1
|
Dey NS, Dey S, Brown N, Senarathne S, Campos Reis L, Sengupta R, Lindoso JA, James SR, Gilbert L, Boucher D, Chatterjee M, Goto H, Ranasinghe S, Kaye PM. IL-32-producing CD8+ memory T cells define immunoregulatory niches in human cutaneous leishmaniasis. J Clin Invest 2025; 135:e182040. [PMID: 40371647 PMCID: PMC12077899 DOI: 10.1172/jci182040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Human cutaneous leishmaniasis (CL) is characterized by chronic skin pathology. Experimental and clinical data suggest that immune checkpoints (ICs) play a crucial role in disease outcome, but the cellular and molecular niches that facilitate IC molecule expression during leishmaniasis are ill defined. In Sri Lankan patients with CL, indoleamine 2,3-dioxygenase 1 (IDO1) and programmed death-ligand 1 (PD-L1) were enriched in skin lesions, and reduced PD-L1 expression early after treatment initiation was predictive of a cure rate following antimonial therapy. Here, we used spatial cell interaction mapping to identify IL-32-expressing CD8+ memory T cells and Tregs as key components of the IDO1/PD-L1 niche in Sri Lankan patients with CL and in patients with distinct forms of dermal leishmaniasis in Brazil and India. Furthermore, the abundance of IL-32+ cells and IL-32+CD8+ T cells at treatment initiation was negatively correlated with the rate of cure in Sri Lankan patients. This study provides insights into the spatial mechanisms underpinning IC expression during CL and offers a strategy for identifying additional biomarkers of treatment response.
Collapse
Affiliation(s)
- Nidhi S. Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Naj Brown
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Sujai Senarathne
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Luiza Campos Reis
- Department of Preventive Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ritika Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Jose A.L. Lindoso
- Secretaria de Saúde do Estado de São Paulo, Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
- University of São Paulo, Faculty of Medicine, Department of Infectious and Parasitic Diseases, São Paulo, Brazil
| | - Sally R. James
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Lesley Gilbert
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Dave Boucher
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Hiro Goto
- Department of Preventive Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
2
|
Roy K, Ghosh S, Karmakar S, Mandal P, Hussain A, Dutta A, Pal C. Inverse correlation between Leishmania-induced TLR1/2 and TGF-β differentially regulates parasite persistence in bone marrow during the chronic phase of infection. Cytokine 2025; 185:156811. [PMID: 39612658 DOI: 10.1016/j.cyto.2024.156811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Host-tissue preference is a critical aspect of parasitic infections and is directly correlated with species diversity. Even the same species, Leishmania donovani, infects the host's bone marrow, spleen, and liver differentially. The tissue-specific persistence of Leishmania results from host-pathogen immune conflicts and arguments. The protective pro-host or destructive pro-parasitic role of TLRs during L. donovani infection has been well established, but what entirely missing is the influence of TLRs on tissue-specific parasite persistence. We observed that the parasites induced differential expression of TLR1/2 in the bone marrow but not in the spleen. Interestingly, the rate of Leishmania infection was found to be positively correlated with TLR1/2-mediated upregulation of myelopoietic cytokines, M-CSF, GM-CSF, IL-6, and IL-3, leading to the expansion of Ly6ChiCCR2+ monocytes, however, negatively correlated with the expression of the disease hallmark cytokines, TNF-α, TGF-β, and IL-10, along the course of infection in the bone marrow. Leishmania induced the activation of bone marrow-specific TLR1/2 to promote Ly6ChiCCR2+ monocytes for its safe shelter vis-à-vis infection establishment. Consequently, the established infection initiated the release of TNF-α, TGF-β, and IL-10 in the bone marrow. Post-infection time-kinetic study affirmed that TGF-β had a significant negative influence on the expression of TLR1/2 heterodimer in the bone marrow niche. To the best of our knowledge, this is the first report to show that the inverse correlation of TLR1/2 - TGF-β can be instrumental in tissue-specific parasite persistence during Leishmania infection.
Collapse
Affiliation(s)
- Kamalika Roy
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Sanhita Ghosh
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Suman Karmakar
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Pritam Mandal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Aabid Hussain
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Aritri Dutta
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India
| | - Chiranjib Pal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, North 24 Parganas, Barasat, West Bengal, India.
