1
|
Okechukwu Paul-Chima U, Chinyere Nkemjika A, Melvin Nnaemeka U, Onohuean H. Harnessing plant metabolic pathways for innovative diabetes management: unlocking the therapeutic potential of medicinal plants. PLANT SIGNALING & BEHAVIOR 2025; 20:2486076. [PMID: 40191975 PMCID: PMC11980501 DOI: 10.1080/15592324.2025.2486076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The exploration of plant signaling pathways is transforming the way diabetes is managed, providing new, multi-target strategies for controlling this complex metabolic disorder. Medicinal plants are rich in bioactive compounds like phytohormones, flavonoids and polyphenols, which regulate key pathways including oxidative stress, inflammation, insulin resistance, and gut microbiota modulation. Research is emerging on the therapeutic potential of Momordica charantia, Cinnamomum verum and Trigonella foenum-graecum, which enhance insulin secretion, sensitivity and glucose homeostasis. These plant derived compounds, resveratrol and plant based insulin mimetics, not only address metabolic dysfunction but also offer holistic treatment for long term complications such as neuropathy and retinopathy. The development of precision medicine advances the tailoring of plant based therapies to individual metabolic responses, increasing efficacy and decreasing reliance on synthetic drugs with adverse side effects. Despite challenges of standardization, regulatory barriers, and limited clinical trials, incorporating medicinal plants into national diabetes management guidelines represents a cost effective and accessible option, particularly in resource limited settings. In this review, we highlight the importance of collaborative work across disciplines and the use of technologies such as artificial intelligence to speed research and optimize patient specific applications. The therapeutic power of plant signaling pathways is harnessed to develop sustainable, inclusive, and effective diabetes management strategies.
Collapse
Affiliation(s)
| | - Anyanwu Chinyere Nkemjika
- Department of Microbiology and Immunology, Kampala International University, Ishaka-Bushenyi, Uganda
| | - Ugwu Melvin Nnaemeka
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, State University of Medical and Applied Science, Enugu, Nigeria
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Ishaka-Bushenyi, Uganda
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Ishaka-Bushenyi, Uganda
| |
Collapse
|
2
|
Ravi A, Zaib S, Zahra S, Khan I, Ali HS, El-Gamal MI, Anbar HS. Synthesis, in vitro and in vivo evaluation, and computational modeling analysis of thioxothiazolidine derivatives as highly potent and selective α-amylase inhibitors. Eur J Med Chem 2025; 291:117584. [PMID: 40220676 DOI: 10.1016/j.ejmech.2025.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Diabetes mellitus is not only a critical health concern in this era but also a major cause of damage to other organs such as eyes, nerves, kidneys, hearts and liver. Inhibiting α-amylase enzyme is considered as one of the key strategies for controlling chronic hyperglycemia. Therefore, the current work focuses on design and discovery of a series of thioxothiazolidine derivatives (5a-u and 6a-g) as selective α-amylase inhibitors. The target compounds were synthesized using the Knoevenagel condensation approach and evaluated for their α-amylase and α-glucosidase inhibitory activities. The in vitro assay results demonstrated that the tested thioxothiazolidine derivatives possess significantly high potency than the standard drug acarbose against α-amylase but were inactive against α-glucosidase. Among them, compound 5r exhibited remarkable inhibitory potential depicting an IC50 value of 0.71 ± 0.01 μM, significantly outperforming acarbose against α-amylase. In vivo results further demonstrated that the treatment of diabetic rats with compound 5r led to a significant reduction in blood glucose level, indicating its effectiveness in managing hyperglycemia. Biochemical profiling of the treated rats revealed favorable outcomes, including improved urea, creatinine, ALT, AST, ALP, and HbA1C values. Furthermore, in vivo testing in diabetic rats also demonstrated that treatment with compound 5r caused significant histopathological improvements in the kidney, liver and pancreas compared to acarbose. The Lineweaver-Burk plot analysis indicated that compound 5r inhibits α-amylase through a mixed type of inhibition mechanism. Furthermore, molecular docking and dynamics simulations confirmed the in vitro findings while pharmacokinetic properties suggested compound 5r as a favorable drug candidate for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan.
| | - Shabab Zahra
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, 19099, United Arab Emirates.
| |
Collapse
|
3
|
Hashemi M, Gholamrezaie H, Ziyaei F, Asadi S, Naeini ZY, Salimian N, Enayat G, Sharifi N, Aliahmadi M, Rezaie YS, Khoushab S, Rahimzadeh P, Miri H, Abedi M, Farahani N, Taheriazam A, Nabavi N, Entezari M. Role of lncRNA PVT1 in the progression of urological cancers: Novel insights into signaling pathways and clinical opportunities. Cell Signal 2025; 131:111736. [PMID: 40081549 DOI: 10.1016/j.cellsig.2025.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Urologic malignancies, encompassing cancers of the kidney, bladder, and prostate, represent approximately 25 % of all cancer cases. Recent advances have enhanced our understanding of PVT1's crucial functions. Long noncoding RNAs influence both the onset and development of cancer, as well as epigenetic alterations. Recent findings have focused on PVT1's mechanism of action across several malignancies, particularly urologic cancers. Understanding the various functions of PVT1 linked to cancer is necessary for the development of cancer detection and treatment when PVT1 is dysregulated. Furthermore, recent advancements in genomic and epigenetic research have elucidated the complex regulatory networks that control PVT1 expression. Comprehending the intricate role of PVT1 Understanding the complex function of PVT1 in urologic cancers has substantial clinical implications. Here, we summarize some of the most recent findings about the carcinogenic effects of PVT1 signaling pathways and the possible treatment strategies for urological malignancies that target these pathways.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Ziyaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Yousefian Naeini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology,Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnaz Enayat
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sharifi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran,Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Bao J, Li Z, Zhang D. β-elemene: A promising natural compound in lung cancer therapy. Eur J Pharmacol 2025; 997:177399. [PMID: 40064226 DOI: 10.1016/j.ejphar.2025.177399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Lung cancer, a leading cause of cancer-related mortality globally, presents complex challenges in treatment and disease management. This review explores β-elemene, a sesquiterpene from Curcuma wenyujin, emphasising its pharmacological effects and therapeutic mechanisms in lung cancer. Focusing on its roles in modulating cellular pathways, this study details β-elemene's influence on apoptosis, autophagy, ferroptosis, hypoxic responses, metabolic shifts, and cell cycle arrest, as well as its impact on the tumour microenvironment and regulatory pathways (including PI3K/AKT, STAT3, AMPK/MAPK) and non-coding RNAs. The potential of β-elemene as a complementary agent in chemotherapy, radiotherapy, and hyperthermia therapy is examined, underscoring its capability to bolster treatment efficacy and counter drug resistance. The review also addresses current obstacles in clinical use, notably bioavailability issues, and explores innovative delivery systems like liposomes and microemulsions designed to enhance therapeutic delivery. Although preclinical studies indicate significant anti-tumor effects, further research is needed to address clinical translation challenges. Collectively, this review highlights β-elemene's multi-targeted therapeutic potential in lung cancer, advocating for ongoing research to refine its clinical use and optimize patient outcomes.
Collapse
Affiliation(s)
- Jiahui Bao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
5
|
Qu Y, Guo B, Zhao S, Sun J, Cao J, Xia M, Zhong Z, Meng F. Photothermal treatment of prostate tumor with micellar indocyanine green and napabucasin to co-ablate cancer cells and cancer stem cells. J Control Release 2025; 382:113704. [PMID: 40194599 DOI: 10.1016/j.jconrel.2025.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Advanced prostate cancer is hassled by relapse and metastasis that are closely associated with cancer stem cells (CSCs). Here, we present micellar indocyanine green and napabucasin (mICG-Nap) that co-ablates cancer cells and CSCs via photothermal therapy (PTT) for the treatment of prostate tumor. mICG-Nap with stable loading of both drugs and favorable size effectively reduced CSC population in RM1-PSMA murine prostate cancer cells and inhibited tumor spheroid formation. mICG-Nap showed an enhanced photothermal effect compared with free ICG and eliminated tumor spheroids under near-infrared (NIR) irradiation. The efficacy of mICG-Nap was further enhanced by decorating with Acupa ligand, which targets to RM1-PSMA cells and tumors via PSMA receptor. The enhanced tumor cell uptake of Acupa-mICG-Nap led to significant survival benefits in both subcutaneous RM1-PSMA tumor models and postoperative models. The tumor analyses demonstrated clear downregulation of CSC-related biomarkers such as OCT4, SOX2, CD133 and pSTAT3 as well as PSMA by Acupa-mICG-Nap. Rational formulated micellar indocyanine green and napabucasin plus NIR appears as an appealing strategy to co-ablate cancer cells and CSCs with rapid tumor de-bulking yet no recurrence.
