1
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
2
|
Zhu K, Ni H, Hafeez E, Hu Y, Hu F, Du D, Chen D. Effects of Silibinin on Delaying Aging in Drosophila melanogaster. Antioxidants (Basel) 2025; 14:147. [PMID: 40002334 PMCID: PMC11851952 DOI: 10.3390/antiox14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is an inevitable physiological process, but delaying aging has always been an enduring human pursuit. Silibinin (SIL), derived from the seeds of the milk thistle plant, exhibits a broad spectrum of pharmacological properties, including anti-tumor effects, liver protection, inhibition of apoptosis, and alleviation of inflammation. However, whether it has anti-aging effects remains unclear. The SIL dietary supplement to Drosophila melanogaster prolonged lifespan, improved climbing ability, ameliorated age-associated intestinal barrier disruption, enhanced the resistance to oxidative stress, and increased the enzyme activities of superoxide dismutase (SOD) and catalase (CAT). Furthermore, RNA-seq results showed that SIL addition significantly upregulated 74 genes and downregulated 50 genes compared with the control. KEGG (Kyoto Encyclopedia of genes and genomes) analysis demonstrated that these differentially expressed genes were primarily involved in the Toll signaling pathway and endoplasmic reticulum proteins processing, six among which, including IM2, IM3, Drsl3, CG7556, GCS1, and TRAM, were particularly involved in the regulation by SIL supplementation. The results indicate that SIL exhibits anti-aging effects by enhancing antioxidant capacity and regulating aging-related signaling pathways. Therefore, SIL shows a potential application in anti-aging dietary regimens.
Collapse
Affiliation(s)
- Kai Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Hang Ni
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Eqra Hafeez
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Yaxuan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Fan Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (K.Z.); (E.H.); (Y.H.); (F.H.)
| |
Collapse
|
3
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Greco LP, Gallo L, La Greca G, Latteri S. Innovative treatments for obesity and NAFLD: A bibliometric study on antioxidants, herbs, phytochemicals, and natural compounds. Heliyon 2024; 10:e35498. [PMID: 39220898 PMCID: PMC11365328 DOI: 10.1016/j.heliyon.2024.e35498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing scientific interest in antioxidants and naturally derived compounds as potential remedies for obesity and non-alcoholic fatty liver disease (NAFLD) has led to extensive research. The objective of this bibliometric analysis is to present an updated perspective on the topic of antioxidants, herbs, phytochemicals, and natural compounds, in the control of obesity and NAFLD, to identify new areas for future research. Publications from the years 2012-2022 were retrieved using the Scopus database. The research trends were analyzed using the Biblioshiny and VOSviewer tools. The field has seen a significant increase in research activity, as indicated by an annual growth rate of 10 % in the number of published manuscripts. China, Korea, and the USA emerged as the most prominent contributors in this specific field, supported by their notable volumes of publications and citations. The density analysis revealed that the most frequently occurring authors' keywords related to herbal species are, in rank order, Camelia sinensis, Momordica charantia, Curcuma longa, Ilex paraguariensis, Panax ginseng, Moringa oleifera, Garcinia cambogia, Garcinia mangostana, Zingiber officinale, and Cinnamomum verum. In the group of antioxidants, phytochemicals, and natural compounds, the top 10 were resveratrol, curcumin, quercetin, vitamin E, alpha-lipoic acid, vitamin C, chlorogenic acid, lycopene, fucoxanthin, and berberine. The co-occurrence analysis unveiled significant themes and potential trends, including a notable interest in the impact of herbal species, antioxidants, phytochemicals, and natural compounds on obesity and NAFLD through the modulation of the gut microbiome. Another recurring theme that arises, is the ongoing investigation of molecular targets that demonstrate anti-adipogenesis properties. The analysis presented in this study provides valuable insights for researchers investigating the efficacy of antioxidants, herbs, phytochemicals, and natural compounds in addressing obesity and NAFLD. Through the use of bibliometric methods, the study offers a comprehensive overview. Furthermore, the findings of this analysis can serve as a foundation for future research in this specific domain.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95123, Catania, Italy
| |
Collapse
|
4
|
Khan I, Preeti K, Kumar R, Khatri DK, Singh SB. Activation of SIRT1 by silibinin improved mitochondrial health and alleviated the oxidative damage in experimental diabetic neuropathy and high glucose-mediated neurotoxicity. Arch Physiol Biochem 2024; 130:420-436. [PMID: 35943429 DOI: 10.1080/13813455.2022.2108454] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Silibinin (SBN), a sirtuin 1 (SIRT1) activator, has been evaluated for its anti-inflammatory activity in many inflammatory diseases. However, its role in diabetes-induced peripheral neuropathy (DPN) remains unknown. The SIRT1 activation convalesces nerve functions by improving mitochondrial biogenesis and mitophagy. METHODS DPN was induced by streptozotocin (STZ) at a dose of 55 mg/kg, i.p. in the male SD rats whereas neurotoxicity was induced in Neuro2A cells by 30 mM (high glucose) glucose. Neurobehavioural (nerve conduction velocity and nerve blood flow) western blot, immunohistochemistry, and immunocytochemistry were performed to evaluate the protein expression and their cellular localisation. RESULTS Two-week SBN treatment improved neurobehavioural symptoms, SIRT1, PGC-1α, and TFAM expression in the sciatic nerve and HG insulted N2A cells. It has also maintained the mitophagy by up-regulating PARL, PINK1, PGAM5, LC3 level and provided antioxidant defence by upregulating Nrf2. CONCLUSION SBN has shown neuroprotective potential in DPN through SIRT1 activation and antioxidant mechanism.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
5
|
Muscarà C, Speciale A, Molonia MS, Salamone FL, Saija A, Cimino F. Intestinal epithelial differentiation and barrier function is promoted in vitro by a Cynara cardunculus L. leaf extract through AMPK pathway activation. Nat Prod Res 2024:1-11. [PMID: 39058646 DOI: 10.1080/14786419.2024.2384080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Zhang X, Liu M, Wang Z, Wang P, Kong L, Wu J, Wu W, Ma L, Jiang S, Ren W, Du L, Ma W, Liu X. A review of the botany, phytochemistry, pharmacology, synthetic biology and comprehensive utilization of Silybum marianum. Front Pharmacol 2024; 15:1417655. [PMID: 39055491 PMCID: PMC11269164 DOI: 10.3389/fphar.2024.1417655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Silybum marianum (L.) Gaertn, a herbaceous plant with a long history in traditional medicine for the treatment of hepatobiliary diseases, particularly in Europe, which has attracted attention for its remarkable therapeutic effect. This review systematically summarizes the research progress in the botany, phytochemistry, pharmacology, comprehensive utilization and synthetic biology of S. marianum. Up to now, more than 20 types of flavonolignan components have been isolated from S. marianum. In addition, the rearch on fatty acids and triterpenoids is also constantly improving. Among them, silybin is the most active compound in flavonolignans components. Its pharmacological effects in vivo and in vitro include anti-inflammatory, antioxidant, anti-tumour, hypoglycaemic, neuroprotective and immunoregulatory properties. The use of coniferyl alcohol and taxifolin as substrates to produce silybin and isosilybin under the action of enzyme catalysis is the commonly used biosynthetic pathway of silymarin, which provides support for a comprehensive analysis of the synthetic pathway of silymarin. In addition to medicinal use, the extracts of plants also have broad application prospects in the production of food, healthcare products, cosmetics and other aspects. In addition, the chemical composition, pharmacological mechanism and synthetic biology of S. marianum need to be further studied, which is very important for its clinical efficacy and resource development.