| |
Collapse
|
3
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
4
|
Tedla MG, Nahar MF, Every AL, Scheerlinck JPY. The Immune Memory Response of In Vitro-Polarised Th1, Th2, and Th17 Cells in the Face of Ovalbumin-Transgenic Leishmania major in a Mouse Model. Int J Mol Sci 2024; 25:8753. [PMID: 39201440 PMCID: PMC11354729 DOI: 10.3390/ijms25168753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Th1 and Th2 cytokines determine the outcome of Leishmania major infection and immune protection depends mainly on memory T cells induced during vaccination. This largely hinges on the nature and type of memory T cells produced. In this study, transgenic Leishmania major strains expressing membrane-associated ovalbumin (mOVA) and soluble ovalbumin (sOVA) were used as a model to study whether fully differentiated Th1/Th2 and Th17 cells can recall immune memory and tolerate pathogen manipulation. Naïve OT-II T cells were polarised in vitro into Th1/Th2 cells, and these cells were transferred adoptively into recipient mice. Following the transferral of the memory cells, the recipient mice were challenged with OVA transgenic Leishmania major and a wild-type parasite was used a control. The in vitro-polarised T helper cells continued to produce the same cytokine signatures after being challenged by both forms of OVA-expressing Leishmania major parasites in vivo. This suggests that antigen-experienced cells remain the same or unaltered in the face of OVA-transgenic Leishmania major. Such ability of these antigen-experienced cells to remain resilient to manipulation by the parasite signifies that vaccines might be able to produce immune memory responses and defend against parasitic immune manipulation in order to protect the host from infection.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Department of Pediatrics, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Musammat F. Nahar
- Department of Health Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alison L. Every
- Australian Academy of Technological Sciences and Engineering, Forrest, ACT 2603, Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
5
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
6
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Lee SH, Kang B, Kamenyeva O, Ferreira TR, Cho K, Khillan JS, Kabat J, Kelsall BL, Sacks DL. Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non-healing cutaneous leishmaniasis. Nat Commun 2023; 14:7852. [PMID: 38030609 PMCID: PMC10687111 DOI: 10.1038/s41467-023-43588-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Pacheco-Fernandez T, Markle H, Verma C, Huston R, Gannavaram S, Nakhasi HL, Satoskar AR. Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res Rep Trop Med 2023; 14:61-85. [PMID: 37492219 PMCID: PMC10364832 DOI: 10.2147/rrtm.s392606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hannah Markle
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Ryan Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| |
Collapse
|
10
|
Novel approaches to preventing phagosomal infections: timing is key. Trends Immunol 2023; 44:22-31. [PMID: 36494273 DOI: 10.1016/j.it.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Prophylactic vaccination strategies designed to prevent diseases caused by pathogens using the phagolysosome of innate immune cells as a site of intracellular replication and survival have been largely ineffective. These include Mycobacterium tuberculosis (Mtb), Leishmania spp., and Cryptococcus spp. These failed strategies have traditionally targeted CD4+ T helper (Th) 1 cell-mediated immune memory, deeming it crucial for vaccine efficacy. This failure warrants an investigation of alternative mediators of protection. Here, we suggest three novel approaches to activate phagocytic cells prior to or at the time of infection. We hypothesize that preventing the formation of the pathogen niche within the phagolysosome is essential for preventing disease, and a greater emphasis on the timing of phagocyte activation should generate more effective prophylactic treatment options.
Collapse
|
11
|
Bouabid C, Rabhi S, Thedinga K, Barel G, Tnani H, Rabhi I, Benkahla A, Herwig R, Guizani-Tabbane L. Host M-CSF induced gene expression drives changes in susceptible and resistant mice-derived BMdMs upon Leishmania major infection. Front Immunol 2023; 14:1111072. [PMID: 37187743 PMCID: PMC10175952 DOI: 10.3389/fimmu.2023.1111072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.
Collapse
Affiliation(s)
- Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Kristina Thedinga
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gal Barel
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hedia Tnani
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechnopole Sidi-Thabet- University of Manouba, Sidi-Thabet, Tunisia
| | - Alia Benkahla
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- *Correspondence: Lamia Guizani-Tabbane,
| |
Collapse
|
12
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
13
|
Mandell MA, Beatty WL, Beverley SM. Quantitative single-cell analysis of Leishmania major amastigote differentiation demonstrates variably extended expression of the lipophosphoglycan (LPG) virulence factor in different host cell types. PLoS Negl Trop Dis 2022; 16:e0010893. [PMID: 36302046 PMCID: PMC9642900 DOI: 10.1371/journal.pntd.0010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Immediately following their deposition into the mammalian host by an infected sand fly vector, Leishmania parasites encounter and are engulfed by a variety of cell types. From there, parasites may transit to other cell types, primarily macrophages or dendritic cells, where they replicate and induce pathology. During this time, Leishmania cells undergo a dramatic transformation from the motile non-replicating metacyclic stage to the non-motile replicative amastigote stage, a differentiative process that can be termed amastigogenesis. To follow this at the single cell level, we identified a suite of experimental 'landmarks' delineating different stages of amastigogenesis qualitatively or quantitatively, including new uses of amastigote-specific markers that showed interesting cellular localizations at the anterior or posterior ends. We compared amastigogenesis in synchronous infections of peritoneal and bone-marrow derived macrophages (PEM, BMM) or dendritic cells (BMDC). Overall, the marker suite expression showed an orderly transition post-infection with similar kinetics between host cell types, with the emergence of several amastigote traits within 12 hours, followed by parasite replication after 24 hours, with parasites in BMM or BMDC initiating DNA replication more slowly. Lipophosphoglycan (LPG) is a Leishmania virulence factor that facilitates metacyclic establishment in host cells but declines in amastigotes. Whereas LPG expression was lost by parasites within PEM by 48 hours, >40% of the parasites infecting BMM or BMDC retained metacyclic-level LPG expression at 72 hr. Thus L. major may prolong LPG expression in different intracellular environments, thereby extending its efficacy in promoting infectivity in situ and during cell-to-cell transfer of parasites expressing this key virulence factor.
Collapse
Affiliation(s)
- Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Current address: Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
14
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
15
|
Teixeira MV, Soares SAE, Souza VA, de Souza Marques AM, de Almeida Soares CM, Baeza LC, de Oliveira MAP. Murine macrophages do not support the proliferation of Leishmania (Viannia) braziliensis amastigotes even in absence of nitric oxide and presence of high arginase activity. Parasitol Res 2022; 121:2891-2899. [PMID: 35939146 DOI: 10.1007/s00436-022-07614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Leishmania (Viannia) braziliensis is the main species responsible for American tegumentary leishmaniasis in Brazil. Nevertheless, the use of this parasite species to study Leishmania infection in the murine model has been less conducted when compared with other Leishmania species. The control of murine infection with Leishmania has been associated with nitric oxide (NO) produced by inducible NO synthase (iNOS) from M1 macrophages, while arginase expressed by M2 macrophages is related to Leishmania proliferation. Here we use three different strains of L. (V.) braziliensis and one strain of L. (L.) major to study a 9-day infection of macrophages in vitro. Wild-type bone marrow-derived macrophages (BMDM) supported the proliferation of L. (L) major amastigotes from the 3rd day after infection, while all strains of L. (V.) braziliensis did not proliferate even inside IL-4-treated or iNOS knockout (KO) macrophages. The arginase activity was higher in iNOS KO than IL-4-treated macrophage showing that the absence of proliferation is independent of arginase. Importantly, L. (V.) braziliensis was able to cause uncontrolled disease in iNOS KO mice in vivo demonstrating that murine macrophages present at the site of infection have additional changes beyond inhibition of NO production or stimulation of arginase activity to support parasite proliferation.