Collapse
Affiliation(s)
- Yanyi Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jun Cao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Mingyu Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Binmahfouz LS, Al Otaibi A, Binmahfouz NS, Abdel-Naim AB, Eid BG, Shaik RA, Bagher AM. Luteolin modulates the TGFB1/PI3K/PTEN axis in hormone-induced uterine leiomyomas: Insights from a rat model. Eur J Pharmacol 2025; 996:177439. [PMID: 40043870 DOI: 10.1016/j.ejphar.2025.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Uterine leiomyomas (UL), or fibroids, are non-cancerous tumors of the uterine smooth muscle, affecting approximately 70% of women of reproductive age. They are the most prevalent solid tumors in the gynecological tract and a major indication for hysterectomy. The pathogenesis of UL involves uterine inflammation, uncontrolled cell division, and suppressed apoptosis. This study evaluated the protective effects of luteolin, a flavonoid known for its anti-inflammatory and antioxidant properties, against diethylstilbestrol and progesterone-induced UL in female rats. Twenty-four female Wistar rats were divided into four groups: (1) control, (2) luteolin (10 mg/kg, PO), (3) UL (diethylstilbestrol 1.35 mg/kg + progesterone 1 mg/kg, SC), and (4) UL + luteolin (10 mg/kg). The treatment duration was five weeks. Histological analyses were performed using hematoxylin and eosin (H&E) staining and Masson's Trichrome staining to evaluate uterine architecture and fibrosis. Histological results demonstrated normal uterine architecture in the control and luteolin groups, with marked neoplastic cell proliferation and fibrosis in the UL group, significantly mitigated by luteolin treatment. Luteolin reduced uterine weights and exhibited antioxidant, anti-inflammatory, pro-apoptotic, and anti-proliferative effects. Immunohistochemical analysis revealed that luteolin significantly reduced α-SMA protein expression, suggesting its role in modulating fibrotic pathways by inhibiting TGF-β1 and PI3K and enhancing PTEN production. These findings highlight luteolin's potential as a non-invasive therapeutic option for UL and suggest the need for further clinical studies to establish its efficacy, optimize dosage, and evaluate its safety profile in humans.
Collapse
Affiliation(s)
- Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Al Otaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Care, Maternal and Children Specialist Hospital, Jeddah, 23816, Saudi Arabia
| | - Najlaa S Binmahfouz
- Department of Anatomical Histopathology, East Jeddah General Hospital, Jeddah, 22253, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Akomolafe SF, Ajayi OO, Agboola OE, Adewale OO. Comparative evaluation of the antidiabetic potential of three varieties of Ipomoea batatas L.. Toxicol Rep 2025; 14:102015. [PMID: 40230512 PMCID: PMC11995110 DOI: 10.1016/j.toxrep.2025.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Sweet potato (Ipomoea batatas L.) is a nutrient-dense tuber often used in traditional diabetic treatment. This research compares the antidiabetic potential of three sweet potato varieties: orange-fleshed (OFSP), purple-peel white-fleshed (PPWSP), and white-peel white-fleshed (WPWSP), utilising in vitro and in vivo techniques. Sweet potatoes (OFSP, PPWSP, and WPWSP) boiled at 100°C for 20 minutes were incorporated into formulated diets and administered to streptozotocin-induced diabetic rats for 14 days. Aqueous extracts of the diets were tested in vitro for antioxidants and phytochemicals. Glycaemic control parameters, lipid profiles, oxidative stress indicators, and pancreatic histology were investigated. Gene expression analysis was performed on critical diabetes-related pathways. OFSP showed significant strong anti-diabetic benefits, including better glycemic control, weight maintenance, lower HOMA-IR scores, and lowered α-amylase and α-glucosidase activity. OFSP-fed rats had higher insulin, glycogen, and hexokinase activity than those given PPWSP and WPWSP. OFSP decreased mRNA expression of DPP-4 while increasing GLP-1 expression. OFSP also improved lipid profiles, increasing HDLc while decreasing LDLc and triglycerides more than other varieties. Histopathological examination revealed restorative effects in pancreatic beta cells. OFSP demonstrated more pronounced antidiabetic effects compared to PPWSP and WPWSP, particularly in terms of glycemic control, insulin regulation, and lipid profile improvement. These findings suggest that OFSP may offer significant potential for diabetes management. However, further clinical studies are needed to validate these results and explore the practical dietary applications of OFSP in diabetes control.
Collapse
Affiliation(s)
- Seun F. Akomolafe
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, Warsaw 02-097, Poland
| | - Oluwadamilare O. Ajayi
- Department of Biochemistry, Ekiti State University, Ado Ekiti, Ekiti State, PMB 5363, Nigeria
| | - Oluwaseun E. Agboola
- Institute for Drug Research and Development, Afe Babalola University, Ado Ekiti, Nigeria
- DamSem Scientific Laboratory and Research, Oke-Ila, Ado Ekiti, Nigeria
| | | |
Collapse
|
8
|
Khilwani B, Kour B, Shukla N, Vuree S, Ansari AS, Lohiya NK, Suravajhala P, Suravajhala R. Characterization of lncRNA-protein interactions associated with Prostate cancer and Androgen receptors by molecular docking simulations. Biochem Biophys Rep 2025; 42:101959. [PMID: 40124994 PMCID: PMC11929892 DOI: 10.1016/j.bbrep.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Long non-coding RNA (lncRNAs) are known to be implicated in pathogenesis of a broad spectrum of malignancies. These are found to have a significant role as signal transduction mediators in cancer signaling pathways. Prostate Cancer (PCa) is emerging with increasing cases worldwide even as advanced approaches in clinical diagnosis and treatment of PCa are still challenging to address. To enhance patient stratification, there is an indefatigable need to understand risk that can allow new approaches of treatment based on prognosis. While PCa is known to have mediated androgen receptor (AR) stimulation, the latter plays a critical role in regulating transcription of genes via nuclear translocation which in turn leads to response to androgens. LncRNAs have been implicated in developing clinical diagnostic and prognostic biomarkers in a broad spectrum of cancers. In our present study, 12 lncRNAs identified from clinical samples from our erstwhile PCa patients were docked with PCa and AR targeted 36 proteins. We identified three lncRNAs, viz. SCARNA10, NPBWR1, ANKRD20A9P are common between the targeted proteins and discern that SCARNA10 lncRNA could serve as a prognostic signature for PCa and AR biogenesis. We also sought to check the coding potential of interfacial residues associated with lncRNA docking sites.
