1
|
Ndione MHD, Ndiaye EH, Dieng M, Diouf B, Sankhé S, Diallo D, Kane M, Sene NM, Mbanne M, Sy FA, Diop SMBS, Doukanda SFM, Sall AA, Faye O, Dia N, Weaver SC, Faye O, Diallo M, Fall G, Gaye A, Diagne MM. Mosquito-Based Detection of Endogenous Jaagsiekte Sheep Retrovirus in Senegal: Expanding the Scope of Xenosurveillance. RESEARCH SQUARE 2025:rs.3.rs-5951454. [PMID: 40313750 PMCID: PMC12045356 DOI: 10.21203/rs.3.rs-5951454/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Mosquitoes are well-known vectors for arthropod-borne viruses, yet their role as passive carriers of non-arthropod-borne viruses remains underexplored. Xenosurveillance, a method that utilizes blood-feeding arthropods to sample host and pathogen genetic material, has emerged as a valuable tool in viral ecology. In this study, we report the first identification of Jaagsiekte Sheep Retrovirus (JSRV)-related sequences in blood-fed mosquitoes collected in Senegal. JSRV, a betaretrovirus responsible for ovine pulmonary adenocarcinoma, is typically found in sheep, but its genetic trace in mosquitoes offers a novel perspective on host-vector contact and surveillance. Our study aimed to investigate whether mosquitoes can serve as sentinels for detecting both pathogens and host-derived markers in complex ecosystems. Methods Mosquitoes were collected between 2016 and 2019 from three ecologically significant regions in Senegal (Louga, Barkedji, and Kedougou). Blood-fed mosquitoes were pooled and subjected to RNA extraction and metagenomic sequencing using Illumina NextSeq550. Sequencing data were analyzed with CZ-ID and BLAST for viral identification. RT-qPCR assays were designed to validate the presence of JSRV-related sequences, targeting conserved regions of the envelope gene and 3' untranslated region. Phylogenetic analysis was conducted using MAFFT and IQ-TREE to compare the detected sequence with global exogenous and endogenous JSRV references. Results A diverse array of viruses across mosquito species, including both arboviruses and non-arthropod-borne viruses. A JSRV-related sequence was detected in a single blood-fed mosquito pool collected in Barkedji (2019). The RT-qPCR assay confirmed JSRV presence, validating the sequencing results. Phylogenetic analysis revealed strong similarity to known endogenous JSRV (enJSRV) sequences integrated in the sheep genome, indicating that the detected material likely originated from host DNA ingested during blood feeding. Discussion This study presents the first report of endogenous retroviral sequences detected in mosquitoes, alongside the identification of actively circulating viruses, highlighting the broader potential of mosquitoes as environmental sentinels. While mosquitoes are not biological vectors for JSRV, their ability to capture both host-derived retroviral material and pathogenic viral genomes through bloodmeals reinforces the value of xenosurveillance for monitoring livestock-vector-environment interactions. These findings contribute to broader efforts in integrated disease surveillance and underscore the utility of combining metagenomics with molecular diagnostics to detect diverse viral signals in high-risk ecological settings.
Collapse
|
2
|
Noguera-Gahona M, Peña-Moreno C, Quiñones-Sobarzo N, Weinstein-Oppenheimer C, Guerra-Zúñiga M, Collao-Ferrada X. Repellents against Aedes aegypti bites: synthetic and natural origins. FRONTIERS IN INSECT SCIENCE 2025; 4:1510857. [PMID: 39911593 PMCID: PMC11795662 DOI: 10.3389/finsc.2024.1510857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
Dengue fever, transmitted by mosquitoes of the Aedes genus, particularly Aedes aegypti, has emerged as a global health issue. With the expansion of this mosquito to new geographical areas, driven by factors such as climate change, the need for preventive measures like using insect repellents has become critical. The present review explores the current state of the art on topical mosquito repellents, both synthetic and natural, used globally, especially in regions where dengue is endemic. Among synthetic repellents, DEET is the most widely used, supported by investigations demonstrating its efficacy and safety, although concerns about its toxicity exist in exceptional cases. Other compounds, such as picaridin, IR3535, and PMD are also common and offer alternatives with variable safety and efficacy profiles. Natural repellents, such as essential oils of citronella, lemon eucalyptus, and clove, have proven effective against Aedes aegypti. However, they present challenges due to rapid volatilization and the limited duration of their protective effect. To address these issues, combinations of essential oils and synthetic compounds have been proposed to improve efficacy and safety. Finally, the review highlights the complexity and the challenges of developing new repellents, including the high costs and lengthy timelines for commercialization, as well as the importance of continued research to improve the efficacy and safety of these products.
Collapse
Affiliation(s)
- Melissa Noguera-Gahona
- Virología, Laboratorio Clínico, Facultad de Medicina, Universidad de Valparaíso, Viña del mar, Chile
| | - Cindy Peña-Moreno
- Virología, Laboratorio Clínico, Facultad de Medicina, Universidad de Valparaíso, Viña del mar, Chile
| | - Natalia Quiñones-Sobarzo
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación, Desarrollo e Innovación en Productos Bioactivos, Universidad de Valparaíso, Valparaíso, Chile
| | - Caroline Weinstein-Oppenheimer
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación, Desarrollo e Innovación en Productos Bioactivos, Universidad de Valparaíso, Valparaíso, Chile
| | - María Guerra-Zúñiga
- Departamento de Salud Pública, Facultad de Medicina, Universidad de Valparaíso, Viña del mar, Chile
| | - Ximena Collao-Ferrada
- Virología, Laboratorio Clínico, Facultad de Medicina, Universidad de Valparaíso, Viña del mar, Chile
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la salud, Universidad de Valparaíso, Viña del mar, Chile
| |
Collapse
|
3
|
Owliaee I, Khaledian M, Shojaeian A, Madanchi H, Yarani R, Boroujeni AK, Shoushtari M. Antimicrobial Peptides Against Arboviruses: Mechanisms, Challenges, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10430-0. [PMID: 39776036 DOI: 10.1007/s12602-024-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design. Furthermore, this review highlights the potential of AMP-based combination therapies to create synergistic effects that enhance overall treatment outcomes while minimizing the likelihood of resistance development. Challenges such as susceptibility to proteases, toxicity, and scalable production are discussed alongside strategies to address these limitations. Additionally, the expanding applications of AMPs as vaccine adjuvants and antiviral delivery systems are emphasized, underscoring their versatility beyond direct antiviral functions.
Collapse
Affiliation(s)
- Iman Owliaee
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Mehran Khaledian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
4
|
Palmero Casanova B, Albentosa González L, Maringer K, Sabariegos R, Mas A. A conserved role for AKT in the replication of emerging flaviviruses in vertebrates and vectors. Virus Res 2024; 348:199447. [PMID: 39117146 PMCID: PMC11364138 DOI: 10.1016/j.virusres.2024.199447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One third of all emerging infectious diseases are vector-borne, with no licensed antiviral therapies available against any vector-borne viruses. Zika virus and Usutu virus are two emerging flaviviruses transmitted primarily by mosquitoes. These viruses modulate different host pathways, including the PI3K/AKT/mTOR pathway. Here, we report the effect on ZIKV and USUV replication of two AKT inhibitors, Miransertib (ARQ-092, allosteric inhibitor) and Capivasertib (AZD5363, competitive inhibitor) in different mammalian and mosquito cell lines. Miransertib showed a stronger inhibitory effect against ZIKV and USUV than Capivasertib in mammalian cells, while Capivasertib showed a stronger effect in mosquito cells. These findings indicate that AKT plays a conserved role in flavivirus infection, in both the vertebrate host and invertebrate vector. Nevertheless, the specific function of AKT may vary depending on the host species. These findings indicate that AKT may be playing a conserved role in flavivirus infection in both, the vertebrate host and the invertebrate vector. However, the specific function of AKT may vary depending on the host species. A better understanding of virus-host interactions is therefore required to develop new treatments to prevent human disease and new approaches to control transmission by insect vectors.