Collapse
Affiliation(s)
- Mirian Vieira Teixeira
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia, GO, Brazil
| | - Santiago Aguiar Espellet Soares
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia, GO, Brazil
| | - Vagniton Amélio Souza
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia, GO, Brazil
| | - André Murilo de Souza Marques
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia, GO, Brazil
| | | | - Lilian Cristiane Baeza
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069 - Jardim Universitário, Cascavel, PR, 85819-110, Brazil
| | - Milton Adriano Pelli de Oliveira
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia, GO, Brazil.
| |
Collapse
|
16
|
Leishmania infantum Infection of Primary Human Myeloid Cells. Microorganisms 2022; 10:microorganisms10061243. [PMID: 35744760 PMCID: PMC9230042 DOI: 10.3390/microorganisms10061243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating phagocytic cells often serve as cellular targets for a large number of pathogens such as Leishmania parasites. Studying primary human cells in an infectious context requires lengthy procedures for cell isolation that may affect the analysis performed. Using whole blood and a no-lyse and no-wash flow cytometric assay (NoNo assay), we monitored the Leishmania infantum infection of primary human cells. We demonstrated, using fluorescent parasites, that among monocyte cell populations, L. infantum preferentially infects classical (CD14+CD16−) and intermediate (CD14+CD16+) primary human monocytes in whole blood. Because classical monocytes are the preponderant population, they represent the larger L. infantum reservoir. Moreover, we also found that, concomitantly to monocyte infection, a subset of PMNs is infected early in whole blood. Of interest, in whole blood, PMNs are less infected compared to classical monocytes. Overall, by using this NoNo assay, we provided a novel avenue in our understanding of host–leishmania interactions.
Collapse
|
17
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Frick L, Hinterland L, Renner K, Vogl M, Babl N, Heckscher S, Weigert A, Weiß S, Gläsner J, Berger R, Oefner PJ, Dettmer K, Kreutz M, Schatz V, Jantsch J. Acidic Microenvironments Found in Cutaneous Leishmania Lesions Curtail NO-Dependent Antiparasitic Macrophage Activity. Front Immunol 2022; 13:789366. [PMID: 35493523 PMCID: PMC9047701 DOI: 10.3389/fimmu.2022.789366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Local tissue acidosis affects anti-tumor immunity. In contrast, data on tissue pH levels in infected tissues and their impact on antimicrobial activity is sparse. In this study, we assessed the pH levels in cutaneous Leishmania lesions. Leishmania major-infected skin tissue displayed pH levels of 6.7 indicating that lesional pH is acidic. Next, we tested the effect of low extracellular pH on the ability of macrophages to produce leishmanicidal NO and to fight the protozoan parasite Leishmania major. Extracellular acidification led to a marked decrease in both NO production and leishmanicidal activity of lipopolysaccharide (LPS) and interferon γ (IFN-γ)-coactivated macrophages. This was not directly caused by a disruption of NOS2 expression, a shortage of reducing equivalents (NAPDH) or substrate (L-arginine), but by a direct, pH-mediated inhibition of NOS2 enzyme activity. Normalization of intracellular pH significantly increased NO production and antiparasitic activity of macrophages even in an acidic microenvironment. Overall, these findings indicate that low local tissue pH can curtail NO production and leishmanicidal activity of macrophages.
Collapse
Affiliation(s)
- Linus Frick
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Linda Hinterland
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Marion Vogl
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Simon Heckscher
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Susanne Weiß
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Joachim Gläsner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Raffaela Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany,*Correspondence: Jonathan Jantsch,
| |
Collapse
|
19
|
Inflammatory Monocytes Promote Granuloma-Mediated Control of Persistent Salmonella Infection. Infect Immun 2022; 90:e0007022. [PMID: 35311578 DOI: 10.1128/iai.00070-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent infections generally involve a complex balance between protective immunity and immunopathology. We used a murine model to investigate the role of inflammatory monocytes in immunity and host defense against persistent salmonellosis. Mice exhibit increased susceptibility to persistent infection when inflammatory monocytes cannot be recruited into tissues or when they are depleted at specific stages of persistent infection. Inflammatory monocytes contribute to the pathology of persistent salmonellosis and cluster with other cells in pathogen-containing granulomas. Depletion of inflammatory monocytes during the chronic phase of persistent salmonellosis causes regression of already established granulomas with resultant pathogen growth and spread in tissues. Thus, inflammatory monocytes promote granuloma-mediated control of persistent salmonellosis and may be key to uncovering new therapies for granulomatous diseases.
Collapse
|
20
|
Baars I, Lokau J, Sauerland I, Müller AJ, Garbers C. Interleukin-11 receptor expression on monocytes is dispensable for their recruitment and pathogen uptake during Leishmania major infection. Cytokine 2021; 148:155699. [PMID: 34530329 PMCID: PMC8560641 DOI: 10.1016/j.cyto.2021.155699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/03/2022]
Abstract
Interleukin-11 (IL-11) is an important member of the IL-6 family of cytokines. IL-11 activates its target cells via binding to a non-signaling α-receptor (IL-11R), which results in recruitment and activation of a gp130 homodimer. The cytokine was initially described as an anti-inflammatory protein, but has recently gained attention as a potent driver in certain types of cancer and different fibrotic conditions. Leishmania spp. are a group of eukaryotic parasites that cause the disease leishmaniasis. They infect phagocytes of their hosts, especially monocytes recruited to the site of infection, and are able to replicate within this rather harsh environment, often resulting in chronic infections of the patient. However, the molecular mechanisms underlying parasite and host cell interactions and factors of the immune cells that are crucial for Leishmania uptake are so far largely unspecified. Recently, increased IL-11 expression in the lesions of patients with cutaneous leishmaniasis has been reported, but the functional relevance is unknown. In this study, we show that monocytes express IL-11R on their cell surface. Furthermore, using an adoptive transfer model of IL-11R-/- monocytes, we analyze the contribution of IL-11 signaling on monocyte recruitment and monocyte infection in a mouse model of cutaneous leishmaniasis and find that IL-11 signaling is dispensable for monocyte recruitment and pathogen uptake during Leishmania major infection.
