1
|
Yoon Y, Bournique E, Soles LV, Yin H, Chu HF, Yin C, Zhuang Y, Liu X, Liu L, Jeong J, Yu C, Valdez M, Tian L, Huang L, Shi X, Seelig G, Ding F, Tong L, Buisson R, Shi Y. RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression. Mol Cell 2025; 85:555-570.e8. [PMID: 39798570 PMCID: PMC11805622 DOI: 10.1016/j.molcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells. We show that the essential pre-mRNA 3' processing factor retinoblastoma-binding protein 6 (RBBP6) associates strongly with NSs via its C-terminal intrinsically disordered region (IDR). Importantly, although the conserved N-terminal domain (NTD) of RBBP6 is sufficient for pre-mRNA 3' processing in vitro, its IDR-mediated association with NSs is required for efficient pre-mRNA 3' processing in cells. Through proximity labeling analyses, we provide evidence that pre-mRNA 3' processing for over 50% of genes occurs near NSs. We propose that NSs serve as hubs for RNA polymerase II transcription, pre-mRNA splicing, and 3' processing, thereby enhancing the efficiency and coordination of different gene expression steps.
Collapse
Affiliation(s)
- Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lindsey V Soles
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Hong Yin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Hsu-Feng Chu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Christopher Yin
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangyang Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Liu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Joshua Jeong
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marielle Valdez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lusong Tian
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiaoyu Shi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Wang J, Chao B, Piesner J, Kelly F, Petrie SK, Xiao X, Li BX. CG-SLENP: A Chemical Genetics Strategy To Selectively Label Existing Proteins and Newly Synthesized Proteins. JACS AU 2024; 4:3146-3156. [PMID: 39211582 PMCID: PMC11350722 DOI: 10.1021/jacsau.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Protein synthesis and subsequent delivery to the target locations in cells are essential for their proper functions. Methods to label and distinguish newly synthesized proteins from existing ones are critical to assess their differential properties, but such methods are lacking. We describe the first chemical genetics-based approach for selective labeling of existing and newly synthesized proteins that we termed as CG-SLENP. Using HaloTag in-frame fusion with lamin A (LA), we demonstrate that the two pools of proteins can be selectively labeled using CG-SLENP in living cells. We further employ our recently developed selective small molecule ligand LBL1 for LA to probe the potential differences between newly synthesized and existing LA. Our results show that LBL1 can differentially modulate these two pools of LA. These results indicate that the assembly states of newly synthesized LA are distinct from existing LA in living cells. The CG-SLENP method is potentially generalizable to study any cellular proteins.
Collapse
Affiliation(s)
- Jian Wang
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bo Chao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Jake Piesner
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Felice Kelly
- Advanced
Light Microscopy Shared Resource, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Stefanie Kaech Petrie
- Department
of Neurology, Knight Cancer Institute, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Xiangshu Xiao
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Bingbing X. Li
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
3
|
Wesley CC, North DV, Levy DL. Protein kinase C activity modulates nuclear Lamin A/C dynamics in HeLa cells. Sci Rep 2024; 14:6388. [PMID: 38493209 PMCID: PMC10944469 DOI: 10.1038/s41598-024-57043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The nuclear lamina serves important functions in the nucleus, providing structural support to the nuclear envelope and contributing to chromatin organization. The primary proteins that constitute the lamina are nuclear lamins whose functions are impacted by post-translational modifications, including phosphorylation by protein kinase C (PKC). While PKC-mediated lamin phosphorylation is important for nuclear envelope breakdown during mitosis, less is known about interphase roles for PKC in regulating nuclear structure. Here we show that overexpression of PKC ß, but not PKC α, increases the Lamin A/C mobile fraction in the nuclear envelope in HeLa cells without changing the overall structure of Lamin A/C and Lamin B1 within the nuclear lamina. Conversely, knockdown of PKC ß, but not PKC α, reduces the Lamin A/C mobile fraction. Thus, we demonstrate an isoform-specific role for PKC in regulating interphase Lamin A/C dynamics outside of mitosis.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Dallin V North
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
4
|
Squires KE, Gerber KJ, Tillman MC, Lustberg DJ, Montañez-Miranda C, Zhao M, Ramineni S, Scharer CD, Saha RN, Shu FJ, Schroeder JP, Ortlund EA, Weinshenker D, Dudek SM, Hepler JR. Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. J Biol Chem 2021; 296:100024. [PMID: 33410399 PMCID: PMC7949046 DOI: 10.1074/jbc.ra120.016009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Daniel J Lustberg
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | | | - Meilan Zhao
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Ramendra N Saha
- Department of Molecular & Cell Biology, University of California-Merced, Merced California, USA
| | - Feng-Jue Shu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA.
| |
Collapse
|
5
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Laurini E, Martinelli V, Lanzicher T, Puzzi L, Borin D, Chen SN, Long CS, Lee P, Mestroni L, Taylor MRG, Sbaizero O, Pricl S. Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovasc Res 2018; 114:846-857. [PMID: 29432544 PMCID: PMC5909658 DOI: 10.1093/cvr/cvy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aims Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM), and molecular modeling was used to analyse the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte model. Methods and results The severity of biomechanical defects due to the three LMNA mutations correlated with the severity of the clinical phenotype. AFM and molecular modeling identified distinctive biomechanical and structural changes, with increasing severity from E161K to N195K and D192G, respectively. Additionally, the biomechanical defects were rescued with a p38 MAPK inhibitor. Conclusions AFM and molecular modeling were able to quantify distinct biomechanical and structural defects in LMNA mutations E161K, D192G, and N195K and correlate the defects with clinical phenotypic severity. Improvements in cellular biomechanical phenotype was demonstrated and may represent a mechanism of action for p38 MAPK inhibition therapy that is now being used in human clinical trials to treat laminopathies.