Collapse
Affiliation(s)
- Blanca Palmero Casanova
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain
| | - Laura Albentosa González
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Kevin Maringer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Rosario Sabariegos
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain; Facultad de Medicina, Universidad de Castilla-La Mancha. C/Almansa 14, 02008 Albacete, Spain
| | - Antonio Mas
- Instituto de Investigación Biomédica de la UCLM (IB-UCLM), C/Almansa 14, 02008 Albacete, Spain; Facultad de farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain; Unidad asociada de Biomedicina UCLM-CSIC. Universidad de Castilla-La Mancha. C/Altagracia 50, 13071 Ciudad Real, Spain.
| |
Collapse
|
5
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
6
|
Hungwe FTT, Laycock KM, Ntereke TD, Mabaka R, Paganotti GM. A historical perspective on arboviruses of public health interest in Southern Africa. Pathog Glob Health 2024; 118:131-159. [PMID: 38082563 PMCID: PMC11141323 DOI: 10.1080/20477724.2023.2290375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Arboviruses are an existing and expanding threat globally, with the potential for causing devastating health and socioeconomic impacts. Mitigating this threat necessitates a One Health approach that integrates vector surveillance, rapid disease detection, and innovative prevention and control measures. In Southern Africa, limited data on the epidemiology of arboviruses, their vectors, and their hosts prevent an effective response. We reviewed the current knowledge on arboviruses in Southern Africa and identified opportunities for further research. A literature search was conducted to identify studies published on arboviruses in 10 tropical and temperate countries of the Southern African Development Community (SADC) from 1900 onward. We identified 280 studies, half (51.1%) originating from South Africa, that described 31 arboviral species, their vectors, and their clinical effects on hosts reported in the region. Arboviral research flourished in the SADC in the mid-20th century but then declined, before reemerging in the last two decades. Recent research consists largely of case reports describing outbreaks. Historical vector surveillance and serosurveys from the mid-20th century suggest that arboviruses are plentiful across Southern Africa, but large gaps remain in the current understanding of arboviral distribution, transmission dynamics, and public health impact.
Collapse
Affiliation(s)
- Faith T. T. Hungwe
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katherine M. Laycock
- The Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Rorisang Mabaka
- School of Allied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
7
|
Renard A, Pérez Lombardini F, Pacheco Zapata M, Porphyre T, Bento A, Suzán G, Roiz D, Roche B, Arnal A. Interaction of Human Behavioral Factors Shapes the Transmission of Arboviruses by Aedes and Culex Mosquitoes. Pathogens 2023; 12:1421. [PMID: 38133304 PMCID: PMC10746986 DOI: 10.3390/pathogens12121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.
Collapse
Affiliation(s)
- Aubane Renard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
| | - Fernanda Pérez Lombardini
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Mitsuri Pacheco Zapata
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, VetAgro Sup, Campus Vétérinaire de Lyon, 69280 Marcy-l’Etoile, France;
| | - Ana Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gerardo Suzán
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - David Roiz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Benjamin Roche
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Audrey Arnal
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| |
Collapse
|
8
|
Maia LJ, de Oliveira CH, Silva AB, Souza PAA, Müller NFD, Cardoso JDC, Ribeiro BM, de Abreu FVS, Campos FS. Arbovirus surveillance in mosquitoes: Historical methods, emerging technologies, and challenges ahead. Exp Biol Med (Maywood) 2023; 248:2072-2082. [PMID: 38183286 PMCID: PMC10800135 DOI: 10.1177/15353702231209415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
Arboviruses cause millions of infections each year; however, only limited options are available for treatment and pharmacological prevention. Mosquitoes are among the most important vectors for the transmission of several pathogens to humans. Despite advances, the sampling, viral detection, and control methods for these insects remain ineffective. Challenges arise with the increase in mosquito populations due to climate change, insecticide resistance, and human interference affecting natural habitats, which contribute to the increasing difficulty in controlling the spread of arboviruses. Therefore, prioritizing arbovirus surveillance is essential for effective epidemic preparedness. In this review, we offer a concise historical account of the discovery and monitoring of arboviruses in mosquitoes, from mosquito capture to viral detection. We then analyzed the advantages and limitations of these traditional methods. Furthermore, we investigated the potential of emerging technologies to address these limitations, including the implementation of next-generation sequencing, paper-based devices, spectroscopic detectors, and synthetic biosensors. We also provide perspectives on recurring issues and areas of interest such as insect-specific viruses.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
| | - Pedro Augusto Almeida Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Nicolas Felipe Drumm Müller
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Jader da Cruz Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria Estadual de Saúde do Rio Grande do Sul, Porto Alegre 90610-000, Brasil
| | - Bergmann Morais Ribeiro
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | | | - Fabrício Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| |
Collapse
|
9
|
Fernández D, Yun R, Zhou J, Parise PL, Mosso-González C, Villasante-Tezanos A, Weaver SC, Pando-Robles V, Aguilar PV. Differential Susceptibility of Aedes aegypti and Aedes albopictus Mosquitoes to Infection by Mayaro Virus Strains. Am J Trop Med Hyg 2023; 109:115-122. [PMID: 37253447 PMCID: PMC10323988 DOI: 10.4269/ajtmh.22-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/01/2023] Open
Abstract
Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.
Collapse
Affiliation(s)
- Diana Fernández
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Ruimei Yun
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Pierina L. Parise
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Clemente Mosso-González
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Scott C. Weaver
- Department of Microbiology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Victoria Pando-Robles
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Ray G, Huff RM, Castillo JS, Bellantuono AJ, DeGennaro M, Pitts RJ. Carboxylic acids that drive mosquito attraction to humans activate ionotropic receptors. PLoS Negl Trop Dis 2023; 17:e0011402. [PMID: 37339129 DOI: 10.1371/journal.pntd.0011402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
The mosquito, Aedes aegypti, is highly anthropophilic and transmits debilitating arboviruses within human populations and between humans and non-human primates. Female mosquitoes are attracted to sources of blood by responding to odor plumes that are emitted by their preferred hosts. Acidic volatile compounds, including carboxylic acids, represent particularly salient odors driving this attraction. Importantly, carboxylic acids are major constituents of human sweat and volatiles generated by skin microbes. As such, they are likely to impact human host preference, a dominant factor in disease transmission cycles. A more complete understanding of mosquito host attraction will necessitate the elucidation of molecular mechanisms of volatile odor detection that function in peripheral sensory neurons. Recent studies have shown that members of the variant ionotropic glutamate receptor gene family are necessary for physiological and behavioral responses to acidic volatiles in Aedes. In this study, we have identified a subfamily of variant ionotropic receptors that share sequence homology across several important vector species and are likely to be activated by carboxylic acids. Moreover, we demonstrate that selected members of this subfamily are activated by short-chain carboxylic acids in a heterologous cell expression system. Our results are consistent with the hypothesis that members of this receptor class underlie acidic volatile sensitivity in vector mosquitoes and provide a frame of reference for future development of novel mosquito attractant and repellent technologies.