Collapse
Affiliation(s)
- Iris Baars
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany; Institute of Biochemistry, Kiel University, Kiel, Germany; Department of Pathology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Ina Sauerland
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Andreas J Müller
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany; Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Christoph Garbers
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany; Institute of Biochemistry, Kiel University, Kiel, Germany; Department of Pathology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
21
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
22
|
Lopes ME, dos Santos LM, Sacks D, Vieira LQ, Carneiro MB. Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Front Immunol 2021; 12:730437. [PMID: 34745100 PMCID: PMC8564857 DOI: 10.3389/fimmu.2021.730437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.
Collapse
Affiliation(s)
- Mateus Eustáquio Lopes
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane Martins dos Santos
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Leda Quercia Vieira
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus B. Carneiro
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Formaglio P, Alabdullah M, Siokis A, Handschuh J, Sauerland I, Fu Y, Krone A, Gintschel P, Stettin J, Heyde S, Mohr J, Philipsen L, Schröder A, Robert PA, Zhao G, Khailaie S, Dudeck A, Bertrand J, Späth GF, Kahlfuß S, Bousso P, Schraven B, Huehn J, Binder S, Meyer-Hermann M, Müller AJ. Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity 2021; 54:2724-2739.e10. [PMID: 34687607 PMCID: PMC8691385 DOI: 10.1016/j.immuni.2021.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells. Direct killing of L. major by NO occurs only during the peak of the immune response Efficient L. major proliferation requires newly recruited monocyte-derived cells Loss of NO production increases both pathogen proliferation and monocyte recruitment NO dampens L. major proliferation indirectly, limiting the pathogen’s cellular niche
Collapse
Affiliation(s)
- Pauline Formaglio
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany.
| | - Mohamad Alabdullah
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Ina Sauerland
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anna Krone
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Patricia Gintschel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Juliane Stettin
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Sandrina Heyde
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anja Schröder
- Experimental Orthopedics, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto von Guericke University, Magdeburg 39120, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Department of Immunology, University of Oslo, Oslo 0372, Norway
| | - Gang Zhao
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Jessica Bertrand
- Experimental Orthopedics, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto von Guericke University, Magdeburg 39120, Germany
| | - Gerald F Späth
- Molecular Parasitology and Signalling Unit, Institut Pasteur, Paris 75015, France
| | - Sascha Kahlfuß
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Paris 75015, France
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany; Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
24
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Romano A, Brown N, Ashwin H, Doehl JSP, Hamp J, Osman M, Dey N, Rani GF, Ferreira TR, Kaye PM. Interferon-γ-Producing CD4 + T Cells Drive Monocyte Activation in the Bone Marrow During Experimental Leishmania donovani Infection. Front Immunol 2021; 12:700501. [PMID: 34557190 PMCID: PMC8453021 DOI: 10.3389/fimmu.2021.700501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Ly6Chi inflammatory monocytes develop in the bone marrow and migrate to the site of infection during inflammation. Upon recruitment, Ly6Chi monocytes can differentiate into dendritic cells or macrophages. According to the tissue environment they can also acquire different functions. Several studies have described pre-activation of Ly6Chi monocytes in the bone marrow during parasitic infection, but whether this process occurs during experimental visceral leishmaniasis and, if so, the mechanisms contributing to their activation are yet to be established. In wild type C57BL/6 (B6) mice infected with Leishmania donovani, the number of bone marrow Ly6Chi monocytes increased over time. Ly6Chi monocytes displayed a highly activated phenotype from 28 days to 5 months post infection (p.i), with >90% expressing MHCII and >20% expressing iNOS. In comparison, in B6.Rag2-/- mice <10% of bone marrow monocytes were MHCII+ at day 28 p.i., an activation deficiency that was reversed by adoptive transfer of CD4+ T cells. Depletion of CD4+ T cells in B6 mice and the use of mixed bone marrow chimeras further indicated that monocyte activation was driven by IFNγ produced by CD4+ T cells. In B6.Il10-/- mice, L. donovani infection induced a faster but transient activation of bone marrow monocytes, which correlated with the magnitude of CD4+ T cell production of IFNγ and resolution of the infection. Under all of the above conditions, monocyte activation was associated with greater control of parasite load in the bone marrow. Through reinfection studies in B6.Il10-/- mice and drug (AmBisome®) treatment of B6 mice, we also show the dependence of monocyte activation on parasite load. In summary, these data demonstrate that during L. donovani infection, Ly6Chi monocytes are primed in the bone marrow in a process driven by CD4+ T cells and whereby IFNγ promotes and IL-10 limits monocyte activation and that the presence of parasites/parasite antigen plays a crucial role in maintaining bone marrow monocyte activation.
Collapse
Affiliation(s)
- Audrey Romano
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Najmeeyah Brown
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Johannes S P Doehl
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jonathan Hamp
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Gulab Fatima Rani
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Tiago Rodrigues Ferreira
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
26
|
Hohman LS, Mou Z, Carneiro MB, Ferland G, Kratofil RM, Kubes P, Uzonna JE, Peters NC. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. PLoS Pathog 2021; 17:e1009944. [PMID: 34543348 PMCID: PMC8483310 DOI: 10.1371/journal.ppat.1009944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.
