1
|
Melocchi A, Schmittlein B, Sadhu S, Nayak S, Lares A, Uboldi M, Zema L, di Robilant BN, Feldman SA, Esensten JH. Automated manufacturing of cell therapies. J Control Release 2025; 381:113561. [PMID: 39993639 DOI: 10.1016/j.jconrel.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Advanced therapy medicinal products (ATMPs), particularly genetically engineered cell-based therapies, are a major class of drugs with several high-profile Food and Drug Administration (FDA) approvals in the past decade. However, the high cost and limited production capacity of these drugs remain a barrier to access. These costs are primarily due to the complex manufacturing processes (often a single batch for a single patient), which increases personnel and facility expenses, and the challenges associated with tech-transfer from research and development stages to clinical-stage production. In order to scale up and scale out in a cost-effective way, automated solutions capable of multi-step manufacturing have been developed in academia and industry. The aim of the present article is to summarize the design approaches and key features of current multi-step automated systems for cell therapy manufacturing. For each system described in the literature, we will discuss different aspects in detail such as cell specificity, modularity, processing models, manufacturing locations, and integrated quality control. Our analysis highlights that developers need to balance competing needs in an environment where the biological, business, and technological factors are constantly evolving. Thus, designing engineering solutions that align with the pharmaceutical end-user is essential. Adopting a risk-based approach grounded in published data is the most effective strategy to evaluate existing and emerging automated systems.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy; Multiply Labs, San Francisco, CA, USA.
| | | | | | | | | | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Esensten
- Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
2
|
Roesch A, Hiemenz C, Findley T, Goldberg I, Windisch R, Wichmann C, Kersten G, Menzen T. Stability of Jurkat cells during short-term liquid storage analyzed by flow imaging microscopy. Eur J Pharm Biopharm 2025:114703. [PMID: 40154892 DOI: 10.1016/j.ejpb.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The viability of cell-based medicinal products (CBMPs) is a critical quality attribute and must be assessed throughout the product́s lifecycle to contribute to a safe and potent drug product. In this study, we investigated the impact of short-term liquid storage conditions, encountered during manufacturing of CBMPs, such as holding times outside cell culture conditions and medium composition, on cell viability. As a model for T cells Jurkat cells were used and stored in different storage media for up to 24 h outside a freezer and outside of cell culture conditions. The effect of storage in different storage media, i.e., cell culture medium or phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO) at different storage temperature as well as the impact of pH on the cell viability was assessed. The viability of the cells was assessed by (i) flow cytometry with an Annexin V and CalceinAM staining or (ii) machine learning tools, leveraging the morphological information of flow imaging microscopy images. Cell images obtained by flow imaging microscopy were analyzed with both the ParticleSentryAI imaging software and a convolutional neural network (CNN) for fast and semi-automated viability assessment. Throughout storage conditions similar to those during processing of CBMPs, a decrease in cell viability was observed over time for all conditions based on Annexin V and CalceinAM staining. Additionally, we observed a damaging effect of DMSO over time, whereas this effect was more pronounced at room temperature compared to refrigerated temperatures. The ParticleSentryAI software was useful to detect qualitative differences in the cell viability as a shift towards non-viable cells could be observed throughout storage based on flow imaging microscopy images without prior sample preparation. Viability determination based on the CNN underestimated cell viability when compared to the flow cytometry assays, however the same trends were determined. In summary, non-frozen storage of CBMPs should be kept to a minimum. However, standing times throughout the manufacturing of CBMPs as well as during in-use cannot be completely avoided and therefore, the optimal storage conditions have to be carefully evaluated. Additionally, further analytical development is needed to implement machine learning tools suitable for reliable viability quantification without additional sample preparation such as staining.
Collapse
Affiliation(s)
- Alexandra Roesch
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Cornelia Hiemenz
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Teresa Findley
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Ilya Goldberg
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Gideon Kersten
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Davidson SM, Andreadou I, Antoniades C, Bartunek J, Basso C, Brundel BJJM, Byrne RA, Chiva-Blanch G, da Costa Martins P, Evans PC, Girão H, Giricz Z, Gollmann-Tepeköylü C, Guzik T, Gyöngyösi M, Hübner N, Joner M, Kleinbongard P, Krieg T, Liehn E, Madonna R, Maguy A, Paillard M, Pesce M, Petersen SE, Schiattarella GG, Sluijter JPG, Steffens S, Streckfuss-Bömeke K, Thielmann M, Tucker A, Van Linthout S, Wijns W, Wojta J, Wu JC, Perrino C. Opportunities and challenges for the use of human samples in translational cardiovascular research: a scientific statement of the ESC Working Group on Cellular Biology of the Heart, the ESC Working Group on Cardiovascular Surgery, the ESC Council on Basic Cardiovascular Science, the ESC Scientists of Tomorrow, the European Association of Percutaneous Cardiovascular Interventions of the ESC, and the Heart Failure Association of the ESC. Cardiovasc Res 2025:cvaf023. [PMID: 40084813 DOI: 10.1093/cvr/cvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 03/16/2025] Open
Abstract
Animal models offer invaluable insights into disease mechanisms but cannot entirely mimic the variability and heterogeneity of human populations, nor the increasing prevalence of multi-morbidity. Consequently, employing human samples-such as whole blood or fractions, valvular and vascular tissues, myocardium, pericardium, or human-derived cells-is essential for enhancing the translational relevance of cardiovascular research. For instance, myocardial tissue slices, which preserve crucial structural and functional characteristics of the human heart, can be used in vitro to examine drug responses. Human blood serves as a rich source of biomarkers, including extracellular vesicles, various types of RNA (miRNA, lncRNA, and circRNAs), circulating inflammatory cells, and endothelial colony-forming cells, facilitating detailed studies of cardiovascular diseases. Primary cardiomyocytes and vascular cells isolated from human tissues are invaluable for mechanistic investigations in vitro. In cases where these are unavailable, human induced pluripotent stem cells serve as effective substitutes, albeit with specific limitations. However, the use of human samples presents challenges such as ethical approvals, tissue procurement and storage, variability in patient genetics and treatment regimens, and the selection of appropriate control samples. Biobanks are central to the efficient use of these scarce and valuable resources. This scientific statement discusses opportunities to implement the use of human samples for cardiovascular research within specific clinical contexts, offers a practical framework for acquiring and utilizing different human materials, and presents examples of human sample applications for specific cardiovascular diseases, providing a valuable resource for clinicians, translational and basic scientists engaged in cardiovascular research.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Ioanna Andreadou
- School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Cardiovascular Pathology, University of Padua, Padua, Italy
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Chiva-Blanch
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henrique Girão
- Center for Innovative Biomedicine and Biotechnology, Clinical Academic Centre of Coimbra, Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Coimbra, Portugal
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Can Gollmann-Tepeköylü
- Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Anichstraße 35 A, 6020 Innsbruck, Austria
| | - Tomasz Guzik
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Norbert Hübner
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Petra Kleinbongard
- Faculty of Medicine University of Duisburg-Essen, Institute of Pathophysiology, Duisburg-Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Pisa, Italy
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Melanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Aerospace and Mechanical Engineering, Politecnico di Torino, Italy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | - Gabriele G Schiattarella
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Matthias Thielmann
- West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Art Tucker
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies, Universitätmedizin Berlin, Berlin, Germany
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
| | - William Wijns
- The Lambe Institute for Translational Research and Curam, University of Galway, Galway, Ireland
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Navarro S, Moukheiber C, Inogés Sancho S, Ruiz Guillén M, López-Díaz de Cerio A, Sanges C, Tanaka T, Arnould S, Briones J, Dolstra H, Hudecek M, Choudhary R, Schapitz I, Juan M, Worel N, Ammar D, Luu M, Müller M, Schroeder B, Negre H, Franz P. Optimizing CAR-T treatment: A T 2EVOLVE guide to raw and starting material selection. Mol Ther 2025; 33:847-865. [PMID: 39533710 PMCID: PMC11897765 DOI: 10.1016/j.ymthe.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell products, classified as Advanced Therapy Medicinal Products (ATMPs), have shown promising outcomes in cancer immunotherapy. The quality of raw and starting materials used in manufacturing is critical to ensure the efficacy and safety of CAR-T cell products and depends primarily on the selection of the right materials and the right suppliers. It is essential to consider a long-term strategy when selecting raw and starting materials to prevent delays in the supply of innovative, high-quality, and safe therapies to patients. A thorough assessment will allow developers not only to select suppliers who comply with regulatory requirements but also to ensure a sustainable supply of materials throughout the development and the commercial phases. A careful selection of materials and suppliers can avoid the need of comparability studies due to changes in the supply of materials, impacting costs and causing significant delays in development and treatment readiness for patients. This work, coordinated by the T2EVOLVE IMI consortium, provides guidance for the selection and handling of raw and starting materials. By following these suggestions, developers can ensure that they use high quality raw and starting materials through the product development and life cycle, resulting in safe and effective CAR-T therapies for patients.
