1
|
Ismail MF, Lim SM, Lim FT, Ramasamy K. In Vitro and In Vivo Characterisation of Lactiplantibacillus plantarum LAB12 in Pea Protein-Alginate Microcapsules. Probiotics Antimicrob Proteins 2025; 17:569-587. [PMID: 37816988 DOI: 10.1007/s12602-023-10171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small (< 350 µm), substantiated by the improved surface smoothness and uniform dispersion of probiotics in the Alg-PPi core. The findings indicated that microencapsulation enhanced thermal stability of L. plantarum LAB12. The microencapsulated L. plantarum LAB12 remained highly viable (80%) despite exposure to 100 °C for 5 min. The microencapsulated cell number during storage at 4 and 25 °C for 8 weeks was greater than 7 log CFU g-1. L. plantarum LAB12 encapsulated in Alg-PPi10 exhibited high viability (96%) in simulated gastric juice (at pH 1.8 for 120 min) and facilitated maximum release of probiotics (> 9 log CFU g-1) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.
Collapse
Affiliation(s)
- Muhamad Fareez Ismail
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
D’Alessandro M, Gottardi D, Arboleya S, Alvarado-Jasso GM, Parolin C, Vitali B, Lanciotti R, Gueimonde M, Patrignani F. Impact of Fermented Soy Beverages Containing Selected Vaginal Probiotics on the In Vitro Fecal Microbiota of Post-Menopausal Women. Foods 2025; 14:1022. [PMID: 40232047 PMCID: PMC11942071 DOI: 10.3390/foods14061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome of women can change after menopause, and during this phase women can also be more susceptible to vaginal dysbiosis. Recent studies have explored the probiotic potential of Lactobacillus crispatus BC4 and Lactobacillus gasseri BC9 against various pathogens and their use as co-starters in foods. However, their effects on the gut microbiota of post-menopausal women, who are more prone to dysbiosis, have not been examined. This study investigated the effects of predigested soy beverages (INFOGEST) containing BC4 and BC9 (encapsulated or not) on the composition and metabolic activity of the gut microbiota in post-menopausal women, using a fecal batch culture model. Parameters such as pH, gas, SCFAs, and microbiota composition (targeted qPCR and 16S rRNA gene sequencing) were assessed. The study, while highlighting a strong variability among donors, showed differences in gut microbiota response to the tested products. For instance, donor 2 showed a significant increase in bifidobacteria with BC4 + BC9 and E-BC9, while BC4 increased Ruminococcaceae in donors 1 and 3, and E-BC4 and E-BC9 enhanced Akkermansia in donor 1. BC4, E-BC4, E-BC9, and E-BC4 + BC9 significantly impacted metabolic activity, as measured by SCFAs, compared to other samples. However, no significant differences in gas production were observed.
Collapse
Affiliation(s)
- Margherita D’Alessandro
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
| | - Davide Gottardi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Rosalba Lanciotti
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Francesca Patrignani
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
3
|
Moraffah F, Samadi N, Abdollahi M, Ostad SN, Dolatabadi R, Pirouzzadeh M, Vatanara A. Advancing burn wound healing with an innovative in situ gelling probiotic microparticle formulation employing quality by design (QbD) principles. J Tissue Viability 2025; 34:100860. [PMID: 39874740 DOI: 10.1016/j.jtv.2025.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential. Subsequently, a formulation was designed to sustain the growth capacity of probiotics. Polymers with a high moisture absorption capacity were exclusively used to avoid powder dispersion from wounds. The formulation was stabilized through the reduction of water content using the spray-drying process. The ideal composition was identified by analyzing the influence of the spray-drying inlet temperature, polymer type, and concentrations on probiotic viability, process efficiency, swelling ratio, and flow properties of powders. Morphological analysis showed the presence of microparticles with significant exchangeable surface areas. The rheological properties of the formulation demonstrated its ability to withstand high temperatures and mechanical stress. Moreover, FTIR and DCS spectra provided evidence of interconnection between the polymers. Examination of the growth profiles of both formulated and free probiotics revealed a consistent growth rate and an extended lag time. Animal studies have shown that the optimal microparticles exhibited superior efficacy compared to the control groups across all parameters and displayed enhanced effectiveness against Pseudomonas aeruginosa. The proposed delivery method, with its simple application and prevention of normal flora transmission, may have the potential to improve burn wound infection treatments.
Collapse
Affiliation(s)
- Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Seyed Naser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Roshanak Dolatabadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Maryam Pirouzzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran.
| |
Collapse
|
4
|
Wang X, Hu J, Zhang H, Zhou P. Probiotics Encapsulated via Biological Macromolecule for Neurological Therapy and Functional Food: A Review. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10453-1. [PMID: 39821001 DOI: 10.1007/s12602-025-10453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to humans, offering significant potential for preventing and treating various diseases. Neurological disorders, driven by multifaceted factors and linked to high disability rates, have become a growing global concern, particularly in the context of an aging population. Recent studies emphasize a strong connection between dysbiosis of the gut microbiota and neurological disorders. Probiotics have emerged as promising therapeutic interventions due to their ability to modulate the gut microbiota and influence the production of key metabolites, such as short-chain fatty acids and neurotransmitters, crucial for neurological health. However, probiotic viability is often compromised, limiting their therapeutic efficacy. We propose that developing high-activity probiotic formulations, coupled with innovative delivery strategies, holds considerable promise for advancing neurological treatments. Encapsulation systems have proven effective in enhancing probiotic stability and efficacy. This review discusses advances in probiotic delivery using biological macromolecule-based encapsulation, addressing key challenges in maintaining viability during production, storage, and digestion. It also highlights emerging delivery systems, such as microencapsulation, aimed at improving stability and therapeutic effectiveness. Additionally, the review explores the potential of functional foods enriched with probiotics for neurological health. Future research should explore clinical applications of encapsulated probiotics and support the development of functional foods to enhance neurological health.