Collapse
Affiliation(s)
- Barkha Khilwani
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Bhumandeep Kour
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Nidhi Shukla
- School of Interdisciplinary Health Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
| | - Sugunakar Vuree
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, India
| | - Abdul S. Ansari
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Nirmal K. Lohiya
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Prashanth Suravajhala
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India
| | - Renuka Suravajhala
- The CA Prostate Consortium of India (CAPCI), Bioclues.org, Hyderabad, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India
| |
Collapse
|
9
|
Roney M, Uddin MN, Khan AA, Fatima S, Mohd Aluwi MFF, Hamim SMI, Ahmad A. Repurposing of dipeptidyl peptidase FDA-approved drugs in Alzheimer's disease using network pharmacology and in-silico approaches. Comput Biol Chem 2025; 116:108378. [PMID: 39938415 DOI: 10.1016/j.compbiolchem.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) have similar clinical characteristics in the brain and islet, as well as an increased incidence with ageing and familial susceptibility. Therefore, in recent years there has been a great desire for research that elucidates how anti-diabetic drugs affect AD. This work attempts to first elucidate the possible mechanism of action of DPP-IV inhibitors in the treatment of AD by employing techniques from network pharmacology, molecular docking, molecular dynamic simulation, principal component analysis, and MM/PBSA. A total of 463 targets were identified from the SwissTargetPrediction and 784 targets were identified from the SuperPred databases. 79 common targets were screened using the PPI network. The GO and KEGG analyses indicated that the activity of DPP-IV against AD potentially involves the hsa04080 neuroactive ligand-receptor interaction signalling pathway, which contains 17 proteins, including CHRM2, CHRM3, CHRNB1, CHRNB4, CHRM1, PTGER2, CHRM4, CHRM5, TACR2, HTR2C, TACR1, F2, GABRG2, MC4R, HTR7, CHRNG, and DRD3. Molecular docking demonstrated that sitagliptin had the greatest binding affinity of -10.7 kcal/mol and established hydrogen bonds with the Asp103, Ser107, and Asn404 residues in the active site of the CHRM2 protein. Molecular dynamic simulation, PCA, and MM/PBSA were performed for the complex of sitagliptin with the above-mentioned proteins, which revealed a stable complex throughout the simulation. The work identifies the active component and possible molecular mechanism of sitagliptin in the treatment of AD and provides a theoretical foundation for future fundamental research and practical implementation.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - S M Istiaque Hamim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang 26300, Kuantan, Pahang, Malaysia
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
10
|
Karati D, Mukherjee S, Roy S. The antioxidant potential of bacoside and its derivatives in Alzheimer's disease: The molecular mechanistic paths and therapeutic prospects. Toxicol Rep 2025; 14:101945. [PMID: 39996037 PMCID: PMC11848497 DOI: 10.1016/j.toxrep.2025.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Central nervous system disorders are likely to have a substantial effect on the worldwide healthcare demands of humanity in this era. Alzheimer's disease (AD) is a senile decay of neurons. Extracellular beta-amyloid accumulation and intracellular tau hyperphosphorylation are two key characteristics of the pathogenesis of AD. Because of the multifactorial character of many disorders, new medicine-based psychoactive treatments have had limited success. As a result, there is a growing demand for innovative products that can target different receptors and improve behavioral abilities on their own or in combination with established treatments. In recent years, both industrialized and developing countries have seen a surge in herbal products based on traditional knowledge. According to recent research, bacoside and its congeners can dramatically lower the build-up of amyloid-β plaques, which are a defining feature of AD. This decrease is explained by bacoside's capacity to regulate β-secretase activity, which lowers the production of amyloid-β. Ayurveda is a medical science that focuses on the use of naturally occurring plant products to treat ailments. Many neuroprotective plants are said to be found in Ayurveda. The key physiological dysfunctions linked to tau aggregates, which contribute to dementia and behavioral inconsistencies, include the formation of reactive oxygen species, augmented neuronal swelling, and neurotoxicity. Here, we have focused on bacopa as an anti-Alzheimer medication. Bacoside A, Baccoside B, Apigenin, Betullinic acid, etc. are the pharmacologically active congeners of Brahmi belonging to several chemical families. In this review, the neuroprotective properties, pharmacological effectiveness, and molecular mechanism of bacoside scaffolds against AD have been discussed.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Group of Institutions, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Group of Institutions, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal 700053, India
| |
Collapse
|
11
|
Yan J, Zhao Y, Cui C, Zhou L, Xu Y, Bai Z, Zhang K, Tong J, Liu Y, Sun L, Du M, Mi Y, Wang X, Wu X, Li B. Dynamic multistage nanozyme hydrogel reprograms diabetic wound microenvironment: synergistic oxidative stress alleviation and mitochondrial restoration. Mater Today Bio 2025; 32:101780. [PMID: 40290892 PMCID: PMC12032933 DOI: 10.1016/j.mtbio.2025.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic diabetic wounds remain a significant clinical challenge due to persistent bacterial infections, oxidative stress, impaired angiogenesis, and mitochondrial dysfunction. Traditional therapies often fail to address these interrelated pathological factors, highlighting the urgent need for innovative solutions. Here, we present a Mn-ZIF@GOx/BC (MZGB) hydrogel system, where Mn-ZIF@GOx (MZG) nanozymes are successfully integrated into a bacterial cellulose (BC) hydrogel via hydrogen bonding and electrostatic interactions. The MZGB hydrogel lowers wound pH by oxidizing excess glucose into gluconic acid. It exhibits strong ROS scavenging capabilities through its superoxide dismutase and catalase-like activities, while simultaneously providing oxygen. By restoring redox homeostasis, it protects mitochondrial function and enhances cellular energy metabolism. By reprogramming macrophages, MZGB creates a favorable immune microenvironment, significantly promoting angiogenesis through paracrine mechanisms. This facilitates cell-to-cell communication, forming a positive feedback loop. Moreover, MZGB demonstrates ROS-independent antibacterial properties. BC hydrogel ensures adhesion and moisture regulation, forming a protective barrier and maintaining an optimal wound environment. This multifunctional hydrogel represents a promising nanotherapeutic approach for efficiently treating diabetic wounds by precisely regulating the wound microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Yurong Xu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Kaifang Zhang
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Meijun Du
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Yanling Mi
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology and Shanxi Provincial Engineering Research Center for Oral Biomaterials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
12
|
Kizhakkiniyakath SA, Choudhury T, Rajan MV, Rathee S, Meena B, Hariprasad G. In silico studies to understand the interactions of flavonoid inhibitor with nsp12-RNA dependent RNA polymerase of SARS-CoV-2 and its homologs. Biochem Biophys Rep 2025; 42:101975. [PMID: 40160515 PMCID: PMC11952025 DOI: 10.1016/j.bbrep.2025.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Aim COVID 19 continues to be a major health concern. RNA dependent RNA polymerase of SARS-CoV-2 which is crucial for replication is therefore a potential drug target. Methodology Based on experimental structures of RdRp from SARS-CoV-2, computational models were generated of its homologs from SARS-C o V-1, MERS and Bat. SARS CoV-2 RdRp was used for virtual screening at nucleotide binding site with molecule from COCONUT Natural Products database using Glide. Complexes with the top inhibitor molecule were modelled using Discovery Studio and Desmond suite of programs. Results SARS-CoV-2 RdRp has a minimum of 80 % sequence similarity with its homologs, with the secondary structural elements, catalytic residues and metal binding residues being conserved. Certain residue variations in SARS-CoV-2 RdRp seems to be responsible for the stability of the enzyme. Docking and simulation studies showed that a flavonoid molecule with Coconut ID: CNP0127177.0 (HHF318) has binding affinity in low nano-molar range against RdRp from SARS-CoV-2 which was comparable or better than currently used inhibitors. This affinity stems from cationic-π with Arg555, and π-stacking interactions with a nucleobase of RNA. Molecule also engages with other residues that are crucial for its functions. This flavonoid molecule has similar physio-chemical properties like ATP towards SARS-CoV-2 RdRp, and has low potency for human ATP binding proteins. Conclusion HHF318 is a potential inhibitor of SARS-CoV-2 RdRp with good potency, specificity and pharmacokinetic properties for it to be developed as a drug candidate for COVID19.