Collapse
Affiliation(s)
- Sergio Navarro
- Hospital Clínic de Barcelona, Secció d'Immunoterapia - Servei d'Immunologia, Barcelona, Spain.
| | - Carole Moukheiber
- Institut de Recherches Internationales Servier, Gif-sur-Yvette, France.
| | - Susana Inogés Sancho
- Clínica Universidad de Navarra, Hematología- Área de Terapia Celular, Pamplona, Spain.
| | - Marta Ruiz Guillén
- Clínica Universidad de Navarra, Hematología- Área de Terapia Celular, Pamplona, Spain
| | | | - Carmen Sanges
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Sylvain Arnould
- Institut de Recherches Internationales Servier, Gif-sur-Yvette, France
| | - Javier Briones
- Hospital de Sant Pau, Hematology Department, Barcelona, Spain
| | - Harry Dolstra
- Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | | | - Manel Juan
- Hospital Clínic de Barcelona, Secció d'Immunoterapia - Servei d'Immunologia, Barcelona, Spain
| | - Nina Worel
- Medical University of Vienna, Department of Transfusion Medicine and Cell Therapy, Vienna, Austria
| | | | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Mirko Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Hélène Negre
- Institut de Recherches Internationales Servier, Gif-sur-Yvette, France
| | - Paul Franz
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
5
|
Abraham M, Goel S. Species-specific optimisation of cryopreservation media for goat and buffalo adipose-derived mesenchymal stem cells. Cryobiology 2025; 118:105211. [PMID: 39921190 DOI: 10.1016/j.cryobiol.2025.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are promising for clinical and veterinary applications due to their ease of isolation, high yield, and multilineage differentiation potential. Effective cryopreservation is vital to ensure their availability for large-scale applications. This study evaluated cryopreservation strategies for goat (gADSCs) and buffalo (bADSCs) ADSCs, using combinations of intracellular (dimethyl sulfoxide, DMSO) and exocellular cryoprotectants, including fetal bovine serum (FBS), polyethylene glycol (PEG), trehalose, bovine serum albumin (BSA), and dextran. Post-thaw parameters such as viability, recovery, metabolic activity, clonogenicity, oxidative stress, apoptosis, and senescence were assessed. Results revealed species-specific differences in cryopreservation requirements. gADSCs were optimally preserved in a medium with 5 % DMSO, 3 % FBS, 2 % PEG, 3 % trehalose, and 2 % BSA, while bADSCs performed best in an FBS-free medium containing 5 % DMSO, 2 % PEG, 3 % trehalose, and 2 % BSA. DMSO-FBS formulations supported high recovery and metabolic activity but were associated with increased oxidative stress and apoptosis. Dextran-based cryomedia effectively preserved gADSCs but failed to maintain bADSC functionality. Biochemical composition analysis indicated significantly higher lipid content in bADSCs, likely influencing cryopreservation efficacy. These findings underscore the need for tailored cryopreservation strategies to address species-specific differences. Incorporating exocellular cryoprotectants reduced FBS dependency, minimised oxidative damage, and maintained functional attributes. This study highlights the potential for optimised, cost-effective biobanking solutions that accommodate species-specific requirements, advancing the use of ADSCs in veterinary and translational research.
Collapse
Affiliation(s)
- Michelle Abraham
- Biotechnology Research and Innovation Council (BRIC), National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Sandeep Goel
- Biotechnology Research and Innovation Council (BRIC), National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; BRIC-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
6
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Canales DDH, Hu L, Walsh AJ. Label-free Detection and Characterization of Metabolism in Fresh and Cryopreserved Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632815. [PMID: 39868102 PMCID: PMC11760728 DOI: 10.1101/2025.01.13.632815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cryopreservation is a widely used technique to preserve biological samples for extended periods of time at low temperatures. Even though it is known to have significant effects on cell viability, its effect on their metabolism remains unexplored. Studying how cryopreservation influences the metabolism of cells is important to guarantee the reliability of samples transported between sites for analysis. Optical metabolic imaging allows for the study of cellular metabolism in a label-free manner by using the autofluorescence properties of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), two metabolic coenzymes. The goal of this research is to study the metabolic changes in macrophages after cryopreservation and compare these results with freshly isolated macrophage samples to evaluate if the metabolic data is retained after cryopreservation. The metabolism of macrophages was analyzed with fluorescence lifetime imaging microscopy (FLIM) using a multiphoton microscope. Monocytes were isolated from human whole blood and separated into two groups. In Group 1, freshly isolated monocytes were differentiated into macrophages using macrophage-colony stimulating factor (M-CSF) over 8 days. In Group 2, isolated monocytes were cryopreserved after separation from whole blood and then thawed and stimulated with M-CSF for 8 days. Single-cell analysis showed there are significant changes in FLIM parameters between the groups suggesting that the metabolic data of macrophages is altered after a cryopreservation and cell thawing cycle. Our research bridges the current gap by studying the metabolic changes of cells after cryopreservation using a non-invasive and label-free imaging technique.
Collapse
|
8
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Dan N, Shelake S, Luo WC, Rahman M, Lu J, Bogner RH, Lu X. Impact of controlled ice nucleation on intracellular dehydration, ice formation and their implications on T cell freeze-thaw viability. Int J Pharm 2024; 665:124694. [PMID: 39265855 DOI: 10.1016/j.ijpharm.2024.124694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Cryopreservation is important in manufacturing of cell therapy products, influencing their safety and effectiveness. During freezing and thawing, intracellular events such as dehydration and ice formation can impact cell viability. In this study, the impact of controlling the ice nucleation temperature on intracellular events and viability were investigated. A model T cell line, Jurkat cells, were evaluated in commercially relevant cryoformulations (2.5 and 5 % v/v DMSO in Plasma-Lyte A) using a cryomicroscopic setup to monitor the dynamic changes cells go through during freeze-thaw as well as a controlled rate freezer to study bulk freeze-thaw. The equilibrium freezing temperatures of the studied formulations and a DMSO/Plasma-Lyte A liquidus curve were determined using DSC. The cryomicroscopic studies revealed that an ice nucleation temperature of -6°C, close to the equilibrium freezing temperatures of cryoformulations, led to more intracellular dehydration and less intracellular ice formation during freezing compared to either a lower ice nucleation temperature (-10 °C) or uncontrolled ice nucleation. The cell membrane integrity and post thaw viability in bulk cryopreservation consistently demonstrated the advantage of the higher ice nucleation temperature, and the correlation between the cellular events and cell viability.
Collapse
Affiliation(s)
- Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Sagar Shelake
- Johnson and Johnson Innovative Medicine, Malvern, PA, 19355, USA
| | - Wei-Chung Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Mohsina Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Jonathan Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Robin H Bogner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Zolfaghar M, Acharya P, Joshi P, Choi NY, Shrestha S, Lekkala VKR, Kang SY, Lee M, Lee MY. Cryopreservation of Neuroectoderm on a Pillar Plate and In Situ Differentiation into Human Brain Organoids. ACS Biomater Sci Eng 2024; 10:7111-7119. [PMID: 39454131 DOI: 10.1021/acsbiomaterials.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To demonstrate cryopreservation application to human brain organoids (HBOs), early stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NE) in an ultralow attachment (ULA) 384-well plate. The NE was transferred and encapsulated in Matrigel on the pillar plate. The NE on the pillar plate was exposed to four commercially available CPAs, including the PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80 °C and subsequently stored in a liquid nitrogen dewar. We examined the impact of the CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of NE into HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving the early stage HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability postcryopreservation than larger ones. An incubation period of 80 min with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400-600 μm. These cryopreserved early stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to noncryopreserved HBOs. The cryopreserved early stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
Collapse
Affiliation(s)
- Mona Zolfaghar
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas 75234, United States
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Minseong Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
- Bioprinting Laboratories Inc., Dallas, Texas 75234, United States
| |
Collapse
|
11
|
Brookshaw T, Fuller B, Erro E, Islam T, Chandel S, Zotova E, Selden C. Cryobiological aspects of upscaling cryopreservation for encapsulated liver cell therapies. Cryobiology 2024; 117:105155. [PMID: 39461406 DOI: 10.1016/j.cryobiol.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
For the efficient delivery of a cell therapy a treatment must be provided rapidly, at clinical scale, contain a sufficient active cellular component (biomass), and adhere to a multitude of regulatory requirements. Cryopreservation permits many of these demands to be met more readily. Here we present the cryopreservation and recovery of large volume (2.5L) alginate encapsulated liver cell spheroids (AELS), suitable for use with a novel bioartificial liver device (HepatiCan™) for the treatment of those suffering from acute liver failure (ALF), in regulatory approved cryobags and a cryopreservation process optimised for large volumes. By first assessing the thermal profiles of large scale cryobags with a thermal mimic, the feasibility of cryopreserving a full patient dose simultaneously (3x cryobags containing 833 ml biomass each) was investigated, allowing for small and subsequently large-scale testing of cellular functional recoveries. Work presented here demonstrates that optimised reproducible cooling and warming profiles could be achieved with these large volumes, leading to high biomass recoveries at full clinical scale. The recovered AELS also had high regeneration potential, achieving full pre-freeze viable cell densities within 3 days, indicating that the cell therapy could be delivered rapidly to patients with ALF. This study has presented the feasibility for rapid delivery of large volume cell therapies, whilst further research into improved speed of post-thaw recovery is warranted.