Collapse
Affiliation(s)
- Leah S. Hohman
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matheus B. Carneiro
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Gabriel Ferland
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Rachel M. Kratofil
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jude E. Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Leishmaniasis: the act of transmission. Trends Parasitol 2021; 37:976-987. [PMID: 34389215 DOI: 10.1016/j.pt.2021.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
The contribution of vector transmission to pathogen establishment is largely underrated. For Leishmania, transmission by sand flies is critical to early survival involving an irreproducible myriad of parasite, vector, and host molecules acting in concert to promote infection at the bite site. Here, we review recent breakthroughs that provide consequential insights into how vector transmission of Leishmania unfolds. We focus on recent work pertaining to the effect of gut microbiota, sand fly immunity, and changes in metacyclogenesis upon multiple blood meals, on Leishmania development and transmission. We also explore how sand fly saliva, egested parasite molecules and vector gut microbiota, and bleeding have been implicated in modulating the early innate host response to Leishmania, affecting the phenotype of neutrophils and monocytes arriving at the bite site.
Collapse
|
28
|
Chanyalew M, Abebe M, Endale B, Girma S, Tasew G, Bobosha K, Zewide M, Howe R, van Zandbergen G, Ritter U, Gadisa E, Aseffa A, Laskay T. Enhanced activation of blood neutrophils and monocytes in patients with Ethiopian localized cutaneous leishmaniasis in response to Leishmania aethiopica Neutrophil activation in Ethiopian cutaneous leishmaniasis. Acta Trop 2021; 220:105967. [PMID: 34029532 DOI: 10.1016/j.actatropica.2021.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Recent studies suggest an essential role of the innate immune effector cells neutrophils and monocytes in protection or disease progression in the early course of Leishmania infection. In areas endemic for cutaneous leishmaniasis in Ethiopia most individuals are exposed to bites of infected sandflies. Still only a minor ratio of the inhabitants develops symptomatic disease. Neutrophils, followed by monocytes, are the first cells to be recruited to the site of Leishmania infection, the initial response of neutrophils to parasites appears to be crucial for the protective response and disease outcome. Our working hypothesis is that neutrophils and/or monocytes in localized cutaneous leishmaniasis (LCL) patients may have defects in function of innate immune cell that contribute to failure to parasite clearance that lead to establishment of infection. The response of cells in Ethiopian LCL patients and healthy controls to Leishmania aethiopica and to the Toll like receptor (TLR) agonists lipopolysaccharide (LPS) and macrophage activating lipopeptide-2 (MALP-2) was investigated by assessing the cell surface expression of CD62L (on neutrophil and monocyte) and CD66b (only on neutrophil), as well as reactive oxygen species (ROS) production by using whole blood-based assays in vitro. No impaired response of neutrophils and monocytes to the microbial constituents LPS and MALP-2 was observed. Neutrophils and monocytes from LCL patients responded stronger to Leishmania aethiopica in the applied whole blood assays than cells from healthy individuals. These experimental findings do not support the hypothesis regarding a possible dysfunction of neutrophils and monocytes in cutaneous leishmaniasis. On the contrary, these cells react stronger in LCL patients as compared to healthy controls. The differential response to L. aethiopica observed between LCL patients and healthy controls have the potential to serve as biomarker to develop FACS based diagnostic/ prognostic techniques for LCL.
Collapse
Affiliation(s)
- Menberework Chanyalew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia.
| | - Markos Abebe
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Birtukan Endale
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Selfu Girma
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia; Leishmaniasis Research Laboratory, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Martha Zewide
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia.
| | - Rawleigh Howe
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen D-63225, Germany.
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg D-93053, Germany.
| | - Endalamaw Gadisa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck D-23560, Germany.
| |
Collapse
|
29
|
Vellozo NS, Rigoni TS, Lopes MF. New Therapeutic Tools to Shape Monocyte Functional Phenotypes in Leishmaniasis. Front Immunol 2021; 12:704429. [PMID: 34249011 PMCID: PMC8267810 DOI: 10.3389/fimmu.2021.704429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
In the innate immunity to Leishmania infection tissue-resident macrophages and inflammatory monocytes accumulate host-cell, effector, and efferocytosis functions. In addition, neutrophils, as host, effector, and apoptotic cells, as well as tissue-resident and monocyte-derived dendritic cells (DCs) imprint innate and adaptive immunity to Leishmania parasites. Macrophages develop phenotypes ranging from antimicrobial M1 to parasite-permissive M2, depending on mouse strain, Leishmania species, and T-cell cytokines. The Th1 (IFN-γ) and Th2 (IL-4) cytokines, which induce classically-activated (M1) or alternatively-activated (M2) macrophages, underlie resistance versus susceptibility to leishmaniasis. While macrophage phenotypes have been well discussed, new developments addressed the monocyte functional phenotypes in Leishmania infection. Here, we will emphasize the role of inflammatory monocytes to access how potential host-directed therapies for leishmaniasis, such as all-trans-retinoic acid (ATRA) and the ligand of Receptor Activator of Nuclear Factor-Kappa B (RANKL) might modulate immunity to Leishmania infection, by directly targeting monocytes to develop M1 or M2 phenotypes.