Collapse
Affiliation(s)
- Garrett Ray
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Robert M Huff
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - John S Castillo
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - Anthony J Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida United States of America
| | - R Jason Pitts
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
11
|
Martínez D, Gómez M, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Employing Oxford Nanopore Technologies (ONT) for understanding the ecology and transmission dynamics of flaviviruses in mosquitoes (Diptera: Culicidae) from eastern Colombia. Acta Trop 2023:106972. [PMID: 37331645 DOI: 10.1016/j.actatropica.2023.106972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Studies focused on identifying the viral species of Flavivirus in vectors are scarce in Latin America and particularly in Colombia. Therefore, the frequency of infection of the Flavivirus genus and its feeding preferences were identified in the mosquito species circulating in the municipality of Puerto Carreño-Vichada, located in the Eastern Plains of Colombia. This was done by sequencing the viral NS5 and vertebrate 12S rRNA genes, respectively, using Oxford Nanopore Technologies (ONT). A total of 1,159 mosquitoes were captured, with the most abundant species being Aedes serratus at 73.6% (n=853). All the mosquitoes were processed in 230 pools (2-6 individuals) and 51 individuals, where 37.01% (n=104) were found to be infected with Flavivirus. In these samples, infection by arboviruses of epidemiological importance, such as dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), was ruled out by PCR. However, through sequencing, infection by different insect-specific viruses (ISFVs) and a medically important virus, West Nile virus (WNV), were identified in a mosquito of the Culex browni species. Additionally, the feeding patterns showed that most species present a generalist behavior. Given the above, conducting entomovirological surveillance studies is crucial, especially in areas of low anthropogenic intervention, due to the high probability that potentially pathogenic viruses could generate spillover events under deforestation scenarios.
Collapse
Affiliation(s)
- David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
12
|
Ribeiro YP, Falcão LFM, Smith VC, de Sousa JR, Pagliari C, Franco ECS, Cruz ACR, Chiang JO, Martins LC, Nunes JAL, Vilacoert FSDS, Santos LCD, Furlaneto MP, Fuzii HT, Bertonsin Filho MV, da Costa LD, Duarte MIS, Furlaneto IP, Martins Filho AJ, Aarão TLDS, Vasconcelos PFDC, Quaresma JAS. Comparative Analysis of Human Hepatic Lesions in Dengue, Yellow Fever, and Chikungunya: Revisiting Histopathological Changes in the Light of Modern Knowledge of Cell Pathology. Pathogens 2023; 12:pathogens12050680. [PMID: 37242350 DOI: 10.3390/pathogens12050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Arboviruses, such as yellow fever virus (YFV), dengue virus (DENV), and chikungunya virus (CHIKV), present wide global dissemination and a pathogenic profile developed in infected individuals, from non-specific clinical conditions to severe forms, characterised by the promotion of significant lesions in different organs of the harbourer, culminating in multiple organ dysfunction. An analytical cross-sectional study was carried out via the histopathological analysis of 70 samples of liver patients, collected between 2000 and 2017, with confirmed laboratory diagnoses, who died due to infection and complications due to yellow fever (YF), dengue fever (DF), and chikungunya fever (CF), to characterise, quantify, and compare the patterns of histopathological alterations in the liver between the samples. Of the histopathological findings in the human liver samples, there was a significant difference between the control and infection groups, with a predominance of alterations in the midzonal area of the three cases analysed. Hepatic involvement in cases of YF showed a greater intensity of histopathological changes. Among the alterations evaluated, cell swelling, microvesicular steatosis, and apoptosis were classified according to the degree of tissue damage from severe to very severe. Pathological abnormalities associated with YFV, DENV, and CHIKV infections showed a predominance of changes in the midzonal area. We also noted that, among the arboviruses studied, liver involvement in cases of YFV infection was more intense.
Collapse
Affiliation(s)
- Yasmin Pacheco Ribeiro
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Luiz Fabio Magno Falcão
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Vanessa Cavaleiro Smith
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Jorge Rodrigues de Sousa
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | - Carla Pagliari
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Janniffer Oliveira Chiang
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Livia Carício Martins
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Juliana Abreu Lima Nunes
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Lais Carneiro Dos Santos
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Hellen Thais Fuzii
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| | | | - Luccas Delgado da Costa
- Section of Pathology, Evandro Chagas Institute, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | | | - Ismari Perini Furlaneto
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center for Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil
- School of Medicine, São Paulo University, São Paulo 01246-903, SP, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém 66055-240, PA, Brazil
| |
Collapse
|
13
|
Li FS, Carpentier KS, Hawman DW, Lucas CJ, Ander SE, Feldmann H, Morrison TE. Species-specific MARCO-alphavirus interactions dictate chikungunya virus viremia. Cell Rep 2023; 42:112418. [PMID: 37083332 DOI: 10.1016/j.celrep.2023.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.
Collapse
Affiliation(s)
- Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Gallichotte EN, Samaras D, Murrieta RA, Sexton NR, Robison A, Young MC, Byas AD, Ebel GD, Rückert C. The Incompetence of Mosquitoes-Can Zika Virus Be Adapted To Infect Culex tarsalis Cells? mSphere 2023; 8:e0001523. [PMID: 36794947 PMCID: PMC10117059 DOI: 10.1128/msphere.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
The molecular evolutionary mechanisms underpinning virus-host interactions are increasingly recognized as key drivers of virus emergence, host specificity, and the likelihood that viruses can undergo a host shift that alters epidemiology and transmission biology. Zika virus (ZIKV) is mainly transmitted between humans by Aedes aegypti mosquitoes. However, the 2015 to 2017 outbreak stimulated discussion regarding the role of Culex spp. mosquitoes in transmission. Reports of ZIKV-infected Culex mosquitoes, in nature and under laboratory conditions, resulted in public and scientific confusion. We previously found that Puerto Rican ZIKV does not infect colonized Culex quinquefasciatus, Culex pipiens, or Culex tarsalis, but some studies suggest they may be competent ZIKV vectors. Therefore, we attempted to adapt ZIKV to Cx. tarsalis by serially passaging virus on cocultured Ae. aegypti (Aag2) and Cx. tarsalis (CT) cells to identify viral determinants of species specificity. Increasing fractions of CT cells resulted in decreased overall virus titer and no enhancement of Culex cell or mosquito infection. Next-generation sequencing of cocultured virus passages revealed synonymous and nonsynonymous variants throughout the genome that arose as CT cell fractions increased. We generated nine recombinant ZIKVs containing combinations of the variants of interest. None of these viruses showed increased infection of Culex cells or mosquitoes, demonstrating that variants associated with passaging were not specific to increased Culex infection. These results reveal the challenge of a virus adapting to a new host, even when pushed to adapt artificially. Importantly, they also demonstrate that while ZIKV may occasionally infect Culex mosquitoes, Aedes mosquitoes likely drive transmission and human risk. IMPORTANCE ZIKV is mainly transmitted between humans by Aedes mosquitoes. In nature, ZIKV-infected Culex mosquitoes have been found, and ZIKV infrequently infects Culex mosquitoes under laboratory conditions. Yet, most studies show that Culex mosquitoes are not competent vectors for ZIKV. We attempted to adapt ZIKV to Culex cells to identify viral determinants of species specificity. We sequenced ZIKV after it was passaged on a mixture of Aedes and Culex cells and found that it acquired many variants. We generated recombinant viruses containing combinations of the variants of interest to determine if any of these changes enhance infection in Culex cells or mosquitoes. Recombinant viruses did not show increased infection in Culex cells or mosquitoes, but some variants increased infection in Aedes cells, suggesting adaptation to those cells instead. These results reveal that arbovirus species specificity is complex, and that virus adaptation to a new genus of mosquito vectors likely requires multiple genetic changes.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Demetrios Samaras
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes A. Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicole R. Sexton
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexis Robison
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| | - Michael C. Young
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alex D. Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Rückert
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
15
|
Hu D, Wu C, Wang R, Yao X, Nie K, Lv Q, Fu S, Yin Q, Su W, Li F, Xu S, He Y, Liang G, Li X, Wang H. Persistence of Tembusu Virus in Culex tritaeniorhynchus in Yunnan Province, China. Pathogens 2023; 12:490. [PMID: 36986412 PMCID: PMC10058924 DOI: 10.3390/pathogens12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Tembusu virus (TMUV), a member of the Flaviviridae family, can be transmitted via mosquitoes and cause poultry disease. In 2020, a strain of TMUV (YN2020-20) was isolated from mosquito samples collected in Yunnan province, China. In vitro experiments showed that TMUV-YN2020-20 produced a significant cytopathic effect (CPE) in BHK, DF-1, and VERO cells, while the CPE in C6/36 cells was not significant. Phylogenetic analysis revealed that the strain belonged to Cluster 3.2 and was closely related to the Yunnan mosquito-derived isolates obtained in 2012 and the Shandong avian-derived isolate obtained in 2014. Notably, TMUV-YN2020-20 developed five novel mutations (E-V358I, NS1-Y/F/I113L, NS4A-T/A89V, NS4B-D/E/N/C22S, and NS5-E638G) at loci that were relatively conserved previously. The results of this study demonstrate the continuous circulation and unique evolution of TMUV in mosquitoes in Yunnan province and suggest that appropriate surveillance should be taken.