Collapse
Affiliation(s)
- Tom Brookshaw
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Barry Fuller
- UCL Division of Surgery and Interventional Science, UCL Medical School, Royal Free Campus, London, NW3 2QG, UK
| | - Eloy Erro
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Tamnia Islam
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Sweta Chandel
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Elizaveta Zotova
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Clare Selden
- UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Campus, London, NW3 2PF, UK.
| |
Collapse
|
12
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
13
|
Warren MT, Biggs CI, Bissoyi A, Gibson MI, Sosso GC. Data-driven discovery of potent small molecule ice recrystallisation inhibitors. Nat Commun 2024; 15:8082. [PMID: 39278938 PMCID: PMC11402961 DOI: 10.1038/s41467-024-52266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Controlling the formation and growth of ice is essential to successfully cryopreserve cells, tissues and biologics. Current efforts to identify materials capable of modulating ice growth are guided by iterative changes and human intuition, with a major focus on proteins and polymers. With limited data, the discovery pipeline is constrained by a poor understanding of the mechanisms and the underlying structure-activity relationships. In this work, this barrier is overcome by constructing machine learning models capable of predicting the ice recrystallisation inhibition activity of small molecules. We generate a new dataset via experimental measurements of ice growth, then harness predictive models combining state-of-the-art descriptors with domain-specific features derived from molecular simulations. The models accurately identify potent small molecule ice recrystallisation inhibitors within a commercial compound library. Identified hits can also mitigate cellular damage during transient warming events in cryopreserved red blood cells, demonstrating how data-driven approaches can be used to discover innovative cryoprotectants and enable next-generation cryopreservation solutions for the cold chain.
Collapse
Affiliation(s)
- Matthew T Warren
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Cancer Research, London, UK
| | | | - Akalabya Bissoyi
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.
- Warwick Medical School, University of Warwick, Coventry, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
14
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Zolfaghar M, Acharya P, Joshi P, Choi NY, Shrestha S, Lekkala VKR, Kang SY, Lee M, Lee MY. Cryopreservation of neuroectoderm on a pillar plate and in situ differentiation into human brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605147. [PMID: 39091876 PMCID: PMC11291134 DOI: 10.1101/2024.07.25.605147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs), early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs, including PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 - 600 μm. These cryopreserved early-stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
Collapse
Affiliation(s)
- Mona Zolfaghar
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Minseong Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| |
Collapse
|
17
|
Ding Y, Liu S, Liu J, Jin S, Wang J. Cryopreservation with DMSO affects the DNA integrity, apoptosis, cell cycle and function of human bone mesenchymal stem cells. Cryobiology 2024; 114:104847. [PMID: 38246511 DOI: 10.1016/j.cryobiol.2024.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryopreservation (CP) enables pooling and long-term banking of various types of cells, which is indispensable for the cell therapeutics. Dimethyl sulfoxide (DMSO) is universally used as a cryoprotectant in basic and clinical research. Although, the use of DMSO has been under serious debate due to significant clinical side effects correlated with infusions of cellular therapy products containing DMSO, the effect of CP with DMSO on the cell properties and functions remains unknown. Here, we experimentally found that the CP of human bone mesenchymal stem cells (hBMSCs) with 10 % DMSO results 10-15 % of cells apoptosis upon immediate freeze-thaw, ca. 3.8 times of DNA damage/repair relative to the fresh ones after post-thaw cultured in 48 h, and cell cycle arrests at G0/G1 after post-thaw cultured in 24 h. Moreover, CP with 10 % DMSO significantly increases the reactive oxygen species (ROS) level of the frozen-thawed MSCs which may be one of the causes impair cellular properties and functions. Indeed, we found that the differentiation and migration ability of post-thaw cultured hBMSCs decrease as the expression of adipogenic, osteogenic genes and F-actin reduces in the comparison with those of the fresh cells.
Collapse
Affiliation(s)
- Yanqin Ding
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuo Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianting Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shenglin Jin
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| | - Jianjun Wang
- Interdisciplinary Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
18
|
Lee S, Joo Y, Lee EJ, Byeon Y, Kim JH, Pyo KH, Kim YS, Lim SM, Kilbride P, Iyer RK, Li M, French MC, Lee JY, Kang J, Byun H, Cho BC. Successful expansion and cryopreservation of human natural killer cell line NK-92 for clinical manufacturing. PLoS One 2024; 19:e0294857. [PMID: 38394177 PMCID: PMC10889882 DOI: 10.1371/journal.pone.0294857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 02/25/2024] Open
Abstract
Natural killer (NK) cells have recently shown renewed promise as therapeutic cells for use in treating hematologic cancer indications. Despite this promise, NK cell manufacturing workflows remain largely manual, open, and disconnected, and depend on feeders, as well as outdated unit operations or processes, often utilizing research-grade reagents. Successful scale-up of NK cells critically depends on the availability and performance of nutrient-rich expansion media and cryopreservation conditions that are conducive to high cell viability and recovery post-thaw. In this paper we used Cytiva hardware and media to expand the NK92 cell line in a model process that is suitable for GMP and clinical manufacturing of NK cells. We tested a range of cryopreservation factors including cooling rate, a range of DMSO-containing and DMSO-free cryoprotectants, ice nucleation, and cell density. Higher post-thaw recovery was seen in cryobags over cryovials cooled in identical conditions, and cooling rates of 1°C/min or 2°C/min optimal for cryopreservation in DMSO-containing and DMSO-free cryoprotectants respectively. Higher cell densities of 5x107 cells/ml gave higher post-thaw viability than those cryopreserved at either 1x106 or 5x106 cells/ml. This enabled us to automate, close and connect unit operations within the workflow while demonstrating superior expansion and cryopreservation of NK92 cells. Cellular outputs and performance were conducive to clinical dosing regimens, serving as a proof-of-concept for future clinical and commercial manufacturing.
Collapse
Affiliation(s)
- Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yunjoo Joo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Youngseon Byeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young Seob Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Peter Kilbride
- Global Life Sciences Solutions, Cambridge, United Kingdom
| | - Rohin K. Iyer
- Global Life Sciences Solutions USA LLC 100 Results Way, Marlborough, MA, United States of America
| | - Mingming Li
- Global Life Sciences Solutions Singapore Pte. Ltd., HarbourFront Center, Singapore, Singapore
| | - Mandy C. French
- Global Life Sciences Technologies (Shanghai) Co., Ltd., Shanghai Municipality, Shanghai, China
| | - Jung-Yub Lee
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Jeeheon Kang
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Hyesin Byun
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Yadegari F, Gabler Pizarro LA, Marquez-Curtis LA, Elliott JAW. Temperature Dependence of Membrane Permeability Parameters for Five Cell Types Using Nonideal Thermodynamic Assumptions to Mathematically Model Cryopreservation Protocols. J Phys Chem B 2024; 128:1139-1160. [PMID: 38291962 PMCID: PMC10860702 DOI: 10.1021/acs.jpcb.3c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024]
Abstract
Cryopreservation is the process of preserving biological matter at subzero temperatures for long-term storage. During cryopreservation, cells are susceptible to various injuries that can be mitigated by controlling the cooling and warming profiles and cryoprotective agent (CPA) addition and removal procedures. Mathematical modeling of the changing cell volume at different temperatures can greatly reduce the experiments needed to optimize cryopreservation protocols. Such mathematical modeling requires as inputs the cell membrane permeabilities to water and CPA and the osmotically inactive fraction of the cell. Since the intra- and extracellular solutions are generally thermodynamically nonideal, our group has been incorporating the osmotic virial equation to model the solution thermodynamics that underlie the cell volume change equations, adding the second and third osmotic virial coefficients of the grouped intracellular solute to the cell osmotic parameters that must be measured. In our previous work, we reported methods to obtain cell osmotic parameters at room temperature by fitting experimental cell volume kinetic data with equations that incorporated nonideal solution thermodynamics assumptions. Since the relevant cell volume excursions occur at different temperatures, the temperature dependence of the osmotic parameters plays an important role. In this work, we present a new two-part fitting method to obtain five cell-type-specific parameters (water permeability, dimethyl sulfoxide permeability, osmotically inactive fraction, and the second and third osmotic virial coefficients of the intracellular solution) from experimental measurements of equilibrium cell volume and cell volume as a function of time at room temperature and 0 °C for five cell types, namely, human umbilical vein endothelial cells (HUVECs), H9c2 rat myoblasts, porcine corneal endothelial cells (PCECs), the Jurkat T-lymphocyte cell line, and human cerebral microvascular endothelial cells (hCMECs/D3 cell line). The fitting method in this work is based on both equilibrium and kinetic cell volume data, enabling us to solve some technical challenges and expand our previously reported measurement technique to 0 °C. Finally, we use the measured parameters to model the cell volume changes for a HUVEC cryopreservation protocol to demonstrate the impact of the nonideal thermodynamic assumptions on predicting the changing cell volume during freezing and thawing.
Collapse
Affiliation(s)
- Faranak Yadegari
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Laura A. Gabler Pizarro
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Leah A. Marquez-Curtis
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Janet A. W. Elliott
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|
20
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
21
|
Ying Li CM, Li R, Drew P, Price T, Smith E, Maddern GJ, Tomita Y, Fenix K. Clinical application of cytokine-induced killer (CIK) cell therapy in colorectal cancer: Current strategies and future challenges. Cancer Treat Rev 2024; 122:102665. [PMID: 38091655 DOI: 10.1016/j.ctrv.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health burden and is the second leading cause of cancer-related death. Cytokine induced killer (CIK) cell therapy is an immunotherapy which has the potential to meet this need. Clinical trials of CIK cell therapy for the management of CRC have reported improved clinical outcomes. However, production and delivery protocols varied significantly, and many studies were reported only in Chinese language journals. Here we present the most comprehensive review of the clinical CIK cell therapy trials for CRC management to date. We accessed both English and Chinese language clinical studies, and summarise how CIK cell therapy has been implemented, from manufacturing to patient delivery. We discuss current challenges that impede wider adoption of CIK cell therapy in CRC management.