Collapse
Affiliation(s)
- Xitong Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jinhua Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Hanzhong Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
5
|
Shin S, Lee Y, Kim MJ. Oyster shell based indirect carbonation integrated with probiotic encapsulation. Sci Rep 2024; 14:24709. [PMID: 39433771 PMCID: PMC11494112 DOI: 10.1038/s41598-024-72976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Wang X, Ma Y, Liu Y, Zhang J, Jiang W, Fang X, Wang L. Preparation of a Lactobacillus rhamnosus ATCC 7469 microencapsulated-lactulose synbiotic and its effect on equol production. Food Funct 2024; 15:9471-9487. [PMID: 39193624 DOI: 10.1039/d4fo02690j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Equol is a highly active product of soy isoflavones produced by specific bacteria in the human or animal colon. However, equol production is influenced by differences in the gut flora carried by the body. Our previous research has shown that a synbiotic preparation comprising the probiotic Lactobacillus rhamnosus ATCC 7469 and the prebiotic lactulose can enhance equol production by modulating the intestinal flora. Nevertheless, the harsh environment of the gastrointestinal tract limits this capability by diminishing the number of probiotics reaching the colon. Microencapsulation of probiotics is an effective strategy to enhance their viability. In this study, probiotic gel microspheres (SA-S-CS) were prepared using an extrusion method, with sodium alginate (SA) and chitosan (CS) serving as the encapsulating materials. Scanning electron microscopy (SEM) was employed to observe the surface morphology and the internal distribution of bacteria within the microcapsules. The structural characteristics of the microcapsules were investigated using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Furthermore, the thermal stability, storage stability, probiotic viability post-simulated gastrointestinal fluid treatment, and colon release rate were examined. Finally, the impact of probiotic microencapsulation on promoting equol production by the synbiotic preparation was assessed. The results indicated that the microcapsules exhibited a spherical structure with bacteria evenly distributed on the inner surface. Studies on thermal and storage stability showed that the number of viable cells in the probiotic microcapsule group significantly increased compared to the free probiotic group. Gastrointestinal tolerance studies revealed that after in vitro simulated gastrointestinal digestion, the amount of viable cells in the microcapsules was 7 log10 CFU g-1, demonstrating good gastrointestinal tolerance. Moreover, after incubation in simulated colonic fluid for 150 min, the release rate of probiotics reached 93.13%. This suggests that chitosan-coated sodium alginate microcapsules can shield Lactobacillus rhamnosus ATCC 7469 from the gastrointestinal environment, offering a novel model for synbiotic preparation to enhance equol production.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuhao Ma
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingqing Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiuyan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Weiliang Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials. Curr Pharm Biotechnol 2024; 25:1986-2000. [PMID: 38275053 DOI: 10.2174/0113892010264234231219073231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Collapse
Affiliation(s)
- Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sugiyartono, Soeratri W, Permatasari A, Rahayu AD, Setyawan D, Isadiartuti D. Characteristics of Lactobacillus casei probiotic microparticles in L-type methacrylic acid copolymer matrix. J Adv Pharm Technol Res 2024; 15:37-42. [PMID: 38389966 PMCID: PMC10880912 DOI: 10.4103/japtr.japtr_267_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Accepted: 07/31/2023] [Indexed: 02/24/2024] Open
Abstract
Lactobacillus casei (LC) is a type of lactic acid bacterium that is known for its beneficial probiotic properties. However, it is not typically found in the human intestine because it lacks acid resistance. LC thrives in an optimal pH environment of 6.8 and can be initiated in a more acidic environment at a pH of 3.5. This study purposed to compare the effect of L-type methacrylic acid copolymer (MAC) as a matrix (0.50%, 0.75%, and 1.00%) on the physical characteristics of LC probiotic microparticles made by the spray drying process. Probiotic microparticles were also made from a dry suspension of LC FNCC 0090 bacteria and dispersed in a solution of L-type MAC. The results showed that a rise in matrix content by 1.00% increased particle size (4.47 ± 0.19 µm) and reduced moisture content (7.45 ± 0.11%). The analysis of microparticle morphology also indicated a positive correlation between the level of L-type MAC and the production of smooth, nonporous, and almost spherical shapes. In addition, it was observed that encapsulation efficiency (92.46 ± 0.17%) and protection against stomach acid (98.17% ±1.17%) increased with the level of the matrix.
