (ePAL) had higher NF-L at a younger age, relative to patients with lower CTG repeat; however, the latter exhibited faster age-related change (Estimate = -0.0021, 95% CI -0.0042: -0.0001, P = 0.045). None of the markers changed substantially over the study period. Finally, cerebral WM FA was significantly associated with NF-L (Estimate = -42.86, 95% CI -82.70: -3.02, P = 0.035). INTERPRETATION While NF-L appears sensitive to disease onset and severity, its utility as a marker of progression remains to be determined. The tau assay may have low sensitivity to tau pathology associated with DM1.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Vincent Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Amy C Gottschalk
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Marco Hefti
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| | - Laurie Gutmann
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, United States
| |
Collapse
|
45
|
Garibaldi M, Lauletta A, Bucci E, Fionda L, Vanoli F, Leonardi L, Alfieri G, Tufano L, Morino S, Merlonghi G, Anibaldi P, Salvetti M, Testa M, Antonini G. Gender effect on cardiac involvement in myotonic dystrophy type 1. Eur J Neurol 2020; 28:1366-1374. [PMID: 33283405 DOI: 10.1111/ene.14665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Cardiac involvement is observed in about 80% of subjects with myotonic dystrophy type 1 (DM1) and is mainly characterized by cardiac conduction and/or rhythm abnormalities (CCRAs), possibly leading to sudden cardiac death (SCD). Our objective was to investigate whether the gender difference may influence the cardiac involvement and SCD in DM1. METHODS We analyzed prevalence and incidence of cardiological abnormalities in males versus females in 151 consecutive DM1 patients over a 35-year follow-up period. RESULTS Fifty-five patients, 35 males (62.5%) and 20 females (42.5%), developed some type of CCRA during the follow-up period (mean 7.82 ± 6.21 years). CCRA overall, and specifically cardiac conduction abnormalities (CCAs), were significantly more frequent in males than in females (p = 0.043 and p = 0.031, respectively). CCRAs progressed in 16 males (45.7%) and six females (30%). Twenty-four patients, 14 males (25.0%) and 10 females (21.3%), died during the follow-up. Nine of them, six males (10.7%) and three females (6.4%), had SCD. After correction for Muscular Impairment Rating Scale progression, cytosine thymine-guanine expansion, and follow-up duration, a higher prevalence of CCAs was independently associated with male gender (p = 0.039), but independent association with gender was not detected for CCRAs overall, cardiac rhythm abnormalities, and SCD prevalence, even if prevalence was higher in males than females. CONCLUSIONS The overall risk of occurrence of CCAs in DM1 is significantly higher in males than females regardless of genetic background and disease severity and progression. Moreover, the data also suggest a similar impact for male gender for CCRAs overall, CCAs, and SCD even if not statistically significant.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marco Testa
- Department of Cardiology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
46
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
47
|
Ballester-Lopez A, Koehorst E, Linares-Pardo I, Núñez-Manchón J, Almendrote M, Lucente G, Arbex A, Alonso CP, Lucia A, Monckton DG, Cumming SA, Pintos-Morell G, Coll-Cantí J, Ramos-Fransi A, Martínez-Piñeiro A, Nogales-Gadea G. Preliminary Findings on CTG Expansion Determination in Different Tissues from Patients with Myotonic Dystrophy Type 1. Genes (Basel) 2020; 11:genes11111321. [PMID: 33171734 PMCID: PMC7695006 DOI: 10.3390/genes11111321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is characterized by a high genetic and clinical variability. Determination of the genetic variability in DM1 might help to determine whether there is an association between CTG (Cytosine-Thymine-Guanine) expansion and the clinical manifestations of this condition. We studied the variability of the CTG expansion (progenitor, mode, and longest allele, respectively, and genetic instability) in three tissues (blood, muscle, and tissue) from eight patients with DM1. We also studied the association of genetic data with the patients’ clinical characteristics. Although genetic instability was confirmed in all the tissues that we studied, our results suggest that CTG expansion is larger in muscle and skin cells compared with peripheral blood leukocytes. While keeping in mind that more research is needed in larger cohorts, we have provided preliminary evidence suggesting that the estimated progenitor CTG size in muscle could be potentially used as an indicator of age of disease onset and muscle function impairment.