Collapse
Affiliation(s)
| | - Tejaswini Choudhury
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhan Vishal Rajan
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sagar Rathee
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | |
Collapse
|
13
|
Utermann-Thüsing C, Mendez D, Stincone P, Petras D, Tasdemir D. Metabolomic signatures of pathogen suppression effect of Baltic eelgrass meadows in surrounding seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179518. [PMID: 40288169 DOI: 10.1016/j.scitotenv.2025.179518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Organic molecules exuded into water column by marine organisms represent a significant portion of marine dissolved organic matter (DOM) that modulates biochemical interactions. Secreted allelochemicals have been suggested to be involved in regulation of pathogen abundance in seagrass meadows, however, seagrass exometabolome has remained unstudied. We aimed to identify seagrass exometabolites, within and outside meadows, and explore their potential involvement in pathogen suppression under varying environmental conditions. We collected seawater (SW) samples from eelgrass (Zostera marina)-vegetated (V) and non-vegetated (NV) areas across 5 locations spanning 270 km of coastline along the German Baltic Sea. Comparative LC-MS/MS-based untargeted computational metabolomics combined with statistical analyses and machine learning tools were employed to pinpoint (exo)metabolomic signatures of eelgrass leaves. Simultaneously, we measured abiotic parameters and the abundance of three common pathogenic taxa in seawater, and investigated spatiotemporal variations. Here we show the correlation of pathogen biomass and eelgrass pathogen reduction effect with increasing seawater temperature, eutrophication and anthropogenic influences. Exometabolomics studies revealed that eelgrass exudates contributed significantly to overall seawater DOM at molecular level, while SW overlying eelgrass meadows contained many chemical features unique to the eelgrass leaf metabolome. We identified four flavone aglycones as key biomarkers distinguishing SW-V and SW-NV samples. Their drastically increased concentrations correlated with the lowest pathogen biomass, suggesting their role in pathogen regulation. These combined analytical and microbiological approaches indicate that flavones are defensive allelochemicals released into eelgrass meadows upon environmental stress and serve as potential bioindicators of eelgrass' sanitation effect.
Collapse
Affiliation(s)
- Caroline Utermann-Thüsing
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Daniel Mendez
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Paolo Stincone
- Interfaculty Institute of Microbiology and Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Medicine, University of Tübingen, Tübingen 72076, Germany; Department of Biochemistry, University of California Riverside, Riverside, CA 92507, USA
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany; Faculty of Mathematics and Natural Sciences, Kiel University, Kiel 24118, Germany.
| |
Collapse
|
14
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
15
|
El-Haddad AE, El-Khalik SMA, Abdel-Hafez LJM, Zaki JT, Gabr NM. Impact of microbial biotransformation on Zygophyllum decumbens delile through comparative metabolic insights and evaluation of antihyperglycemic and antimicrobial activities. Sci Rep 2025; 15:16244. [PMID: 40346366 DOI: 10.1038/s41598-025-99590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Zygophyllum is known to be used traditionally in the management of several medical conditions, including diabetes, infections, and hypertension. This study aims to monitor the effect of microbial biotransformation on both antihyperglycemic and antimicrobial activities of Zygophyllum decumbens Delile using Aspergillus niger. The metabolic profile before and after biotransformation of the ethyl acetate extract was compared using HPLC-ESI-TOF-MS/MS. Pancreatic lipase, α-amylase, and α-glucosidase in vitro inhibition assays and agar diffusion method were used to evaluate the antihyperglycemic and antimicrobial activities, respectively. Eighty-six metabolites, mainly flavonoids and phenolic acids, with a few miscellaneous metabolites, were tentatively identified in both tested extracts. A 36% potentiation in antihyperglycemic activity was observed following microbial biotransformation. Regarding antimicrobial activity, the minimum inhibitory concentration (MIC) against both E. coli and P. aeruginosa decreased from 0.62 to 0.31 mg/ml, representing a nearly 50% reduction. It was noticed that microbial biotransformation altered 27 of the identified metabolites, which may contribute to the enhanced biological activities detected. The study depicts the first report of metabolic profiles and biological differences of Z. decumbens before and after biotransformation. It also validates the traditional use of Z. decumbens for hyperglycemia and its potential as a natural antimicrobial source.
Collapse
Affiliation(s)
- Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Soad M Abd El-Khalik
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Lina J M Abdel-Hafez
- Microbiology & Immunology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Jaky T Zaki
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nagwan M Gabr
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
16
|
Vijay M, Rajitha M, Krishnagaanth M, Jadhav ND, Chigure G, Srivastava A. Controlling deltamethrin-resistant Rhipicephalus microplus with a phytoformulation of Annona muricata and Piper longum. Acta Trop 2025:107644. [PMID: 40345638 DOI: 10.1016/j.actatropica.2025.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Ticks are one of the most significant vectors for transmitting diseases in livestock. Synthetic acaricides are the primary method for controlling tick populations; however, their indiscriminate application has led to widespread acaricide resistance and environmental concerns. In response to these challenges, this research has focused on developing eco-friendly herbal acaricides that ensure animal safety while minimizing environmental contamination and residual toxicity. Plants produce secondary metabolites, some of which possess insecticidal properties and have potential as natural acaricides. In the present study, the acaricidal properties of five plant extracts were evaluated against Rhipicephalus microplus. The hexane extracts of Annona muricata leaves and Piper longum seeds demonstrated significant acaricidal activity, with IC₅₀ values of 0.34% and 0.184% in larval immersion tests and 1.39% and 0.71% in adult immersion tests, respectively. A stable phytoformulation was developed incorporating these extracts, and its physicochemical properties were monitored over 12 months to ensure consistency and quality. HPTLC profiling identified piperine and α-caryophyllene as marker compounds for quality control. In vitro assays using phytoformulation showed lower IC50 values than individual plant extracts in deltamethrin-resistant ticks at the larval stage. Also, at the adult stage, the phytoformulation inhibited egg hatchability and disrupted ovarian structures. Toxicity studies confirmed the phytoformulation's safety for animal use. Field trials on natural tick-infested cattle demonstrated a mean efficacy of 83.3±3.5% within 48 hours of application. This study suggests that phytoformulation could serve as a sustainable, safe, and effective way to manage deltamethrin-resistant Rhipicephalus microplus infestations.