Collapse
Affiliation(s)
- Xiaozhuang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
7
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
8
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
9
|
Kung ML, Cheng SM, Wang YH, Cheng KP, Li YL, Hsiao YT, Tan BCM, Chen YW. Deficiency of ADAR2 ameliorates metabolic-associated fatty liver disease via AMPK signaling pathways in obese mice. Commun Biol 2024; 7:594. [PMID: 38760406 PMCID: PMC11101631 DOI: 10.1038/s42003-024-06215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3β pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Yun-Han Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Pi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tsen Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Linkou Medical Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Li S, Duan F, Li S, Lu B. Administration of silymarin in NAFLD/NASH: A systematic review and meta-analysis. Ann Hepatol 2024; 29:101174. [PMID: 38579127 DOI: 10.1016/j.aohep.2023.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 04/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide and poses serious harm to human health. There is growing evidence suggesting that the administration of specific supplements or nutrients may slow NAFLD progression. Silymarin is a hepatoprotective extract of milk thistle, but its efficacy in NAFLD remains unclear. MATERIALS AND METHODS Relevant studies were searched in PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrails.gov, and China National Knowledge Infrastructure and were screened according to the eligibility criteria. Data were analyzed using Revman 5.3. Continuous values and dichotomous values were pooled using the standard mean difference (SMD) and odds ratio (OR). Heterogeneity was evaluated using the Cochran's Q test (I2 statistic). A P<0.05 was considered statistically significant. RESULTS A total of 26 randomized controlled trials involving 2,375 patients were included in this study. Administration of silymarin significantly reduced the levels of TC (SMD[95%CI]=-0.85[-1.23, -0.47]), TG (SMD[95%CI]=-0.62[-1.14, -0.10]), LDL-C (SMD[95%CI]=-0.81[-1.31, -0.31]), FI (SMD[95%CI]=-0.59[-0.91, -0.28]) and HOMA-IR (SMD[95%CI]=-0.37[-0.77, 0.04]), and increased the level of HDL-C (SMD[95%CI]=0.46[0.03, 0.89]). In addition, silymarin attenuated liver injury as indicated by the decreased levels of ALT (SMD[95%CI]=-12.39[-19.69, -5.08]) and AST (SMD[95% CI]=-10.97[-15.51, -6.43]). The levels of fatty liver index (SMD[95%CI]=-6.64[-10.59, -2.69]) and fatty liver score (SMD[95%CI]=-0.51[-0.69, -0.33]) were also decreased. Liver histology of the intervention group revealed significantly improved hepatic steatosis (OR[95%CI]=3.25[1.80, 5.87]). CONCLUSIONS Silymarin can regulate energy metabolism, attenuate liver damage, and improve liver histology in NAFLD patients. However, the effects of silymarin will need to be confirmed by further research.
Collapse
Affiliation(s)
- Shudi Li
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Fei Duan
- The First Affiliated Hospital of Henan University of TCM Zhengzhou 450000, China
| | - Suling Li
- The First Affiliated Hospital of Henan University of TCM Zhengzhou 450000, China
| | - Baoping Lu
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
11
|
Cai J, Zhu Y, Li X, Deng G, Han Y, Yuan F, Yi G, Xia X. Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-β1/Smad Signaling. TOHOKU J EXP MED 2023; 261:257-265. [PMID: 37344419 DOI: 10.1620/tjem.2023.j050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Improving hepatic glucose and lipid metabolisms is an important strategy to treat type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (T2DM-NAFLD). Silybin (SLB) has the potential hepatoprotection, while its oral bioavailability is poor. This study aims to investigate the functional role and mechanism of liposomal SLB in modulating glucose/lipid metabolism in T2DM-NAFLD. SLB was prepared by thin film dispersion method and characterized using dynamic light scattering, scanning electron microscope, high performance liquid chromatography and zeta potential analyzer. A rat model of T2DM-NAFLD was used to determine the role of liposomal SLB in regulating glycolipid metabolism and hepatic damage. Rat primary hepatocytes were used to demonstrate the hepatoprotection mechanism of liposomal SLB. The encapsulation efficiency was more than 80%, which showed the average particle size of 119.76 nm. Also, the average Zeta potential was -4.76 mV. These liposomes were spherical. In rats with T2DM-NAFLD, liposomal SLB alleviated insulin resistance and lipid metabolism, thereby improving hepatic lipid accumulation, inflammation and fibrosis. Besides, liposomal SLB elevated AMPK phosphorylation, and decreased collagen I/III, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and the phosphorylation of Smad2/3. In hepatocyte model, compound C partially reversed the effects of liposomal SLB on cell viability, glycolipid metabolism and AMPK/TGF-β1/Smad pathway activation. Liposomal SLB ameliorates hepatic glucose and lipid metabolisms in T2DM-NAFLD via activating AMPK/TGF-β1/Smad pathway, providing an efficient strategy for treating T2DM-NAFLD.
Collapse
Affiliation(s)
- Jialuo Cai
- School of Pharmacy, Hunan University of Chinese Medicine
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Yilin Zhu
- Graduate School, Hunan University of Chinese Medicine
| | - Xiaoping Li
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Guiming Deng
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Yuanshan Han
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Feiyun Yuan
- Library, Hunan University of Chinese Medicine
| | - Gangqiang Yi
- Party Committee, Hunan University of Chinese Medicine
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine
| |
Collapse
|
12
|
Meng D, Zhang F, Yu W, Zhang X, Yin G, Liang P, Feng Y, Chen S, Liu H. Biological Role and Related Natural Products of SIRT1 in Nonalcoholic Fatty Liver. Diabetes Metab Syndr Obes 2023; 16:4043-4064. [PMID: 38089432 PMCID: PMC10715014 DOI: 10.2147/dmso.s437865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.
Collapse
Affiliation(s)
- Decheng Meng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Wenfei Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Guoliang Yin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Pengpeng Liang
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, People’s Republic of China
| | - Yanan Feng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Suwen Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Hongshuai Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| |
Collapse
|
13
|
Yan B, Zheng X, Wang Y, Yang J, Zhu X, Qiu M, Xia K, Wang Y, Li M, Li S, Ma X, Xie J, Li F, Fu T, Li W. Liposome-Based Silibinin for Mitigating Nonalcoholic Fatty Liver Disease: Dual Effects via Parenteral and Intestinal Routes. ACS Pharmacol Transl Sci 2023; 6:1909-1923. [PMID: 38093834 PMCID: PMC10714430 DOI: 10.1021/acsptsci.3c00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity that is typically characterized by intrahepatic ectopic steatosis. Nowadays, NAFLD has surpassed viral hepatitis and become the most common chronic liver disease worldwide, which poses a great threat to human health. Silibinin (Sil), a well-known natural product, has been widely used in clinical treatment for liver disorders and exhibited therapeutic potential for NAFLD. However, the suitability of Sil for NAFLD treatment still requires further investigation due to its limited absorption and low bioavailability. This study aimed to construct a Sil-loaded liposome (Sil-Lip) to overcome the limitations of Sil, thereby enhancing its beneficial effects on NAFLD and then investigate the underlying mechanisms of action of Sil-Lip. Herein, Sil-Lip was fabricated by a well-established thin-film dispersion method and carefully characterized, followed by evaluating their therapeutic efficacy using high-fat diet-induced NAFLD mice and free fatty acid -stimulated HepG2 cells. Then, liver transcriptome analysis and 16S ribosomal RNA (16S rRNA) sequencing were utilized to elucidate the potential mechanisms of action of Sil-Lip. Our data indicated that Sil-Lip harbored good gastrointestinal tract stability, mucus layer permeation, and excellent oral absorption and bioavailability. In vivo and in vitro NAFLD models demonstrated that Sil-Lip had better effects in alleviating lipid metabolism disorders, insulin resistance, and inflammation than did Sil alone. Further investigations revealed that the beneficial effects of Sil-Lip were mediated by modulating intrahepatic insulin resistance-related and nuclear factor-kappa B (NF-κB) signaling pathways and extrahepatic gut microbiota. Our study confirmed that Sil-Lip can effectively improve the absorption and bioavailability of Sil, resultantly potentiating its ameliorative effects on NAFLD through modulating intrahepatic insulin resistance-related and NF-κB signaling pathways and extrahepatic gut microbiota.