Collapse
Affiliation(s)
- Danhe Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chao Wu
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Ruichen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaohui Yao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Quan Lv
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qikai Yin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Songtao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843399, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
16
|
Wu F, Qin M, Wang H, Sun X. Nanovaccines to combat virus-related diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1857. [PMID: 36184873 DOI: 10.1002/wnan.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Giunti G, Becker N, Benelli G. Invasive mosquito vectors in Europe: From bioecology to surveillance and management. Acta Trop 2023; 239:106832. [PMID: 36642256 DOI: 10.1016/j.actatropica.2023.106832] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Invasive mosquitoes (Diptera: Culicidae) play a key role in the spread of a number of mosquito-borne diseases worldwide. Anthropogenic changes play a significant role in affecting their distribution. Invasive mosquitoes usually take advantage from biotic homogenization and biodiversity reduction, therefore expanding in their distribution range and abundance. In Europe, climate warming and increasing urbanization are boosting the spread of several mosquito species of high public health importance. The present article contains a literature review focused on the biology and ecology of Aedes albopictus, Ae. aegypti, Ae. japonicus japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus, outlining their distribution and public health relevance in Europe. Bioecology insights were tightly connected with vector surveillance and control programs targeting these species. In the final section, a research agenda aiming for the effective and sustainable monitoring and control of invasive mosquitoes in the framework of Integrated Vector Management and One Health is presented. The WHO Vector Control Advisory Group recommends priority should be given to vector control tools with proven epidemiological impact.
Collapse
Affiliation(s)
- Giulia Giunti
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Norbert Becker
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany; Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; IcyBac-Biologische Stechmückenbekämpfung GmbH (ICYBAC), Georg-Peter-Süß-Str. 1, Speyer 67346, Germany
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa 56124, Italy.
| |
Collapse
|
18
|
García-Romero C, Carrillo Bilbao GA, Navarro JC, Martin-Solano S, Saegerman C. Arboviruses in Mammals in the Neotropics: A Systematic Review to Strengthen Epidemiological Monitoring Strategies and Conservation Medicine. Viruses 2023; 15:417. [PMID: 36851630 PMCID: PMC9962704 DOI: 10.3390/v15020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to spread in different environments and their diversity of vectors. Currently, there is no information on the geographical distribution of the diseases because the routes of transmission and the mammals (wild or domestic) that act as potential hosts are poorly documented or unknown. We conducted a systematic review from 1967 to 2021 to identify the diversity of arboviruses, the areas, and taxonomic groups that have been monitored, the prevalence of positive records, and the associated risk factors. We identified forty-three arboviruses in nine mammalian orders distributed in eleven countries. In Brazil, the order primates harbor the highest number of arbovirus records. The three most recorded arboviruses were Venezuelan equine encephalitis, Saint Louis encephalitis and West Nile virus. Serum is the most used sample to obtain arbovirus records. Deforestation is identified as the main risk factor for arbovirus transmission between different species and environments (an odds ratio of 1.46 with a 95% confidence interval: 1.34-1.59). The results show an increase in the sampling effort over the years in the neotropical region. Despite the importance of arboviruses for public health, little is known about the interaction of arboviruses, their hosts, and vectors, as some countries and mammalian orders have not yet been monitored. Long-term and constant monitoring allows focusing research on the analysis of the interrelationships and characteristics of each component animal, human, and their environment to understand the dynamics of the diseases and guide epidemiological surveillance and vector control programs. The biodiversity of the Neotropics should be considered to support epidemiological monitoring strategies.
Collapse
Affiliation(s)
- Cinthya García-Romero
- Maestría en Biodiversidad y Cambio Climático, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Quito 170521, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Gabriel Alberto Carrillo Bilbao
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
- Facultad de Filosofía, Letras y Ciencias de la Educación, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, P.O. Box 171-5-231B, Sangolquí 171103, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
19
|
Rossi B, Barreca F, Benvenuto D, Braccialarghe N, Campogiani L, Lodi A, Aguglia C, Cavasio RA, Giacalone ML, Kontogiannis D, Moccione M, Malagnino V, Andreoni M, Sarmati L, Iannetta M. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. Viruses 2023; 15:v15020368. [PMID: 36851582 PMCID: PMC9963149 DOI: 10.3390/v15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion.
Collapse
Affiliation(s)
- Benedetta Rossi
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Filippo Barreca
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Benvenuto
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Neva Braccialarghe
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Campogiani
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Camilla Aguglia
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Maria Laura Giacalone
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitra Kontogiannis
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Moccione
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Moonen JP, Schinkel M, van der Most T, Miesen P, van Rij RP. Composition and global distribution of the mosquito virome - A comprehensive database of insect-specific viruses. One Health 2023; 16:100490. [PMID: 36817977 PMCID: PMC9929601 DOI: 10.1016/j.onehlt.2023.100490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics. In recent years, next-generation sequencing as well as PCR and culture-based methods have been extensively used to identify mosquito-associated viruses, providing insights into virus ecology and evolution. Until now, the large amount of mosquito virome data, specifically those acquired by metagenomic sequencing, has not been comprehensively integrated. We have constructed a searchable database of insect-specific viruses associated with vector mosquitoes from 175 studies, published between October 2000 and February 2022. We identify the most frequently detected and widespread viruses of the Culex, Aedes and Anopheles mosquito genera and report their global distribution. In addition, we highlight the challenges of extracting and integrating published virome data and we propose that a standardized reporting format will facilitate data interpretation and re-use by other scientists. We expect our comprehensive database, summarizing mosquito virome data collected over 20 years, to be a useful resource for future studies.