Collapse
Affiliation(s)
- Erik Laurini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Valentina Martinelli
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlin S Long
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrice Lee
- Array BioPharma Inc., Boulder, CO 80301, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Sen Gupta A, Sengupta K. Lamin B2 Modulates Nucleolar Morphology, Dynamics, and Function. Mol Cell Biol 2017; 37:e00274-17. [PMID: 28993479 PMCID: PMC5705821 DOI: 10.1128/mcb.00274-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 09/29/2017] [Indexed: 01/11/2023] Open
Abstract
The nucleolus is required for ribosome biogenesis. Human cells have 2 or 3 nucleoli associated with nucleolar organizer region (NOR)-bearing chromosomes. An increase in number and altered nucleolar morphology define cancer cells. However, the mechanisms that modulate nucleolar morphology and function are unclear. Here we show that in addition to localizing at the nuclear envelope, lamin B2 localizes proximal to nucleolin at the granular component (GC) of the nucleolus and associates with the nucleolar proteins nucleolin and nucleophosmin. Lamin B2 knockdown severely disrupted the nucleolar morphology, which was rescued to intact and discrete nucleoli upon lamin B2 overexpression. Furthermore, two mutually exclusive lamin B2 deletion mutants, ΔHead and ΔSLS, rescued nuclear and nucleolar morphology defects, respectively, induced upon lamin B2 depletion, suggesting independent roles for lamin B2 at the nucleolus and nuclear envelope. Lamin B2 depletion increased nucleolin aggregation in the nucleoplasm, implicating lamin B2 in stabilizing nucleolin within the nucleolus. Lamin B2 knockdown upregulated nucleolus-specific 45S rRNA and upstream intergenic sequence (IGS) transcripts. The IGS transcripts colocalized with aggregates of nucleolin speckles, which were sustained in the nucleoplasm upon lamin B2 depletion. Taken together, these studies uncover a novel role for lamin B2 in modulating the morphology, dynamics, and function of the nucleolus.
Collapse
Affiliation(s)
- Ayantika Sen Gupta
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
8
|
Branch MR, Hepler JR. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus. PLoS One 2017; 12:e0184497. [PMID: 28934222 PMCID: PMC5608220 DOI: 10.1371/journal.pone.0184497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus.
Collapse
Affiliation(s)
- Mary Rose Branch
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John R. Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Quirós-González I, Román-García P, Alonso-Montes C, Barrio-Vázquez S, Carrillo-López N, Naves-Díaz M, Mora MI, Corrales FJ, López-Hernández FJ, Ruiz-Torres MP, Cannata-Andía JB, Fernández-Martín JL. Lamin A is involved in the development of vascular calcification induced by chronic kidney failure and phosphorus load. Bone 2016; 84:160-168. [PMID: 26769003 DOI: 10.1016/j.bone.2016.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/16/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Vascular calcification remains one of the main factors associated to morbidity and mortality in both ageing and chronic kidney disease. Both hyperphosphataemia, a well-known promoter of vascular calcification, and abnormal processing defects of lamin A/C have been associated to ageing. The main aim of this study was to analyse the effect of phosphorus load in the differential expression pattern of genes and proteins, particularly of lamin A/C, which are involved in phenotypic change of the vascular smooth muscle cells to osteoblast-like cells. The in vivo study of the calcified abdominal aortas from nephrectomized rats receiving a high phosphorus diet showed among others, a repression of muscle related proteins and overexpression of lamin A/C. Similar results were observed in vitro, where primary vascular smooth muscle cells cultured in calcifying medium showed increased expression of prelamin A and lamin A and abnormalities in the nuclear morphology. Co-immunoprecipitation assays showed novel and important physical interactions between lamin A and RUNX2 during the process of calcification. In fact, the knockdown of prelamin A and lamin A inhibited the increase of Runx2, osteocalcin and osteopontin gene expression, calcium deposition, nuclear abnormalities and the RUNX2 protein translocation into the nucleus of the cell. These in vivo and in vitro results highlight the important role played by lamin A in the process of vascular calcification.
Collapse
Affiliation(s)
- Isabel Quirós-González
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Pablo Román-García
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Sara Barrio-Vázquez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - María Isabel Mora
- Division of Hepatology and Gene Therapy, Proteomics, Genomics and Bioinformatics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Fernando José Corrales
- Division of Hepatology and Gene Therapy, Proteomics, Genomics and Bioinformatics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Francisco J López-Hernández
- Department of Renal Physiology, REDinREN del ISCIII, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain
| | - María Piedad Ruiz-Torres
- Department of Systems Biology, REDinREN del ISCIII, Faculty of Medicine, University of Alcalá, Alcalá de Henares, 28801, Madrid, Spain
| | - Jorge Benito Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain.
| | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, University of Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
10
|
Wilson RHC, Hesketh EL, Coverley D. The Nuclear Matrix: Fractionation Techniques and Analysis. Cold Spring Harb Protoc 2016; 2016:pdb.top074518. [PMID: 26729911 DOI: 10.1101/pdb.top074518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The first descriptions of an insoluble nuclear structure appeared more than 70 years ago, but it is only in recent years that a sophisticated picture of its significance has begun to emerge. Here we introduce multiple methods for the study of the nuclear matrix.
Collapse
Affiliation(s)
| | - Emma L Hesketh
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
11
|
Giacomini C, Mahajani S, Ruffilli R, Marotta R, Gasparini L. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons. Mol Biol Cell 2016; 27:35-47. [PMID: 26510501 PMCID: PMC4694760 DOI: 10.1091/mbc.e15-05-0307] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023] Open
Abstract
Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.