Collapse
Affiliation(s)
- Celine Man Ying Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Runhao Li
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Paul Drew
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Eric Smith
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Guy J Maddern
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Kevin Fenix
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| |
Collapse
|
22
|
Li Y, Stevens HY, Sivaraman S, Porter LN, Hoffman AR, Gibb SL, Selvam S, Bowles-Welch AC. Streamlined Methods for Processing and Cryopreservation of Cell Therapy Products Using Automated Systems. Bio Protoc 2023; 13:e4900. [PMID: 38156031 PMCID: PMC10751237 DOI: 10.21769/bioprotoc.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Streamlined procedures for processing and cryopreservation of cell therapies using good laboratory practices are integral to biomanufacturing process development and clinical applications. The protocol herein begins with the preparation of human cell types cultured as adherent (i.e., mesenchymal stromal cells, MSCs) or suspension cells (i.e., peripheral blood mononuclear cells, PBMCs) to comprehensively demonstrate procedures that are applicable to commonly used primary cell cultures. Cell processing steps consist of preparing high yields of cells for cryopreservation using instruments routinely used in cell manufacturing, including the Finia® Fill and Finish System and a controlled-rate freezer. The final steps comprise the storage of cells at subzero temperatures in liquid nitrogen vapor phase followed by the analysis of cell phenotypes before and after processing and cryopreservation, along with cell quality metrics for validation. Additionally, the protocol includes important considerations for the implementation of quality control measures for equipment operation and cell handling, as well as Good Laboratory Practices for cell manufacturing, which are essential for the translational use of cell therapies. Key features • The protocol applies to small- or large-scale manufacturing of cell therapy products. • It includes streamlined procedures for processing and cryopreservation of cells cultured as adherent cells (MSCs) and suspension cells (PBMCs). • Provides temperature control and rapid partitioning of sample in cryopreservation solution to maintain high viability of a range of cell types throughout the procedures. • This protocol employs the Finia® Fill and Finish System and a controlled-rate freezer. Graphical overview.
Collapse
Affiliation(s)
- Ye Li
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Srikanth Sivaraman
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Logan N. Porter
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Stuart L. Gibb
- Terumo Blood Cell and Technologies, Lakewood, Colorado, USA
| | - Shivaram Selvam
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Johnstone BH, Gu D, Lin CH, Du J, Woods EJ. Identification of a fundamental cryoinjury mechanism in MSCs and its mitigation through cell-cycle synchronization prior to freezing. Cryobiology 2023; 113:104592. [PMID: 37827209 DOI: 10.1016/j.cryobiol.2023.104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Clinical development of cellular therapies, including mesenchymal stem/stromal cell (MSC) treatments, has been hindered by ineffective cryopreservation methods that result in substantial loss of post-thaw cell viability and function. Proposed solutions to generate high potency MSC for clinical testing include priming cells with potent cytokines such as interferon gamma (IFNγ) prior to cryopreservation, which has been shown to enhance post-thaw function, or briefly culturing to allow recovery from cryopreservation injury prior to administering to patients. However, both solutions have disadvantages: cryorecovery increases the complexity of manufacturing and distribution logistics, while the pleiotropic effects of IFNγ may have uncharacterized and unintended consequences on MSC function. To determine specific cellular functions impacted by cryoinjury, we first evaluated cell cycle status. It was discovered that S phase MSC are exquisitely sensitive to cryoinjury, demonstrating heightened levels of delayed apoptosis post-thaw and reduced immunomodulatory function. Blocking cell cycle progression at G0/G1 by growth factor deprivation (commonly known as serum starvation) greatly reduced post-thaw dysfunction of MSC by preventing apoptosis induced by double-stranded breaks in labile replicating DNA that form during the cryopreservation and thawing processes. Viability, clonal growth and T cell suppression function were preserved at pre-cryopreservation levels and were no different than cells prior to freezing or frozen after priming with IFNγ. Thus, we have developed a robust and effective strategy to enhance post-thaw recovery of therapeutic MSC.
Collapse
Affiliation(s)
| | - Dongsheng Gu
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Chieh-Han Lin
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Jianguang Du
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Erik J Woods
- Ossium Health, Inc., Indianapolis, IN, United States.
| |
Collapse
|
24
|
Chawda MM, Ross S, Lau C, Yánez DC, Rowell J, Kilbride P, Crompton T. Cryopreservation of mouse thymus depletes thymocytes but supports immune reconstitution on transplantation. Eur J Immunol 2023; 53:e2350546. [PMID: 37751619 PMCID: PMC10946610 DOI: 10.1002/eji.202350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Cryopreservation of mouse thymus depletes donor thymocytes but preserves thymus function when transplanted after thawing into athymic mice. No differences in immune reconstitution were observed between fresh and frozen/thawed transplants suggesting that donor thymocyte depletion does not affect outcome. Thus, cryopreservation of thymus may improve outcomes in thymus transplant patients.
Collapse
Affiliation(s)
- Mira M. Chawda
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Ching‐In Lau
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Diana C. Yánez
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Tessa Crompton
- UCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
25
|
Fabri B, Sicard G, Gauthier-Villano L, Pourroy B. [Advanced therapy medicinal products' (ATMP) pharmaceutical circuit in France: Current situation and outlook]. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:1038-1053. [PMID: 37075974 DOI: 10.1016/j.pharma.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Advanced therapy medicinal products' reconstitution is an innovative pharmaceutical activity. The purpose of this work is to evaluate the current situation in France within hospital pharmacies. METHODS An electronic questionnaire (90 questions) was sent to previously identified French pharmaceutical teams exploring advanced therapy medicinal products' reconstitution process in its various aspects. RESULTS Thirty-eight pharmacists completed the survey. The ATMPs reconstitution is very largely carried out by pharmaceutical teams in charge of other activities, even if dedicated teams are beginning to appear. Gene therapy represents majority among advanced therapy medicinal products. The premises are very often shared, especially the controlled atmosphere areas. These vary greatly in nature, as do facilities used. The ultra-low temperature storage is most frequently used and the nitrogen equipment of hospital pharmacies is yet observed and tends to expand. Simple reconstitution processes (thawing, dilution) are mostly carried out in hospital pharmacies. The traceability still largely relies on different software and/or the use of paper formats. The reconstitution process needs devoted pharmaceutical time according to the active queues, sometimes exceeding 200 patients per year. FINDINGS If the hospital pharmacists is going to take charge of this activity on a constant basis, the regulatory context and the increase in active queues will require a real investment plan from the public authorities in this activity to effectively implement ATMPs reconstitution to the greatest benefit of patients.
Collapse
Affiliation(s)
- Benjamin Fabri
- Unité Oncopharma, CHU Timone, 264, rue Saint-Pierre, 13005 Marseille, France
| | - Guillaume Sicard
- Unité Oncopharma, CHU Timone, 264, rue Saint-Pierre, 13005 Marseille, France; SMARTc, Centre de recherche en cancérologie de Marseille UMR, Inserm U1068, Aix-Marseille université, Marseille, France
| | | | - Bertrand Pourroy
- Unité Oncopharma, CHU Timone, 264, rue Saint-Pierre, 13005 Marseille, France.
| |
Collapse
|
26
|
Gonzalez-Martinez N, Gibson MI. Post-thaw application of ROCK-inhibitors increases cryopreserved T-cell yield. RSC Med Chem 2023; 14:2058-2067. [PMID: 37859712 PMCID: PMC10583820 DOI: 10.1039/d3md00378g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023] Open
Abstract
Emerging cell-based therapies such as CAR-T (Chimeric Antigen Receptor T) cells require cryopreservation to store and deliver intact and viable cells. Conventional cryopreservation formulations use DMSO to mitigate cold-induced damage, but do not address all the biochemical damage mechanisms induced by cold stress, such as programmed cell death (apoptosis). Rho-associated protein kinases (ROCK) are a key component of apoptosis, and their activation contributes to apoptotic blebbing. Here we demonstrate that the ROCK inhibitor fasudil hydrochloride, when supplemented into the thawing medium of T-cells increases the overall yield of healthy cells. Cell yield was highest using 5 or 10% DMSO cryopreservation solutions, with lower DMSO concentrations (2.5%) leading to significant physical damage to the cells. After optimisation, the post-thaw yield of T-cells increased by approximately 20% using this inhibitor, a significant increase in the context of a therapy. Flow cytometry analysis did not show a significant reduction in the relative percentage of cell populations undergoing apoptosis, but there was a small reduction in the 8 hours following thawing. Fasudil also led to a reduction in reactive oxygen species. Addition of fasudil into the cryopreservation solution, followed by dilution (rather than washing) upon thaw also gave a 20% increase in cell yield, demonstrating how this could be deployed in a cell-therapy context, without needing to change clinical thawing routines. Overall, this shows that modulation of post-thaw biochemical pathways which lead to apoptosis (or other degradative pathways) can be effectively targeted as a strategy to increase T-cell yield and function post-thaw.