Collapse
|
21
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
22
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
23
|
Mohapatra RK, Kutikuppala SLV, Ansari A, Kandi V, Mishra S. Another neglected tropical disease yellow fever re-emerges in African countries: Potential threat in the COVID-19 era which needs comprehensive investigations - Correspondence. Int J Surg 2022; 108:106988. [PMID: 36368420 PMCID: PMC9643270 DOI: 10.1016/j.ijsu.2022.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758 002, Odisha, India Department of General Surgery, Dr NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, 505417, Telangana, India School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar, Odisha, 751 024, India
| | | | | | | | | |
Collapse
|
24
|
Diptyanusa A, Herini ES, Indarjulianto S, Satoto TBT. Estimation of Japanese encephalitis virus infection prevalence in mosquitoes and bats through nationwide sentinel surveillance in Indonesia. PLoS One 2022; 17:e0275647. [PMID: 36223381 PMCID: PMC9555671 DOI: 10.1371/journal.pone.0275647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
Indonesia belongs to endemic areas of Japanese encephalitis (JE), yet data regarding the true risk of disease transmission are lacking. While many seroprevalence studies reported its classic enzootic transmission, data related to the role of bats in the transmission of JE virus are limited. This current study aimed to identify the potential role of bats in the local transmission of the JE virus to aid the ongoing active case surveillance in Indonesia, in order to estimate the transmission risk. Mosquitoes and bats were collected from 11 provinces in Indonesia. The detection of the JE virus used polymerase chain reaction (PCR). Maps were generated to analyze the JE virus distribution pattern. Logistic regression analysis was done to identify risk factors of JE virus transmission. JE virus was detected in 1.4% (7/483) of mosquito pools and in 2.0% (68/3,322) of bat samples. Mosquito species positive for JE virus were Culex tritaeniorhynchus and Cx. vishnui, whereas JE-positive bats belonged to the genera Cynopterus, Eonycteris, Hipposideros, Kerivoula, Macroglossus, Pipistrellus, Rousettus, Scotophilus and Thoopterus. JE-positive mosquitoes were collected at the same sites as the JE-positive bats. Collection site nearby human dwellings (AOR: 2.02; P = 0.009) and relative humidity of >80% (AOR: 2.40; P = 0.001) were identified as independent risk factors for JE virus transmission. The findings of the current study highlighted the likely ongoing risk of JE virus transmission in many provinces in Indonesia, and its potential implications on human health.
Collapse
Affiliation(s)
- Ajib Diptyanusa
- Doctoral Study Program of Health and Medical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- World Health Organization Indonesia Country Office, Jakarta, Indonesia
| | - Elisabeth Siti Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Soedarmanto Indarjulianto
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- * E-mail:
| |
Collapse
|
25
|
Cardoso-Jaime V, Tikhe CV, Dong S, Dimopoulos G. The Role of Mosquito Hemocytes in Viral Infections. Viruses 2022; 14:v14102088. [PMID: 36298644 PMCID: PMC9608948 DOI: 10.3390/v14102088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Insect hemocytes are the only immune cells that can mount a humoral and cellular immune response. Despite the critical involvement of hemocytes in immune responses against bacteria, fungi, and parasites in mosquitoes, our understanding of their antiviral potential is still limited. It has been shown that hemocytes express humoral factors such as TEP1, PPO, and certain antimicrobial peptides that are known to restrict viral infections. Insect hemocytes also harbor the major immune pathways, such as JAK/STAT, TOLL, IMD, and RNAi, which are critical for the control of viral infection. Recent research has indicated a role for hemocytes in the regulation of viral infection through RNA interference and autophagy; however, the specific mechanism by which this regulation occurs remains uncharacterized. Conversely, some studies have suggested that hemocytes act as agonists of arboviral infection because they lack basal lamina and circulate throughout the whole mosquito, likely facilitating viral dissemination to other tissues such as salivary glands. In addition, hemocytes produce arbovirus agonist factors such as lectins, which enhance viral infection. Here, we summarize our current understanding of hemocytes’ involvement in viral infections.
Collapse
|
26
|
Khan MA, Imtiaz K, Shafaq H, Farooqi J, Hassan M, Zafar A, Long MT, Barr KL, Khan E. Screening for Arboviruses in Healthy Blood Donors: Experience from Karachi, Pakistan (Jul-Dec 2018). Virol Sin 2022; 37:774-777. [PMID: 35863605 PMCID: PMC9583101 DOI: 10.1016/j.virs.2022.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
DENV, WNV and JEV status was investigated in healthy blood donors at the Aga Khan University July to December 2018. ELISA for IgM antibodies and RT-PCR for viral RNA detection were performed. IgM antibodies for DENV and WNV were positive in 3.9% and JEV in 0.28% of the blood donors. Blood donors aged 19 and 30 years and residents of urban areas, of Karachi City were most frequent. DENV and WNV seropositivity were significantly associated with residence in Malir District of Karachi.
Collapse
Affiliation(s)
- Moiz Ahmed Khan
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Kehkashan Imtiaz
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Humaira Shafaq
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Joveria Farooqi
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Mohammad Hassan
- Blood Bank, Haematology & Transfusion Medicine, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Afia Zafar
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan
| | - Maureen T Long
- Comparative Diagnostic and Population Medicine, University of Florida, Gainesville FL32611, USA
| | - Kelli L Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa FL33620, USA
| | - Erum Khan
- Clinical Microbiology Laboratory, Department of Pathology & Lab Medicine, Aga Khan University, Karachi 74800, Pakistan.
| |
Collapse
|
27
|
Yu X, Tong L, Zhang L, Yang Y, Xiao X, Zhu Y, Wang P, Cheng G. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog 2022; 18:e1010552. [PMID: 35679229 PMCID: PMC9182268 DOI: 10.1371/journal.ppat.1010552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases. Mosquito-borne viruses are the etiological agents of severe human diseases and annually lead to a great number of deaths. These viruses have spread widely and raised major public health concerns throughout the world. Although effective vaccines have been developed for a few mosquito-borne viruses, such as JEV and yellow fever virus (YFV), vaccines or antiviral therapeutics against most mosquito-borne viruses are currently unavailable. In this study, we identified two virucidal and entomopathogenic effectors with lipase activity, CbAE-1 and CbAE-2, from a mosquito midgut derived bacterium Chromobacterium sp. Beijing. Both CbAEs showed potent virucidal activity against a variety of mosquito-borne viruses, including DENV, ZIKV, JEV, YFV, and SINV, as well as other enveloped viruses. Since CbAEs inactivate viruses through their lipase activity by directly disrupting the viral envelope structure, they may provide a novel option for genetically engineering microbiota symbiotic with mosquitoes for arboviral control. Overall, the anti-arboviral and entomopathogenic properties of Csp_BJ and CbAEs render them particularly interesting candidates for the development of novel transmission control strategies against vector-borne diseases.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangqin Tong
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Liming Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Yang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- * E-mail:
| |
Collapse
|
28
|
Ammar SE, Mclntyre M, Baker MG, Hales S. New Zealand travellers to high-risk destinations for arbovirus infection make little effort to avoid mosquito bites. J R Soc N Z 2022; 53:209-218. [PMID: 39439921 PMCID: PMC11459766 DOI: 10.1080/03036758.2022.2071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
There has been no local transmission of arbovirus disease recorded in New Zealand to date. However, in the past two decades, there have been increasing numbers of overseas-acquired cases of arbovirus infections in New Zealand, mainly dengue, Zika, chikungunya and Ross River viruses. The repeated introduction of these viruses to the immunologically naïve New Zealand population through viraemic travellers represents a potential risk for local transmission by resident or new mosquito vectors. This study assessed the extent to which these imported arbovirus disease cases used the bite-avoidance measures recommended by the New Zealand Ministry of Health between 2001-2017. The majority of notified cases reported making little effort to avoid mosquito bites even during high-risk periods and outbreaks. This suggests that the infection of New Zealand travellers might be due to underestimation or unawareness of the risk of travel-related mosquito-borne diseases. New Zealand travellers to endemic or epidemic areas, mainly in the Asia-Pacific region, should be informed about ongoing risks according to season and epidemic activity at the destination and updated on the latest disease situation and new trends. This would reduce the likelihood of pathogen introduction and, therefore, local transmission of arbovirus infection in New Zealand.