Collapse
Affiliation(s)
- Caterina Giacomini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Sameehan Mahajani
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| | - Roberta Ruffilli
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Lab, Nanochemistry Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Laura Gasparini
- Molecular Neurodegeneration Lab, Neuroscience and Brain Technologies Department, 16163 Genoa, Italy
| |
Collapse
|
12
|
Fu Y, Lv P, Yan G, Fan H, Cheng L, Zhang F, Dang Y, Wu H, Wen B. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells. Sci Rep 2015; 5:17186. [PMID: 26603343 PMCID: PMC4658601 DOI: 10.1038/srep17186] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
In the interphase nucleus, chromatin is organized into three-dimensional conformation to coordinate genome functions. The lamina-chromatin association is important to facilitate higher-order chromatin in mammalian cells, but its biological significances and molecular mechanisms remain poorly understood. One obstacle is that the list of lamina-associated proteins remains limited, presumably due to the inherent insolubility of lamina proteins. In this report, we identified 182 proteins associated with lamin B1 (a constitutive component of lamina) in mouse hepatocytes, by adopting virus-based proximity-dependent biotin identification. These proteins are functionally related to biological processes such as chromatin organization. As an example, we validated the association between lamin B1 and core histone macroH2A1, a histone associated with repressive chromatin. Furthermore, we mapped Lamina-associated domains (LADs) in mouse liver cells and found that boundaries of LADs are enriched for macroH2A. More interestingly, knocking-down of macroH2A1 resulted in the release of heterochromatin foci marked by histone lysine 9 trimethylation (H3K9me3) and the decondensation of global chromatin structure. However, down-regulation of lamin B1 led to redistribution of macroH2A1. Taken together, our data indicated that macroH2A1 is associated with lamina and is required to maintain chromatin architecture in mouse liver cells.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Pin Lv
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoquan Yan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433
| | - Hui Fan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Cheng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongjun Dang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Bo Wen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
14
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Bogolyubov DS, Batalova FM, Kiselyov AM, Stepanova IS. Nuclear structures in Tribolium castaneum oocytes. Cell Biol Int 2013; 37:1061-79. [PMID: 23686847 DOI: 10.1002/cbin.10135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/21/2013] [Indexed: 12/12/2022]
Abstract
The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia.
| | | | | | | |
Collapse
|
17
|
Bhattacharjee P, Banerjee A, Banerjee A, Dasgupta D, Sengupta K. Structural Alterations of Lamin A Protein in Dilated Cardiomyopathy. Biochemistry 2013; 52:4229-41. [DOI: 10.1021/bi400337t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Avinanda Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Amrita Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Kaushik Sengupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
18
|
Post-transcriptional regulation of connexin43 in H-Ras-transformed cells. PLoS One 2013; 8:e58500. [PMID: 23505521 PMCID: PMC3594296 DOI: 10.1371/journal.pone.0058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 01/05/2023] Open
Abstract
Connexin43 (Cx43) expression is lost in cancer cells and many studies have reported that Cx43 is a tumor suppressor gene. Paradoxically, in a cellular NIH3T3 model, we have previously shown that Ha-Ras-mediated oncogenic transformation results in increased Cx43 expression. Although the examination of transcriptional regulation revealed essential regulatory elements, it could not solve this paradox. Here we studied post-transcriptional regulation of Cx43 expression in cancer using the same model in search of novel gene regulatory elements. Upon Ras transformation, both Cx43 mRNA stability and translation efficiency were increased. We investigated the role of Cx43 mRNA 3′ and 5′Untranslated regions (UTRs) and found an opposing effect; a 5′UTR-driven positive regulation is observed in Ras-transformed cells (NIH-3T3Ras), while the 3′UTR is active only in normal NIH-3T3Neo cells and completely silenced in NIH-3T3Ras cells. Most importantly, we identified a previously unknown regulatory element within the 3′UTR, named S1516, which accounts for this 3′UTR-mediated regulation. We also examined the effect of other oncogenes and found that Ras- and Src-transformed cells show a different Cx43 UTRs post-transcriptional regulation than ErbB2-transformed cells, suggesting distinct regulatory pathways. Next, we detected different patterns of S1516 RNA-protein complexes in NIH-3T3Neo compared to NIH-3T3Ras cells. A proteomic approach identified most of the S1516-binding proteins as factors involved in post-transcriptional regulation. Building on our new findings, we propose a model to explain the discrepancy between the Cx43 expression in Ras-transformed NIH3T3 cells and the data in clinical specimens.
Collapse
|
19
|
Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest. Cell Biol Toxicol 2012; 28:409-19. [DOI: 10.1007/s10565-012-9232-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023]
|
20
|
Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem J 2011; 439:391-401. [DOI: 10.1042/bj20110173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are major signalling molecules in mammalian cell biology. PtdIns(3,4)P2 can be produced by PI3Ks [PI (phosphoinositide) 3-kinases], but also by PI 5-phosphatases including SHIP2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2]. Proteomic studies in human cells revealed that SHIP2 can be phosphorylated at more than 20 sites, but their individual function is unknown. In a model of PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null astrocytoma cells, lowering SHIP2 expression leads to increased PtdIns(3,4,5)P3 levels and Akt phosphorylation. MS analysis identified SHIP2 phosphosites on Ser132, Thr1254 and Ser1258; phosphotyrosine-containing sites were undetectable. By immunostaining, total SHIP2 concentrated in the perinuclear area and in the nucleus, whereas SHIP2 phosphorylated on Ser132 was in the cytoplasm, the nucleus and nuclear speckles, depending on the cell cycle stage. SHIP2 phosphorylated on Ser132 demonstrated PtdIns(4,5)P2 phosphatase activity. Endogenous phospho-SHIP2 (Ser132) showed an overlap with PtdIns(4,5)P2 staining in nuclear speckles. SHIP2 S132A was less sensitive to C-terminal degradation and more resistant to calpain as compared with wild-type enzyme. We have identified nuclear lamin A/C as a novel SHIP2 interactor. We suggest that the function of SHIP2 is different at the plasma membrane where it recognizes PtdIns(3,4,5)P3, and in the nucleus where it may interact with PtdIns(4,5)P2, particularly in speckles.