Collapse
Affiliation(s)
- Baofei Yan
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- School
of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Xian Zheng
- Department
of Pharmacy, Affiliated Kunshan Hospital
of Jiangsu University, Kunshan 215399, China
| | - Yun Wang
- Department
of Dermatology, Affiliated Huai’an Hospital of Xuzhou Medical
University, The Second People’s Hospital
of Huai’an, Huai’an 223002, China
| | - Jingwen Yang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xingyu Zhu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mengmeng Qiu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Kexin Xia
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Yongan Wang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Mian Li
- Shandong
Medicinal Biotechnology Centre, Shandong
First Medical University, Ji’nan 271016, China
| | - Sipan Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Xinai Ma
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Jianjun Xie
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Fengtao Li
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wei Li
- Zhejiang
Provincial Key Laboratory of Medical Genetics, College of Laboratory
Medicine and Life Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| |
Collapse
|
14
|
Georgiev T, Nikolova G, Dyakova V, Karamalakova Y, Georgieva E, Ananiev J, Ivanov V, Hadzhibozheva P. Vitamin E and Silymarin Reduce Oxidative Tissue Damage during Gentamycin-Induced Nephrotoxicity. Pharmaceuticals (Basel) 2023; 16:1365. [PMID: 37895836 PMCID: PMC10610356 DOI: 10.3390/ph16101365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycoside antibiotics and gentamicin (GN), in particular, are still widely used in clinical practice. It is a well-known fact that GN causes nephrotoxicity, and redox disturbances are discussed as a factor in its side effects. Recently, a new type of cell oxidative death, named ferroptosis, was discovered; it is associated with iron accumulation in the cell, glutathione (GSH) depletion and inactivation of glutathione peroxidase-4 (GPX4), reactive oxygen species (ROS) increment with concomitant lipid peroxidation. In this regard, a possible connection between GN-induced renal damage, ferroptosis and the overall antioxidant status of the organism could be investigated. Moreover, due to its beneficial effects, GN is still one of the main choices as a therapeutic agent for several diseases, and the possible reduction of its side effects with the application of certain antioxidants will be of important clinical significance. The study was conducted with adult male white mice divided into several groups (n = 6). GN nephrotoxicity was induced by the administration of GN 100-200 mg/kg i.p. for 10 days. The control group received only saline. The other groups received either Vitamin E (400 mg/kg p.o.) or Silymarin (200 mg/kg p.o.) applied alone or together with GN for the same period. After the end of the study, the animals were sacrificed, and blood and tissue samples were taken for the assessment of biochemical parameters and antioxidant status, as well as routine and specific for GPX4 histochemistry examination. The experimental results indicate that GN-induced nephrotoxicity negatively modulates GPX4 activity and is associated with increased production of ROS and lipid peroxidation. The groups treated with antioxidants demonstrated preserved antioxidant status and better GPX4 activity. In conclusion, the inhibition of ROS production and especially the suppression of ferroptosis, could be of clinical potential and can be applied as a means of reducing the toxic effects of GN application.
Collapse
Affiliation(s)
- Tsvetelin Georgiev
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| | - Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Viktoriya Dyakova
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Julian Ananiev
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Veselin Ivanov
- Department of Neurology, Psychiatry and Disaster Medicine, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Petya Hadzhibozheva
- Department of Physiology, Pathophysiology and Pharmacology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (T.G.); (V.D.); (P.H.)
| |
Collapse
|
15
|
Sun X, Ping Y, Li X, Mao Y, Chen Y, Shi L, Hong X, Chen L, Chen S, Cao Z, Chen P, Song Z, Wismeijer D, Wu G, Ji Y, Huang S. Activation of PGC-1α-dependent mitochondrial biogenesis supports therapeutic effects of silibinin against type I diabetic periodontitis. J Clin Periodontol 2023; 50:964-979. [PMID: 36940707 DOI: 10.1111/jcpe.13811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
AIM To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yifan Ping
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xumin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lixi Shi
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xinhua Hong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Daniel Wismeijer
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yinhui Ji
- Department of Stomatology, Dong Yang People's Hospital, Jinhua, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Wang Y, Cheng W, Wang X, He T, Liu J, Chen S, Zhang J. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice. Food Chem Toxicol 2023:113913. [PMID: 37348806 DOI: 10.1016/j.fct.2023.113913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.
Collapse
Affiliation(s)
- Yazhi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoning Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Shuangshuang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
17
|
Nanostructured Lipid Carriers Aimed to the Ocular Delivery of Mangiferin: In Vitro Evidence. Pharmaceutics 2023; 15:pharmaceutics15030951. [PMID: 36986812 PMCID: PMC10053599 DOI: 10.3390/pharmaceutics15030951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Although mangiferin (MGN) is a natural antioxidant that could be a good candidate for the treatment of ocular diseases, its use in ophthalmology is strongly compromised due to its high lipophilicity. Its encapsulation in nanostructured lipid carriers (NLC) seems to be an interesting strategy for improving its ocular bioavailability. As reported in our previous work, MGN–NLC showed high ocular compatibility and fulfilled the nanotechnological requirements needed for ocular delivery. The aim of the present work was to investigate, in vitro and ex vivo, the capability of MGN–NLC to act as a potential drug delivery system for MGN ocular administration. The data obtained in vitro on arising retinal pigment epithelium cells (ARPE-19) did not show cytotoxic effects for blank NLC and MGN–NLC; likewise, MGN–NLC showed the maintenance of the antioxidant role of MGN by mitigating ROS (Reactive Oxygen Species) formation and GSH (glutathione) depletion induced by H2O2. In addition, the capacity of MGN-released to permeate through and accumulate into the ocular tissues was confirmed ex vivo using bovine corneas. Finally, the NLC suspension has been formulated as a freeze-dried powder using mannitol at a concentration of 3% (w/v) in order to optimize its storage for long periods of time. All this evidence suggests a potential application of MGN–NLC in the treatment of oxidative stress-related ocular diseases.
Collapse
|
18
|
Screening of Biomarkers in Liver Tissue after Bariatric Surgery Based on WGCNA and SVM-RFE Algorithms. DISEASE MARKERS 2023; 2023:2970429. [PMID: 36755803 PMCID: PMC9902125 DOI: 10.1155/2023/2970429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
As the most common chronic liver disease around the world, nonalcoholic fatty liver disease (NAFLD) has a close connection with obesity, diabetes, and metabolic syndrome. Bariatric surgery (BS) is considered to be the most effective treatment for NAFLD. However, the regulatory mechanism of hepatic lipid metabolism after BS remains poorly elucidated. By analyzing two transcriptome datasets regarding liver tissues after BS, namely, GSE83452 and GSE106737, we acquired 110 differentially expressed genes (DEGs). By further analysis of DEGs in terms of the weighted gene coexpression network analysis (WGCNA) and support vector machine-recursive feature elimination (SVM-RFE) algorithms, we identified four crucial genes participating in the regulation of hepatic lipid metabolism: SRGN, THEMIS2, SGK1, and FPR3. In addition, the results of gene set enrichment analysis (GSEA) showed that BS can activate immune-related regulatory pathways and change immune cell infiltration levels. Finally, through cellular level studies, we found that the silencing of SRGN affects the expression of SREBP-1, SIRT1, and FAS during adipogenesis in the liver and the formation of lipid droplets in the liver. In summary, the immune system in the liver is activated after BS, and SRGN participates in the regulation of hepatic lipid metabolism.
Collapse
|
19
|
Lee HA, Chang Y, Sung PS, Yoon EL, Lee HW, Yoo JJ, Lee YS, An J, Song DS, Cho YY, Kim SU, Kim YJ. Therapeutic mechanisms and beneficial effects of non-antidiabetic drugs in chronic liver diseases. Clin Mol Hepatol 2022; 28:425-472. [PMID: 35850495 PMCID: PMC9293616 DOI: 10.3350/cmh.2022.0186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
The global burden of chronic liver disease (CLD) is substantial. Due to the limited indication of and accessibility to antiviral therapy in viral hepatitis and lack of effective pharmacological treatment in nonalcoholic fatty liver disease, the beneficial effects of antidiabetics and non-antidiabetics in clinical practice have been continuously investigated in patients with CLD. In this narrative review, we focused on non-antidiabetic drugs, including ursodeoxycholic acid, silymarin, dimethyl4,4'-dimethoxy-5,6,5',6'-dimethylenedixoybiphenyl-2,2'-dicarboxylate, L-ornithine L-aspartate, branched chain amino acids, statin, probiotics, vitamin E, and aspirin, and summarized their beneficial effects in CLD. Based on the antioxidant, anti-inflammatory properties, and regulatory functions in glucose or lipid metabolism, several non-antidiabetic drugs have shown beneficial effects in improving liver histology, aminotransferase level, and metabolic parameters and reducing risks of hepatocellular carcinoma and mortality, without significant safety concerns, in patients with CLD. Although the effect as the centerpiece management in patients with CLD is not robust, the use of these non-antidiabetic drugs might be potentially beneficial as an adjuvant or combined treatment strategy.