Collapse
Affiliation(s)
- Sherif E. Ammar
- Department of Public Health, University of Otago, Wellington, New Zealand
- Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - Mary Mclntyre
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
29
|
Hemida MG, Al‐Sabi M, Alhammadi M, Almathen F, Alnaeem A. Analyzing the roles of some species of arthropods in the transmission of the Middle East respiratory syndrome coronavirus. Vet Med Sci 2022; 8:1305-1310. [PMID: 35104060 PMCID: PMC9122457 DOI: 10.1002/vms3.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Middle East Respiratory Syndrome coronavirus (MERS-CoV) is still listed on the WHO Research and Development Blueprint of emerging pathogens. Dromedary camels remain the only known animal reservoir of the virus. The animal-to-animal as well as the animal-to-human transmission in the MERS-CoV cycles were reported. However, many aspects of these transmission chains are not well studied. One of these directions is the potential roles of various species of arthropods in the transmission of the virus. OBJECTIVES The main goal of the current work was to study the roles of several species of arthropods in the transmission of MERS-CoV. METHODOLOGY To achieve this goal, we identified some MERS-CoV naturally infected dromedary camel populations. We conducted a longitudinal study among these animals for more than 2 months. This was done by repeated testing of nasal swabs biweekly from some selected animals in this population for the presence of MERS-CoV-RNAs by real-time PCR. During the duration of this study, we collected several species of arthropods (Culicoides, Stomoxys, Musca domestica and some Culex species) that shared the habitat and were circulating in this farm during this longitudinal study. RESULTS Our results showing, despite the detection of the viral RNAs in some animals throughout this study, none of the examined species of arthropods tested positive for the viral RNA. CONCLUSIONS These results are suggesting that at least the tested species of arthropods may not play roles in the transmission of MERS-CoV. However, more large-scale studies are required to explore any potential roles of arthropods in the transmission cycle of MERS-CoV.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of MicrobiologyCollege of Veterinary MedicineKing Faisal UniversityAl‐AhasaSaudi Arabia
- Faculty of Veterinary MedicineDepartment of VirologyKafrelsheikh UniversityKafrelsheikhEgypt
| | - Mohammad Al‐Sabi
- Department of MicrobiologyCollege of Veterinary MedicineKing Faisal UniversityAl‐AhasaSaudi Arabia
| | - Mohammed Alhammadi
- Department of MicrobiologyCollege of Veterinary MedicineKing Faisal UniversityAl‐AhasaSaudi Arabia
| | - Faisal Almathen
- Department of Public Health and Animal HusbandryVeterinary MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Abdelmohsen Alnaeem
- Department of Clinical SciencesCollege of Veterinary MedicineKing Faisal UniversityAl‐AhasaSaudi Arabia
| |
Collapse
|
30
|
A Human Skin Model for Assessing Arboviral Infections. JID INNOVATIONS 2022; 2:100128. [PMID: 35812722 PMCID: PMC9256657 DOI: 10.1016/j.xjidi.2022.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Arboviruses such as flaviviruses and alphaviruses cause a significant human healthcare burden on a global scale. Transmission of these viruses occurs during human blood feeding at the mosquito-skin interface. Not only do pathogen immune evasion strategies influence the initial infection and replication of pathogens delivered, but arthropod salivary factors also influence transmission foci. In vitro cell cultures do not provide an adequate environment to study complex interactions between viral, mosquito, and host factors. To address this need for a whole tissue system, we describe a proof of concept model for arbovirus infection using adult human skin ex vivo with Zika virus (flavivirus) and Mayaro virus (alphavirus). Replication of these viruses in human skin was observed up to 4 days after infection. Egressed viruses could be detected in the culture media as well. Antiviral and proinflammatory genes, including chemoattractant chemokines, were expressed in infected tissue. Immunohistochemical analysis showed the presence of virus in the skin tissue 4 days after infection. This model will be useful to further investigate: (i) the immediate molecular mechanisms of arbovirus infection in human skin, and (ii) the influence of arthropod salivary molecules during initial infection of arboviruses in a more physiologically relevant system.
Collapse
|
31
|
Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses 2022; 14:v14010131. [PMID: 35062335 PMCID: PMC8780610 DOI: 10.3390/v14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.
Collapse
|
32
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
34
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
35
|
de Oliveira AS, Vasconcellos AF, Rodrigues BMP, da Silva LA, Resende RO, Ribeiro BM. Chikungunya virus produced by a persistently infected mosquito cell line comprises a shorter genome and is non-infectious to mammalian cells. J Gen Virol 2021; 102. [PMID: 34878970 DOI: 10.1099/jgv.0.001700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although RNA viruses have high mutation rates, host cells and organisms work as selective environments, maintaining the viability of virus populations by eliminating deleterious genotypes. In serial passages of RNA viruses in a single cell line, most of these selective bottlenecks are absent, with no virus circulation and replication in different tissues or host alternation. In this work, Aedes aegypti Aag-2 cells were accidentally infected with Chikungunya virus (CHIKV) and Mayaro virus (MAYV). After numerous passages to achieve infection persistency, the infectivity of these viruses was evaluated in Ae. albopictus C6/36 cells, African green monkey Vero cells and primary-cultured human fibroblasts. While these CHIKV and MAYV isolates were still infectious to mosquito cells, they lost their ability to infect mammalian cells. After genome sequencing, it was observed that CHIKV accumulated many nonsynonymous mutations and a significant deletion in the coding sequence of the hypervariable domain in the nsP3 gene. Since MAYV showed very low titres, it was not sequenced successfully. Persistently infected Aag-2 cells also accumulated high loads of short and recombinant CHIKV RNAs, which seemed to have been originated from virus-derived DNAs. In conclusion, the genome of this CHIKV isolate could guide mutagenesis strategies for the production of attenuated or non-infectious (to mammals) CHIKV vaccine candidates. Our results also reinforce that a paradox is expected during passages of cells persistently infected by RNA viruses: more loosening for the development of more diverse virus genotypes and more pressure for virus specialization to this constant cellular environment.
Collapse
Affiliation(s)
- Athos S de Oliveira
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | | | - Bruno M P Rodrigues
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Leonardo A da Silva
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Renato O Resende
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Bergmann M Ribeiro
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| |
Collapse
|
36
|
Pawęska JT, Jansen van Vuren P, Storm N, Markotter W, Kemp A. Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae). Viruses 2021; 13:2226. [PMID: 34835032 PMCID: PMC8624361 DOI: 10.3390/v13112226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
This study aimed to determine the vector competence of bat-associated nycteribiid flies (Eucamsipoda africana) for Marburg virus (MARV) in the Egyptian Rousette Bat (ERB), Rousettus aegyptiacus. In flies fed on subcutaneously infected ERBs and tested from 3 to 43 days post infection (dpi), MARV was detected only in those that took blood during the peak of viremia, 5-7 dpi. Seroconversion did not occur in control bats in contact with MARV-infected bats infested with bat flies up to 43 days post exposure. In flies inoculated intra-coelomically with MARV and tested on days 0-29 post inoculation, only those assayed on day 0 and day 7 after inoculation were positive by q-RT-PCR, but the virus concentration was consistent with that of the inoculum. Bats remained MARV-seronegative up to 38 days after infestation and exposure to inoculated flies. The first filial generation pupae and flies collected at different times during the experiments were all negative by q-RT-PCR. Of 1693 nycteribiid flies collected from a wild ERB colony in Mahune Cave, South Africa where the enzootic transmission of MARV occurs, only one (0.06%) tested positive for the presence of MARV RNA. Our findings seem to demonstrate that bat flies do not play a significant role in the transmission and enzootic maintenance of MARV. However, ERBs eat nycteribiid flies; thus, the mechanical transmission of the virus through the exposure of damaged mucous membranes and/or skin to flies engorged with contaminated blood cannot be ruled out.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (P.J.v.V.); (N.S.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (P.J.v.V.); (N.S.); (A.K.)