Collapse
Affiliation(s)
- Macha Vijay
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Gachibowli, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Mood Rajitha
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Gachibowli, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - M Krishnagaanth
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Gachibowli, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Nitin D Jadhav
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, MAFSU, Parbhani, Maharashtra, India
| | - Gajanan Chigure
- Department of Veterinary Parasitology, College of Veterinary & Animal Sciences, MAFSU, Parbhani, Maharashtra, India
| | - Anand Srivastava
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Gachibowli, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| |
Collapse
|
17
|
Kaur A, Aran KR. Unraveling the cGAS-STING pathway in Alzheimer's disease: A new Frontier in neuroinflammation and therapeutic strategies. Neuroscience 2025; 573:430-441. [PMID: 40185388 DOI: 10.1016/j.neuroscience.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent type of neurological disorder characterized by cognitive decline and memory loss, marked by the accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein, causing extensive neuronal death and neuroinflammation. There is growing evidence that AD development extends beyond the neuronal compartment and has a major impact on the immunological functions of the brain. The cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA, including pathogenic foreign DNA and self-DNA from cellular injury, triggering a type I interferon (IFN-I) response through activation of the stimulator of interferon genes (STING). The activation of the cGAS-STING pathway in response to mitochondrial dysfunction drives neuroinflammation in AD, which is mediated by the release of IFN-I cytokines. Furthermore, the release of oxidized mtDNA is necessary for the stimulation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, which is a family of protein complexes that macrophages can produce to induce inflammation. AD becomes severe by the stimulation of the cGAS-STING pathway, which results in sterile inflammation and microglial dysfunction. This review aims to explore the potential impact of the cGAS-STING signaling pathway in the pathogenesis and progression of AD. Additionally; after overviewing recent findings, this article highlights the molecular mechanism involved in the onset of disease and its modulation regarding the therapeutic approach of AD. Finally, deliberated a deep insight, the cGAS-STING axis could provide novel therapeutic avenues for slowing or halting the progression of AD, thereby offering new prospects for treatment development.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
18
|
Soliman MM, Nashed MS, Hassanen EI, Issa MY, Prince AM, Hussien AM, Tohamy AF. Ameliorative effects of date palm kernel extract against fenpropathrin induced male reproductive toxicity. Biol Res 2025; 58:27. [PMID: 40329351 PMCID: PMC12057013 DOI: 10.1186/s40659-025-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND The purpose of this work was to examine the fundamental mechanisms of reproductive toxicity in rat models following exposure to Fenpropathrin (FNP). Furthermore, our study explores the novel impacts of Date palm kernel extract (DPK) on these detrimental outcomes. METHODS Thirty male Wistar rats were used in the investigation. They were split into six groups: one group received corn oil as a control; two groups received DPK at 200 mg/kg and 400 mg/kg; a group received FNP at 4.7 mg/kg; and two combination groups received DPK and FNP at 200 mg/kg and 400 mg/kg, respectively for 60 days. RESULTS FNP caused oxidative stress, reduced sperm count, and impaired motility. FNP decreased the expression of the StAR gene and reduced serum testosterone levels. We assessed the histological alterations. In a dose-dependent way, the concurrent administration of DPK extract successfully decreased all the toxicological parameters. CONCLUSIONS When taken orally, DPK extract may protect against FNP-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
19
|
Chakravarti B, Tomar MS, Qais FA, Raza S, Abdullah KM, Sharma G, Tewari A, Yadav A, Gupta P, Chattopadhyay N, Shrivastava A, Sinha RA, Siddiqui JA. Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights. Biomed Pharmacother 2025; 187:118121. [PMID: 40327992 DOI: 10.1016/j.biopha.2025.118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Breast cancer stem cells (BCSCs) are a unique subpopulation of tumor cells driving tumor resistance, progression, metastasis, and recurrence. Reprogrammed cellular metabolism and key signaling pathways, including Wnt/β-catenin, TGF-β, STAT3, and PI3K/AKT/mTOR pathway play a vital role in maintaining BCSCs. Importantly, PI3K/Akt/mTOR pathway regulates metabolism, survival, growth, and invasion, with PIK3CA, encoding the PI3K catalytic subunit p110α, the most frequently mutated gene in breast cancer. This study investigates the effects of alpha-lipoic acid (LA) on the metabolic profile of BCSCs, focusing on its interaction with PI3K signaling. LA was found to bind PI3K, disrupting cancer-associated metabolic pathways and significantly inhibiting BCSC metabolism. Metabolomic analysis of MCF-7 and MDA-MB-231-derived breast cancer spheroids showed LA-induced metabolic shifts. In MCF-7 spheroids, LA induced upaccumulation of 15 metabolites and downaccumulation of 5, while in MDA-MB-231 spheroids, it induced upaccumulation of 3 and downaccumulation of 16. LA also enhanced the sensitivity of breast cancer spheroids to doxorubicin (Dox), demonstrating a synergistic effect. Mechanistically, LA modulates the PI3K/Akt/mTOR pathway, impairing cell survival and proliferation. These findings highlight the potential of LA as a therapeutic agent for reprogramming cancer metabolism and enhancing chemotherapy efficacy. These results provide a strong rationale for incorporating LA into combination therapy strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Stem Cell/Cell Culture Lab, Center for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| | - Manendra Singh Tomar
- Center for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Faizan Abul Qais
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - K M Abdullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gunjan Sharma
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Abhishek Yadav
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ashutosh Shrivastava
- Center for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
20
|
Muzaffar-Ur-Rehman M, Chougule KS, Chandu A, Kuthe PV, Garg M, Sankaranarayanan M, Vasan SS. In silico evaluation of bisphosphonates identifies leading candidates for SARS-CoV-2 RdRp inhibition. J Mol Graph Model 2025; 136:108939. [PMID: 39799876 DOI: 10.1016/j.jmgm.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
The novel coronavirus disease (COVID-19) pandemic has resulted in 777 million confirmed cases and over 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Post Acute Sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well. A growing list of drugs are being suggested by various in silico, in vitro and ex vivo models, however currently only two treatment options are widely used: the RNA-dependent RNA polymerase (RdRp) inhibitor remdesivir, and the main protease inhibitor nirmatrelvir in combination with ritonavir. Computational drug development tools and in silico studies involving molecular docking, molecular dynamics, entropy calculations and pharmacokinetics can be useful to identify new targets to treat COVID-19 and PASC, as shown in this work and our recent paper that identified alendronate as a promising candidate. In this study, we have investigated all bisphosphonates (BPs) on the ChEMBL database which can bind competitively to nidovirus RdRp-associated nucleotidyl (NiRAN) transferase domain, and systematically down selected seven candidates (CHEMBL608526, CHEMBL196676, CHEMBL164344, CHEMBL4291724, CHEMBL4569308, CHEMBL387132, CHEMBL98211), two of which closely resemble the approved drugs minodronate and zoledronate. This work and our recent paper together provide an in silico mechanistic explanation for alendronate and zoledronate users having dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations, and indicate that similar observational studies in Japan with minodronate could be valuable.
Collapse
Affiliation(s)
| | | | - Ala Chandu
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, India
| | | | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | | | - Seshadri S Vasan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Department of Health Sciences, University of York, York, YO10 5DD, UK.
| |
Collapse
|
21
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Interactions between β-lactoglobulin and polyphenols: Mechanisms, properties, characterization, and applications. Adv Colloid Interface Sci 2025; 339:103424. [PMID: 39919619 DOI: 10.1016/j.cis.2025.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
β-lactoglobulins (βLGs) have a wide range of applications in food because of their ability to emulsify, foam, and gel. This makes them good functional additives. However, their performance depends on temperature, pH, and mineral levels, so their functional qualities are limited in particular applications. How polyphenols (PPs) interact with βLG is crucial for the functional characteristics and quality of dietary compounds. In most food systems, a spontaneous interaction between proteins and PPs results in a "protein-PP conjugate," which is known to affect the sensory, functional, and nutraceutical qualities of food products. The βLG-PP conjugates can be used to enhance the quality of food. This article emphasizes analytical techniques for describing the characteristics of βLG-PP complexes/conjugates. It also goes over the functions of βLG-PP conjugates, including their solubility, thermal stability, emulsifying, and antioxidant qualities. The majority of βLG-PPs interactions is due to non-covalent (H-bonding, electrostatic interactions) or covalent bonds that are mostly caused by βLG or PP oxidation through enzymatic or non-enzymatic mechanisms. Furthermore, the conformation or type of proteins and PPs, as well as environmental factors like pH and temperature, have a significant impact on proteins-PPs interactions. Higher thermal stability, antioxidant activities, and superior emulsifying capabilities of the βLG-PP conjugates make them useful as innovative additives to enhance the quality and functions of food products.
Collapse
Affiliation(s)
- Behnaz Hashemi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
22
|
Rguez S, Bettaieb Rebey I, Yeddes W, Grati Affes T, Chaabani E, Sirine G, Sabrine H, Msaada K, Frouja O, Hamrouni Sellami I. Protective potential of onion eco-extract: safeguarding chicken patties from oxidative deterioration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1170-1181. [PMID: 39086172 DOI: 10.1080/09603123.2024.2382900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Onions contain valuable phytochemical compounds, including quercetin derivatives. This study explores the potential of onion extract as a natural additive in chicken patties. The optimized conditions involved sonication at 80% for 5 min with a 75% ethanol concentration. The onion extract exhibited total phenolic and flavonoid compound values of 255.63 mg GAE g-1 DR and 196.87 mg QE g-1 DR, respectively. The antioxidant activity of the onion extract was characterized by an IC50 of 12.74 µg/mL. This onion extract was dominated by quercetin derivatives (quercetin 4'-O-β-glycoside and quercetin-3-O-β-glycoside and quercetin-3,4'-O-β-diglycoside). Chicken patties treated with 2% onion extract exhibited superior pH stability, lowest thiobarbituric acid reactive substances level (0.40 mg/kg) and peroxide index (0.77 mEq O2/kg meat) and maintained color stability. Comparative analysis with BHT demonstrated the efficacy of onion extract in reducing lipid oxidation. These findings highlight the potential of a 2% onion extract as effective ingredient for enhancing the quality of chicken products.