Collapse
Affiliation(s)
- Han Ah Lee
- Departments of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eileen L. Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9233650. [PMID: 35602098 PMCID: PMC9117022 DOI: 10.1155/2022/9233650] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.
Collapse
|
21
|
Malekpour-Dehkordi Z, Nourbakhsh M, Shahidi M, Sarraf N, Sharifi R. "Silymarin diminishes oleic acid-induced lipid accumulation in HepG2 cells by modulating the expression of endoplasmic reticulum stress markers". J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022; 13:847905. [PMID: 35401195 PMCID: PMC8983842 DOI: 10.3389/fphar.2022.847905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silibinin is widely utilized drug in various cancer treatments, though its application in cholangiocarcinoma has not yet been explored. For the first time, we evaluated the anticancer potential and underlying molecular mechanism of silibinin in treatment of cholangiocarcinoma treatment. Methods: HuCCT-1 and CCLP-1 cells were chosen to be an in vitro study model and were exposed to various concentrations of silibinin for indicated times. Cell viability was evaluated by the cell counting kit-8 (CCK-8) assay and half maximal inhibitory (IC50) concentrations were calculated. Cell proliferation capacity was determined through the use of colony formation and 5-Ethynyl-2′- deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were assessed by Live/Dead staining assay and flow cytometry (FCM). The protein levels of extracellular regulated protein kinases (ERK)/mitochondrial apoptotic pathway were evaluated through western blotting (WB). Mitochondrial membrane potential changes were determined via 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1). A cholangiocarcinoma cell line xenograft model was used to assess the anti-tumor activity of silibinin in vivo. Results: Inhibition of the ERK protein by silibinin led to a significant decrease in mitochondrial membrane potential, which, in turn, caused Cytochrome C to be released from the mitochondria. The activation of downstream apoptotic pathways led to apoptosis of cholangiocarcinoma cells. In general, silibinin inhibited the growth of cholangiocarcinoma cell line xenograft tumors. Conclusions: Silibinin is able to inhibit cholangiocarcinoma through the ERK/mitochondrial apoptotic pathway, which makes silibinin a potential anti-tumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lei Wang
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| | - Shi’an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| |
Collapse
|
23
|
Doostkam A, Fathalipour M, Anbardar MH, Purkhosrow A, Mirkhani H. Therapeutic Effects of Milk Thistle ( Silybum marianum L.) and Artichoke ( Cynara scolymus L.) on Nonalcoholic Fatty Liver Disease in Type 2 Diabetic Rats. Can J Gastroenterol Hepatol 2022; 2022:2868904. [PMID: 35186807 PMCID: PMC8856812 DOI: 10.1155/2022/2868904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND At present, nonalcoholic fatty liver disease (NAFLD) does not have an approved pharmacologic therapy. The present study investigated the protective effects and possible mechanisms of milk thistle (Silybum marianum L.) and artichoke (Cynara scolymus L.) in treating NAFLD in type 2 diabetic rats. METHODS The NAFLD was established in rats after four weeks of type 2 diabetes induction. The animals were treated with pharmaceutical preparations of milk thistle (Livergol®) and artichoke (Atheromod-B®) extracts for eight weeks. After the end of the intervention, oral glucose tolerance, the serum parameters of oxidative stress, liver functional tests, and lipid profiles were evaluated. Histopathological changes were assessed by hematoxylin and eosin staining. RESULTS Treatment with preparations of milk thistle and artichoke nonsignificantly improved glucose tolerance in diabetic rats. Both preparations significantly improved serum superoxide dismutase activity and the level of malondialdehyde. Although treatment with milk thistle reduced serum activity of aspartate aminotransferase and serum levels of triglyceride (TG), total cholesterol, and low-density lipoprotein-cholesterol, artichoke extracts only attenuated the serum level of TG. Milk thistle also effectively protected the liver from histological changes. CONCLUSIONS Milk thistle could be a promising pharmacological option for the treatment of NAFLD. Nonetheless, long-term randomized clinical trials are necessary to confirm the observed results.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirkhani
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Zhang Z, Meng Y, Wang Z, Mei Y, Gao S, Wu Y, Du S. Discovery of Potent Glucokinase and PPARγ Dual-Target Agonists through an Innovative Scheme for Regioselective Modification of Silybin. ACS OMEGA 2022; 7:3812-3822. [PMID: 35128289 PMCID: PMC8811767 DOI: 10.1021/acsomega.1c06778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 06/02/2023]
Abstract
Glucokinase (GK) and PPARγ are important targets for antidiabetic use. Silybin is one of the major active ingredients of Silybum marianum. The regioselective modification of the five hydroxyl groups in the silybin structure has always been a challenge. In this study, we found that silybin was an agonist of GK and PPARγ. A novel synthesis scheme of silybin derivatives was designed, and a series of novel silybin derivatives has been synthesized. The derivative 8d showed relatively strong activation activity for GK and PPARγ in enzyme activity and transactivation assays (GK activation fold: 1.86; PPARγ transactivation activation percentage: 90.32%). This research suggests that silybin and its derivatives could be used as novel GK and PPARγ dual-target agonists.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Yanqiu Meng
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Zhan Wang
- Analysis
and Testing Center, Shenyang University
of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Yu Mei
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Shite Gao
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Yuejiao Wu
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| | - Shuxian Du
- Department
of Pharmacy and Bioengineering, Shenyang
University of Chemical Technology, Shenyang, Liaoning 100142, China
| |
Collapse
|
25
|
Li Y, Luo WW, Cheng X, Xiang HR, He B, Zhang QZ, Peng WX. Curcumin attenuates isoniazid-induced hepatotoxicity by the upregulating SIRT1/PGC-1α/NRF1 pathway. J Appl Toxicol 2022; 42:1192-1204. [PMID: 35032049 DOI: 10.1002/jat.4288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
As a serious infectious disease, tuberculosis threatens global public health. Isoniazid is the first-line drug not only in active tuberculosis but also in its prevention. Severe hepatotoxicity greatly limits its use. Curcumin, extracted from turmeric, has been found to relieve isoniazid-induced hepatotoxicity. However, the mechanism of isoniazid-induced hepatotoxicity and the protective effects of curcumin are not yet understood completely. We established both cell and animal models about isoniazid-induced hepatotoxicity, and investigated the new mechanism of curcumin against isoniazid-induced liver injury. The experimental data in our study demonstrated that curcumin ameliorated isoniazid-mediated liver oxidative stress. The protective effects of curcumin were demonstrated confirmed to be correlated with upregulating SIRT1/PGC-1α/NRF1 pathway. Western blot revealed that while inhibiting SIRT1 by the siRNA1 (a SIRT1 inhibitor), the expressions of SIRT1, PGC-1α/Ac-PGC-1α, and NRF1 decreased, and the protective effect that curcumin exerted on isoniazid-treated L-02 cells was significantly attenuated. Furthermore, curcumin improved liver functions and reduced necrosis of the isoniazid-treated BALB/c mice, accompanied by downregulating oxidative stress and inflammation in liver. Western blot revealed that curcumin treatment activates the SIRT1/PGC-1α/NRF1 pathway in the isoniazid-treated BALB/c mice. In conclusion, we found one mechanism of isoniazid-induced hepatotoxicity was downregulating the SIRT1/PGC-1α/NRF1 pathway, and curcumin attenuated this hepatotoxicity by activating it. Our study provided a novel approach and mechanism for the treatment of isoniazid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Wen Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
27
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
28
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
29
|