Collapse
Affiliation(s)
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
27
|
Murray A, Kilbride P, Gibson MI. Proline pre-conditioning of Jurkat cells improves recovery after cryopreservation. RSC Med Chem 2023; 14:1704-1711. [PMID: 37731697 PMCID: PMC10507795 DOI: 10.1039/d3md00274h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cell therapies such as allogenic CAR T-cell therapy, natural killer cell therapy and stem cell transplants must be cryopreserved for transport and storage. This is typically achieved by addition of dimethyl sulfoxide (DMSO) but the cryoprotectant does not result in 100% cell recovery. New additives or technologies to improve their cryopreservation could have major impact for these emerging therapies. l-Proline is an amino acid osmolyte produced as a cryoprotectant by several organisms such as the codling moth Cydia pomonella and the larvae of the fly Chymomyza costata, and has been found to modulate post-thaw outcomes for several cell lines but has not been studied with Jurkat cells, a T lymphocyte cell line. Here we investigate the effectiveness of l-proline compared to d-proline and l-alanine for the cryopreservation of Jurkat cells. It is shown that 24-hour pre-freezing incubation of Jurkat cells with 200 mM l-proline resulted in a modest increase in cell recovery post-thaw at high cell density, but a larger increase in recovery was observed at the lower cell densities. l-Alanine was as effective as l-proline at lower cell densities, and addition of l-proline to the cryopreservation media (without incubation) had no benefit. The pre-freeze incubation with l-proline led to significant reductions in cell proliferation supporting an intracellular, biochemical, mechanism of action which was shown to be cell-density dependent. Controls with d-proline were found to reduce post-thaw recovery attributed to osmotic stress as d-proline cannot enter the cells. Preliminary analysis of apoptosis/necrosis profiles by flow cytometry indicated that inhibition of apoptosis is not the primary mode of action. Overall, this supports the use of l-proline pre-conditioning to improve T-cell post-thaw recovery without needing any changes to cryopreservation solutions nor methods and hence is simple to implement.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
28
|
Aoki M, Yokota R, Maruo S, Kageyama T, Fukuda J. Cryopreservation of engineered hair follicle germs for hair regenerative medicine. J Biosci Bioeng 2023; 136:246-252. [PMID: 37482479 DOI: 10.1016/j.jbiosc.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Hair regenerative medicine must involve practical procedures, such as cryopreservation of tissue grafts. This can aid in evaluating tissue safety and quality, as well as transportation to a clinic and multiple transplants. Hair follicle germs (HFGs), identified during in vivo development, are considered effective tissue grafts for hair regenerative medicine. However, to the best of our knowledge, methods for cryopreserving HFGs have not been explored yet. This study investigated the efficacy of slow vitrification methods for freezing HFGs. Cryoprotectants such as dimethyl sulfoxide (DMSO) and carboxylated poly-l-lysine were used for vitrification. The results indicate that DMSO vitrification yielded the most efficient de novo hair regeneration in mouse skin, comparable to that of non-cryoprotected HFGs. A microfinger was fabricated to scale up the cryopreservation method, considering that thousands of tissue grafts were required per patient in clinical practice. The microfinger can be used for a series of processes, holding the HFG, replacing it with a cryopreservation solution, freezing it in liquid nitrogen, thawing it in a warm medium, and transplanting it into the skin. Although de novo hair regeneration by HFGs cryopreserved using microfingers was reduced by approximately 20 % compared to those cryopreserved using flat plates for fertilized eggs, it exceeded 50 %. These findings demonstrate that vitrification with DMSO and microfingers could be a useful approach for the cryopreservation of tissue grafts in hair regenerative medicine for hair loss.
Collapse
Affiliation(s)
- Mio Aoki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ryoto Yokota
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Shoji Maruo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
29
|
Yanagihara M, Matsuno Y, Ueno K, Kurazumi H, Suzuki R, Tanaka T, Hamano K. Fibroblasts are the most suitable cell source for regenerative medicine due to their high intracellular fibroblast growth factor 2 content. Biochem Biophys Rep 2023; 35:101510. [PMID: 37457362 PMCID: PMC10345219 DOI: 10.1016/j.bbrep.2023.101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
In our previous study, we found that dry-preserved multilayered fibroblast cell sheets promoted angiogenesis and wound healing in a mouse ulcer model by releasing high levels of intracellular fibroblast growth factor 2 (FGF2), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF), from dried cells. In the present study, to identify which cell types are suitable for human dry-preserved cell sheets (dry sheets), we compared the intracellular FGF2 levels in seven types of cells reported as cell sheets for clinical use or preclinical studies. FGF2 levels were high in mesenchymal cells, including human oral fibroblasts (HOFs) and human dermal fibroblasts (HDFs), human dental pulp stem cells (DPSCs), and human mesenchymal stem cells (MSCs); in contrast, FGF2 levels in human umbilical vascular endothelial cells (HUVECs), human skeletal muscle myoblasts (SkMMs), and human epidermal keratinocytes (HEKs) were remarkably low, approximately 25% those in fibroblasts. In addition, we prepared dry sheets from HOFs, DPSCs, and MSCs, and analyzed the growth factors released from each dry sheet upon rehydration. High levels of FGF2, HGF, and VEGF were detected in the eluate prepared by immersing each dry sheet. In particular, FGF2 and HGF were the most abundant in HOFs. An in vitro cell proliferation assay showed that these eluates significantly enhanced HUVEC proliferation compared to control cells. Furthermore, cells incubated with HOF eluate showed significantly higher cell proliferation than cells incubated with DPSC and MSC eluates. However, this proliferative response was significantly blocked by FGF2-neutralizing antibodies. These results demonstrate that growth factors released from human dry sheets have physiological activity and that this activity is mainly mediated by the effect of FGF2. Fibroblasts are ideal for the clinical application of dry-preserved cell sheets in humans owing to their high intracellular FGF2 content, fast cell proliferation, ease of handling, availability, and low culture costs, making them the most suitable cell source for regenerative medicine, with FGF2 release as the mechanism of action.
Collapse
|
30
|
Grossen P, Skaripa Koukelli I, van Haasteren J, H E Machado A, Dürr C. The ice age - A review on formulation of Adeno-associated virus therapeutics. Eur J Pharm Biopharm 2023; 190:1-23. [PMID: 37423416 DOI: 10.1016/j.ejpb.2023.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Gene therapies offer promising therapeutic alternatives for many disorders that currently lack efficient treatment options. Due to their chemical nature and physico-chemical properties, delivery of polynucleic acids into target cells and subcellular compartments remains a significant challenge. Adeno-associated viruses (AAV) have gained a lot of interest for the efficient delivery of therapeutic single-stranded DNA (ssDNA) genomes over the past decades. More than a hundred products have been tested in clinical settings and three products have received market authorization by the US FDA in recent years. A lot of effort is being made to generate potent recombinant AAV (rAAV) vectors that show favorable safety and immunogenicity profiles for either local or systemic administration. Manufacturing processes are gradually being optimized to deliver a consistently high product quality and to serve potential market needs beyond rare indications. In contrast to protein therapeutics, most rAAV products are still supplied as frozen liquids within rather simple formulation buffers to enable sufficient product shelf life, significantly hampering global distribution and access. In this review, we aim to outline the hurdles of rAAV drug product development and discuss critical formulation and composition aspects of rAAV products under clinical evaluation. Further, we highlight recent development efforts in order to achieve stable liquid or lyophilized products. This review therefore provides a comprehensive overview on current state-of-the-art rAAV formulations and can further serve as a map for rational formulation development activities in the future.
Collapse
Affiliation(s)
- Philip Grossen
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Irini Skaripa Koukelli
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Joost van Haasteren
- F.Hoffmann-La Roche AG, Cell and Gene Therapy Unit, Gene Therapy Development Clinical Manufacturing, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandra H E Machado
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Dürr
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
31
|
Grogg J, Vernet R, Charrier E, Urwyler M, Von Rohr O, Saingier V, Courtout F, Lathuiliere A, Gaudenzio N, Engel A, Mach N. Engineering a versatile and retrievable cell macroencapsulation device for the delivery of therapeutic proteins. iScience 2023; 26:107372. [PMID: 37539029 PMCID: PMC10393802 DOI: 10.1016/j.isci.2023.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Encapsulated cell therapy holds a great potential to deliver sustained levels of highly potent therapeutic proteins to patients and improve chronic disease management. A versatile encapsulation device that is biocompatible, scalable, and easy to administer, retrieve, or replace has yet to be validated for clinical applications. Here, we report on a cargo-agnostic, macroencapsulation device with optimized features for protein delivery. It is compatible with adherent and suspension cells, and can be administered and retrieved without burdensome surgical procedures. We characterized its biocompatibility and showed that different cell lines producing different therapeutic proteins can be combined in the device. We demonstrated the ability of cytokine-secreting cells encapsulated in our device and implanted in human skin to mobilize and activate antigen-presenting cells, which could potentially serve as an effective adjuvant strategy in cancer immunization therapies. We believe that our device may contribute to cell therapies for cancer, metabolic disorders, and protein-deficient diseases.