Collapse
|
21
|
Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins. J Biosci 2011; 36:471-9. [DOI: 10.1007/s12038-011-9085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Disruption of nuclear organization during the initial phase of African swine fever virus infection. J Virol 2011; 85:8263-9. [PMID: 21680527 DOI: 10.1128/jvi.00704-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
African swine fever virus (ASFV), the causative agent of one of the most devastating swine diseases, has been considered exclusively cytoplasmic, even though some authors have shown evidence of an early stage of nuclear replication. In the present study, an increment of lamin A/C phosphorylation was observed in ASFV-infected cells as early as 4 h postinfection, followed by the disassembling of the lamina network close to the sites where the viral genome starts its replication. At later time points, this and other nuclear envelope markers were found in the cytoplasm of the infected cells. The effect of the infection on the cell nucleus was much more severe than previously expected, since a redistribution of other nuclear proteins, such as RNA polymerase II, the splicing speckle SC-35 marker, and the B-23 nucleolar marker, was observed from 4 h postinfection. All this evidence, together with the redistribution, dephosphorylation, and subsequent degradation of RNA polymerase II after ASFV infection, suggests the existence of sophisticated mechanisms to regulate the nuclear machinery during viral infection.
Collapse
|
23
|
Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila. J Biosci 2011; 36:265-80. [DOI: 10.1007/s12038-011-9061-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Meyer AJ, Almendrala DK, Go MM, Krauss SW. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 2011; 124:1433-44. [PMID: 21486941 DOI: 10.1242/jcs.077883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Collapse
Affiliation(s)
- Adam J Meyer
- Department of Genome Dynamics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
25
|
Zhang Y. Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:1-26. [PMID: 21523247 PMCID: PMC3080740 DOI: 10.4137/grsb.s6510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dynamic chromatin activities of Mi-2/Nucleosome Remodeling and Histone deacetylation (Mi-2/NuRD) complexes in mammals are at the basis of current research on stemness, longevity/ageing, and cancer (4-2-1/SLAC), and have been widely studied over the past decade in mammals and the elegant model organism, Caenorhabditis elegans. Interestingly, a common emergent theme from these studies is that of distinct coregulator-recruited Mi-2/NuRD complexes largely orchestrating the 4-2-1/SLAC within a unique paradigm by maintaining genome stability via DNA repair and controlling three types of transcriptional programs in concert in a number of cellular, tissue, and organism contexts. Thus, the core Mi-2/NuRD complex plays a central role in 4-2-1/SLAC. The plasticity and robustness of 4-2-1/SLAC can be interpreted as modulation of specific coregulator(s) within cell-specific, tissue-specific, stage-specific, or organism-specific niches during stress induction, ie, a functional module and its networking, thereby conferring differential responses to different environmental cues. According to “Occam’s razor”, a simple theory is preferable to a complex one, so this simplified notion might be useful for exploring 4-2-1/SLAC with a holistic view. This thought could also be valuable in forming strategies for future research, and could open up avenues for cancer prevention and antiageing strategies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
26
|
Gurudatta BV, Shashidhara LS, Parnaik VK. Lamin C and chromatin organization in Drosophila. J Genet 2010; 89:37-49. [DOI: 10.1007/s12041-010-0009-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Abstract
HGPS (Hutchinson-Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.
Collapse
|
28
|
Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 2009; 13:1059-85. [PMID: 19210577 PMCID: PMC4496104 DOI: 10.1111/j.1582-4934.2008.00676.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 11/27/2022] Open
Abstract
The nuclear lamina is a proteinaceous structure located underneath the inner nuclear membrane (INM), where it associates with the peripheral chromatin. It contains lamins and lamin-associated proteins, including many integral proteins of the INM, chromatin modifying proteins, transcriptional repressors and structural proteins. A fraction of lamins is also present in the nucleoplasm, where it forms stable complexes and is associated with specific nucleoplasmic proteins. The lamins and their associated proteins are required for most nuclear activities, mitosis and for linking the nucleoplasm to all major cytoskeletal networks in the cytoplasm. Mutations in nuclear lamins and their associated proteins cause about 20 different diseases that are collectively called laminopathies'. This review concentrates mainly on lamins, their structure and their roles in DNA replication, chromatin organization, adult stem cell differentiation, aging, tumorogenesis and the lamin mutations leading to laminopathic diseases.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Maya Davidovich
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Naama Wiesel-Motiuk
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Daniel Z Bar
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Rachel Barkan
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
29
|
Nuclear motors and nuclear structures containing A-type lamins and emerin: is there a functional link? Biochem Soc Trans 2009; 36:1384-8. [PMID: 19021560 DOI: 10.1042/bst0361384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid interphase chromosome territory repositioning appears to function through the action of nuclear myosin and actin, in a nuclear motor complex. We have found that chromosome repositioning when cells leave the cell cycle is not apparent in cells that have mutant lamin A or that are lacking emerin. We discuss the possibility that there is a functional intranuclear complex comprising four proteins: nuclear actin, lamin A, emerin and nuclear myosin. If any of the components are lacking or aberrant, then the nuclear motor complex involved in moving chromosomes or genes will be dysfunctional, leading to an inability to move chromosomes in response to signalling events.