- Australian Centre for Disease Preparedness, CSIRO Health & Biosecurity, Geelong, VIC 3220, Australia
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (P.J.v.V.); (N.S.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (P.J.v.V.); (N.S.); (A.K.)
| |
Collapse
|
37
|
Walsh CES, Robert MA, Christofferson RC. Observational Characterization of the Ecological and Environmental Features Associated with the Presence of Oropouche Virus and the Primary Vector Culicoides paraenesis: Data Synthesis and Systematic Review. Trop Med Infect Dis 2021; 6:tropicalmed6030143. [PMID: 34449725 PMCID: PMC8396275 DOI: 10.3390/tropicalmed6030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Oropouche virus (OROV), a member of the Orthobunyavirus genus, is an arthropod-borne virus (arbovirus) and is the etiologic agent of human and animal disease. The primary vector of OROV is presumed to be the biting midge, Culicoides paraenesis, though Culex quinquefasciatus, Cq. venezuelensis, and Aedes serratus mosquitoes are considered secondary vectors. The objective of this systematic review is to characterize locations where OROV and/or its primary vector have been detected. Synthesis of known data through review of published literature regarding OROV and vectors was carried out through two independent searches: one search targeted to OROV, and another targeted towards the primary vector. A total of 911 records were returned, but only 90 (9.9%) articles satisfied all inclusion criteria. When locations were characterized, some common features were noted more frequently than others, though no one characteristic was significantly associated with presence of OROV using a logistic classification model. In a separate correlation analysis, vector presence was significantly correlated only with the presence of restingas. The lack of significant relationships is likely due to the paucity of data regarding OROV and its eco-epidemiology and highlights the importance of continued focus on characterizing this and other neglected tropical diseases.
Collapse
Affiliation(s)
- Christine E. S. Walsh
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Michael A. Robert
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Correspondence:
| |
Collapse
|
38
|
Tidman R, Abela-Ridder B, de Castañeda RR. The impact of climate change on neglected tropical diseases: a systematic review. Trans R Soc Trop Med Hyg 2021; 115:147-168. [PMID: 33508094 PMCID: PMC7842100 DOI: 10.1093/trstmh/traa192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neglected tropical diseases (NTDs) are a diverse group of diseases that continue to affect >1 billion people, with these diseases disproportionately impacting vulnerable populations and territories. Climate change is having an increasing impact on public health in tropical and subtropical areas and across the world and can affect disease distribution and transmission in potentially diverse ways. Improving our understanding of how climate change influences NTDs can help identify populations at risk to include in future public health interventions. Articles were identified by searching electronic databases for reports of climate change and NTDs between 1 January 2010 and 1 March 2020. Climate change may influence the emergence and re-emergence of multiple NTDs, particularly those that involve a vector or intermediate host for transmission. Although specific predictions are conflicting depending on the geographic area, the type of NTD and associated vectors and hosts, it is anticipated that multiple NTDs will have changes in their transmission period and geographic range and will likely encroach on regions and populations that have been previously unaffected. There is a need for improved surveillance and monitoring to identify areas of NTD incursion and emergence and include these in future public health interventions.
Collapse
Affiliation(s)
- Rachel Tidman
- Consultant, World Health Organization, Geneva, Switzerland
| | - Bernadette Abela-Ridder
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Rafael Ruiz de Castañeda
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland.,Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
39
|
Modeling the Risk of Infectious Diseases Transmitted by Aedes aegypti Using Survival and Aging Statistical Analysis with a Case Study in Colombia. MATHEMATICS 2021. [DOI: 10.3390/math9131488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many infectious diseases are deadly to humans. The Aedes aegypi mosquito is the principal vector of infectious diseases that include chikungunya, dengue, yellow fever, and zika. Some factors such as survival time and aging are vital in its development and capacity to transmit the pathogens, which in turn are affected by environmental factors such as temperature. In this paper, we consider aging as the biological wear and tear presented in some mosquito populations over time, whereas survival is considered as the maximum time that a mosquito lives. We propose statistical methods that are commonly used in engineering for reliability analysis to compare transmission riskiness among different mosquitoes. We conducted a case study in three Colombian cities: Bello, Riohacha, and Villavicencio. In this study, we detected that the Aedes aegypi female mosquitoes in Bello live longer than in Riohacha and Villavicencio, and the females in Riohacha live longer than those in Villavicencio. Regarding aging, the females from Riohacha age slower than in Villavicencio and the latter age slower than in Bello. Mosquito populations that age slower are considered young and the other ones are old. In addition, we detected that the females from Bello in the temperature range of 27 ∘C–28 ∘C age slower than those in Bello at higher temperatures. In general, a young female has a higher risk of transmitting a disease to humans than an old female, regardless of its survival time. These findings have not been previously reported in studies of this type of infectious diseases and contributed to new knowledge in biomedicine.
Collapse
|
40
|
Qiao L, Martelli CMT, Raja AI, Sanchez Clemente N, de Araùjo TVB, Ximenes RADA, Miranda-Filho DDB, Ramond A, Brickley EB. Epidemic preparedness: Prenatal Zika virus screening during the next epidemic. BMJ Glob Health 2021; 6:bmjgh-2021-005332. [PMID: 34117012 PMCID: PMC8202108 DOI: 10.1136/bmjgh-2021-005332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a vectorborne infectious agent of global public health significance due to its potential to cause severe teratogenic outcomes. The question of whether health systems should consider adopting screening programmes for ZIKV infections during pregnancy warrants consideration. In this analysis, we apply the Wilson-Jungner framework to appraise the potential utility of a prenatal ZIKV screening programme, outline potential screening strategies within the case-finding pathway, and consider other epidemiological factors that may influence the planning of such a screening programme. Our evaluation of a potential prenatal ZIKV screening programme highlights factors affirming its usefulness, including the importance of Congenital Zika Syndrome as a public health problem and the existence of analogous congenital prenatal screening programmes for STORCH agents (syphilis, toxoplasmosis, others (eg, human immunodeficiency virus, varicella-zoster virus, parvovirus B19), rubella, cytomegalovirus, and herpes simplex virus). However, our assessment also reveals key barriers to implementation, such as the need for more accurate diagnostic tests, effective antiviral treatments, increased social service capacity, and surveillance. Given that the reemergence of ZIKV is likely, we provide a guiding framework for policymakers and public health leaders that can be further elaborated and adapted to different contexts in order to reduce the burden of adverse ZIKV-related birth outcomes during future outbreaks.
Collapse
Affiliation(s)
- Luxi Qiao
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.,School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | | | - Amber I Raja
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Nuria Sanchez Clemente
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ricardo Arraes de Alencar Ximenes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.,Departamento de Medicina Interna, Universidade de Pernambuco, Recife, Pernambuco, Brasil
| | | | - Anna Ramond
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth B Brickley
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
41
|
Hibl BM, Dailey Garnes NJM, Kneubehl AR, Vogt MB, Spencer Clinton JL, Rico-Hesse RR. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis 2021; 15:e0009427. [PMID: 34106915 PMCID: PMC8189471 DOI: 10.1371/journal.pntd.0009427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.