Collapse
Affiliation(s)
- Natália S Vellozo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís S Rigoni
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Leishmania donovani Metacyclic Promastigotes Impair Phagosome Properties in Inflammatory Monocytes. Infect Immun 2021; 89:e0000921. [PMID: 33875473 DOI: 10.1128/iai.00009-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. Classical monocytes are among the first myeloid cells to migrate to infection sites. Recent evidence shows that recruitment of these cells contributes to parasite burden and the establishment of chronic disease. However, the nature of Leishmania-inflammatory monocyte interactions during the early stages of host infection has not been well investigated. Here, we aimed to assess the impact of Leishmania donovani metacyclic promastigotes on antimicrobial responses within these cells. Our data showed that inflammatory monocytes are readily colonized by L. donovani metacyclic promastigotes, while infection with Escherichia coli is efficiently cleared. Upon internalization, metacyclic promastigotes inhibited superoxide production at the parasitophorous vacuole (PV) through a mechanism involving exclusion of NADPH oxidase subunits gp91phox and p47phox from the PV membrane. Moreover, we observed that unlike phagosomes enclosing zymosan particles, vacuoles containing parasites acidify poorly. Interestingly, whereas the parasite surface coat virulence glycolipid lipophosphoglycan (LPG) was responsible for the inhibition of PV acidification, impairment of the NADPH oxidase assembly was independent of LPG and GP63. Collectively, these observations indicate that permissiveness of inflammatory monocytes to L. donovani may thus be related to the ability of this parasite to impair the microbicidal properties of phagosomes.
Collapse
|
31
|
Volpedo G, Pacheco-Fernandez T, Holcomb EA, Cipriano N, Cox B, Satoskar AR. Mechanisms of Immunopathogenesis in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL). Front Cell Infect Microbiol 2021; 11:685296. [PMID: 34169006 PMCID: PMC8217655 DOI: 10.3389/fcimb.2021.685296] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects 12 million people worldwide. The disease has high morbidity and mortality rates and is prevalent in over 80 countries, leaving more than 300 million people at risk of infection. Of all of the manifestations of this disease, cutaneous leishmaniasis (CL) is the most common form and it presents as ulcerating skin lesions that can self-heal or become chronic, leading to disfiguring scars. This review focuses on the different pathologies and disease manifestations of CL, as well as their varying degrees of severity. In particular, this review will discuss self-healing localized cutaneous leishmaniasis (LCL), leishmaniasis recidivans (LR), mucocutaneous leishmaniasis (MCL), anergic diffuse cutaneous leishmaniasis (ADCL), disseminated leishmaniasis (DL), and Post Kala-azar Dermal Leishmaniasis (PKDL), which is a cutaneous manifestation observed in some visceral leishmaniasis (VL) patients after successful treatment. The different clinical manifestations of CL are determined by a variety of factors including the species of the parasites and the host's immune response. Specifically, the balance between the pro and anti-inflammatory mediators plays a vital role in the clinical presentation and outcome of the disease. Depending upon the immune response, Leishmania infection can also transition from one form of the disease to another. In this review, different forms of cutaneous Leishmania infections and their immunology are described.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Erin A. Holcomb
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Natalie Cipriano
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Blake Cox
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Abhay R. Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Zayats R, Uzonna JE, Murooka TT. Visualizing the In Vivo Dynamics of Anti- Leishmania Immunity: Discoveries and Challenges. Front Immunol 2021; 12:671582. [PMID: 34093571 PMCID: PMC8172142 DOI: 10.3389/fimmu.2021.671582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Collapse
Affiliation(s)
- Romaniya Zayats
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E. Uzonna
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
33
|
Gioseffi A, Edelmann MJ, Kima PE. Intravacuolar Pathogens Hijack Host Extracellular Vesicle Biogenesis to Secrete Virulence Factors. Front Immunol 2021; 12:662944. [PMID: 33959131 PMCID: PMC8093443 DOI: 10.3389/fimmu.2021.662944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in recent years due to their contributions to cell-to-cell communication and disease processes. EVs are composed of a complex profile of bioactive molecules, which include lipids, nucleic acids, metabolites, and proteins. Although the biogenesis of EVs released by cells under various normal and abnormal conditions has been well-studied, there is incomplete knowledge about how infection influences EV biogenesis. EVs from infected cells contain specific molecules of both host and pathogen origin that may contribute to pathogenesis and the elicitation of the host immune response. Intracellular pathogens exhibit diverse lifestyles that undoubtedly dictate the mechanisms by which their molecules enter the cell’s exosome biogenesis schemes. We will discuss the current understanding of the mechanisms used during infection to traffic molecules from their vacuolar niche to host EVs by selected intravacuolar pathogens. We initially review general exosome biogenesis schemes and then discuss what is known about EV biogenesis in Mycobacterium, Plasmodium, Toxoplasma, and Leishmania infections, which are pathogens that reside within membrane delimited compartments in phagocytes at some time in their life cycle within mammalian hosts. The review includes discussion of the need for further studies into the biogenesis of EVs to better understand the contributions of these vesicles to host-pathogen interactions, and to uncover potential therapeutic targets to control these pathogens.
Collapse
Affiliation(s)
- Anna Gioseffi
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Peter E Kima
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
34
|
Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021; 12:mBio.00129-21. [PMID: 33824211 PMCID: PMC8092208 DOI: 10.1128/mbio.00129-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.
Collapse
|
35
|
McNolty A, Anderson H, Stryker GA, Dondji B. Investigations on the effects of anti-Leishmania major serum on the progression of Leishmania infantum infection in vivo and in vitro - implications of heterologous exposure to Leishmania spp. Parasitol Res 2021; 120:1771-1780. [PMID: 33792813 DOI: 10.1007/s00436-021-07130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by protozoa of the genus Leishmania. Twenty different species are known to cause disease in humans with varying degrees of pathology. These diseases are transmitted throughout the geographic range of phlebotomine sandflies, found between the latitudes 50°N and 40°S. This study explores antibody dependent enhancement (ADE) as the cause of disease exacerbation in heterologous exposure of L. major primed mice to L. infantum challenge. BALB/c mice received serum from L. major infected or naive mice. All mice were challenged with L. infantum and tissue parasite burdens were recorded. Animals that received anti-L. major serum exhibited significantly higher parasite burdens. Surprisingly, these parasite burdens were higher than those of mice infected with L. major and challenged with L. infantum. In vitro phagocytosis assays were carried out to measure parasite uptake in the presence of naive vs. anti-L. major serum. J774A.1 murine monocytes were cultured with either L. major or L. infantum in the presence of anti-L. major serum, naive serum, or no serum. Significantly higher rates of L. major uptake by J774A.1 cells occurred in the presence of anti-L. major serum, but no measurable increase of L. infantum phagocytosis was seen. Our results suggest that increased disease severity observed in vivo in mice previously exposed to L. major and challenged with L infantum is not a result of extrinsic ADE. We speculate that intrinsic ADE, due to biased memory T cell responses caused by Fcγ signaling, could account for disease exacerbation seen in the animal model.