Collapse
|
30
|
Pereira S, Bourgeois P, Navarro C, Esteves-Vieira V, Cau P, De Sandre-Giovannoli A, Lévy N. HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 2008; 129:449-59. [PMID: 18513784 DOI: 10.1016/j.mad.2008.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/27/2008] [Accepted: 04/06/2008] [Indexed: 01/25/2023]
Abstract
Progeroid syndromes are heritable human disorders displaying features that recall premature ageing. In these syndromes, premature aging is defined as "segmental" since only some of its features are accelerated. A number of cellular biological pathways have been linked to aging, including regulation of the insulin/growth hormone axis, pathways involving ROS metabolism, caloric restriction, and DNA repair. The number of identified genes associated with progeroid syndromes has increased in recent years, possibly shedding light as well on mechanisms underlying ageing in general. Among these, premature aging syndromes related to alterations of the LMNA gene have recently been identified. This review focuses on Hutchinson-Gilford Progeria syndrome and Restrictive Dermopathy, two well-characterized Lamin-associated premature aging syndromes, pointing out the current knowledge concerning their pathophysiology and the development of possible therapeutic approaches.
Collapse
Affiliation(s)
- Sandrine Pereira
- INSERM U910, Faculté de Médecine la Timone, 27 Boulevard Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol 2008; 87:291-303. [PMID: 18396346 DOI: 10.1016/j.ejcb.2008.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that histone code dictates the type and structure of chromatin. Bearing in mind the importance of A-type lamins for chromatin arrangement, we studied the effect of trichostatin A (TSA)-induced histone hyperacetylation in lamin A/C-deficient (LMNA-/-) fibroblasts. Lamin A/C deficiency caused condensation of chromosome territories and the nuclear reorganization of centromeric heterochromatin, which was accompanied by the appearance of a chain-like morphology of HP1beta foci. Conversely, histone deacetylase (HDAC) inhibition induced de-condensation of chromosome territories, which compensated the effect of lamin A/C deficiency on chromosome regions. The amount of heterochromatin in the area associated with the nuclear membrane was significantly reduced in LMNA-/- cells when compared with lamin A/C-positive (LMNA+/+) fibroblasts. TSA also decreased the amount of peripheral heterochromatin, similarly as lamin A/C deficiency. In both LMNA+/+ and LMNA-/- cells, physically larger chromosomes were positioned more peripherally as compared with the smaller ones, even after TSA treatment. Our observations indicate that lamin A/C deficiency causes not only reorganization of chromatin and some chromatin-associated domains, but also has an impact on the extent of chromosome condensation. As HDAC inhibition can compensate the lamin A/C-dependent chromatin changes, the interaction between lamins and specifically modified histones may play an important role in higher-order chromatin organization, which influences transcriptional activity.
Collapse
|
32
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
33
|
Dreuillet C, Harper M, Tillit J, Kress M, Ernoult-Lange M. Mislocalization of human transcription factor MOK2 in the presence of pathogenic mutations of lamin A/C. Biol Cell 2008; 100:51-61. [PMID: 17760566 DOI: 10.1042/bc20070053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION hsMOK2 (human MOK2) is a DNA-binding transcriptional repressor. For example, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the CRX (cone-rod homeobox protein) transcriptional activator for DNA binding. Previous studies have shown an interaction between hsMOK2 and nuclear lamin A/C. This interaction could be important to explain hsMOK2 ability to repress transcription. RESULTS In the present study, we have tested whether missense pathogenic mutations of lamin A/C, which are located in the hsMOK2-binding domain, could affect the interaction with hsMOK2. We find that none of the tested mutations is able to disrupt hsMOK2 binding in vitro or in vivo. However, we observe an aberrant cellular localization of hsMOK2 into nuclear aggregates when pathogenic lamin A/C mutant proteins are expressed. CONCLUSIONS These results indicate that pathogenic mutations in lamin A/C lead to sequestration of hsMOK2 into nuclear aggregates, which may deregulate MOK2 target genes.
Collapse
Affiliation(s)
- Caroline Dreuillet
- CNRS-FRE2937, Institut André Lwoff, 7 rue Guy Môquet, 94801 Villejuif, France
| | | | | | | | | |
Collapse
|
34
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator. Biochem Biophys Res Commun 2007; 364:443-9. [DOI: 10.1016/j.bbrc.2007.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/04/2007] [Indexed: 11/20/2022]
|
36
|
Houben F, Ramaekers FCS, Snoeckx LHEH, Broers JLV. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:675-86. [PMID: 17050008 DOI: 10.1016/j.bbamcr.2006.09.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/12/2006] [Accepted: 09/08/2006] [Indexed: 01/08/2023]
Abstract
The response of individual cells to cellular stress is vital for cellular functioning. A large network of physically interconnected cellular components, starting from the structural components of the cells' nucleus, via cytoskeleton filaments to adhesion molecules and the extracellular matrix, constitutes an integrated matrix that functions as a scaffold allowing the cell to cope with mechanical stress. Next to a role in mechanical properties, this network also has a mechanotransductional function in the response to mechanical stress. This signaling route does not only regulate a rapid reorganization of structural components such as actin filaments, but also stimulates for example gene activation via NFkappaB and other transcription factors. The importance of an intact mechano-signaling network is illustrated by the physiological consequences of several genetic defects of cellular network components e.g. actin, dystrophin, desmin and lamins. These give rise to an impaired response of the affected cells to mechanical stress and often result in dystrophy of the affected tissue. Recently, the importance of the cell nucleus in cellular strength has been established. Several new interconnecting proteins, such as the nesprins that link the nuclear lamina to the cytoskeleton, have been identified. Furthermore, the function of nuclear lamins in determining cellular strength and nuclear stability was illustrated in lamin-knock-out cells. Absence of the A-type lamins or mutations in these structural components of the nuclear lamina lead to an impaired cellular response to mechanical stress and disturbances in cytoskeletal organization. In addition, laminopathies show clinical phenotypes comparable to those seen for diseases resulting from genetic defects in cytoskeletal components, further indicating that lamins play a central role in maintaining the mechanical properties of the cell.