Collapse
Affiliation(s)
- Sugiyartono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| | - Widji Soeratri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| | - Arini Permatasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| | - Ayun Dewi Rahayu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| | - Dwi Setyawan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| | - Dewi Isadiartuti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Utama GL, Oktaviani L, Balia RL, Rialita T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers (Basel) 2023; 15:3481. [PMID: 37631538 PMCID: PMC10459707 DOI: 10.3390/polym15163481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Biopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of β-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% β-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of β-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. β-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of β-glucans and mannoproteins can combine with microorganisms to form synbiotics.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No 1, Bandung 40134, Indonesia
| | - Lidya Oktaviani
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| | - Roostita Lobo Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia;
| | - Tita Rialita
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| |
Collapse
|
12
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
13
|
Sánchez-Osorno DM, López-Jaramillo MC, Caicedo Paz AV, Villa AL, Peresin MS, Martínez-Galán JP. Recent Advances in the Microencapsulation of Essential Oils, Lipids, and Compound Lipids through Spray Drying: A Review. Pharmaceutics 2023; 15:pharmaceutics15051490. [PMID: 37242731 DOI: 10.3390/pharmaceutics15051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the microcapsules of lipids, compound lipids, and essential oils, have found numerous potential practical applications in food, textiles, agricultural products, as well as pharmaceuticals. This article discusses the encapsulation of fat-soluble vitamins, essential oils, polyunsaturated fatty acids, and structured lipids. Consequently, the compiled information establishes the criteria to better select encapsulating agents as well as combinations of encapsulating agents best suited to the types of active ingredient to be encapsulated. This review shows a trend towards applications in food and pharmacology as well as the increase in research related to microencapsulation by the spray drying of vitamins A and E, as well as fish oil, thanks to its contribution of omega 3 and omega 6. There is also an increase in articles in which spray drying is combined with other encapsulation techniques, or modifications to the conventional spray drying system.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Angie Vanesa Caicedo Paz
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Aída Luz Villa
- Grupo Catálisis Ambiental, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - María S Peresin
- Sustainable Bio-Based Materials Lab, Forest Products Development Center, College of Forestry, Wildlife, Auburn University, Auburn, AL 36849, USA
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
14
|
Ballini A, Charitos IA, Cantore S, Topi S, Bottalico L, Santacroce L. About Functional Foods: The Probiotics and Prebiotics State of Art. Antibiotics (Basel) 2023; 12:antibiotics12040635. [PMID: 37106999 PMCID: PMC10135203 DOI: 10.3390/antibiotics12040635] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Poor diet, obesity and a sedentary lifestyle have a significant impact on natural microbiota disorders; specifically, the intestinal one. This in turn can lead to a multitude of organ dysfunctions. The gut microbiota contains more than 500 species of bacteria and constitutes 95% of the total number of cells in the human body, thus contributing significantly to the host's resistance to infectious diseases. Nowadays, consumers have turned to purchased foods, especially those containing probiotic bacteria or prebiotics, that constitute some of the functional food market, which is constantly expanding. Indeed, there are many products available that incorporate probiotics, such as yogurt, cheese, juices, jams, cookies, salami sausages, mayonnaise, nutritional supplements, etc. The probiotics are microorganisms that, when taken in sufficient amounts, contribute positively to the health of the host and are the focus of interest for both scientific studies and commercial companies. Thus, in the last decade, the introduction of DNA sequencing technologies with subsequent bioinformatics processing contributes to the in-depth characterization of the vast biodiversity of the gut microbiota, their composition, their connection with the physiological function-known as homeostasis-of the human organism, and their involvement in several diseases. Therefore, in this study, we highlighted the extensive investigation of current scientific research for the association of those types of functional foods containing probiotics and prebiotics in the diet and the composition of the intestinal microbiota. As a result, this study can form the foundation for a new research path based on reliable data from the literature, acting a guide in the continuous effort to monitor the rapid developments in this field.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ioannis Alexandros Charitos
- National Poisoning Center, Emergency/Urgent Department, Riuniti University Hospital of Foggia, 71122 Foggia, Italy
| | - Stefania Cantore
- Independent Researcher, Regional Dental Community Service "Sorriso & Benessere-Ricerca e Clinica", 70129 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Luigi Santacroce
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
15
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
16
|
Bisson G, Maifreni M, Innocente N, Marino M. Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food Funct 2023; 14:2128-2137. [PMID: 36745384 DOI: 10.1039/d2fo03215e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While formulating a probiotic food, it is mandatory to make sure that the viability of probiotics is adequate at the point of consumption, which can be strongly compromised by stressful conditions due to low pH and high osmolarity. In this study, three probiotic lactobacilli were subjected to different pre-adaptation conditions, and the turbidimetric growth kinetics in challenging conditions (pH 4.0-6.5, NaCl 1-7%, sucrose 0.1-0.7 M) were evaluated. Different effects were observed for Lactobacillus acidophilus, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. Indeed, pre-exposition to sub-optimal conditions in terms of pH and % NaCl significantly improved the ability of L. acidophilus and L. casei to overcome the osmotic stress due to salt or sucrose, and similar effects were observed for acidic stress. L. plantarum showed to be more tolerant to the challenging conditions applied in this study. Anyway, the pre-adaptation at conditions SUB_1 (pH 4.5 and NaCl 4%) and SUB_2 (pH 5 and NaCl 2%) speeded-up its growth kinetics by reducing the length of the lag phase under sucrose stress and enhancing the maximum growth rate at the highest pH tested. Moreover, an improvement in biomass amount was observed under sucrose stress. The whole data evidenced that the application of the appropriate pre-adaptation condition could contribute to making probiotics more robust towards challenging conditions due to food matrix, processing, and storage as well as gastrointestinal transit. Further studies will be necessary to gain insight into the proteomics and metabolomics responsible for increased tolerance to stressful conditions.