Collapse
Affiliation(s)
- Safa Rguez
- Laboratory of Aromatic and Medicinal Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Iness Bettaieb Rebey
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Taycir Grati Affes
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Emna Chaabani
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Gabsi Sirine
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Hafiene Sabrine
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| | - Olfa Frouja
- Laboratory of Plant soil and environment, Universite de Tunis El Manar, Tunis, Tunisia
| | - Ibtissem Hamrouni Sellami
- Laboratory of Medicinal and Aromatic Plants, Centre de Biotechnologie de Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
23
|
Raman R, Debata S, Govindarajan T, Kumar P. Targeting Triple-Negative Breast Cancer: Resistance Mechanisms and Therapeutic Advancements. Cancer Med 2025; 14:e70803. [PMID: 40318146 PMCID: PMC12048392 DOI: 10.1002/cam4.70803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most heterogeneous and menacing forms of breast cancer, with no sustainable cure available in the current treatment landscape. Its lack of targets makes it highly unresponsive to various treatment modalities, which is why chemotherapy continues to be the primary form of treatment, despite the high rates of patients developing chemoresistance. In recent years, however, there has been significant progress in identifying and understanding the role of several aspects that might contribute to genomic instability and other hallmarks of cancer, including cellular proteins, immune targets, and epigenetic mechanisms, which are desirable as they permit reversibility easier than the often-adamant genetic changes. METHODS A literature review was conducted on the role of various TNBC associated biomarkers, their therapeutic applications, and their role in tumorigenesis and tumor maintenance, with a focus on linking both the driving biological mechanisms and emerging treatment options for TNBC. CONCLUSIONS Shifting the focus of treatment to identify crucial tumor cell subpopulations and associated biomarkers, such as local immune cell populations and cancer stem cells, could potentially solve or simplify decades' worth of problems that are associated with TNBC, bolstering early detection and the evolution of precision medicine and treatment. The techniques that can be used here are epigenetic analysis and RNA sequencing. Biomarkers, such as PD-L1, survivin, and ABC transporters, are implicated in several crucial processes that maintain tumors, such as cell proliferation, metastasis, immunosuppression, and stemness. Complex treatment options such as, immunotherapy, pathway inhibition, PARP inhibition, virotherapy, and RNA targeting have been considered for TNBC. Phytochemicals are also being considered as a treatment modality for TNBC, as a supplement to chemotherapy and radiation therapy, or as sole treatment.
Collapse
Affiliation(s)
- Rachana Raman
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Shristi Debata
- Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
24
|
Zhang Z, Hu K, Fang Z, Wang S, Chen J, Yin D, Zhang C, Ma G. Acacetin reduces endoplasmic reticulum stress through the P-eNOS/PERK signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. FEBS Open Bio 2025; 15:793-809. [PMID: 39927486 PMCID: PMC12051029 DOI: 10.1002/2211-5463.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic macrovascular disease is one of the most morbid and deadly complications of diabetes. Endothelial dysfunction plays a key role in diabetic macrovascular complications and endothelial cell apoptosis is one of the key indicators of endothelial dysfunction. Methylglyoxal (MGO), a highly reactive dicarbonyl compound generated during glycolysis, is related to the pathogenesis of cardiovascular diseases and may also promote endothelial dysfunction. Acacetin (ACA) is a naturally occurring flavonoid that can inhibit apoptosis, oxidative stress and inflammation to slow the progression of coronary heart disease; however, its effects on endothelial dysfunction are unknown. The present study investigated whether ACA may ameliorate MGO-induced endothelial dysfunction in human umbilical vein endothelial cells. The results revealed that the viability and apoptosis of human umbilical vein endothelial cells induced by MGO decreased after ACA treatment, which was reflected in the expression levels of the apoptosis-related proteins b-cell lymphoma 2 (Bcl-2)-associated death, Bcl-2-associated x protein and Bcl-2. Additionally, ACA downregulated the expression of key protein markers of MGO-induced endoplasmic reticulum stress, physical evidence recovery kit, eukaryotic initiation factor 2 alpha, activating transcription factor 4 and C/EBP homologous protein, with which calcium inward currents may be closely related. ACA significantly downregulated the MGO-induced expression of the cytosolic calcium channel proteins stromal interaction molecule 1, transient receptor potential canonical 1, ORAI calcium release-activated calcium modulator 1, transient receptor potential vanilloid 1 and 4, and the trans-endoplasmic reticulum membrane protein, transmembrane and coiled-coil domains 1. Finally, ACA increased the expression of phosphorylated endothelial nitric oxide synthase (Ser1177), thus increasing the expression of nitric oxide in endothelial cells. Overall, acacetin could reduce endoplasmic reticulum stress through the phosphorylated-endothelial nitric oxide/physical evidence recovery kit signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. These findings may hold potential for the use of acacetin in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Zhen Zhang
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Kaien Hu
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Zhaohui Fang
- Department of EndocrineThe First Hospital Affiliated to Anhui University of Chinese MedicineHefeiAnhuiChina
| | - Sihai Wang
- Department of EndocrineThe First Hospital Affiliated to Anhui University of Chinese MedicineHefeiAnhuiChina
| | - Jie Chen
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Dengke Yin
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Caiyun Zhang
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Gefei Ma
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
- Anhui Qimen Institute of SnakebiteHuangshanChina
| |
Collapse
|
25
|
Sindhwani R, Bora KS, Hazra S. The dual challenge of diabesity: pathophysiology, management, and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4891-4912. [PMID: 39680103 DOI: 10.1007/s00210-024-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Diabesity, the concurrent occurrence of obesity and type-2 diabetes mellitus (T2DM), represents a pressing global health challenge characterized by intricate pathophysiological mechanisms and a wide range of associated comorbidities. Central to its development are insulin resistance, metabolic syndrome, and chronic low-grade inflammation mediated by dysregulated adipokine secretion and systemic metabolic dysfunction. These mechanisms underpin the progression of diabesity and its complications, including cardiovascular disease and hypertension. Management strategies encompass lifestyle interventions focusing on tailored dietary modifications and structured physical activity, pharmacological treatments targeting both glycemic control and weight loss, and surgical interventions such as bariatric surgery, which have demonstrated efficacy in achieving durable outcomes. Clinical trials and meta-analyses underscore the comparative advantages of different treatment modalities in terms of efficacy, safety, and sustainability. Moreover, long-term follow-up studies emphasize the critical need for sustained multidisciplinary interventions to prevent relapse and enhance patient outcomes. Future advancements in management include exploring precision medicine approaches that integrate individual metabolic profiles, lifestyle factors, and emerging therapeutic innovations. A multidisciplinary approach combining advanced therapeutic strategies and patient-centered care remains pivotal for optimizing management and improving prognoses for individuals with diabesity. This review highlights the complex interplay between obesity and T2DM, offering comprehensive insights into their pathophysiology, clinical presentation, and management paradigms.
Collapse
Affiliation(s)
- Ritika Sindhwani
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India
| | - Kundan Singh Bora
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India.