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM) and Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Naetar N, Hutter S, Dorner D, Dechat T, Korbei B, Gotzmann J, Beug H, Foisner R. LAP2alpha-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. J Cell Sci 2007; 120:737-47. [PMID: 17284516 DOI: 10.1242/jcs.03390] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lamina-associated polypeptide 2alpha (LAP2alpha) is a nuclear protein dynamically associating with chromatin during the cell cycle. In addition, LAP2alpha interacts with A-type lamins and retinoblastoma protein and regulates cell cycle progression via the E2F-Rb pathway. Using yeast two-hybrid analysis and three independent in vitro binding assays we identified a new LAP2alpha interaction partner of hitherto unknown functions, which we termed LINT-25. LINT-25 protein levels were upregulated during G1 phase in proliferating cells and upon cell cycle exit in quiescence, senescence and differentiation. Upon cell cycle exit LINT-25 accumulated in heterochromatin foci, and LAP2alpha protein levels were downregulated by proteasomal degradation. Although LAP2alpha was not required for the upregulation and reorganization of LINT-25 during cell cycle exit, transient expression of LINT-25 in proliferating cells caused loss of LAP2alpha and subsequent cell death. Our data show a role of LINT-25 and LAP2alpha during cell cycle exit, in which LINT-25 acts upstream of LAP2alpha.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mariappan I, Gurung R, Thanumalayan S, Parnaik VK. Identification of cyclin D3 as a new interaction partner of lamin A/C. Biochem Biophys Res Commun 2007; 355:981-5. [PMID: 17321498 DOI: 10.1016/j.bbrc.2007.02.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Lamin A/C is a major component of the nuclear lamina. An intact nuclear lamina has been proposed to be necessary for muscle differentiation. Cyclin D3 is known to be upregulated in differentiated muscle cells and to form insoluble complexes with cell-cycle regulatory factors in these cells. We have examined the possibility of direct binding interactions between lamin A/C and cyclin D3 by in vitro binding assays and co-immunoprecipitation studies with muscle cells. Our results indicate that cyclin D3 binds specifically to amino acid residues 383-474 of lamin A/C and associates with lamin A/C in muscle cells. The identification of cyclin D3 as a novel binding partner of lamin A/C has important implications for a role for lamin A/C in muscle differentiation.
Collapse
Affiliation(s)
- Indumathi Mariappan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
39
|
Abstract
Few genes have generated as much recent interest as LMNA, LMNB1 and LMNB2, which encode the components of the nuclear lamina. Over 180 mutations in these genes are associated with at least 13 known diseases--the laminopathies. In particular, the study of LMNA, its products and the phenotypes that result from its mutation have provided important insights into subjects ranging from transcriptional regulation, the cell biology of the nuclear lamina and mechanisms of ageing. Recent studies have begun the difficult task of correlating the genotypes of laminopathies with their phenotypes, and potential therapeutic strategies using existing drugs, modified oligonucleotides and RNAi are showing real promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Brian C Capell
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive MSC8004, Bethesda, Maryland 20892-8004, USA
| | | |
Collapse
|
40
|
Maraldi NM, Mattioli E, Lattanzi G, Columbaro M, Capanni C, Camozzi D, Squarzoni S, Manzoli FA. Prelamin A processing and heterochromatin dynamics in laminopathies. ACTA ACUST UNITED AC 2007; 47:154-67. [PMID: 17341429 DOI: 10.1016/j.advenzreg.2006.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nadir M Maraldi
- Department of Anatomical Sciences, University of Bologna, Bologna, Italy; IGM-CNR, Unit of Bologna, c/o IOR, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Parnaik VK, Manju K. Laminopathies: multiple disorders arising from defects in nuclear architecture. J Biosci 2006; 31:405-21. [PMID: 17006023 DOI: 10.1007/bf02704113] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are the major structural proteins of the nucleus in an animal cell. In addition to being essential for nuclear integrity and assembly, lamins are involved in the organization of nuclear processes such as DNA replication, transcription and repair. Mutations in the human lamin A gene lead to highly debilitating genetic disorders that primarily affect muscle, adipose, bone or neuronal tissues and also cause premature ageing syndromes. Mutant lamins alter nuclear integrity and hinder signalling pathways involved in muscle differentiation and adipocyte differentiation, suggesting tissue-specific roles for lamins. Furthermore, cells expressing mutant lamins are impaired in their response to DNA damaging agents. Recent reports indicate that certain lamin mutations act in a dominant negative manner to cause nuclear defects and cellular toxicity, and suggest a possible role for aberrant lamins in normal ageing processes.
Collapse
Affiliation(s)
- Veena K Parnaik
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
42
|
Jolly C, Lakhotia SC. Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 2006; 34:5508-14. [PMID: 17020918 PMCID: PMC1636489 DOI: 10.1093/nar/gkl711] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure of cells to stressful conditions elicits a highly conserved defense mechanism termed the heat shock response, resulting in the production of specialized proteins which protect the cells against the deleterious effects of stress. The heat shock response involves not only a widespread inhibition of the ongoing transcription and activation of heat shock genes, but also important changes in post-transcriptional processing. In particular, a blockade in splicing and other post-transcriptional processing has been described following stress in different organisms, together with an altered spatial distribution of the proteins involved in these activities. However, the specific mechanisms that regulate these activities under conditions of stress are little understood. Non-coding RNA molecules are increasingly known to be involved in the regulation of various activities in the cell, ranging from chromatin structure to splicing and RNA degradation. In this review, we consider two non-coding RNAs, the hsrω transcripts in Drosophila and the sat III transcripts in human cells, that seem to be involved in the dynamics of RNA-processing factors in normal and/or stressed cells, and thus provide new paradigms for understanding transcriptional and post-transcriptional regulations in normal and stressed cells.