Dallio M, Masarone M, Romeo M, Tuccillo C, Morisco F, Persico M, Loguercio C, Federico A. PNPLA3, TM6SF2, and MBOAT7 Influence on Nutraceutical Therapy Response for Non-alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Front Med (Lausanne) 2021; 8:734847. [PMID: 34692725 PMCID: PMC8531439 DOI: 10.3389/fmed.2021.734847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: PNPLA3, TM6SF2, and MBOAT7 genes play a crucial role in non-alcoholic fatty liver disease (NAFLD) development and worsening. However, few data are available on their treatment response influence. The aim of this trial is to explore the effect derived from silybin-phospholipids complex (303 mg of silybin-phospholipids complex, 10 μg of vitamin D, and 15 mg of vitamin E twice a day for 6 months) oral administration in NAFLD patients carrying PNPLA3-rs738409, TM6SF2-rs58542926, or MBOAT7-rs641738 genetic variants. Materials and Methods: In all, 92 biopsy-proven NAFLD patients were grouped in 30 NAFLD wild type controls, 30 wild type treated patients, and 32 mutated treated ones. We assessed glycemia (FPG), insulinemia, HOMA-IR, aspartate and alanine aminotransferases (AST, ALT), C-reactive protein (CRP), thiobarbituric acid reactive substance (TBARS), stiffness, controlled attenuation parameter (CAP), dietary daily intake, and physical activity at baseline and end of treatment. Results: The wild-type treated group showed a significant improvement of FPG, insulinemia, HOMA-IR, ALT, CRP, and TBARS (p < 0.05), whereas no improvements were recorded in the other two study groups. NAFLD wild type treated patients showed higher possibilities of useful therapeutic outcome (p < 0.01), obtained from the prescribed therapeutic regimen, independently from age, sex, comorbidities, medications, CAP, and stiffness in comparison to the mutated group. Discussion: The assessed mutations are independently associated with no response to a silybin-based therapeutic regimen and could be considered as useful predictive markers in this context. Clinical Trial Registry Number: www.ClinicalTrials.gov, identifier: NCT04640324.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Lu MC, Lee IT, Hong LZ, Ben-Arie E, Lin YH, Lin WT, Kao PY, Yang MD, Chan YC. Coffeeberry Activates the CaMKII/CREB/BDNF Pathway, Normalizes Autophagy and Apoptosis Signaling in Nonalcoholic Fatty Liver Rodent Model. Nutrients 2021; 13:nu13103652. [PMID: 34684653 PMCID: PMC8541094 DOI: 10.3390/nu13103652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) shows extensive liver cell destruction with lipid accumulation, which is frequently accompanied by metabolic comorbidities and increases mortality. This study aimed to investigate the effects of coffeeberry (CB) on regulating the redox status, the CaMKII/CREB/BDNF pathway, autophagy, and apoptosis signaling by a NAFLD rodent model senescence-accelerated mice prone 8 (SAMP8). Three-month-old male SAMP8 mice were divided into a control group and three CB groups (50, 100, and 200 mg/kg BW), and fed for 12 weeks. The results show that CB reduced hepatic malondialdehyde and carbonyl protein levels. CB significantly enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) and reduced the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio. In addition, CB increased the silent information regulator T1 level, promoted Beclin 1 and microtubule-associated protein light chain 3 II expressions, and reduced phosphorylated mammalian target of rapamycin and its downstream p-p70s6k levels. CB also inhibited the expressions of apoptosis-related factors poly (ADP-ribose) polymerase-1 and the apoptosis-inducing factor. In conclusion, CB might protect the liver by reducing oxidative stress, activating the CaMKII/CREB/BDNF pathway, and improving autophagic and apoptotic expressions in a dose-dependent manner.
Collapse
Affiliation(s)
- Meng-Chun Lu
- Department of Clinical Nutrition, China Medical University Hospital, Taichung 406040, Taiwan;
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Ling-Zong Hong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Eyal Ben-Arie
- Graduate Institute of Acupuncture Science, Collage of Chinese Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Wei-Ting Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
| | - Pei-Yu Kao
- Division of Thoracic Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Mei-Due Yang
- Division of General Surgery, Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan;
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan; (Y.-H.L.); (W.-T.L.)
- Correspondence:
| |
Collapse
|
31
|
Chen X, Huang J. Mangiferin inhibits hypoxia/reoxygenation-induced alveolar epithelial cell injury via the SIRT1/AMPK signaling pathway. Exp Ther Med 2021; 22:1220. [PMID: 34603517 PMCID: PMC8453333 DOI: 10.3892/etm.2021.10654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) is one of the complications that can occur after lung transplantation and may lead to morbidity and mortality. Mangiferin (MAF) is a naturally occurring glucosyl xanthone that has been documented to possess anti-inflammatory, immunomodulatory and potent antioxidant effects. The purpose of the present study was to investigate the effect of MAF on LIRI using a hypoxia-reoxygenation (H/R) cell model. In the present study, the viability of lung alveolar epithelial cells (A549) and H/R-A549 were detected by MTT assay. ELISA was used to evaluate the expression levels of IL-6 and IL-1β. TUNEL assay and western blotting were used to evaluate the apoptosis. In addition, H/R-A549 cells were treated with sirtinol, which is known inhibitor of sirtuin 1 (SIRT1) activity, to determine the effects of MAF on proteins associated with the SIRT1/5'AMP-activate protein kinase (AMPK) signaling pathway using western blotting. The results showed that 20 µM MAF exerted a protective effect on A549 cells against H/R mediating no clear cytotoxic effects. In terms of inflammation, MAF reduced IL-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase expression, which was accompanied by activation of the SIRT1/AMPK signaling pathway. In addition, compared with those in the group treated with sirtinol, expression of SIRT1, Bcl-2 and AMPK activity were elevated in MAF-treated H/R-A549 cells, whereas the expression of Bax, cleaved caspase-3 and cleaved caspase-9 was suppressed. TUNEL analysis of H/R-A549 cells treated with MAF in combination with sirtinol revealed that treatment with sirtinol blocked the SIRT1/AMPK signaling pathway and increased the apoptosis rate compared with the MAF group. Taken together, results of the present study revealed that MAF could inhibit lung H/R cell injury through the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Juanjuan Huang
- Department of Traditional Chinese Medicine, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
32
|
Li X, Li C, Li Y, Liu C, Liang X, Liu T, Liu Z. Sodium nitroprusside protects HFD induced gut dysfunction via activating AMPKα/SIRT1 signaling. BMC Gastroenterol 2021; 21:359. [PMID: 34600475 PMCID: PMC8487517 DOI: 10.1186/s12876-021-01934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Activation of Adenosine 5′-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the mechanism. Methods SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intestinal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 pathway and gut barrier indicators were investigated. Results SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal permeability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and the activated AMPKα/SIRT1 signaling. Conclusions The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by activating the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuanqi Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Cong Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
33
|
Geethangili M, Lin CW, Mersmann HJ, Ding ST. Methyl Brevifolincarboxylate Attenuates Free Fatty Acid-Induced Lipid Metabolism and Inflammation in Hepatocytes through AMPK/NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms221810062. [PMID: 34576229 PMCID: PMC8469305 DOI: 10.3390/ijms221810062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases worldwide. This study examined the potential protective effects of a naturally occurring polyphenolic compound, methyl brevifolincarboxylate (MBC) on fatty liver injury in vitro. The results showed that MBC at its non-cytotoxic concentrations, reduced lipid droplet accumulation and triglyceride (TG) levels in the oleic acid (OA)-treated human hepatocarcinoma cell line, SK-HEP-1 and murine primary hepatocytes. In OA-treated SK-HEP-1 cells and primary murine hepatocytes, MBC attenuated the mRNA expression levels of the de novo lipogenesis molecules, acetyl-coenzyme A carboxylase (Acc1), fatty acid synthase (Fasn) and sterol regulatory element binding protein 1c (Srebp1c). MBC promoted the lipid oxidation factor peroxisome proliferator activated receptor-α (Pparα), and its target genes, carnitine palmitoyl transferase 1 (Cpt1) and acyl-coenzyme A oxidase 1 (Acox1) in both the SK-HEP-1 cells and primary murine hepatocytes. The mRNA results were further supported by the attenuated protein expression of lipogenesis and lipid oxidation molecules in OA-treated SK-HEP-1 cells. The MBC increased the expression of AMP activated protein kinase (AMPK) phosphorylation. On the other hand, MBC treatment dampened the inflammatory mediator's, tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), IL-8, and IL-1β secretion, and nuclear factor (NF)-κB expression (mRNA and protein) through reduced reactive oxygen species production in OA-treated SK-HEP-1 cells. Taken together, our results demonstrated that MBC possessed potential protective effects against NAFLD in vitro by amelioration of lipid metabolism and inflammatory markers through the AMPK/NF-κB signaling pathway.