Collapse
Affiliation(s)
- Alan McNolty
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Heidi Anderson
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Gabrielle A Stryker
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| | - Blaise Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| |
Collapse
|
36
|
de Freitas E Silva R, von Stebut E. Unraveling the Role of Immune Checkpoints in Leishmaniasis. Front Immunol 2021; 12:620144. [PMID: 33776999 PMCID: PMC7990902 DOI: 10.3389/fimmu.2021.620144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at least 98 countries and is one of the major unsolved world health issues. Leishmania is a parasitic protozoa which are transmitted by infected sandflies and in the host they mainly infect macrophages. Immunity elicited against those parasites is complex and immune checkpoints play a key role regulating its function. T cell receptors and their respective ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3 have been characterized for their role in regulating adaptive immunity against different pathogens. However, the exact role those receptors perform during Leishmania infections remains to be better determined. This article addresses the key role immune checkpoints play during Leishmania infections, the limiting factors and translational implications.
Collapse
Affiliation(s)
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
38
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
39
|
Chaves MM, Lee SH, Kamenyeva O, Ghosh K, Peters NC, Sacks D. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathog 2020; 16:e1008674. [PMID: 33137149 PMCID: PMC7660907 DOI: 10.1371/journal.ppat.1008674] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/12/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
There is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from those initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the "Trojan Horse" model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.
Collapse
Affiliation(s)
- Mariana M. Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Nathan C. Peters
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| |
Collapse
|
40
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
41
|
Scott P. Long-Lived Skin-Resident Memory T Cells Contribute to Concomitant Immunity in Cutaneous Leishmaniasis. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a038059. [PMID: 32839202 DOI: 10.1101/cshperspect.a038059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Memory T cells, which protect against reinfection in many diseases, have predominantly been characterized in models of acute viral or bacterial infection. In contrast, memory T cells are less well understood in diseases where pathogens persist following disease resolution, such as leishmaniasis, in spite of the fact that these infections often lead to immunity to reinfection, termed concomitant immunity. Defining the T cells that mediate concomitant immunity is an important step in developing vaccines for these diseases. One set of protective T cells are short-lived effector T cells requiring constant stimulation, which would be difficult to maintain by vaccination. However, parasite-independent memory T cells, including central memory T cells (Tcm) and skin-resident T cells (Trm) have recently been described in leishmaniasis. Given their location, Trm cells are particularly suited for protection, and were found to globally seed the skin following Leishmania infection or immunization. Upon challenge, Trm cells rapidly respond to reduce the parasite burden, suggesting that developing strategies to generate parasite-independent Trm cells will be an important step in the quest for a successful leishmaniasis vaccine.
Collapse
Affiliation(s)
- Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4539, USA
| |
Collapse
|
42
|
Saunders EC, McConville MJ. Immunometabolism of Leishmania granulomas. Immunol Cell Biol 2020; 98:832-844. [PMID: 32780446 DOI: 10.1111/imcb.12394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Leishmania are parasitic protists that cause a spectrum of diseases in humans characterized by the formation of granulomatous lesions in the skin or other tissues, such as liver and spleen. The extent to which Leishmania granulomas constrain or promote parasite growth is critically dependent on the host T-helper type 1/T-helper type 2 immune response and the localized functional polarization of infected and noninfected macrophages toward a classically (M1) or alternatively (M2) activated phenotype. Recent studies have shown that metabolic reprograming of M1 and M2 macrophages underpins the capacity of these cells to act as permissive or nonpermissive host reservoirs, respectively. In this review, we highlight the metabolic requirements of Leishmania amastigotes and the evidence that these parasites induce and/or exploit metabolic reprogramming of macrophage metabolism. We also focus on recent studies highlighting the role of key macrophage metabolic signaling pathways, such as mechanistic target of rapamycin, adenosine monophosphate-activated protein kinase and peroxisome proliferator receptor gamma in regulating the pathological progression of Leishmania granulomas. These studies highlight the intimate connectivity between Leishmania and host cell metabolism, the need to investigate these interactions in vivo and the potential to exploit host cell metabolic signaling pathways in developing new host-directed therapies.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
43
|
Th1 concomitant immune response mediated by IFN-γ protects against sand fly delivered Leishmania infection: Implications for vaccine design. Cytokine 2020; 147:155247. [PMID: 32873468 DOI: 10.1016/j.cyto.2020.155247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is an unresolved global health problem with a high socio-economic impact. Data generated in mouse models has revealed that the Th1 response, with IL-12, IFN-γ, TNF-α, and IL-2 as prominent cytokines, predominantly controls the disease progression. Premised on these findings, all examined vaccine formulations have been aimed at generating a long-lived memory Th1 response. However, all vaccine formulations with the exception of live Leishmania inoculation (leishmanization) have failed to sufficiently protect against sand fly delivered infection. It has been recently unraveled that sand fly dependent factors may compromise pre-existing Th1 memory. Further scrutinizing the immune response after leishmanization has uncovered the prominent role of early (within hours) and robust IFN-γ production (Th1 concomitant immunity) in controlling the sand fly delivered secondary infection. The response is dependent upon parasite persistence and subclinical ongoing primary infection. The immune correlates of concomitant immunity (Resident Memory T cells and Effector T subsets) mitigate the early effects of sand fly delivered infection and help to control the disease. In this review, we have described the early events after sand fly challenge and the role of Th1 concomitant immunity in the protective immune response in leishmanized resistant mouse model, although leishmanization is under debate for human use. Undoubtedly, the lessons we learn from leishmanization must be further implemented in alternative vaccine approaches.