Collapse
Affiliation(s)
- Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain; (A.B.-L.); (E.K.); (I.L.-P.); (J.N.-M.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain; (A.B.-L.); (E.K.); (I.L.-P.); (J.N.-M.)
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain; (A.B.-L.); (E.K.); (I.L.-P.); (J.N.-M.)
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain; (A.B.-L.); (E.K.); (I.L.-P.); (J.N.-M.)
| | - Miriam Almendrote
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Giuseppe Lucente
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Andrea Arbex
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Carles Puente Alonso
- Servei de Cirugia Ortopèdica i Traumatologia, Unitat de mà i nervi Perifèric, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Alejandro Lucia
- Facultad de Ciencias de la Actividad física y el Deporte, Universidad Europea, 28670 Madrid, Spain;
- Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G126QQ, UK; (D.G.M.); (S.A.C.)
| | - Sarah A. Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G126QQ, UK; (D.G.M.); (S.A.C.)
| | - Guillem Pintos-Morell
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Division of Rare Diseases, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Alba Ramos-Fransi
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Alicia Martínez-Piñeiro
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (M.A.); (G.L.); (A.A.); (J.C.-C.); (A.R.-F.); (A.M.-P.)
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain; (A.B.-L.); (E.K.); (I.L.-P.); (J.N.-M.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-93-4978684
| |
Collapse
|
48
|
Raymond K, Levasseur M, Gallais B, Richer L, Laberge L, Petitclerc É, Mathieu J, Gagnon C. Predictors of participation restriction over a 9-year period in adults with myotonic dystrophy type 1. Disabil Rehabil 2020; 44:2615-2631. [PMID: 33135946 DOI: 10.1080/09638288.2020.1837264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE For slowly progressive neuromuscular disease, prognostic approach and long-term monitoring of participation is a crucial part of rehabilitation services. To improve the prognostic approach, professionals must identify individuals at risk of having higher participation restriction. This study aimed to identify personal and environmental predictors of participation restriction over nine years in adults with myotonic dystrophy type 1 (DM1). METHODS A secondary analysis of a longitudinal design comparing baseline with a follow-up nine years later was used with a multidimensional assessment of participation and personal and environmental factors. Based on theoretical models, multiple linear regressions were used. RESULTS One hundred and fourteen adults with DM1 were included in the study (63.2% women; 78.9% adult onset; mean (SD) age of 43.5 (10.4) years). When age, sex, phenotype, and education were controlled for, participation restriction was predicted by a longer time to stand and walk, lower grip strength, higher body mass index, absence of perceived impact of myotonia in daily living, use of adapted transportation from community services, and perception of obstacle in physical environment (p < 0.001, adjusted R2 = 0.50). CONCLUSIONS The majority of predictors of participation restriction can be advantageously modified by rehabilitation and environmental changes, such as politics targeting community services provision or physical environment and services accessibility.Implications for rehabilitationPredictors could better inform rehabilitation professional to recognize individuals at risk of higher participation restriction over time and to target specific interventions based on a prognostic approach.Rehabilitation professionals could inform the people living with myotonic dystrophy type 1 and their relatives of the multifactorial nature of occurrence of participation restriction to diminish the "fatality" associated with a genetic progressive disorder.Predictors allow professionals to assess and intervene in the management of specific factors depending on the rehabilitation goal.Identifying individual with myotonic dystrophy with higher risk of participation restriction could help implement a long-term community based rehabilitation intervention plan targeting both personal and environmental factors.