Collapse
|
43
|
Bártová E, Kozubek S. Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 2006; 98:323-36. [PMID: 16704376 DOI: 10.1042/bc20050099] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is evident that primary DNA sequences, that define genomes, are responsible for genome functions. However, the functional properties of chromatin are additionally regulated by heritable modifications known as epigenetic factors and, therefore, genomes should be also considered with respect to their 'epigenomes'. Nucleosome remodelling, DNA methylation and histone modifications are the most prominent epigenetic changes that play fundamental roles in the chromatin-mediated control of gene expression. Another important nuclear feature with functional relevance is the organization of mammalian chromatin into distinct chromosome territories which are surrounded by the interchromatin compartment that is necessary for transport of regulatory molecules to the targeted DNA. The inner structure of the chromosome territories, as well as the arrangement of the chromosomes within the interphase nuclei, has been found to be non-randomly organized. Therefore, a specific nuclear arrangement can be observed in many cellular processes, such as differentiation and tumour cell transformation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | |
Collapse
|
44
|
Hübner S, Eam JE, Wagstaff KM, Jans DA. Quantitative analysis of localization and nuclear aggregate formation induced by GFP-lamin A mutant proteins in living HeLa cells. J Cell Biochem 2006; 98:810-26. [PMID: 16440304 DOI: 10.1002/jcb.20791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although A-type lamins are ubiquitously expressed, their role in the tissue-specificity of human laminopathies remains enigmatic. In this study, we generate a series of transfection constructs encoding missense lamin A mutant proteins fused to green fluorescent protein and investigate their subnuclear localization using quantitative live cell imaging. The mutant constructs used included the laminopathy-inducing lamin A rod domain mutants N195K, E358K, M371K, R386K, the tail domain mutants G465D, R482L, and R527P, and the Hutchinson-Gilford progeria syndrome-causing deletion mutant, progerin (LaA delta50). All mutant derivatives induced nuclear aggregates, except for progerin, which caused a more lobulated phenotype of the nucleus. Quantitative analysis revealed that the frequency of nuclear aggregate formation was significantly higher (two to four times) for the mutants compared to the wild type, although the level of lamin fusion proteins within nuclear aggregates was not. The distribution of endogenous A-type lamins was altered by overexpression of the lamin A mutants, coexpression experiments revealing that aberrant localization of the N195K and R386K mutants had no effect on the subnuclear distribution of histones H2A or H2B, or on nuclear accumulation of H2A overexpressed as a DsRed2 fusion protein. The GFP-lamin fusion protein-expressing constructs will have important applications in the future, enabling live cell imaging of nuclear processes involving lamins and how this may relate to the pathogenesis of laminopathies.
Collapse
Affiliation(s)
- S Hübner
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, PO Box 13D, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
45
|
Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear Lamins: Laminopathies and Their Role in Premature Ageing. Physiol Rev 2006; 86:967-1008. [PMID: 16816143 DOI: 10.1152/physrev.00047.2005] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by abnormalities in the structure or processing of the lamin A/C ( LMNA) gene. Mutations or incorrect processing cause more than a dozen different inherited diseases, ranging from striated muscular diseases, via fat- and peripheral nerve cell diseases, to progeria. This broad spectrum of diseases can only be explained if the responsible A-type lamin proteins perform multiple functions in normal cells. This review gives an overview of current knowledge on lamin structure and function and all known diseases associated with LMNA abnormalities. Based on the knowledge of the different functions of A-type lamins and associated proteins, explanations for the observed phenotypes are postulated. It is concluded that lamins seem to be key players in, among others, controlling the process of cellular ageing, since disturbance in lamin protein structure gives rise to several forms of premature ageing.
Collapse
Affiliation(s)
- J L V Broers
- Department of Molecular Cell Biology, University of Maastricht, Research Institutes CARIM, GROW, and EURON, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Hall LL, Smith KP, Byron M, Lawrence JB. Molecular anatomy of a speckle. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:664-75. [PMID: 16761280 PMCID: PMC2563428 DOI: 10.1002/ar.a.20336] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Direct localization of specific genes, RNAs, and proteins has allowed the dissection of individual nuclear speckles in relation to the molecular biology of gene expression. Nuclear speckles (aka SC35 domains) are essentially ubiquitous structures enriched for most pre-mRNA metabolic factors, yet their relationship to gene expression has been poorly understood. Analyses of specific genes and their spliced or mature mRNA strongly support that SC35 domains are hubs of activity, not stores of inert factors detached from gene expression. We propose that SC35 domains are hubs that spatially link expression of specific pre-mRNAs to rapid recycling of copious RNA metabolic complexes, thereby facilitating expression of many highly active genes. In addition to increasing the efficiency of each step, sequential steps in gene expression are structurally integrated at each SC35 domain, consistent with other evidence that the biochemical machineries for transcription, splicing, and mRNA export are coupled. Transcription and splicing are subcompartmentalized at the periphery, with largely spliced mRNA entering the domain prior to export. In addition, new findings presented here begin to illuminate the structural underpinnings of a speckle by defining specific perturbations of phosphorylation that promote disassembly or assembly of an SC35 domain in relation to other components. Results thus far are consistent with the SC35 spliceosome assembly factor as an integral structural component. Conditions that disperse SC35 also disperse poly(A) RNA, whereas the splicing factor ASF/SF2 can be dispersed under conditions in which SC35 or SRm300 remain as intact components of a core domain.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | |
Collapse
|
47
|
Manju K, Muralikrishna B, Parnaik VK. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci 2006; 119:2704-14. [PMID: 16772334 DOI: 10.1242/jcs.03009] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A-type lamins are components of the nuclear lamina. Mutations in the gene encoding lamin A are associated with a range of highly degenerative diseases termed laminopathies. To evaluate sensitivity to DNA damage, GFP-tagged lamin A cDNAs with disease-causing mutations were expressed in HeLa cells. The inner nuclear membrane protein emerin was mislocalised upon expression of the muscular dystrophy mutants G232E, Q294P or R386K, which aberrantly assembled into nuclear aggregates, or upon expression of mutants causing progeria syndromes in vivo (lamin A del50, R471C, R527C and L530P). The ability of cells expressing these mutants to form DNA repair foci comprising phosphorylated H2AX in response to mild doses of cisplatin or UV irradiation was markedly diminished, unlike the nearly normal response of cells expressing wild-type GFP-lamin A or disease-causing H222P and R482L mutants. Interestingly, mutants that impaired the formation of DNA repair foci mislocalised ATR (for ;ataxia telangiectasia-mutated and Rad3-related') kinase, which is a key sensor in the response to DNA damage. Our results suggest that a subset of lamin A mutants might hinder the response of components of the DNA repair machinery to DNA damage by altering interactions with chromatin.