Collapse
|
44
|
Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, Uzonna JE. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020; 8:E1201. [PMID: 32784615 PMCID: PMC7465679 DOI: 10.3390/microorganisms8081201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections. Leishmaniasis, which is a disease caused by over 20 species of the protozoan parasite belonging to the genus Leishmania, is an important neglected disease. According to the World Health Organization (WHO), an estimated 12 million people are currently infected in about 98 countries and about 2 million new cases occur yearly, resulting in about 50,000 deaths each year. Current treatment methods for leishmaniasis are not very effective and often have significant side effects. In this review, we discussed host immunity to leishmaniasis, various treatment options currently being utilized, and the progress of both immunotherapy and vaccine development strategies used so far in leishmaniasis. We concluded with insights into what the future holds toward the fight against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Gloria N. Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Enitan S. Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Aida F. Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Jude E. Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| |
Collapse
|
45
|
The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop 2020; 207:105456. [PMID: 32222362 DOI: 10.1016/j.actatropica.2020.105456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Leishmania are obligate intracellular parasites of mononuclear phagocytes transmitted by Phlebotomine sandflies. Monocytes are one of the main cell types recruited to the site of the bite having an important role in the defense against Leishmania parasites in the first hours of infection. In the tissue, macrophages play a pivotal role as both the primary replication sites and the major effector cells responsible for parasite elimination. Many authors have reviewed the monocyte/macrophage-Leishmania interactions from results derived in mice, however, given the important differences between mice an humans we considered vital to discuss the role of these cells in human leishmaniasis. In this review, we recapitulated the most important studies carried out to understand the different roles of human monocyte/macrophages in Leishmania infection and how they can participate in both control and the immunopathogenesis of the disease.
Collapse
|
46
|
Abstract
The phagosomal pathogen Leishmania appears unaffected by deliberate changes in the early Th1/Th2 balance. In this issue, Carneiro et al. explain these paradoxical results by showing that manipulations affecting IFN-γ-mediated phagocyte activation are counteracted by effects on IFN-γ-dependent recruitment of CCR2+ monocytes permissive to parasite growth.
Collapse
Affiliation(s)
- David L Sacks
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Leishmaniasis immunopathology-impact on design and use of vaccines, diagnostics and drugs. Semin Immunopathol 2020; 42:247-264. [PMID: 32152715 DOI: 10.1007/s00281-020-00788-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a disease complex caused by 20 species of protozoan parasites belonging to the genus Leishmania. In humans, it has two main clinical forms, visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well as several other cutaneous manifestations in a minority of cases. In the mammalian host Leishmania parasites infect different populations of macrophages where they multiply and survive in the phagolysosomal compartment. The progression of both VL and CL depends on the maintenance of a parasite-specific immunosuppressive state based around this host macrophage infection. The complexity and variation of immune responses and immunopathology in humans and the different host interactions of the different Leishmania species has an impact upon the effectiveness of vaccines, diagnostics and drugs.
Collapse
|
48
|
Carneiro MB, Lopes ME, Hohman LS, Romano A, David BA, Kratofil R, Kubes P, Workentine ML, Campos AC, Vieira LQ, Peters NC. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe 2020; 27:752-768.e7. [PMID: 32298657 DOI: 10.1016/j.chom.2020.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.
Collapse
Affiliation(s)
- Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mateus Eustáquio Lopes
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leah S Hohman
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rachel Kratofil
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Matthew L Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexandre C Campos
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
49
|
Parmar N, Chandrakar P, Kar S. Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-γ)/M(IL-10) Polarization. THE JOURNAL OF IMMUNOLOGY 2020; 204:2762-2778. [DOI: 10.4049/jimmunol.1900251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
|
50
|
Genetic variation in Interleukin-32 influence the immune response against New World Leishmania species and susceptibility to American Tegumentary Leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008029. [PMID: 32023240 PMCID: PMC7028298 DOI: 10.1371/journal.pntd.0008029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin-32 is a novel inflammatory mediator that has been described to be important in the immunopathogenesis and control of infections caused by Leishmania parasites. By performing experiments with primary human cells in vitro, we demonstrate that the expression of IL-32 isoforms is dependent on the time exposed to L. amazonensis and L. braziliensis antigens. Moreover, for the first time we show the functional consequences of three different genetic variations in the IL32 (rs4786370, rs4349147, rs1555001) modulating IL-32γ expression, influencing innate and adaptive cytokine production after Leishmania exposure. Using a Brazilian cohort of 107 American Tegumentary Leishmaniasis patients and a control cohort of 245 healthy individuals, the IL32 rs4786370 genetic variant was associated with protection against ATL, whereas the IL32 rs4349147 was associated with susceptibility to the development of localized cutaneous and mucosal leishmaniasis. These novel insights may help improve therapeutic strategies and lead to benefits for patients suffering from Leishmania infections. In this study, we described how IL-32 isoforms are crucial to host defense against new world Leishmania species infections. Furthermore, by accessing the genotype frequency of genetic variations in IL32 in a cohort of Brazilian patients with American Tegumentary Leishmaniasis (ATL) and controls, we have obtained indications that IL-32 is associated with disease susceptibility and the development of different clinical manifestations. Thus, this study provides us an extra evidence that the isoforms of IL-32 shape the immune response favoring the development of different cytokines produced by peripheral blood mononuclear cells that might contribute to skin/mucosal inflammation and host defense.
Collapse
|