Collapse
Affiliation(s)
- Julien Grogg
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Remi Vernet
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Emily Charrier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Muriel Urwyler
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Olivier Von Rohr
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Valentin Saingier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Fabien Courtout
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Department of Rehabilitation and Geriatrics, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Adrien Engel
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
- MaxiVAX SA, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland
- Centre for Translational Research in Onco-Hematology, Oncology Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Meiser I, Alstrup M, Khalesi E, Stephan B, Speicher AM, Majer J, Kwok CK, Neubauer JC, Hansson M, Zimmermann H. Application-Oriented Bulk Cryopreservation of Human iPSCs in Cryo Bags Followed by Direct Inoculation in Scalable Suspension Bioreactors for Expansion and Neural Differentiation. Cells 2023; 12:1914. [PMID: 37508576 PMCID: PMC10378238 DOI: 10.3390/cells12141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cell-based therapies are promising tools for regenerative medicine and require bulk numbers of high-quality cells. Currently, cells are produced on demand and have a limited shelf-life as conventional cryopreservation is primarily designed for stock keeping. We present a study on bulk cryopreservation of the human iPSC lines UKKi011-A and BIONi010-C-41. By increasing cell concentration and volume, compared to conventional cryopreservation routines in cryo vials, one billion cells were frozen in 50 mL cryo bags. Upon thawing, the cells were immediately seeded in scalable suspension-based bioreactors for expansion to assess the stemness maintenance and for neural differentiation to assess their differentiation potential on the gene and protein levels. Both the conventional and bulk cryo approach show comparative results regarding viability and aggregation upon thawing and bioreactor inoculation. Reduced performance compared to the non-frozen control was compensated within 3 days regarding biomass yield. Stemness was maintained upon thawing in expansion. In neural differentiation, a delay of the neural marker expression on day 4 was compensated at day 9. We conclude that cryopreservation in cryo bags, using high cell concentrations and volumes, does not alter the cells' fate and is a suitable technology to avoid pre-cultivation and enable time- and cost-efficient therapeutic approaches with bulk cell numbers.
Collapse
Affiliation(s)
- Ina Meiser
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Monica Alstrup
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Elham Khalesi
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Bianca Stephan
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Anna M Speicher
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Julia Majer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Chee Keong Kwok
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Mattias Hansson
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
33
|
Park J, Lee W, Saadelin IM, Bang S, Lee S, Yi J, Cho J. Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo ( Bos taurus coreanae) cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:779-791. [PMID: 37970502 PMCID: PMC10640948 DOI: 10.5187/jast.2023.e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023]
Abstract
This study aimed to assess the effects of embryonic developmental stage, quality grade, and fresh or frozen/thawed conditions on the pregnancy rate and sex ratio of live offspring in Hanwoo (Bos taurus coreanae) cows. The quality and developmental stage of in vivo-derived (IVD) transferred embryos were evaluated using the standard criteria of the International Embryo Technology Society. The recipient cows were synchronized using conventional (estradiol benzoate and progesterone) protocols before embryo transfer. Embryos were transferred to 297 cows, and pregnancy was monitored for 60-70 days after embryo transfer. The pregnancy rates of fresh and frozen/thawed embryos were 56.90% and 52.49%, respectively. Pregnancy rates varied according to embryo quality (56.18% for grade 1 vs. 36.67% for grade 2). Pregnancy rates also varied by developmental stage and cryopreservation (67.86% vs. 63.49% for stage 4-1, 64.00% vs. 54.72% for 5-1, and 50.00% vs. 47.83% for 6-1, in fresh embryos vs. frozen/thawed embryos, respectively). For stage 7-1, the pregnancy rates were 72.73% for fresh embryos and 20.00% for frozen/thawed embryos. In 66 fresh embryos, the sex ratio of live offspring was 5:5, whereas it was 4(female):6(male) for frozen/thawed embryos among the 95 frozen/thawed embryos. The miscarriage rate was approximately 3% higher for frozen/thawed embryos than for fresh embryos (18.1% for fresh vs. 21.1% for frozen). Seasonal fertility rates were 33.3% in spring, 55.67% in summer, 52.8% in autumn, 60.0% in winter. The following male-to-female ratios were observed in different seasons: 6.7:3.3 in spring, 4.0:6.0 in summer, 5.5:4.5 in autumn, and 3.3:6.7 in winter. The current data revealed no significant differences in pregnancy rates between fresh and frozen/thawed IVD embryos. However, there was a lower pregnancy rate with advanced-stage frozen/thawed embryos (stage 7-1). The current study provides comprehensive results for the better optimization of embryo transfer in Hanwoo cattle to obtain the desired fertility rate, pregnancy rate, and sex ratio of calves. These results provide important insights into the factors that influence the viability and success of IVD embryo transfer in Hanwoo cows and may have practical applications for improving breeding programs and reducing production costs.
Collapse
Affiliation(s)
- Jihyun Park
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | | | - Islam M. Saadelin
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
- Gyeonggi Regional Research Center,
Hankyong National University, Anseong 17579, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| |
Collapse
|
34
|
Vigašová K, Durdík M, Jakl L, Dolinská Z, Pobijaková M, Fekete M, Závacká I, Belyaev I, Marková E. Chemotherapy and cryopreservation affects DNA repair foci in lymphocytes of breast cancer patients. Int J Radiat Biol 2023; 99:1660-1668. [PMID: 37145321 DOI: 10.1080/09553002.2023.2211140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Although breast cancer (BC) patients benefit from radiotherapy (RT), some radiosensitive (RS) patients suffer from side effects caused by ionizing radiation in healthy tissues. It is thought that RS is underlaid by a deficiency in the repair of DNA double-strand breaks (DSB). DNA repair proteins such as p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (γH2AX), form DNA repair foci at the DSB locations and thus serve as DSB biomarkers. Peripheral blood lymphocytes (PBL) are commonly believed to be an appropriate cell system for RS assessment using DNA repair foci. The amount of DSB may also be influenced by chemotherapy (CHT), which is often chosen as the first treatment modality before RT. As it is not always possible to analyze blood samples immediately after collection, there is a need for cryopreservation of PBL in liquid nitrogen. However, cryopreservation may potentially affect the number of DNA repair foci. In this work, we studied the effect of cryopreservation and CHT on the amount of DNA repair foci in PBL of BC patients undergoing radiotherapy. MATERIALS AND METHODS The effect of cryopreservation was studied by immunofluorescence analysis of 53BP1 and γH2AX proteins at different time intervals after in vitro irradiation. The effect of chemotherapy was analyzed by fluorescent labelling of 53BP1 and γH2AX proteins in PBL collected before, during, and after RT. RESULTS Higher number of primary 53BP1/γH2AX foci was observed in frozen cells indicating that cryopreservation affects the formation of DNA repair foci in PBL of BC patients. In CHT-treated patients, a higher number of foci were found before RT, but no differences were observed during and after the RT. CONCLUSIONS Cryopreservation is the method of choice for analyzing DNA repair residual foci, but only similarly treated and preserved cells should be used for comparison of primary foci. CHT induces DNA repair foci in PBL of BC patients, but this effect disappears during radiotherapy.
Collapse
Affiliation(s)
- Katarína Vigašová
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matúš Durdík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lukáš Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Dolinská
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, Bratislava, Slovakia
| | - Margita Pobijaková
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, Bratislava, Slovakia
| | - Marta Fekete
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, Bratislava, Slovakia
| | - Ingrid Závacká
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
35
|
Mutsenko V, Anastassopoulos E, Zaragotas D, Simaioforidou A, Tarusin D, Lauterboeck L, Sydykov B, Brunotte R, Brunotte K, Rozanski C, Petrenko AY, Braslavsky I, Glasmacher B, Gryshkov O. Monitoring of freezing patterns within 3D collagen-hydroxyapatite scaffolds using infrared thermography. Cryobiology 2023:S0011-2240(23)00007-X. [PMID: 37062517 DOI: 10.1016/j.cryobiol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf extract from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('in air') vs. 7.71 ± 0.43 ('in bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('in air') vs. 7.68 ± 0.34 ('in bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for crude leaf homogenate (CLH) from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 23.09 ± 0.05), respectively). The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation and optimization of CPA compositions with slow-nucleating properties.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.