Collapse
Affiliation(s)
- Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie J. M. Dailey Garnes
- Section of Infectious Disease, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections. Viruses 2021; 13:v13061066. [PMID: 34205194 PMCID: PMC8227176 DOI: 10.3390/v13061066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes are known as important vectors of many arthropod-borne (arbo)viruses causing disease in humans. These include dengue (DENV) and Zika (ZIKV) viruses. The exogenous small interfering (si)RNA (exo-siRNA) pathway is believed to be the main antiviral defense in arthropods, including mosquitoes. During infection, double-stranded RNAs that form during viral replication and infection are cleaved by the enzyme Dicer 2 (Dcr2) into virus-specific 21 nt vsiRNAs, which are subsequently loaded into Argonaute 2 (Ago2). Ago2 then targets and subsequently cleaves complementary RNA sequences, resulting in degradation of the target viral RNA. Although various studies using silencing approaches have supported the antiviral activity of the exo-siRNA pathway in mosquitoes, and despite strong similarities between the siRNA pathway in the Drosophila melanogaster model and mosquitoes, important questions remain unanswered. The antiviral activity of Ago2 against different arboviruses has been previously demonstrated. However, silencing of Ago2 had no effect on ZIKV replication, whereas Dcr2 knockout enhanced its replication. These findings raise the question as to the role of Ago2 and Dcr2 in the control of arboviruses from different viral families in mosquitoes. Using a newly established Ago2 knockout cell line, alongside the previously reported Dcr2 knockout cell line, we investigated the impact these proteins have on the modulation of different arboviral infections. Infection of Ago2 knockout cell line with alpha- and bunyaviruses resulted in an increase of viral replication, but not in the case of ZIKV. Analysis of small RNA sequencing data in the Ago2 knockout cells revealed a lack of methylated siRNAs from different sources, such as acute and persistently infecting viruses-, TE- and transcriptome-derived RNAs. The results confirmed the importance of the exo-siRNA pathway in the defense against arboviruses, but highlights variability in its response to different viruses and the impact the siRNA pathway proteins have in controlling viral replication. Moreover, this established Ago2 knockout cell line can be used for functional Ago2 studies, as well as research on the interplay between the RNAi pathways.
Collapse
|
43
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
44
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
45
|
Ahmed W, Neelakanta G, Sultana H. Tetraspanins as Potential Therapeutic Candidates for Targeting Flaviviruses. Front Immunol 2021; 12:630571. [PMID: 33968023 PMCID: PMC8097176 DOI: 10.3389/fimmu.2021.630571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Tetraspanin family of proteins participates in numerous fundamental signaling pathways involved in viral transmission, virus-specific immunity, and virus-mediated vesicular trafficking. Studies in the identification of novel therapeutic candidates and strategies to target West Nile virus, dengue and Zika viruses are highly warranted due to the failure in development of vaccines. Recent evidences have shown that the widely distributed tetraspanin proteins may provide a platform for the development of novel therapeutic approaches. In this review, we discuss the diversified and important functions of tetraspanins in exosome/extracellular vesicle biology, virus-host interactions, virus-mediated vesicular trafficking, modulation of immune mechanism(s), and their possible role(s) in host antiviral defense mechanism(s) through interactions with noncoding RNAs. We also highlight the role of tetraspanins in the development of novel therapeutics to target arthropod-borne flaviviral diseases.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
46
|
Duarte JL, Filippo LDD, Araujo VHS, Oliveira AEMDFM, de Araújo JTC, Silva FBDR, Pinto MC, Chorilli M. Nanotechnology as a tool for detection and treatment of arbovirus infections. Acta Trop 2021; 216:105848. [PMID: 33524384 DOI: 10.1016/j.actatropica.2021.105848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Arboviruses are medically important viruses that cause high rates of infection all over the world. In addition, the severity of the symptoms and the inadequate diagnostic methods represent a challenge far beyond eradicating the vector. The lack of specific treatments for arbovirus infections reflects the imminent need for new research for safe and efficient medicines to treat these infections. Nanotechnology is an innovative approach currently used as a platform for developing new treatments, thus improving the biopharmaceutical properties of drugs. It can also be applied to the development of diagnostic devices, improving their detection capacity. The purpose of this paper is to review recent research on the use of nanotechnology for developing new treatments and detection devices for arbovirus infections. Interestingly, it was found that only a few studies report on the use of nanotechnology to treat arbovirus infections and that most of these reports focus on the fabrication of diagnostic tools. Also, some papers report on the use of nanotechnology for the development of vaccines, which in association with mosquito eradication programs could effectively reduce the high rates of infections by these viruses.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Victor Hugo Sousa Araujo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Anna Eliza Maciel de Faria Mota Oliveira
- Federal University of Amapá - UNIFAP, Department of Health and biological sciences, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá-AP, 68903-361, Brazil
| | - Jennifer Thayanne Cavalcante de Araújo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Flávia Benini da Rocha Silva
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Mara Cristina Pinto
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil.
| |
Collapse
|
47
|
Gilbride C, Saunders J, Sharpe H, Maze EA, Limon G, Ludi AB, Lambe T, Belij-Rammerstorfer S. The Integration of Human and Veterinary Studies for Better Understanding and Management of Crimean-Congo Haemorrhagic Fever. Front Immunol 2021; 12:629636. [PMID: 33815379 PMCID: PMC8012513 DOI: 10.3389/fimmu.2021.629636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to highlight the importance of studying the disease interface between species. One Health approaches recognise the interdependence of human and animal health and the environmental interplay. Improving the understanding and prevention of zoonotic diseases may be achieved through greater consideration of these relationships, potentially leading to better health outcomes across species. In this review, special emphasis is given on the emerging and outbreak pathogen Crimean-Congo Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We discuss the efforts undertaken to better understand CCHF and the importance of integrating veterinary and human research for this pathogen. Furthermore, we consider the use of closely related nairoviruses to model human disease caused by CCHFV. We discuss intervention approaches with potential application for managing CCHFV spread, and how this concept may benefit both animal and human health.
Collapse
Affiliation(s)
- Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
48
|
Raksakoon C, Potiwat R. Current Arboviral Threats and Their Potential Vectors in Thailand. Pathogens 2021; 10:pathogens10010080. [PMID: 33477699 PMCID: PMC7831943 DOI: 10.3390/pathogens10010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023] Open
Abstract
Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.
Collapse
Affiliation(s)
- Chadchalerm Raksakoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Rutcharin Potiwat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
49
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|
50
|
An Environmental Niche Model to Estimate the Potential Presence of Venezuelan Equine Encephalitis Virus in Costa Rica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010227. [PMID: 33396763 PMCID: PMC7795298 DOI: 10.3390/ijerph18010227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an arbovirus transmitted by arthropods, widely distributed in the Americas that, depending on the subtype, can produce outbreaks or yearly cases of encephalitis in horses and humans. The symptoms are similar to those caused by dengue virus and in the worst-case scenario, involve encephalitis, and death. MaxEnt is software that uses climatological, geographical, and occurrence data of a particular species to create a model to estimate possible niches that could have these favorable conditions. We used MaxEnt with a total of 188 registers of VEEV presence, and 20 variables, (19 bioclimatological plus altitude) to determine the niches promising for the presence of VEEV. The area under the ROC curve (AUC) value for the model with all variables was 0.80 for the training data and 0.72 for the test. The variables with the highest contribution to the model were Bio11 (mean temperature of the coldest quarter) 32.5%, Bio17 (precipitation of the driest quarter) 16.9%, Bio2 (annual mean temperature) 15.1%, altitude (m.a.s.l) 6.6%, and Bio18 (precipitation of the warmest quarter) 6.2%. The product of this research will be useful under the one health scheme to animal and human health authorities to forecast areas with high propensity for VEEV cases in the future.
Collapse
|