| | - Subhajit Hazra
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India
| |
Collapse
|
26
|
Mani R, Babu SV, Murugesan N, Duraisamy R, Thayumanavan P. A Comparative Study of Quercetin/Rutin Loaded PEG Polymeric Nanoparticles: Controlled Drug Release and Its Biological Activity. J Biochem Mol Toxicol 2025; 39:e70269. [PMID: 40269608 DOI: 10.1002/jbt.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Flavonoids are natural polyphenolic compounds that primarily possess antioxidant properties and play a significant role in opposing various diseases. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of flavonoids in different types of cancer. To enhance its therapeutic value, polymeric nanoparticles (PEG NPs) represent an ideal delivery system. Further, surface modification of NPs with PEG holds tremendous potential for improving the bioavailability and circulation time of native drugs in the blood. The present study aimed to develop Quercetin/Rutin-loaded PEG polymeric NPs (Qu-PEG/Ru-PEG NPs) with enhanced encapsulation efficiency and sustained drug release. The synthesized Qu-PEG NPs & Ru-PEG NPs were characterized by UV-Vis Spectroscopy, FTIR spectrum, NMR, and XRD and SEM analysis. In-vitro drug release study exhibited a cumulative release of Quercetin & rutin for 24 h at pH 7.4. Further, the polymeric nano-formulations of Quercetin & Rutin showed enhanced antioxidant activity, leading to defense against oxidative stress. In-vitro cellular studies demonstrated that Qu-PEG NPs and Ru-PEG NPs significantly inhibit KB cell proliferation compared to free drugs alone. The current study also showed that Qu-PEG NPs & Ru-PEG NPs enhance intracellular ROS generation compared to the drug alone. Hence, our research findings revealed that successful encapsulation of Quercetin & Rutin in PEG NPs targets the tumor microenvironment and enhances the efficacy of drugs. Based on these preliminary results, flavonoid-loaded polymeric-based NPs might be potential therapeutic molecules against cancer in the future.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Swethaa Viswaresh Babu
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Nishanth Murugesan
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ramachandhiran Duraisamy
- Department of Biotechnology and Biochemistry, Faculty of Science, Annamalai University, Chidambaram, Annamalai nagar, Tamilnadu, India
| | - Palvannan Thayumanavan
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
27
|
Sharma P, Reitz T, Singh SP, Worrich A, Muehe EM. Going beyond improving soil health: cover plants as contaminant removers in agriculture. TRENDS IN PLANT SCIENCE 2025; 30:539-552. [PMID: 40044467 DOI: 10.1016/j.tplants.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 05/10/2025]
Abstract
Agriculture faces the increasing demands of a growing global population amid simultaneous challenges to soils from climate change and human-induced contamination. Cover plants are vital in sustainable agriculture, contributing to soil health improvement, erosion prevention, and enhanced climate resilience, but their role in contaminant management is underexplored. Herein we review the utilization of cover plants for remediating contaminants such as metals, organic pollutants, nitrate, antibiotics, antimicrobial resistance genes, plastics, and salts. We explore phytoremediation strategies - including phytoextraction, phytodegradation, and phytostabilization - in cover plant management. We highlight the challenges of selecting effective cover plants and the need for biomass removal of non-biodegradable contaminants, and we advocate incorporating phytoremediation concepts into sustainable agricultural management practices beyond nutrient cycling and climate resilience.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany; Martin Luther University Halle-Wittenberg (MLU), Institute of Agricultural and Nutritional Sciences - Crop Research Unit, Julius-Kühn-Straße 23, 06112 Halle/Saale, Germany
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Anja Worrich
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - E Marie Muehe
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Department of Geosciences, University of Tuebingen, Schnarrenbergstr. 94-96, 72076 Tuebingen, Germany.
| |
Collapse
|
28
|
Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, Kumar B, Agarwal S, Kumar R, Gupta SK, Gautam V. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev 2025; 45:817-841. [PMID: 39445844 DOI: 10.1002/med.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Triple negative breast cancer (TNBC) displays a notable challenge in clinical oncology due to its invasive nature which is attributed to the absence of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor (HER-2). The heterogenous tumor microenvironment (TME) of TNBC is composed of diverse constituents that intricately interact to evade immune response and facilitate cancer progression and metastasis. Based on molecular gene expression, TNBC is classified into four molecular subtypes: basal-like (BL1 and BL2), luminal androgen receptor (LAR), immunomodulatory (IM), and mesenchymal. TNBC is an aggressive histological variant with adverse prognosis and poor therapeutic response. The lack of response in most of the TNBC patients could be attributed to the heterogeneity of the disease, highlighting the need for more effective treatments and reliable prognostic biomarkers. Targeting certain signaling pathways and their components has emerged as a promising therapeutic strategy for improving patient outcomes. In this review, we have summarized the interactions among various components of the dynamic TME in TNBC and discussed the classification of its molecular subtypes. Moreover, the purpose of this review is to compile and provide an overview of the most recent data about recently discovered novel TNBC biomarkers and targeted therapeutics that have proven successful in treating metastatic TNBC. The emergence of novel therapeutic strategies such as chemoimmunotherapy, chimeric antigen receptor (CAR)-T cells-based immunotherapy, phytometabolites-mediated natural therapy, photodynamic and photothermal approaches have made a significant positive impact and have paved the way for more effective interventions.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sonal Sharma
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjeev Kumar Gupta
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
29
|
Spandana KJ, Rodrigues WJ, Ghate SD, Rao RSP, Chandrashekar KR, Bhagya N. In Vitro Cytotoxic Potential and Integrated Network Pharmacology, Molecular Docking and Molecular Dynamic Approaches to Decipher the Mechanism of Gymnostachyum febrifugum Benth., in the Treatment of Breast Cancer. Appl Biochem Biotechnol 2025; 197:2887-2909. [PMID: 39798052 DOI: 10.1007/s12010-024-05173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action. Phytochemical profiling using GC-MS/MS showed the presence of eight cytotoxic molecules with lupeol in high abundance. A potent cytotoxic effect of G. febrifugum roots against breast cancer was also observed with antiproliferation, antimigration, inhibition in colony formation and death of breast cancer cells. Further, the cytotoxic potential of the plant was confirmed with the apoptosis of cells as observed in the flow cytometry. In silico network pharmacology, GO and KEGG analysis suggested the modulation of proteins of MAPK, PI3K-AKT and apoptosis pathways by lupeol to induce cytotoxicity in breast cancer. Further, dynamic simulation revealed MAPK and AKT as the major targets for lupeol. Our studies comprehensively elucidated the role of lupeol, a major phytochemical in G. febrifugum to induce cytotoxicity against breast cancer by targeting major cancer signaling pathways, providing a promising strategy and scientific basis to explore lupeol in targeted cancer therapy.
Collapse
Affiliation(s)
- K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Wilson Joel Rodrigues
- JSS Academy of Higher Education and Research, (Deemed to be University), Shivarathreeshwara Nagara, Mysuru, 570015, Karnataka, India
| | - Sudeep D Ghate
- Central Research Laboratory, NITTE (Deemed to be University), K.S. Hegde Medical Academy, Mangalore, 575018, India
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore, 575018, India
| | - R Shyama Prasad Rao
- Central Research Laboratory, NITTE (Deemed to be University), K.S. Hegde Medical Academy, Mangalore, 575018, India
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore, 575018, India
| | - K R Chandrashekar
- Yenepoya Pharmacy and Ayush Research Centre (YEN PARC), Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - N Bhagya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
| |
Collapse
|
30
|
Kumar A, Purohit N, Singh PP, Jangid K, Kumar V, Bharat JS, Chakraborty S, Kumar V, Jaitak V. Identification of phytochemicals from genus Potentilla as estrogen receptor-α inhibitors through molecular docking, molecular dynamic simulation and DFT calculations. J Biomol Struct Dyn 2025:1-17. [PMID: 40307235 DOI: 10.1080/07391102.2025.2498622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer is among the most prevalent causes of death in women worldwide. About 70-75% of these cancers are hormone-dependent, expressing estrogen receptors (ERs), mainly ER-α, making it an essential target for managing breast cancer. Potentilla genus has been traditionally used worldwide for its diverse biological activities, including antidiabetic, anti-inflammatory, antioxidant, etc. In the present study, phytochemicals isolated from various species of the Potentilla species were evaluated for their in silico ER-α inhibitory activity through molecular docking, molecular dynamic simulation, Density Functional Theory calculations and free energy calculations. Four hundred seventy-one molecules were used through ligand preparation and docked inside the generated grid on ER-α protein cavity and the standard drug tamoxifen. Fourteen molecules have shown better dock (-14.42 to -12.57 kcal/mol) scores than tamoxifen (-10.71 kcal/mol). Most of the molecules belong to the category of flavonoid glycosides. Molecules with good binding free energy (-78.81 to -12.94 kcal/mol) indicate stability inside the binding pocket. Further, based on dock score, pharmacokinetic parameters, and binding free energy, two hit molecules, 1 and 2, were selected for their molecular dynamic simulation, MM/PBSA and DFT calculations for assessing their stability and structural dynamics inside the binding cavity as well as their reactivity. Through MD simulation analysis, it was evaluated that Compound 1 could distort the protein to a greater extent. In contrast, compound 2 was stable throughout the simulation time of 150 ns and can be further explored in vitro and in vivo studies as ER-α inhibitors in breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Nehal Purohit
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Praval Pratap Singh
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vijay Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Jare Shrikrushna Bharat
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, India
| | - Vikas Jaitak
- Natural Product Chemistry Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
31
|
Xie H, Li W, Han X, Li M, Zhao Q, Xu Y, Su H, Meng W. Identification of RIPK3 as a target of flavonoids for anti-necroptosis in vitro. Bioorg Chem 2025; 161:108503. [PMID: 40328155 DOI: 10.1016/j.bioorg.2025.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/08/2025]
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a key regulator of necroptosis, has emerged as an important target for therapeutic intervention. Flavonoids are natural compounds known for their anti-inflammatory and antioxidant properties, with recent studies highlighting their potential to modulate necroptosis. In this study, we explored the potential of RIPK3 as a target for flavonoids to achieve anti-necroptosis and anti-inflammatory effects. A library of 63 flavonoids was tested for RIPK3 binding and kinase inhibition using fluorescence polarization (FP) competition assay and ADP-Glo kinase activity assay. Six flavonoids, including scutellarein, robinetin, baicalin, myricetin, baicalein, and tricetin, showed significant inhibition of RIPK3, with IC50 values ranging from 2.5 to 13.7 μM. Structural studies of tricetin and robinetin through co-crystallization and molecular docking revealed distinct binding modes of these flavonoids within the ATP-binding pocket of RIPK3. The anti-necroptosis effects of these flavonoids were further evaluated in human HT-29 cells and mouse embryonic fibroblasts (MEFs) using a TSZ-induced cell death assay, resulting in EC50 values in the tens of micromolar range. Western blot analysis demonstrated that these flavonoids inhibit the phosphorylation of RIPK3 and its downstream effector, mixed lineage kinase domain-like protein (MLKL), and disrupt the formation of RIPK1 and RIPK3 aggregates in the necroptosis pathway. These findings identify RIPK3 as a target of natural flavonoids for the first time and elucidate the molecular mechanism underlying the anti-necroptotic activity of these flavonoids.