Collapse
|
34
|
Betsou A, Lambropoulou M, Georgakopoulou AE, Kostomitsopoulos N, Konstandi O, Anagnostopoulos K, Tsalikidis C, Simopoulos CE, Valsami G, Tsaroucha AK. The hepatoprotective effect of silibinin after hepatic ischemia/reperfusion in a rat model is confirmed by immunohistochemistry and qRT-PCR. J Pharm Pharmacol 2021; 73:1274-1284. [PMID: 33847359 DOI: 10.1093/jpp/rgab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES We investigated the positive effect of silibinin after IV administration as silibinin-hydroxypropyl-β-cyclodextrin lyophilized product, by measuring gene expression and liver tissue protein levels of tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, matrix metalloproteinases matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases-2. METHODS 63 Wistar rats of age 13.24±4.40 weeks underwent ischemia/reperfusion (I/R) injury of the liver. The animals were randomized into three groups: Sham (S; n = 7); Control (C; n-28); silibinin (Si; n-28). The C and Si groups underwent 45 min ischemia. Si received silibinin-hydroxypropyl-β-cyclodextrin intravenously immediately before reperfusion at a dose of 5 mg/kg. Both groups were further divided into 4 subgroups, based on euthanasia time (i.e., 60, 120, 180 and 240 min). KEY FINDINGS qRT-PCR results confirmed the statistically significant reduction of the expression of the pro-inflammatory factors at 240 min after I/R injury (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases (matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) and the increase of tissue inhibitor of matrix metalloproteinases-2 in liver tissue in the Si group. Moreover, results of immunohistochemistry levels confirmed that at 240 min pro-inflammatory factors (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases ( matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) had a statistically significantly lower expression in the Si group while tissue inhibitor of matrix metalloproteinases-2 had a higher expression. CONCLUSIONS Silibinin may have a beneficial effect on the protection of the liver.
Collapse
Affiliation(s)
- Afrodite Betsou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Ourania Konstandi
- Faculty of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos E Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Bioethics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
35
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
The Combination of Berberine, Tocotrienols and Coffee Extracts Improves Metabolic Profile and Liver Steatosis by the Modulation of Gut Microbiota and Hepatic miR-122 and miR-34a Expression in Mice. Nutrients 2021; 13:nu13041281. [PMID: 33924725 PMCID: PMC8069822 DOI: 10.3390/nu13041281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic-fatty liver disease (NAFLD) is spreading worldwide. Specific drugs for NAFLD are not yet available, even if some plant extracts show beneficial properties. We evaluated the effects of a combination, composed by Berberis Aristata, Elaeis Guineensis and Coffea Canephora, on the development of obesity, hepatic steatosis, insulin-resistance and on the modulation of hepatic microRNAs (miRNA) levels and microbiota composition in a mouse model of liver damage. C57BL/6 mice were fed with standard diet (SD, n = 8), high fat diet (HFD, n = 8) or HFD plus plant extracts (HFD+E, n = 8) for 24 weeks. Liver expression of miR-122 and miR-34a was evaluated by quantitativePCR. Microbiome analysis was performed on cecal content by 16S rRNA sequencing. HFD+E-mice showed lower body weight (p < 0.01), amelioration of insulin-sensitivity (p = 0.021), total cholesterol (p = 0.014), low-density-lipoprotein-cholesterol (p < 0.001), alanine-aminotransferase (p = 0.038) and hepatic steatosis compared to HFD-mice. While a decrease of hepatic miR-122 and increase of miR-34a were observed in HFD-mice compared to SD-mice, both these miRNAs had similar levels to SD-mice in HFD+E-mice. Moreover, a different microbial composition was found between SD- and HFD-mice, with a partial rescue of dysbiosis in HFD+E-mice. This combination of plant extracts had a beneficial effect on HFD-induced NAFLD by the modulation of miR-122, miR-34a and gut microbiome.
Collapse
|
37
|
Yang L, Liu Q, Zhang H, Wang Y, Li Y, Chen S, Song G, Ren L. Silibinin improves nonalcoholic fatty liver by regulating the expression of miR‑122: An in vitro and in vivo study. Mol Med Rep 2021; 23:335. [PMID: 33760189 PMCID: PMC7974327 DOI: 10.3892/mmr.2021.11974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Silibinin is a flavonoid that improves fatty liver and insulin resistance. To elucidate the effect of silibinin on lipid deposition and the potential molecular mechanism, the present study conducted in vivo and in vitro experiments. In the in vivo experiments, mice were randomly divided into control, high‑fat and silibinin groups, while HepG2 cells were randomly divided into control, palmitic acid intervention and silibinin intervention groups. The mRNA, protein and miR‑122 expression associated with hepatic lipid metabolism were detected in each group. The results demonstrated that silibinin reduced the triglyceride content, miR‑122 expression and the mRNA and protein expressions of fatty acid synthase (FAS) and acetyl‑CoA carboxylase (ACC). Silibinin increased the mRNA and protein expression of carnitine palmitoyl transferase 1A (CPT1A). In the present study, HepG2 cells cultured with palmitate were treated with silibinin following overexpression of micro RNA (miR) 122. The results demonstrated that the mRNA and protein expression of FAS and ACC was increased, while that of CPT1A was decreased. Therefore, it could be deduced that silibinin improved lipid metabolism by reducing the expression of miR‑122 and inhibiting the expression of miR‑122 may be a new therapeutic target to improve fatty liver disease.
Collapse
Affiliation(s)
- Liying Yang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Qianqian Liu
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - He Zhang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yichao Wang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Li
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuchun Chen
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Guangyao Song
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Luping Ren
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
38
|
Oridonin interferes with simple steatosis of liver cells by regulating autophagy. Tissue Cell 2021; 72:101532. [PMID: 33823340 DOI: 10.1016/j.tice.2021.101532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Oridonin has significant liver-protective effects, but its effect on liver steatosis has not been reported. We investigated the effects of oridonin on liver steatosis by cell cultures. The optimal experimental concentration of oridonin was determined through cytotoxicity experiments. A simple steatosis liver cell model was induced using free fatty acids (FFA). After adding oridonin to the FFA-induced cell model for 24 h, the lipid droplets and triglyceride (TG) content in the cells were measured by Oil Red O staining and TG kits. The expressions of autophagy-related markers (cyclin dependent kinases inhibitor 1a (p21), Beclin-1, microtubule-associated protein light chain 3 (LC3)-I and LC3-II, protein kinase B (AKT), phosphorylated-AKT (p-AKT), AMP-activated protein kinase (AMPK), and phosphorylated-AMPK (p-AMPK)) were detected by Western blot. Based on the results, the cell model was further treated by autophagy inhibitor 3-methyladenine (3-MA) to determine the degree of steatosis and the expressions of autophagy-related factors. Oridonin at a concentration higher than 10 μmol/L caused cytotoxicity to the cells. Adding 10 μmol/L oridonin to the FFA-induced cell model effectively reduced lipid droplets and TG content in the cells. Oridonin up-regulated p21, Beclin-1 and LC3-II expressions, but down-regulated those of p62 and LC3-I. Also, oridonin increased the ratios of LC3-II/LC3-I and p-AMPK/AMPK, but reduced that of p-AKT/AKT. With the addition of 3-MA, the effect of oridonin on reducing steatosis was partially reversed, and the autophagy was inhibited. This study found that oridonin can activate autophagy, thereby preventing simple steatosis of liver cells.