| | | | - Dimitris Zaragotas
- Department of Agricultural Engineering Technologists, TEI Thessaly, Larissa, Greece
| | | | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Ricarda Brunotte
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Kai Brunotte
- Institute of Forming Technology and Forming Machines, Leibniz University Hannover, Garbsen, Germany
| | - Corinna Rozanski
- Institute of Building Materials Science, Leibniz University Hannover, Hannover, Germany
| | - Alexander Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
36
|
Singh N, Patel K, Navalkar A, Kadu P, Datta D, Chatterjee D, Mukherjee S, Shaw R, Gahlot N, Shaw A, Jadhav S, Maji SK. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Biomaterials 2023; 295:122032. [PMID: 36791521 DOI: 10.1016/j.biomaterials.2023.122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Biomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce a new class of amyloid fibril-based peptide hydrogels as a versatile biomimetic ECM scaffold for 3D cell culture and homogenous tumor spheroid modeling. We show that these amyloid fibril-based hydrogels are thixotropic and allow cancer cell adhesion, proliferation, and migration. All seven designed hydrogels support 3D cell culture with five different cancer cell lines forming spheroid with necrotic core and upregulation of the cancer biomarkers. We further developed the homogenous, single spheroid using the drop cast method and the data suggest that all hydrogels support the tumor spheroid formation but with different necrotic core diameters. The detailed gene expression analysis of MCF7 spheroid by microarray suggested the involvement of pro-oncogenes and significant regulatory pathways responsible for tumor spheroid formation. Further, using breast tumor tissue from a mouse xenograft model, we show that selected amyloid hydrogels support the formation of tumor spheroids with a well-defined necrotic core, cancer-associated gene expression, higher drug resistance, and tumor heterogeneity reminiscent of the original tumor. Altogether, we have developed an easy-to-use, rapid, cost-effective, and scalable platform for generating in vitro cancer models for the screening of anti-cancer therapeutics and developing personalized medicine.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjit Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Abhishek Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
37
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
38
|
Daily MI, Whale TF, Kilbride P, Lamb S, John Morris G, Picton HM, Murray BJ. A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format. J R Soc Interface 2023; 20:20220682. [PMID: 36751925 PMCID: PMC9905984 DOI: 10.1098/rsif.2022.0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Cryopreservation of biological matter in microlitre scale volumes of liquid would be useful for a range of applications. At present, it is challenging because small volumes of water tend to supercool, and deep supercooling is known to lead to poor post-thaw cell viability. Here, we show that a mineral ice nucleator can almost eliminate supercooling in 100 µl liquid volumes during cryopreservation. This strategy of eliminating supercooling greatly enhances cell viability relative to cryopreservation protocols with uncontrolled ice nucleation. Using infrared thermography, we demonstrate a direct relationship between the extent of supercooling and post-thaw cell viability. Using a mineral nucleator delivery system, we open the door to the routine cryopreservation of mammalian cells in multiwell plates for applications such as high throughput toxicology testing of pharmaceutical products and regenerative medicine.
Collapse
Affiliation(s)
- Martin I. Daily
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas F. Whale
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | | | | - Helen M. Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J. Murray
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
Cryopreservable three-dimensional spheroid culture for ready-to-use systems. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Shajib MS, Futrega K, Franco RAG, McKenna E, Guillesser B, Klein TJ, Crawford RW, Doran MR. Method for manufacture and cryopreservation of cartilage microtissues. J Tissue Eng 2023; 14:20417314231176901. [PMID: 37529249 PMCID: PMC10387698 DOI: 10.1177/20417314231176901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 08/03/2023] Open
Abstract
The financial viability of a cell and tissue-engineered therapy may depend on the compatibility of the therapy with mass production and cryopreservation. Herein, we developed a method for the mass production and cryopreservation of 3D cartilage microtissues. Cartilage microtissues were assembled from either 5000 human bone marrow-derived stromal cells (BMSC) or 5000 human articular chondrocytes (ACh) each using a customized microwell platform (the Microwell-mesh). Microtissues rapidly accumulate homogenous cartilage-like extracellular matrix (ECM), making them potentially useful building blocks for cartilage defect repair. Cartilage microtissues were cultured for 5 or 10 days and then cryopreserved in 90% serum plus 10% dimethylsulfoxide (DMSO) or commercial serum-free cryopreservation media. Cell viability was maximized during thawing by incremental dilution of serum to reduce oncotic shock, followed by washing and further culture in serum-free medium. When assessed with live/dead viability dyes, thawed microtissues demonstrated high viability but reduced immediate metabolic activity relative to unfrozen control microtissues. To further assess the functionality of the freeze-thawed microtissues, their capacity to amalgamate into a continuous tissue was assess over a 14 day culture. The amalgamation of microtissues cultured for 5 days was superior to those that had been cultured for 10 days. Critically, the capacity of cryopreserved microtissues to amalgamate into a continuous tissue in a subsequent 14-day culture was not compromised, suggesting that cryopreserved microtissues could amalgamate within a cartilage defect site. The quality ECM was superior when amalgamation was performed in a 2% O2 atmosphere than a 20% O2 atmosphere, suggesting that this process may benefit from the limited oxygen microenvironment within a joint. In summary, cryopreservation of cartilage microtissues is a viable option, and this manipulation can be performed without compromising tissue function.
Collapse
Affiliation(s)
- Md. Shafiullah Shajib
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Kathryn Futrega
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rose Ann G Franco
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Eamonn McKenna
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Bianca Guillesser
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Travis J Klein
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross W Crawford
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael R Doran
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells as a Viable Solution for the Storage and Distribution of Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120805. [PMID: 36551011 PMCID: PMC9774331 DOI: 10.3390/bioengineering9120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.
Collapse
|
42
|
Ishibe T, Gonzalez-Martinez N, Georgiou PG, Murray KA, Gibson MI. Synthesis of Poly(2-(methylsulfinyl)ethyl methacrylate) via Oxidation of Poly(2-(methylthio)ethyl methacrylate): Evaluation of the Sulfoxide Side Chain on Cryopreservation. ACS POLYMERS AU 2022; 2:449-457. [PMID: 36536886 PMCID: PMC9756334 DOI: 10.1021/acspolymersau.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/17/2023]
Abstract
Conventional cryopreservation solutions rely on the addition of organic solvents such as DMSO or glycerol, but these do not give full recovery for all cell types, and innovative cryoprotectants may address damage pathways which these solvents do not protect against. Macromolecular cryoprotectants are emerging, but there is a need to understand their structure-property relationships and mechanisms of action. Here we synthesized and investigated the cryoprotective behavior of sulfoxide (i.e., "DMSO-like") side-chain polymers, which have been reported to be cryoprotective using poly(ethylene glycol)-based polymers. We also wanted to determine if the polarized sulfoxide bond (S+O- character) introduces cryoprotective effects, as this has been seen for mixed-charge cryoprotective polyampholytes, whose mechanism of action is not yet understood. Poly(2-(methylsulfinyl)ethyl methacrylate) was synthesized by RAFT polymerization of 2-(methylthio)ethyl methacrylate and subsequent oxidation to sulfoxide. A corresponding N-oxide polymer was also prepared and characterized: (poly(2-(dimethylamineoxide)ethyl methacrylate). Ice recrystallization inhibition assays and differential scanning calorimetry analysis show that the sulfoxide side chains do not modulate the frozen components during cryopreservation. In cytotoxicity assays, it was found that long-term (24 h) exposure of the polymers was not tolerated by cells, but shorter (30 min) incubation times, which are relevant for cryopreservation, were tolerated. It was also observed that overoxidation to the sulfone significantly increased the cytotoxicity, and hence, these materials require a precision oxidation step to be deployed. In suspension cell cryopreservation investigations, the polysulfoxides did not increase cell recovery 24 h post-thaw. These results show that unlike hydrophilic backboned polysulfides, which can aid cryopreservation, the installation of the sulfoxide group onto a polymer does not necessarily bring cryoprotective properties, highlighting the challenges of developing and discovering macromolecular cryoprotectants.
Collapse
Affiliation(s)
- Toru Ishibe
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | | | - Panagiotis G. Georgiou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Kathryn A. Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, U.K.
| |
Collapse
|
43
|
Cryopreservation of Plasmodium Sporozoites. Pathogens 2022; 11:pathogens11121487. [PMID: 36558821 PMCID: PMC9784981 DOI: 10.3390/pathogens11121487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.
Collapse
|
44
|
Cryopreserved anti-CD22 and bispecific anti-CD19/22 CAR T cells are as effective as freshly infused cells. Mol Ther Methods Clin Dev 2022; 28:51-61. [PMID: 36620075 PMCID: PMC9798176 DOI: 10.1016/j.omtm.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Cryopreservation of chimeric antigen receptor (CAR) T cells facilitates shipment, timing of infusions, and storage of subsequent doses. However, reports on the impact of cryopreservation on CAR T cell efficacy have been mixed. We retrospectively compared clinical outcomes between patients who received cryopreserved versus fresh CAR T cells for treatment of B cell leukemia across two cohorts of pediatric and young adult patients: those who received anti-CD22 CAR T cells and those who received bispecific anti-CD19/22 CAR T cells. Manufacturing methods were consistent within each trial but differed between the two trials, allowing for exploration of cryopreservation within different manufacturing platforms. Among 40 patients who received anti-CD22 CAR T cells (21 cryopreserved cells and 19 fresh), there were no differences in in vivo expansion, persistence, incidence of toxicities, or disease response between groups with cryopreserved and fresh CAR T cells. Among 19 patients who received anti-CD19/22 CAR T cells (11 cryopreserved and 8 fresh), patients with cryopreserved cells had similar expansion, toxicity incidence, and disease response, with decreased CAR T cell persistence. Overall, our data demonstrate efficacy of cryopreserved CAR T cells as comparable to fresh infusions, supporting cryopreservation, which will be crucial for advancing the field of cell therapy.