Collapse
Affiliation(s)
- Giulia Bisson
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Michela Maifreni
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Nadia Innocente
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Marilena Marino
- Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
17
|
Duarte ME, Kim SW. Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants (Basel) 2022; 11:antiox11102066. [PMID: 36290789 PMCID: PMC9598381 DOI: 10.3390/antiox11102066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to investigate the effects of phytobiotics on the intestinal health and growth performance of pigs. Totals of 40 newly-weaned pigs with 6.4 ± 0.3 kg BW (Exp. 1) and 120 growing pigs with 27.9 ± 2.3 kg BW (Exp. 2) were allotted in RCBD in a 2 × 2 factorial arrangement. The factors were: antibiotics as growth promoter (AGP) and phytobiotics (PHY). Pigs were fed experimental diets during 21 d (Exp. 1) and 42 d (Exp. 2). Growth performance, health parameters, and nutrient digestibility were evaluated. In Exp. 1, AGP diet increased (p < 0.05) ADG and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) TNF-α and IgG in the jejunum and protein carbonyl in plasma, whereas it increased (p < 0.05) the villus height. In Exp. 2, AGP or PHY diets increased (p < 0.05) ADG, ADFI, and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) IgG and PC in plasma. Collectively, AGP and PHY improved growth performance by reducing oxidative stress and enhancing immune status and jejunal morphology. However, the combinational use of phytobiotics with antibiotics suppressed their effect.
Collapse
|
18
|
Bondu C, Yen FT. Nanoliposomes, from food industry to nutraceuticals: Interests and uses. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
20
|
Nasreen S, Andleeb S, Ali S, Imdad K, Awan UA, Raja SA, Mughal TA, Abbasi SA. Screening of Antibacterial Efficacy of Chitosan Encapsulated Probiotics (Lactococcus lactis and Lactobacillus curvattus) against Clinical Bacterial Pathogens. J Oleo Sci 2022; 71:1363-1374. [PMID: 35965088 DOI: 10.5650/jos.ess22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Probiotics frontier in depressing the clinical bacterial pathogens to avoid multidrug resistance phenomenon. The present study aimed to determine the antibacterial efficiency of chitosan encapsulated probiotics isolated from buffalo milk samples against clinical bacterial pathogens. The Agar well method was used for antibacterial activity. Lactococcus lactis (A) and Lactobacillus curvattus (B) were isolated from fresh buffalo milk samples, identified via culturing media, Gram's staining, biochemical tests, and antibiogram analysis. Encapsulation of probiotics was carried out using chitosan and was characterized via a scanning electron microscope. Antibiogram analysis elicit that L. lactis culture (A1) was highly sensitive to chloramphenicol (17.66±0.47 mm), tobramycin (15.33±0.47 mm), and ciprofloxacin (12.33±0.47 mm) and resistant against tetracycline, Penicillin G, Erythromycin, Amoxycillin, Ceftriaxone, Cephalothin, and Cephradine, while L. curvattus culture (B1) was affected by Ceftriaxone (18.67±0.47 mm), Amoxycillin (14.33±0.94 mm), Cephalothin (13.67±0.47 mm), Erythromycin (13.33±0.47 mm), Penicillin G (12.67±0.47 mm), Cephradine (10.33±0.47 mm), and Chloramphenicol (9.67±0.47 mm) and resistant against tetracycline, Tobramycin, and Ciprofloxacin. Antibacterial efficacy of non-encapsulated probiotic cultures was significant and maximum inhibition of bacterial were recorded compared to their cellular components. SEM of encapsulated probiotics revealed that they were successfully covered with a chitosan protective layer and could be effective as bio-preservatives due to being slowly released at the target site. The current study concluded that L. lactis, L. curvattus, and their cellular components have a significant bactericidal effect against infectious pathogens and could be used as a potential therapeutic drug against infectious diseases.
Collapse
Affiliation(s)
- Sundas Nasreen
- Microbial Biotechnology Laboratory, Department of Zoology, The University of Azad Jammu and Kashmir, King Abdullah Campus
| | - Saiqa Andleeb
- Microbial Biotechnology Laboratory, Department of Zoology, The University of Azad Jammu and Kashmir, King Abdullah Campus
| | - Shaukat Ali
- Department of Zoology, Government College University
| | | | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS)
| | | | | | | |
Collapse
|
21
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
22
|
Song S, Cui Y, Ji X, Gao F, Zhu H, Zhu J, Liu X, Guan J. Microencapsulation of Lactobacillus plantarum with enzymatic hydrolysate of soybean protein isolate for improved acid resistance and gastrointestinal survival in vitro. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study aimed to improve the acid resistance effect of Lactobacillus plantarum through microencapsulation with enzymatic hydrolysate of soybean protein isolate (EHSPI) and modified phospholipid. Response surface methodology was adopted to establish the optimal microencapsulation technology of L. plantarum, while coating characters were evaluated. Through response surface methodology, the optimal conditions were obtained as follows based on microencapsulation efficiency: the ratio of bacteria/EHSPI 1:1.83, EHSPI content 4.01%, modified phospholipid content 11.41%. The results of digestion in vitro showed that after passing through the simulated gastric fluid (SGF), the L. plantarum was released and reached 3.55 × 108 CFU/mL in the simulated intestinal fluid. Meanwhile, the surviving bacteria number of control significantly decreased to 2.63 × 104 CFU/mL (P < 0.05) at 120 min in SGF. In sum, the acid resistance and survival of L. plantarum were improved in SGF in vitro, through the microencapsulation technology based on EHSPI.