Collapse
|
39
|
Li G, Zhong S. MicroRNA-217 inhibits the proliferation and invasion, and promotes apoptosis of non-small cell lung cancer cells by targeting sirtuin 1. Oncol Lett 2021; 21:386. [PMID: 33777209 PMCID: PMC7988702 DOI: 10.3892/ol.2021.12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy worldwide. MicroRNA (miR)-217 and sirtuin 1 (SIRT1) have been reported to play significant roles in different types of cancer, such as osteosarcoma and prostate cancer; however, the association between miR-217 and SIRT1 in the cell proliferation, apoptosis and invasion of NSCLC remain unknown. Thus, the present study aimed to investigate the roles of miR-217 and SIRT1 in NSCLC. The expression levels of miR-217 and SIRT1 were detected via reverse transcription-quantitative (RT-q)PCR and western blot analyses. The effect of miR-217 on A549 and H1299 cell proliferation, apoptosis and invasion was assessed via the Cell Counting Kit-8, flow cytometry and Transwell assays, respectively. In addition, the association between SIRT1 and miR-217 was predicted using the TargetScan database, and verified via the dual-luciferase reporter assay, and RT-qPCR and western blot analyses. The results demonstrated that miR-217 expression was significantly downregulated, while SIRT1 expression was significantly upregulated in A549 and H1299 cells compared with the human bronchial epithelial cells. Furthermore, transfection with miR-217 mimic significantly inhibited A549 and H1299 cell proliferation and invasion, and induced A549 and H1299 cell apoptosis. The results of the dual-luciferase reporter assay and western blot analysis confirmed that SIRT1 is a target gene of miR-217. In addition, miR-217 inhibited the activation of AMP-activated protein kinase (AMPK) and mTOR signaling. Taken together, the results of the present study suggest that miR-217 inhibits A549 and H1299 cell proliferation and invasion, and induces A549 and H1299 cell apoptosis by targeting SIRT1 and inactivating the SIRT1-mediated AMPK/mTOR signaling pathway. Thus, miR-217 may be used as a potential therapeutic target for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Guangshun Li
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Shouping Zhong
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
40
|
Liang H, Cheng R, Wang J, Xie H, Li R, Shimizu K, Zhang C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153427. [PMID: 33296813 DOI: 10.1016/j.phymed.2020.153427] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a non-specific chronic inflammatory disease. The incidence of UC in China has been increasing in recent years. Mogrol is an aglycone of mogrosides. Studies have shown that mogrosides have anti-oxygenation, anti-inflammatory, and laxative effects as well as other biological activities. PURPOSE To investigate the beneficial effects of mogrol on UC and identify its underlying mechanisms. STUDY DESIGN We used the dextran sodium sulphate (DSS)-induced UC model in mice, TNF-α-damaged NCM460 colonic epithelial cells, macrophage cells THP-M stimulated with lipopolysaccharide (LPS) / adenosine triphosphate (ATP) and compound C (an AMPK inhibitor) to confirm the key role of AMPK (AMP-activated protein kinase) activation. METHODS Histological evaluation, immunohistochemical staining, Western blot analysis, immunofluorescence assay and quantitative real time-PCR were used in the study. RESULTS Oral administration of mogrol (5 mg/kg/daily) in vivo significantly attenuated pathological colonic damage, inhibited inflammatory infiltration and improved the abnormal expression of NLRP3 inflammasome in colonic mucosa via the AMPK and NF-κB signaling pathways. In vitro, mogrol protected against intestinal epithelial barrier dysfunction by activating AMPK in TNF-α-treated NCM460 cells and inhibited the production of inflammatory mediator in LPS-stimulated THP-M cells. Furthermore, mogrol's effects were reversed by compound C intervention in DSS-induced UC model. CONCLUSION Mogrol exerts protective effects in experimental UC and inhibits production of inflammatory mediators through activation of AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Han Liang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiaoyang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Renshi Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| | - Kuniyoshi Shimizu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
41
|
Tighe SP, Akhtar D, Iqbal U, Ahmed A. Chronic Liver Disease and Silymarin: A Biochemical and Clinical Review. J Clin Transl Hepatol 2020; 8:454-458. [PMID: 33447529 PMCID: PMC7782115 DOI: 10.14218/jcth.2020.00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is an under-recognized epidemic that continues to increase in prevalence and is a major health concern. Silymarin, the active compound of Silybum marianum (Milk thistle), has historically been used in CLD. A significant barrier to silymarin use is its poor bioavailability. Attempts at improving the bioavailability of silymarin have led to a better understanding of formulation methods, pharmacokinetics, dosing, and associated drug interactions. Clinically, silymarin exerts its hepatoprotective effects through antioxidative, antifibrotic, anti-inflammatory, antitoxin, and anticancerous mechanisms of actions. Despite the use of silymarin being extensively studied in alcoholic liver disease, metabolic-associated fatty liver disease, viral hepatitis, and drug-induced liver injury, the overall efficacy of silymarin remains unclear and more research is warranted to better elucidate the role of silymarin in CLD, specifically regarding its anti-inflammatory effects. Here, we review the current biochemical and clinical evidence regarding silymarin in CLD.
Collapse
Affiliation(s)
- Sean P. Tighe
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daud Akhtar
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Umair Iqbal
- Department of Gastroenterology and Hepatology, Geisinger Commonwealth School of Medicine, Danville, PA, USA
- *Correspondence to: Umair Iqbal, Department of Gastroenterology and Hepatology, Geisinger Commonwealth School of Medicine, Danville, PA 17821, USA. Tel: +1-570-271-6211, E-mail:
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
42
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
43
|
Yang F, Huang P, Shi L, Liu F, Tang A, Xu S. Phoenixin 14 Inhibits High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Experimental Mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3865-3874. [PMID: 33061293 PMCID: PMC7519838 DOI: 10.2147/dddt.s258857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. The development of NAFLD is closely associated with hepatic lipotoxicity, inflammation, and oxidative stress. The new concept of NAFLD treatment is to seek molecular control of lipid metabolism and hepatic redox hemostasis. Phoenixin is a newly identified neuropeptide with pleiotropic effects. This study investigated the effects of phoenixin 14 against high-fat diet (HFD)-induced NAFLD in mice. Materials and Methods For this study, we used HFD-induced NAFLD mice models to analyze the effect of phonenixin14. The mice were fed on HFD and normal diet and also given phoenixin 14 (100 ng/g body weight) by gastrogavage for 10 weeks. The peripheral blood samples were collected for biochemical assays. The liver tissues were examined for HFD-induced tissue fibrosis, lipid deposition and oxidative activity including SOD, GSH, and MDA. The liver tissues were analyzed for the inflammatory cytokines and oxidative stress pathway genes. Results The results indicate that phoenixin 14 significantly ameliorated HFD-induced obesity and fatty liver. The biochemical analysis of blood samples revealed that phoenixin 14 ameliorated HFD-induced elevated circulating alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, and triglyceride levels, suggesting that phoenixin 14 has a protective role in liver function and lipid metabolism. Hematoxylin-eosin (HE) and Oil Red O staining of the liver showed that phoenixin 14 alleviated HFD-induced tissue damage and lipid deposition in the liver. Furthermore, the mice administered with phoenixin 14 had increased hepatic SOD activity, increased production of GSH and reduced MDA activity, as well as reduced production of TNF-α and IL-6 suggesting that phoenixin 14 exerts beneficial effects against inflammation and ROS. The findings suggest an explanation of how mechanistically phoenixin 14 ameliorated HFD-induced reduced activation of the SIRT1/AMPK and NRF2/HO-1 pathways. Conclusion Collectively, this study revealed that phoenixin 14 exerts a protective effect in experimental NAFLD mice. Phoenixin could be of the interest in preventive modulation of NAFLD.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Ping Huang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Liandong Shi
- Department of Ultrasonography, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Feng Liu
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Aimei Tang
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Shaohui Xu
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| |
Collapse
|
44
|
Tsaroucha AK, Korovesis GN, Valsami G, Lambropoulou M, Kollaras V, Anagnostopoulos C, Kostomitsopoulos N, Zerbini E, Simopoulos C. Silibinin-hydroxypropyl-β-cyclodextrin (SLB-HP-β-CD) complex prevents apoptosis in liver and kidney after hepatic ischemia-reperfusion injury. Food Chem Toxicol 2020; 145:111731. [PMID: 32891719 DOI: 10.1016/j.fct.2020.111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/05/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND We investigated the protective effect of silibinin on rat liver and kidney after hepatic inschemia/reperfusion (I/R) injury. METHODS AND MATERIALS Sixty three male Wistar-type rats (median age 13 weeks; average weight 314 g) were subjected to I/R injury of the liver. They were randomly divided into three groups: Sham (n = 7), Control (C, n = 28) and Silibinin (Si, n = 28). The last group received intravenously silibinin. The C and Si groups were each subdivided in four subgroups according to euthanasia times (i.e., 60, 120, 180, 240 min). We assessed expression of caspase-3 and TUNEL assay, and biochemical and histological parameters. RESULTS At 240 min, expression of caspase-3 and TUNEL assay were statistically significantly lower in the Si compared to the C group for both liver and kidney. SGOT and SGPT were also statistically significantly lower in the Si than in the C group at all time points. Histological parameters of the liver were also improved in the Si group. CONCLUSION Silibinin was found to exhibit a protective effect on liver and kidney after hepatic I/R injury. The present results are encouraging for further studies and future clinical application.