Collapse
Affiliation(s)
- Kaliyaperumal Manju
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
48
|
Abstract
Nucleocytoplasmic transport, the exchange of matter between nucleus and cytoplasm, plays a fundamental role in human and other eukaryotic cells, affecting almost every aspect of health and disease. The only gate for the transport of small and large molecules as well as supramolecular complexes between nucleus and cytoplasm is the nuclear pore complex (NPC). The NPC is not a normal membrane transport protein (transporter). Composed of 500 to 1000 peptide chains, the NPC features a mysterious functional duality. For most molecules, it constitutes a molecular sieve with a blurred cutoff at approx 10 nm, but for molecules binding to phenylalanine-glycine (FG) motifs, the NPC appears to be a channel of approx 50 nm diameter, permitting bidirectional translocation at high speed. To achieve this, the NPC cooperates with soluble factors, the nuclear transport receptors, which shuttle between nuclear contents and cytoplasm. Here, we provide a short introduction to nucleocytoplasmic transport by describing first the structure and composition of the nuclear pore complex. Then, mechanisms of nucleocytoplasmic transport are discussed. Finally, the still essentially unresolved mechanisms by which nuclear transport receptors and transport complexes are translocated through the nuclear pore complex are considered, and a novel translocation model is suggested.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics and Center for Nanotechnology, University of Münster, Germany
| |
Collapse
|
49
|
Krajcí D, Mares V, Lisá V, Bottone MG, Pellicciari C. Intranuclear microtubules are hallmarks of an unusual form of cell death in cisplatin-treated C6 glioma cells. Histochem Cell Biol 2005; 125:183-91. [PMID: 16283354 DOI: 10.1007/s00418-005-0094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2005] [Indexed: 11/24/2022]
Abstract
We describe an unusual form of non-accidental cell death marked by ectopic microtubules in the nucleus of a subpopulation of cisplatin-treated C6 glioma astrocytes in culture. At electron microscopy, the perinuclear condensed chromatin did not completely adhere to the nuclear envelope of these cells being separated by single or loosely bundled 20-nm-thick microtubules located in an electron-lucid slit-like zone; the presence of alpha-tubulin lining the inner membrane of the nuclear envelope was confirmed by immunolabeling at confocal microscopy. Since tufts of microfilaments-like fibers also occurred in their central nuclear areas, these cells are referred to as CIMMs (Cells with Intranuclear Microtubules and Microfilaments). The nuclear reorganization of CIMMs also involved nucleolar segregation and formation of heterogeneous ectopic ribonucleoprotein (RNP)-derived structures, indicating disruption of the RNP-based transcription machinery. The cytoplasmic organelles of CIMMs were structurally intact, and propidium iodide did not accumulate intracellularly under vital conditions while the plasma membrane was often Annexin V-positive. All these findings suggest that CIMMs were lethally damaged and committed to an atypical programmed cell death resembling early apoptosis (this is also supported by the presence of a limited number of TUNEL-positive CIMMs). CIMMs appeared well before the main cisplatin-induced cycling arrest of the cell population (G2/M block at 72 h) and had mostly G1 DNA content: this suggests that they may represent the cohort of cells which passed cisplatin-altered mitoses with intranuclear retention of microtubules from an incompletely disassembled mitotic spindle.
Collapse
Affiliation(s)
- D Krajcí
- Department of Anatomy, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat, 13110, Kuwait.
| | | | | | | | | |
Collapse
|
50
|
Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 2005; 24:177-85. [PMID: 16179429 DOI: 10.1634/stemcells.2004-0159] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear lamins comprise the nuclear lamina, a scaffold-like structure that lines the inner nuclear membrane. B-type lamins are present in almost all cell types, but A-type lamins are expressed predominantly in differentiated cells, suggesting a role in maintenance of the differentiated state. Previous studies have shown that lamin A/C is not expressed during mouse development before day 9, nor in undifferentiated mouse embryonic carcinoma cells. To further investigate the role of lamins in cell phenotype maintenance and differentiation, we examined lamin expression in undifferentiated mouse and human embryonic stem (ES) cells. Wide-field and confocal immunofluorescence microscopy and semiquantitative reverse transcription-polymerase chain reaction analysis revealed that undifferentiated mouse and human ES cells express lamins B1 and B2 but not lamin A/C. Mouse ES cells display high levels of lamins B1 and B2 localized both at the nuclear periphery and throughout the nucleoplasm, but in human ES cells, B1 and B2 expression is dimmer and localized primarily at the nuclear periphery. Lamin A/C expression is activated during human ES cell differentiation before downregulation of the pluripotency marker Oct-3/4 but not before the downregulation of the pluripotency markers Tra-1-60, Tra-1-81, and SSEA-4. Our results identify the absence of A-type lamin expression as a novel marker for undifferentiated ES cells and further support a role for nuclear lamins in cell maintenance and differentiation.
Collapse
Affiliation(s)
- Dan Constantinescu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh Development Center of Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|