Collapse
Affiliation(s)
- Shijia Song
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Yaoming Cui
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xuyang Ji
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Feng Gao
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Hao Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Jinfeng Zhu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Xinyu Liu
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| | - Junjun Guan
- College of Biological Engineering, Henan University of Technology , No.100 Lianhua street , Zhengzhou , 450001 , China
| |
Collapse
|
23
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Abbas MS, Saeed F, Afzaal M, Jianfeng L, Hussain M, Ikram A, Jabeen A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Lu Jianfeng
- School of Biotechnology and Food Engineering Hefei University of Technology China
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ayesha Jabeen
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
26
|
How Y, Lai K, Pui L, In LL. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu‐Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Ka‐Wai Lai
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Liew‐Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Lionel Lian‐Aun In
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
27
|
Bang WY, Kim H, Chae SA, Yang SY, Ban OH, Kim TY, Kwon HS, Jung YH, Yang J. A Quadruple Coating of Probiotics for Enhancing Intestinal Adhesion and Competitive Exclusion of Salmonella Typhimurium. J Med Food 2022; 25:213-218. [PMID: 35072526 DOI: 10.1089/jmf.2021.k.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously, our group showed that a quadruple coating of probiotics resulted in higher survivability of probiotics under high acid, bile salt, and thermal stresses. In this study, we evaluated the effect of the quadruple coating of probiotics on adhesive properties as well as on competitive exclusion of Salmonella Typhimurium in Caco-2 cells. We found that the quadruple coating of probiotics exhibited an overall increased adhesion property (up to 10.8-fold) and increased competitive exclusion of Salmonella Typhimurium (up to 4.3-fold). Thus, this study has significant implications and can lead to the development of methods that can improve the adhesive ability of probiotics as well as the adhesive inhibition of pathogens.
Collapse
Affiliation(s)
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Seung A Chae
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Soo-Yeon Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Tae-Yoon Kim
- Ildong Pharmaceutical, Hwaseong-si, Gyeonggi-do, Korea
| | | | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| |
Collapse
|
28
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
29
|
Probiotics in Functional Foods: Survival Assessment and Approaches for Improved Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, food is no longer just for nutrition. Consumers are more demanding and expect to get health benefits from their daily meals. Various areas of the food industry are in great demand of functional chemicals to enhance the taste and nutritional value of their products. Probiotic bacteria have already been part of the human’s routine for good gut microbiota maintenance in terms of pharmaceutical products. Their incorporation in food however is a challenging task that offers great opportunities but has limitations as well. Specifically, the purpose of this review is to emphasize the importance of probiotics in food, to assess their survival through gastrointestinal tract, and to highlight the recent advances in approaches for their improved viability.
Collapse
|
30
|
Haji F, Cheon J, Baek J, Wang Q, Tam KC. Application of Pickering emulsions in probiotic encapsulation- A review. Curr Res Food Sci 2022; 5:1603-1615. [PMID: 36161224 PMCID: PMC9493384 DOI: 10.1016/j.crfs.2022.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits to host organisms when consumed in adequate amounts and are often incorporated into foods for human consumption. However, this has negative implications on their viability as large numbers of these beneficial bacteria are deactivated when subjected to harsh conditions during processing, storage, and passage through the gastrointestinal tract. To address these issues, numerous studies on encapsulation techniques to protect probiotics have been conducted. This review focuses on emulsion technology for probiotic encapsulation, with a special focus on Pickering emulsions. Pickering emulsions are stabilized by solid particles, which adsorb strongly onto the liquid-liquid interfaces to prevent aggregation. Pickering emulsions have demonstrated enhanced stability, high encapsulation efficiency, and cost-effectiveness compared to other encapsulation techniques. Additionally, Pickering emulsions are regarded as safe and biocompatible and utilize natural materials, such as cellulose and chitosan derived from plants, shellfish, and fungi, which may also be viewed as more acceptable in food systems than common synthetic and natural molecular surfactants. This article reviews the current status of Pickering emulsion use for probiotic delivery and explores the potential of this technique for application in other fields, such as livestock farming, pet food, and aquaculture. Probiotics play an important role in maintaining the health of humans and animals. Encapsulation improves probiotic viability in harsh environments. Probiotics can be encapsulated by many techniques such as emulsification. Pickering emulsions use particles instead of molecules to stabilize emulsions. Natural particles are more acceptable to some consumers than synthetic emulsifiers.
Collapse
Affiliation(s)
- Fatemah Haji
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - James Cheon
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Jiyoo Baek
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W, Guelph, ON, N1G 5C9, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
- Corresponding author.
| |
Collapse
|
31
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Oberoi K, Tolun A, Altintas Z, Sharma S. Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021; 10:1999. [PMID: 34574109 PMCID: PMC8465150 DOI: 10.3390/foods10091999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Thanks to the beneficial properties of probiotic bacteria, there exists an immense demand for their consumption in probiotic foods worldwide. Nevertheless, it is difficult to retain a high number of viable cells in probiotic food products during their storage and gastrointestinal transit. Microencapsulation of probiotic bacteria is an effective way of enhancing probiotic viability by limiting cell exposure to extreme conditions via the gastrointestinal tract before releasing them into the colon. This research aims to develop a new coating material system of microencapsulation to protect probiotic cells from adverse environmental conditions and improve their recovery rates. Hence, Lactobacillus rhamnosus was encapsulated with emulsion/internal gelation techniques in a calcium chloride solution. Alginate-probiotic microbeads were coated with xanthan gum, gum acacia, sodium caseinate, chitosan, starch, and carrageenan to produce various types of microcapsules. The alginate+xanthan microcapsules exhibited the highest encapsulation efficiency (95.13 ± 0.44%); they were simulated in gastric and intestinal juices at pH 3 during 1, 2, and 3 h incubations at 37 °C. The research findings showed a remarkable improvement in the survival rate of microencapsulated probiotics under simulated gastric conditions of up to 83.6 ± 0.89%. The morphology, size, and shape of the microcapsules were analyzed using a scanning electron microscope. For the protection of probiotic bacteria under simulated intestinal conditions; alginate microbeads coated with xanthan gum played an important role, and exhibited a survival rate of 87.3 ± 0.79%, which was around 38% higher than that of the free cells (49.4 ± 06%). Our research findings indicated that alginate+xanthan gum microcapsules have a significant potential to deliver large numbers of probiotic cells to the intestines, where cells can be released and colonized for the consumer's benefit.