Collapse
Affiliation(s)
- Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, Athens, Greece.
| | - Georgios N Korovesis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Kollaras
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Eleni Zerbini
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
45
|
Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci 2020; 256:117990. [DOI: 10.1016/j.lfs.2020.117990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
|
46
|
Naito Y, Ushiroda C, Mizushima K, Inoue R, Yasukawa Z, Abe A, Takagi T. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. J Clin Biochem Nutr 2020; 67:2-9. [PMID: 32801462 PMCID: PMC7417793 DOI: 10.3164/jcbn.20-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. Recent reports have indicated the crucial role of gut microbiota and their metabolites in the progression of NAFLD. In the present review, we demonstrated the influence of oral administration of (-)-epigallocatechin-3-gallate (EGCG) on the gut microbiota, serum bile acid profile, and gene expression in the liver in mice fed a high-fat diet (HFD). EGCG significantly inhibited the increase in histological fatty deposit and triglyceride accumulation in the liver induced by HFD, and improved intestinal dysbiosis. One of important findings is that the abundance of Proteobacteria and Defferibacteres phylums increased markedly in the HFD group, and this increase was significantly suppressed in the EGCG group. Interestingly, taurine-conjugated cholic acid (TCA) increased in the HFD group, like the mirror image against a marked decrease in the cholic acid (CA) value, and this increase was markedly inhibited in the EGCG group. TCA is not a simple serum biomarker for liver injury but TCA may be a causal factor to disturb lipid metabolism. The distribution of correlation coefficients by Heatmap analysis showed that the abundance of Akkermansia and Parabacteroides genus showed a positive correlation with CA and a negative correlation with TCA, and significantly increased in the EGCG group as compared with the HFD group. In addition, nutrigenomics approaches demonstrated that sirtuin signaling, EIF2 pathway and circadian clock are involved in the anti-steatotic effects of EGCG. In the present paper, we summarized recent update data of EGCG function focusing on intestinal microbiota and their interaction with host cells.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Endoscopy and Ultrasound Medicine, University Hospital, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Zenta Yasukawa
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.,Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
47
|
Santos FO, Correia BRO, Marinho TS, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-steatotic linagliptin pleiotropic effects encompasses suppression of de novo lipogenesis and ER stress in high-fat-fed mice. Mol Cell Endocrinol 2020; 509:110804. [PMID: 32259637 DOI: 10.1016/j.mce.2020.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of linagliptin treatment on hepatic energy metabolism and ER stress in high-fat-fed C57BL/6 mice. METHODS Forty male C57BL/6 mice, three months of age, received a control diet (C, 10% of lipids as energy, n = 20) or high-fat diet (HF, 50% of lipids as energy, n = 20) for 10 weeks. The groups were randomly subdivided into four groups to receive linagliptin, for five weeks, at a dose of 30 mg/kg/day added to the diets: C, C-L, HF, and HF-L groups. RESULTS The HF group showed higher body mass, total and hepatic cholesterol levels and total and hepatic triacylglycerol levels than the C group, all of which were significantly diminished by linagliptin in the HF-L group. The HF group had higher hepatic steatosis than the C group, whereas linagliptin markedly reduced the hepatic steatosis (less 52%, P < 0.001). The expression of Sirt1 and Pgc1a was more significant in the HF-L group than in the HF group. Linagliptin also elicited enhanced GLP-1 concentrations and a reduction in the expression of the lipogenic genes Fas and Srebp1c. Besides, HF-L showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45 coupled with reduced apoptotic nuclei immunostaining. CONCLUSION Linagliptin caused a marked reduction in hepatic steatosis as a secondary effect of its glucose-lowering property. NAFLD countering involved reduced lipogenesis, increased beta-oxidation, and relief in endoplasmic reticulum stress, leading to reduced apoptosis and better preservation of the hepatic structure. Therefore, linagliptin may be used, preferably in diabetic patients, to avoid the progression of hepatic steatosis.
Collapse
Affiliation(s)
- F O Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R O Correia
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T S Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Uchida D, Takaki A, Oyama A, Adachi T, Wada N, Onishi H, Okada H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020; 12:nu12061576. [PMID: 32481552 PMCID: PMC7352310 DOI: 10.3390/nu12061576] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis B and C and non-alcoholic fatty liver disease (NAFLD) have been widely acknowledged to be the leading causes of liver cirrhosis and hepatocellular carcinoma. As anti-viral treatment progresses, the impact of NAFLD is increasing. NAFLD can coexist with chronic viral hepatitis and exacerbate its progression. Oxidative stress has been recognized as a chronic liver disease progression-related and cancer-initiating stress response. However, there are still many unresolved issues concerning oxidative stress, such as the correlation between the natural history of the disease and promising treatment protocols. Recent findings indicate that oxidative stress is also an anti-cancer response that is necessary to kill cancer cells. Oxidative stress might therefore be a cancer-initiating response that should be down regulated in the pre-cancerous stage in patients with risk factors for cancer, while it is an anti-cancer cell response that should not be down regulated in the post-cancerous stage, especially in patients using anti-cancer agents. Antioxidant nutrients should be administered carefully according to the patients’ disease status. In this review, we will highlight these paradoxical effects of oxidative stress in chronic liver diseases, pre- and post-carcinogenesis.
Collapse
|
49
|
Shen Y, Zhao H, Wang Z, Guan W, Kang X, Tai X, Sun Y. Silibinin declines blue light-induced apoptosis and inflammation through MEK/ERK/CREB of retinal ganglion cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4059-4065. [PMID: 31631701 DOI: 10.1080/21691401.2019.1671430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: This study aimed to assess the protective effects of silibinin on blue light-emitting diode (LED)-induced retinal ganglion cells (RGCs) damage. Methods: Silibinin was applied in RGCs damage in vitro model to test its protective effects. Cell viability was assessed with the MTT method and cell apoptosis was evaluated by TUNEL and Annexin V/propidium iodide staining. The expressions of apoptosis related proteins and influenced signalling pathways were measured using western blotting and immunohistochemistry. Inflammatory factors induced by RGC damage were detected using ELISA method. Results: It was found that silibinin in 50 and 100 μM treatment showed a significant protective effect in RGCs under blue light damage. Apoptosis assay showed that silibinin treatment could significantly improve the apoptotic status of RGCs. When the potentially affected signal pathway was considered, blue light would down-regulate the expression of MEK1/ERK/CREB. The levels of inflammatory factors (TNF-α, IL-1β, IL-6 and IL-10) were significantly regulated by silibinin treatment. Conclusions: Silibinin pretreatment would demonstrate protective effect against blue light induced acute RGCs damage. Silibinin treatment has a direct suppression of apoptosis and inflammation through the activation of MEK/ERK/CREB pathway in vitro.
Collapse
Affiliation(s)
- Ying Shen
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Haixia Zhao
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Zhaoge Wang
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Wenying Guan
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Xin Kang
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Xue Tai
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| | - Yaru Sun
- Department of Myopia Laser Treatment, The Affiliated Hospital of Inner Mongolia Medical University , Inner Mongolia , China
| |
Collapse
|
50
|
Sahin E, Bagci R, Bektur Aykanat NE, Kacar S, Sahinturk V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J Food Biochem 2020; 44:e13194. [PMID: 32189355 DOI: 10.1111/jfbc.13194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important health problem. The prevalence of NAFLD is increasing, especially in the Western countries. Although there are several intracellular pathways in NAFLD, endoplasmic reticulum (ER) stress has recently gained importance. Silymarin is an important liver-protective biological molecule. In light of this information, we investigated mice for the effect of silymarin on ER stress in the NAFLD model. In our study, the mice were randomly divided into six groups: Control, silymarin 100 and 200 mg/kg sham, fructose-induced NAFLD, and NAFLD + silymarin groups. After the last administrations, liver and blood samples were taken and hematoxylin-eosin, as well as Oil red O staining, were performed. As a result, the body and liver weights, lipid profile, AST, ALT, and glucose levels, along with the ER stress markers, increased in the NAFLD-only group. Silymarin treatments reversed most of these changes. Particularly, 200 mg/kg silymarin was more effective. PRACTICAL APPLICATIONS: According to the results, silymarin attenuated NAFLD by decreasing the ER stress proteins GRP78 and XBP-1. Silymarin may be therapeutic in the treatment of NAFLD as well as other ER-stress-based diseases. Silymarin can also be taken with food for prophylactic purposes.
Collapse
Affiliation(s)
- Erhan Sahin
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ridvan Bagci
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuriye Ezgi Bektur Aykanat
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Faculty of Medicine, Histology and Embryology Department, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|