Collapse
Affiliation(s)
- Kateri Raymond
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada.,Centre de recherche Charles-Le Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Chicoutimi, Canada
| | - Mélanie Levasseur
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,Centre de recherche Charles-Le Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Chicoutimi, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,Département des Sciences de la Santé, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Luc Laberge
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Canada.,Département des Sciences de la Santé, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Émilie Petitclerc
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada
| | - Jean Mathieu
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,Centre de recherche Charles-Le Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Chicoutimi, Canada
| | - Cynthia Gagnon
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Jonquière, Canada.,Centre de recherche Charles-Le Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Chicoutimi, Canada
| |
Collapse
|
49
|
Wenninger S, Stahl K, Montagnese F, Schoser B. Utility and Results from a Patient-Reported Online Survey in Myotonic Dystrophies Types 1 and 2. Eur Neurol 2020; 83:523-533. [PMID: 33120389 DOI: 10.1159/000511237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Myotonic dystrophies (DMs) are the most frequent autosomal dominant neuromuscular disorders in adults. Our objective was to evaluate the utility of an online survey in a rare disease as well as to assess and compare the onset and the progression of clinical symptoms in patients with myotonic dystrophy types 1 (DM1) and 2 (DM2). METHODS We conducted a patient's reported online survey assessing demographics, disease-related symptoms (age of onset, first symptom, time of diagnosis, current symptoms, inheritance, and family history) combined with capturing current symptoms by validated questionnaires. The questionnaire consisted of open, closed, single- and multiple-choice questions. Multiple answers were possible in some cases. Patients with genetically confirmed DM1 or DM2 who were registered in the German DM registry or the Deutsche Gesellschaft für Muskelkranke e.V. - Diagnostic Group for DMs were invited to participate in this online survey. We calculated descriptive and exploratory analysis, where applicable. RESULTS Out of 677 data sets from respondents, 394 were suitable for final analysis, containing completed questionnaires from 207 DM1 (56% female) and 187 DM2 patients (71% female). The median age of onset was 28 years for DM1 and 35 years for DM2. Muscular symptoms were most frequently reported as the first symptom. The onset of myotonia was earlier than the onset of muscle weakness in both DM1 and DM2. Forty-four percent of patients with DM1 and one-third of patients with DM2 indicated muscle weakness as the first symptom. Patients with DM1 were significantly younger when experiencing muscle weakness as first symptom. Fatigue was only mentioned by a small fraction of patients as a first symptom but increased significantly in the course of the disease. There was no statistically significant difference in the incidence of cataracts, cardiac symptoms, and gastrointestinal symptoms between DM1 and DM2. Falls were reported almost equally in both groups, and most of the patients reported 2-3 falls within the past year. DISCUSSION Overall, as our results are consistent with the results of clinical studies and online registries, it can be assumed that this type of systematic gathering of data from patients with rare diseases is useful and provides realistic and appropriate results. Due to the nature of online surveys and the absence of an assessor, some uncertainty remains. Furthermore, survey frauds cannot be completely excluded. An additional clinical assessment could confirm the given information and will improve the utility and validity of reported symptoms participants provide in online surveys. Therefore, we recommend a combination of data collecting by online surveys and clinical assessments.
Collapse
Affiliation(s)
- Stephan Wenninger
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Kristina Stahl
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
50
|
Simoncini C, Spadoni G, Lai E, Santoni L, Angelini C, Ricci G, Siciliano G. Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Front Neurol 2020; 11:624. [PMID: 33117249 PMCID: PMC7575726 DOI: 10.3389/fneur.2020.00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Increasing evidences indicate that in Myotonic Dystrophy type 1 (DM1 or Steinert disease), an autosomal dominant multisystem disorder caused by a (CTG)n expansion in DMPK gene on chromosome 19q13. 3, is the most common form of inherited muscular dystrophy in adult patients with a global prevalence of 1/8000, and involvement of the central nervous system can be included within the core clinical manifestations of the disease. Variable in its severity and progression rate over time, likely due to the underlying causative molecular mechanisms; this component of the clinical picture presents with high heterogeneity involving cognitive and behavioral alterations, but also sensory-motor neural integration, and in any case, significantly contributing to the disease burden projected to either specific functional neuropsychological domains or quality of life as a whole. Principle manifestations include alterations of the frontal lobe function, which is more prominent in patients with an early onset, such as in congenital and childhood onset forms, here associated with severe intellectual disabilities, speech and language delay and reduced IQ-values, while in adult onset DM1 cognitive and neuropsychological findings are usually not so severe. Different methods to assess central nervous system involvement in DM1 have then recently been developed, these ranging from more classical psychometric and cognitive functional instruments to sophisticated psycophysic, neurophysiologic and especially computerized neuroimaging techniques, in order to better characterize this disease component, at the same time underlining the opportunity to consider it a suitable marker on which measuring putative effectiveness of therapeutic interventions. This is the reason why, as outlined in the conclusive section of this review, the Authors are lead to wonder, perhaps in a provocative and even paradoxical way to arise the question, whether or not the myologist, by now the popular figure in charge to care of a patient with the DM1, needs to remain himself a neurologist to better appreciate, evaluate and speculate on this important aspect of Steinert disease.
Collapse
Affiliation(s)
- Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Spadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Lai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenza Santoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|