Collapse
Affiliation(s)
- Khyati Oberoi
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| | - Aysu Tolun
- Food Engineering, Ankara University, Ankara 06110, Turkey;
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| |
Collapse
|
33
|
Homayouni-Rad A, Mortazavian AM, Mashkani MG, Hajipour N, Pourjafar H. Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high-temperature conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Effect of prebiotics encapsulated with probiotics on encapsulation efficiency, microbead size, and survivability: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Taborda JAV, Arango WM, Méndez Arteaga JJ, Guerra Almonacid CM. Encapsulation of bioactive compounds from byproducts of two species of passionflowers: evaluation of the physicochemical properties and controlled release in a gastrointestinal model. Heliyon 2021; 7:e07627. [PMID: 34355105 PMCID: PMC8322279 DOI: 10.1016/j.heliyon.2021.e07627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to evaluate the release of active components with antioxidant and antihypertensive capacity from encapsulated extracts of the peel and seeds of Gulupa (Passiflora edulis f. edulis) and Cholupa (Passiflora maliformis) in an in vitro gastrointestinal digestion model. Microencapsulated extracts were prepared with enzymatically modified rice starch as the encapsulating material and ethanol extracts of seeds and peel of P. edulis f. edulis and P. maliformis as encapsulated material. Microcapsule characterization was performed by scanning electron microscopy with values of 4.54-5.13 μm and ξ potential values of -6.34 mV and -6.66 mV. Dynamic light scattering (DLS) analysis was conducted with polydispersion values from 1.33 to 1.51, and dispersion stability analysis was also conducted. The total phenol content and antioxidant activities (ABTS, DPPH, and FRAP) and ACE inhibitory activity (in vitro antihypertensive activity) were evaluated after each stage of digestion, with values greater than 80% of activity before gastrointestinal transit and with values greater than 55% activity after the end of gastrointestinal transit. Gastrointestinal evaluation of the encapsulated extracts was performed with an ex vivo model using pig intestines and simulating the conditions of digestion in three phases: the gastric (pH 2.0 with 1.0 M HCl +0.5 g/L pepsin), enteric (pH 8.0 with Krebs solution +1.0 mL/L bile) and final enteric (pH 7.5 Krebs solution only) phases. The microencapsulation of passionflower extracts showed good behavior against changes in pH and enzymatic activities throughout digestion, thus promoting a controlled release and targeted delivery of bioactive compounds, undergoing a paracellular mechanism through the intestinal barrier to preserve the antioxidant activity and ACE inhibitory that was shown by the extracts before encapsulation of the material.
Collapse
Affiliation(s)
| | - Walter Murillo Arango
- Chemistry department, GIPRONUT Research Group, Faculty of Sciences, Tolima University, Ibagué, Colombia
| | - Jonh Jairo Méndez Arteaga
- Chemistry department, GIPRONUT Research Group, Faculty of Sciences, Tolima University, Ibagué, Colombia
| | - Carlos Martín Guerra Almonacid
- Pedagogy and Technological Mediations Department, GIRYSOUT Research Group, Distance Education Institute, Tolima University, Ibagué, Colombia
| |
Collapse
|
36
|
Khorshidi M, Heshmati A, Taheri M, Karami M, Mahjub R. Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr 2021; 9:3942-3953. [PMID: 34262750 PMCID: PMC8269586 DOI: 10.1002/fsn3.2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to investigate the viability of microencapsulated and coated Lactobacillus acidophilus in yogurt during storage in a refrigerator for 28 days and in simulated gastrointestinal conditions. Furthermore, the effect of the microencapsulated and coated L. acidophilus on the physicochemical, textural, and sensory properties of yogurt was assessed. Lactobacillus acidophilus was microencapsulated in sodium alginate and coated with xanthan and/or whey protein. The coating led to the increase in the microcapsule diameter and the microencapsulation yield, while it led to the decreased moisture and water activity (aw) of the microcapsule. The survival of L. acidophilus microcapsule coated with whey protein and xanthan in yogurt during storage and exposure to simulated gastrointestinal conditions was significantly increased. Compared with free bacteria, the L. acidophilus microcapsule coated with whey protein and xanthan had the increased viability in yogurt until 2.16 log CFU/g during storage and 3.52 log CFU/g in simulated gastrointestinal conditions. After the 28th day of storage, a significant difference between the acidity and pH of yogurt containing coated and microencapsulated L. acidophilus and control yogurt was not observed. However, yogurt containing free L. acidophilus had lower pH and higher acidity and showed a significant difference (p < .05) with other samples. Although the coating of L. acidophilus microcapsule did not affect the sensory properties and gumminess of yogurt, it increased the firmness, adhesiveness, and viscosity of this product and caused a significant decrease in syneresis and cohesiveness. In general, the application of whey protein and xanthan coating on L. acidophilus microcapsule surface could increase the viability of this probiotic in yogurt during storage and in simulated gastrointestinal conditions and improve the texture attributes of yogurt.