Collapse
|
45
|
Murray KA, Kinney NLH, Griffiths CA, Hasan M, Gibson MI, Whale TF. Pollen derived macromolecules serve as a new class of ice-nucleating cryoprotectants. Sci Rep 2022; 12:12295. [PMID: 35854036 PMCID: PMC9296471 DOI: 10.1038/s41598-022-15545-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cryopreservation of biological material is vital for existing and emerging biomedical and biotechnological research and related applications, but there remain significant challenges. Cryopreservation of cells in sub-milliliter volumes is difficult because they tend to deeply supercool, favoring lethal intracellular ice formation. Some tree pollens are known to produce polysaccharides capable of nucleating ice at warm sub-zero temperatures. Here we demonstrated that aqueous extractions from European hornbeam pollen (pollen washing water, PWW) increased ice nucleation temperatures in 96-well plates from ≈ − 13 °C to ≈ − 7 °C. Application of PWW to the cryopreservation of immortalized T-cells in 96-well plates resulted in an increase of post-thaw metabolic activity from 63.9% (95% CI [58.5 to 69.2%]) to 97.4% (95% CI [86.5 to 108.2%]) of unfrozen control. When applied to cryopreservation of immortalized lung carcinoma monolayers, PWW dramatically increased post-thaw metabolic activity, from 1.6% (95% CI [− 6.6 to 9.79%]) to 55.0% (95% CI [41.6 to 68.4%]). In contrast to other ice nucleating agents, PWW is soluble, sterile and has low cytotoxicity meaning it can be readily incorporated into existing cryopreservation procedures. As such, it can be regarded as a unique class of cryoprotectant which acts by inducing ice nucleation at warm temperatures.
Collapse
Affiliation(s)
- Kathryn A Murray
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Nina L H Kinney
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Christopher A Griffiths
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30, Lysekil, Sweden.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Thomas F Whale
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
46
|
Ekpo MD, Xie J, Liu X, Onuku R, Boafo GF, Tan S. Incorporating Cryopreservation Evaluations Into the Design of Cell-Based Drug Delivery Systems: An Opinion Paper. Front Immunol 2022; 13:967731. [PMID: 35911753 PMCID: PMC9334677 DOI: 10.3389/fimmu.2022.967731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Songwen Tan,
| |
Collapse
|
47
|
Li M, Morse B, Kassim S. Development and clinical translation considerations for the next wave of gene modified hematopoietic stem and progenitor cells therapies. Expert Opin Biol Ther 2022; 22:1177-1191. [PMID: 35833356 DOI: 10.1080/14712598.2022.2101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Consistent and reliable manufacture of gene modified hematopoietic stem and progenitor cell (HPSC) therapies will be of the utmost importance as they become more mainstream and address larger populations. Robust development campaigns will be needed to ensure that these products will be delivered to patients with the highest quality standards. AREAS COVERED Through publicly available manuscripts, press releases, and news articles - this review touches on aspects related to HSPC therapy, development, and manufacturing. EXPERT OPINION Recent advances in genome modification technology coupled with the longstanding clinical success of HSPCs warrants great optimism for the next generation of engineered HSPC-based therapies. Treatments for some diseases that have thus far been intractable now appear within reach. Reproducible manufacturing will be of critical importance in delivering these therapies but will be challenging due to the need for bespoke materials and methods in combination with the lack of off-the-shelf solutions. Continued progress in the field will manifest in the form of industrialization which currently requires attention and resources directed toward the custom reagents, a focus on closed and automated processes, and safer and more precise genome modification technologies that will enable broader, faster, and safer access to these life-changing therapies.
Collapse
Affiliation(s)
| | - Brent Morse
- Dark Horse Consulting Group, Walnut Creek, CA, USA
| | | |
Collapse
|
48
|
Sreter JA, Foxall TL, Varga K. Intracellular and Extracellular Antifreeze Protein Significantly Improves Mammalian Cell Cryopreservation. Biomolecules 2022; 12:669. [PMID: 35625597 PMCID: PMC9139014 DOI: 10.3390/biom12050669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cell cryopreservation is an essential part of the biotechnology, food, and health care industries. There is a need to develop more effective, less toxic cryoprotective agents (CPAs) and methods, especially for mammalian cells. We investigated the impact of an insect antifreeze protein from Anatolica polita (ApAFP752) on mammalian cell cryopreservation using the human embryonic kidney cell line HEK 293T. An enhanced green fluorescent protein (EGFP)-tagged antifreeze protein, EGFP-ApAFP752, was transfected into the cells and the GFP was used to determine the efficiency of transfection. AFP was assessed for its cryoprotective effects intra- and extracellularly and both simultaneously at different concentrations with and without dimethyl sulfoxide (DMSO) at different concentrations. Comparisons were made to DMSO or medium alone. Cells were cryopreserved at -196 °C for ≥4 weeks. Upon thawing, cellular viability was determined using trypan blue, cellular damage was assessed by lactate dehydrogenase (LDH) assay, and cellular metabolism was measured using a metabolic activity assay (MTS). The use of this AFP significantly improved cryopreserved cell survival when used with DMSO intracellularly. Extracellular AFP also significantly improved cell survival when included in the DMSO freezing medium. Intra- and extracellular AFP used together demonstrated the most significantly increased cryoprotection compared to DMSO alone. These findings present a potential method to improve the viability of cryopreserved mammalian cells.
Collapse
Affiliation(s)
- Jonathan A. Sreter
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Thomas L. Foxall
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
49
|
Ikeda K, Minakawa K, Yamahara K, Yamada-Fujiwara M, Okuyama Y, Fujiwara SI, Yamazaki R, Kanamori H, Iseki T, Nagamura-Inoue T, Kameda K, Nagai K, Fujii N, Ashida T, Hirose A, Takahashi T, Ohto H, Ueda K, Tanosaki R. Comparison of cryoprotectants in hematopoietic cell infusion-related adverse events. Transfusion 2022; 62:1280-1288. [PMID: 35396716 DOI: 10.1111/trf.16877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The standard cryoprotectant for human cellular products is dimethyl sulfoxide (DMSO), which is associated with hematopoietic cell infusion-related adverse events (HCI-AEs) in hematopoietic stem cell transplantation including peripheral blood stem cell (PBSC) transplantation (PBSCT). DMSO is often used with hydroxyethyl starch (HES), which reduces DMSO concentration while maintaining the postthaw cell recovery. The cryoprotectant medium CP-1 (Kyokuto Pharmaceutical Industrial) is widely used in Japan. After mixture of a product with CP-1, DMSO and HES concentrations are 5% and 6%, respectively. However, the safety profile of CP-1 in association with HCI-AEs has not been investigated. STUDY DESIGN AND METHODS To compare CP-1 with other cryoprotectants, we conducted a subgroup analysis of PBSCT recipients in a prospective surveillance study for HCI-AEs. Moreover, we validated the toxicity of CP-1 in 90 rats following various dose administration. RESULTS The PBSC products cryopreserved with CP-1 (CP-1 group) and those with other cryoprotectants, mainly 10% DMSO (non-CP-1 group), were infused into 418 and 58 recipients, respectively. The rate of ≥grade 2 HCI-AEs was higher in the CP-1 group, but that of overall or ≥grade 3 HCI-AEs was not significantly different, compared to the non-CP-1 group. Similarly, after propensity score matching, ≥grade 2 HCI-AEs were more frequent in the CP-1 group, but the ≥grade 3 HCI-AE rate did not differ significantly between the groups. No significant toxicity was detected regardless of the CP-1 dose in the 90 rats. CONCLUSIONS Infusion of a CP-1-containing PBSC product is feasible with the respect of HCI-AEs.
Collapse
Affiliation(s)
- Kazuhiko Ikeda
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiji Minakawa
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenichi Yamahara
- Laboratory of Medical Innovation, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | - Minami Yamada-Fujiwara
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Division of Blood Transfusion and Cell Therapy, Tohoku University Hospital, Sendai, Japan
| | - Yoshiki Okuyama
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Division of Transfusion and Cell Therapy, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Shin-Ichiro Fujiwara
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Rie Yamazaki
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Heiwa Kanamori
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tohru Iseki
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Tokiko Nagamura-Inoue
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Institution of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazuaki Kameda
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Nobuharu Fujii
- Department of Transfusion Medicine, Okayama University Hospital, Okayama, Japan
| | - Takashi Ashida
- Center for Transfusion and Cell Therapy, Kindai University Hospital, Osakasayama, Japan
| | - Asao Hirose
- Department of Hematology, Osaka City University, Osaka, Japan
| | - Tsutomu Takahashi
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Hitoshi Ohto
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryuji Tanosaki
- Cell Therapy Committee, Japan Society of Transfusion Medicine and Cell Therapy, Tokyo, Japan.,Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Warren M, Galpin I, Bachtiger F, Gibson MI, Sosso GC. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J Phys Chem Lett 2022; 13:2237-2244. [PMID: 35238571 PMCID: PMC9007522 DOI: 10.1021/acs.jpclett.1c04080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Extremophiles produce macromolecules which inhibit ice recrystallization, but there is increasing interest in discovering and developing small molecules that can modulate ice growth. Realizing their potential requires an understanding of how these molecules function at the atomistic level. Here, we report the discovery that the amino acid l-α-alanine demonstrates ice recrystallization inhibition (IRI) activity, functioning at 100 mM (∼10 mg/mL). We combined experimental assays with molecular simulations to investigate this IRI agent, drawing comparison to β-alanine, an isomer of l-α-alanine which displays no IRI activity. We found that the difference in the IRI activity of these molecules does not originate from their ice binding affinity, but from their capacity to (not) become overgrown, dictated by the degree of structural (in)compatibility within the growing ice lattice. These findings shed new light on the microscopic mechanisms of small molecule cryoprotectants, particularly in terms of their molecular structure and overgrowth by ice.
Collapse
Affiliation(s)
- Matthew
T. Warren
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Iain Galpin
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Fabienne Bachtiger
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Gabriele C. Sosso
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|