Collapse
Affiliation(s)
- Mina Khorshidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mehdi Taheri
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mostafa Karami
- Faculty of Food Science and TechnologyBu‐Ali Sina University of HamedanHamedanIran
| | - Reza Mahjub
- Department of Pharmacology and ToxicologySchool of Pharmacy, Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
37
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
38
|
How Y, Pui L. Survivability of microencapsulated probiotics in nondairy beverages: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| |
Collapse
|
39
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
40
|
Pan C, Li J, Hou W, Lin S, Wang L, Pang Y, Wang Y, Liu J. Polymerization-Mediated Multifunctionalization of Living Cells for Enhanced Cell-Based Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007379. [PMID: 33629757 DOI: 10.1002/adma.202007379] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Surface decoration of living cells by exogenous substances offers a unique tool for understanding and tuning cell behaviors, which plays a critical role in cell-based therapy. Here, a facile yet versatile approach for decorating individual living cells with multimodal coatings is reported. By simply co-depositing with dopamine under a cytocompatible condition, various functional small molecules and polymers can be encoded to form a multifunctional coating on a cell's surface. The accessibility and versatility of this method to decorate diverse cells, including bacteria, fungi, and mammalian cells is demonstrated. With the ability to tune surface functions, ligand co-deposited gut microbiota is prepared as oral therapeutics for targeted treatment of colitis. Given the dual cytoprotective and targeting effects of the coating, decorated cells show more than 30-times higher bioavailability in the gut and fourfold higher accumulation in the inflamed tissue in comparison with those of uncoated bacteria. Multimodal therapeutic cells further validate strikingly increased treatment efficacy over clinical aminosalicylic acid in colitis mice. Decorating with multifunctional coatings proposes a robust platform for developing multimodal cells for enhanced cell-based therapy.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weiliang Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
41
|
Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold B, Brillet F. From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms 2021; 9:628. [PMID: 33803499 PMCID: PMC8003110 DOI: 10.3390/microorganisms9030628] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.
Collapse
Affiliation(s)
- Miquel Rozas
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Astrid Hart de Ruijter
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Maria Jose Fabrega
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Amine Zorgani
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Marc Guell
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Bernhard Paetzold
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| | - Francois Brillet
- S-Biomedic, JLABS, Turnhoutseweg 30, 2340 Beerse, Belgium; (M.R.); (A.H.d.R.); (A.Z.); (M.G.); (B.P.)
| |
Collapse
|
42
|
Phuong Ta L, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV. Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int J Pharm 2021; 597:120342. [PMID: 33545291 DOI: 10.1016/j.ijpharm.2021.120342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Besides viability protection, a sufficiently prolonged gastrointestinal retention of probiotics has emerged as critically important in improving the functional effectiveness of gastrointestinal delivery of these microorganisms. In this work, we formulated pure, resistant starch-reinforced and chitosan-coated alginate microparticles using an electrospray technique and evaluated their performance as mucoadhesive probiotic formulations for gastrointestinal delivery. In addition, we designed and successfully validated a novel experimental set-up of in vitro wash-off mucoadhesion test, using a portable and low-cost USB microscope for fluorescence imaging. In our test, pure chitosan microparticles (positive control) exhibited the greatest mucoadhesive property, whereas the alginate-resistant starch ones (negative control) were the least retentive on a gastric mucosa. These electrosprayed formulations were spherically shaped, with a size range of 30-600 µm (60-1300 µm with chitosan coating). Moreover, model probiotic Lactobacillus plantarum loaded in alginate-starch formulations was better protected against simulated gastric conditions than in alginate ones, but not better than in the chitosan-coated ones.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom; Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Erika Bujna
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Szilárd Kun
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom.
| |
Collapse
|
43
|
Salarbashi D, Jahanbin K, Tafaghodi M, Fahmideh‐Rad E. Prunus armeniaca gum exudates: An overview on purification, structure, physicochemical properties, and applications. Food Sci Nutr 2021; 9:1240-1255. [PMID: 33598208 PMCID: PMC7866599 DOI: 10.1002/fsn3.2107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Prunus armeniaca gum exudate (PAGE) is obtained from the trunk branches of apricot trees. PAGE is a high-molecular-weight polysaccharide with arabinogalactan structure. The physicochemical and rheological characteristics of this gum have been investigated in various researches. PAGE offers a good potential for use as an emulsifying, binding, and stabilizing agent in food and pharmaceutical industries. It also can be used as an organic additive in tissue culture media, synthesizing of metallic nanoparticles, binding potential in tablets, antioxidant agent, and corrosion inhibitor. For desirable emulsifying, stabilizing, shelf life-enhancing properties, and antioxidant activity of PAGE, it can be used as additive in many foods. We present here a comprehensive review on the existing literatures on characterization of this source of polysaccharide to explore its potential applications in various systems.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterGonabad University of Medical SciencesGonabadIran
- Department of Food science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Elham Fahmideh‐Rad
- Applied Sciences Department, Applied Chemistry SectionHigher College of Technology (HCT)MuscatSultanate of Oman
| |
Collapse
|
44
|
Microencapsulation May Preserve the Viability of Probiotic Bacteria During a Baking Process and Digestion: A Case Study with Bifidobacterium animalis Subsp. lactis in Bread. Curr Microbiol 2021; 78:576-589. [PMID: 33388937 DOI: 10.1007/s00284-020-02292-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The high sensitivity of probiotic bacteria (PB) to many environmental factors limits the number of food products where they can be incorporated. This study aimed to examine the capability of a unique three-layered microcapsule structure to protect PB against extremely elevated temperatures and low pHs to allow their incorporation into bakery goods. The microcapsules were prepared first by granulation of a Bifidobacterium lactis (BL) strain, as a model PB, to form a core, and then coating the core with three consecutive protective layers. The physical features and the shape of the microcapsules obtained from three sequential preparations were characterized using various methods. A viable cell count was utilized to evaluate the efficiency of the microcapsule structure to protect the bacteria during a bread-baking process carried out at 180 °C for 40 min and also during the exposure to simulated gastric fluid (pH 1.2) for up to 1 h. The results showed that whereas the free bacteria (unprotected BL) encountered a significant viability loss under these conditions, the microencapsulated BL presented superior resistance.
Collapse
|
45
|
Kamguyan K, Torp AM, Christfort JF, Guerra PR, Licht TR, Hagner Nielsen L, Zor K, Boisen A. Colon-Specific Delivery of Bioactive Agents Using Genipin-Cross-Linked Chitosan Coated Microcontainers. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khorshid Kamguyan
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Meyer Torp
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Priscila R. Guerra
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kinga Zor
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
47
|
Silva DR, Sardi JDCO, Pitangui NDS, Roque SM, Silva ACBD, Rosalen PL. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Enhanced Viability of Probiotics against Gastric Acid by One-Step Coating Process with Poly-L-Lysine: In Vitro and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12070662. [PMID: 32674435 PMCID: PMC7407136 DOI: 10.3390/pharmaceutics12070662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Due to their low acid tolerance, a majority of probiotics face difficulties with regard to surviving in the gastric environment long enough to reach the intestinal surfaces where they colonize and provide health benefits. We prepared a probiotic delivery system that can enhance their viability in acidic conditions by developing a one-step poly-L-lysine (PLL) coating process. We determined whether the coating process was successful by measuring the zeta potential and observing it with confocal scanning microscopy. PLL-coated L. plantarum (PLL-LP), incubated in a solution of pH 2 for 2 h, exhibited a higher viability (6.86 ± 0.12 log CFU/mL of viable cells) than non-coated L. plantarum (non-coated LP), which exhibited only 2.7 ± 1.23 log CFU/mL of viable cells. In addition, a higher amount of L. plantarum was detected in the feces of mice orally administered PLL-LP (6.2 ± 0.4 log CFU/g of feces) than in the feces of the control groups. In addition to enhancing probiotic viability in pH 2 solution, the PLL coating showed no effect on the probiotic growth pattern and the viability of either freeze-dried L. plantarum or L. plantarum, stored at −20 °C and 4 °C, respectively. Overall, these results indicated that the PLL coating is a promising potential probiotic delivery system.
Collapse
|
49
|
Survival and Goat Milk Acidifying Activity of Lactobacillus rhamnosus GG Encapsulated with Agave Fructans in a Buttermilk Protein Matrix. Probiotics Antimicrob Proteins 2020; 11:1340-1347. [PMID: 30276720 DOI: 10.1007/s12602-018-9475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Lactobacillus rhamnosus GG (L. rhamnosus GG) cells were encapsulated in buttermilk proteins by spray drying, alone (E), or with Agave tequilana fructans (CEF). Buttermilk proteins acted as a thermo-protector for the probiotic cells undergoing the spray-dried process. The addition of Agave fructans in CEF microcapsules significantly enhanced storage stability and survival to in vitro simulated gastrointestinal conditions, compared to E capsules. After 14 days storage at - 20 °C, the number of living cells in CEF microcapsules was in the order of 7.7 log CFU • mL-1 and the survivability in simulated gastrointestinal environment was 73.23%. Spray-dried microparticles were cultured in goat milk to study biomass production. Agave fructans offered a favorable microenvironment and better growth substrate. The population of CEF viable cells reached 1.08 ± 0.02 × 1010 CFU • mL-1 after 18 h of fermentation. In contrast, the population of E viable cells were 3.0 ± 0.01 × 109 CFU • mL-1. The generation time of CEF, L. rhamnosus GG was 15% faster than E, L. rhamnosus GG. Encapsulation with buttermilk proteins in the presence of Agave fructans by spray drying could be suitable for preservation of probiotic powders and may be for a more effective application of probiotics in goat dairy products.
Collapse
|
50
|
Zhang L, Chichlowski M, Gross G, Holle MJ, Lbarra-Sánchez LA, Wang S, Miller MJ. Milk Fat Globule Membrane Protects Lactobacillus rhamnosus GG from Bile Stress by Regulating Exopolysaccharide Production and Biofilm Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6646-6655. [PMID: 32396007 DOI: 10.1021/acs.jafc.0c02267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The milk fat globule membrane (MFGM) is a complex, highly conserved structure surrounding fat droplets secreted into mammalian milk. This study evaluated the impact of MFGM on Lactobacillus rhamnosus GG (LGG). MFGM-10 (2.5 g/L, 5 g/L, and 10 g/L) did not affect LGG growth in MRS medium but enhanced the ability of LGG to survive in the presence of 0.5% porcine bile. In the presence of MFGM-10 (5 g/L) and bile (0.5%), there were less complex polysaccharides in the media and less capsular polysaccharides associated with the LGG cells compared to the bile exposure alone (p < 0.05). The expression of four EPS genes was modulated by bile stress and MFGM. Biofilm thickness was increased (p < 0.05) during bile stress with MFGM compared to other treatments. Furthermore, MFGM increased LGG survival during transit in the murine GI tract. Future experiments will determine the impact of MFGM on LGG probiotic functionality.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Maciej Chichlowski
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Gabriele Gross
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Maxwell J Holle
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Luis A Lbarra-Sánchez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Shumei Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|