Collapse
Affiliation(s)
- Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wanchen Li
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xiaoyu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Qiang Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China; Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 4BF, UK; Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT12 6BA, UK.
| |
Collapse
|
32
|
Mi Y, Wei D, Du B, Zhang R, Li J, Huang S, Zhang B, Ren J, Wu X. Effect of type 2 diabetes mellitus microenvironment on osteogenic capacity of bone marrow mesenchymal stem cells. Int Immunopharmacol 2025; 157:114724. [PMID: 40300360 DOI: 10.1016/j.intimp.2025.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Type 2 diabetes mellitus (T2DM) often leads to delayed bone regeneration such as slow healing of fractures and bone defects. The number, status and osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs) are extremely important in bone healing and bone regeneration. The T2DM microenvironment can have irreversible negative effects on BMSCs. In this paper, we review the molecular expression and altered proliferation, migration, and osteogenic differentiation capacity of BMSCs in the microenvironment of T2DM, it provides a new perspective to restore the normal function of T2DM-BMSCs, so as to save the damaged bone regeneration capacity.
Collapse
Affiliation(s)
- Yanling Mi
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Danni Wei
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Bingli Du
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ran Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Jiadi Li
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Shuo Huang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Binbin Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Juan Ren
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiuping Wu
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
33
|
Roy A, Anbarasu A. Unveiling Berberine analogues as potential inhibitors of Escherichia coli FtsZ through machine learning molecular docking and molecular dynamics approach. Sci Rep 2025; 15:14668. [PMID: 40287515 PMCID: PMC12033256 DOI: 10.1038/s41598-025-98835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The bacterial cell division protein FtsZ, a crucial GTPase, plays a vital role in the formation of the contractile Z-ring, which is essential for bacterial cytokinesis. Consequently, inhibiting FtsZ could prevent the formation of proto-filaments and interfere with the cell division machinery. The remarkable conservation of FtsZ across diverse bacterial species makes it a promising drug target for combating drug resistance. In the present study, 1072 berberine analogues were screened for favorable pharmacokinetic properties. A total of 60 compounds that fulfilled the drug-likeliness criteria and were found to be non-toxic were selected for virtual screening against Escherichia coli FtsZ protein (PDB ID: 8GZY). Molecular docking revealed a strong binding affinity of ZINC000524729297 (- 8.73 kcal/mol) and ZINC000604405393 (and - 8.55 kcal/mol) with FtsZ by strong intermolecular hydrogen bonds and hydrophobic interactions. Subsequently, the docking profiles were validated through a 500 ns MD simulation and MMPBSA analysis of the FtsZ-ligand complexes. The analysis revealed the FtsZ- ZINC524729297 and FtsZ-ZINC000604405393 complexes had the lowest root-mean-square deviation with lowest binding energy and enhanced conformational stability in a dynamic environment. These findings suggest that ZINC524729297 and ZINC000604405393 are the potent lead compound that targets FtsZ and requires further experimental validation.
Collapse
Affiliation(s)
- Aditi Roy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
34
|
Yeh HC, Gupta K, Lu YH, Srinivasan A, Delila L, Yen NTH, Nyam-Erdene A, Burnouf T. Platelet Extracellular Vesicles as Natural Delivery Vehicles for Mitochondrial Dysfunction Therapy? ACS Biomater Sci Eng 2025. [PMID: 40280866 DOI: 10.1021/acsbiomaterials.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Mitochondria are vital for energy production, metabolic regulation, and cellular signaling. Their dysfunction is strongly implicated in neurological, cardiovascular, and muscular degenerative diseases, where energy deficits and oxidative stress accelerate disease progression. Platelet extracellular vesicles (PEVs), once called "platelet dust", have emerged as promising agents for mitigating mitochondrial dysfunction. Like other extracellular vesicles (EVs), PEVs carry diverse molecular cargo and surface markers implicated in disease processes and therapeutic efficacy. Notably, they may possibly contain intact or partially functional mitochondrial components, making them tentatively attractive for targeting mitochondrial damage. Although direct research on PEVs-mediated mitochondrial rescue remains limited, current evidence suggests that PEVs can modulate diseases associated with mitochondrial dysfunction and potentially enhance mitochondrial health. This review explores the therapeutic potential of PEVs in neurodegenerative and cardiovascular disorders, highlighting their role in restoring mitochondrial health. By examining recent advancements in PEVs research, we aim to shed light on novel strategies for utilizing PEVs as therapeutic agents. Our goal is to underscore the importance of further fundamental and applied research into PEVs-based interventions, as innovative tools for combating a wide range of diseases linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hsien Chang Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Xin-Yi Campus, Taipei City 110, Taiwan
| | - Kirti Gupta
- International Graduate Program in Medicine, College of Medicine, Taipei Medical University, Xin-Yi Campus, Taipei 110, Taiwan
| | - Ya-Hsuan Lu
- School of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
| | - Abinaya Srinivasan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
| | - Nguyen Tran Hai Yen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
| | - Ariunjargal Nyam-Erdene
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 110, Taiwan
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
35
|
Li Z, Zhang Z, Yu B. Correction to "Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease". J Med Chem 2025; 68:9018-9024. [PMID: 40214661 DOI: 10.1021/acs.jmedchem.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
36
|
Wadan AHS, Moshref AS, Emam AM, Bakry YG, Khalil BO, Chaurasia A, Ibrahim RAH, Badawy T, Mehanny SS. Mitochondrial dysfunction as a key player in aggravating periodontitis among diabetic patients: review of the current scope of knowledge. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04025-x. [PMID: 40272516 DOI: 10.1007/s00210-025-04025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Periodontitis is a prevalent inflammatory disease that leads to significant periodontal tissue destruction and compromised dental health, with its severity exacerbated in individuals with Diabetes Mellitus (DM). This review explores the complex relationship between mitochondrial dysfunction and periodontitis in diabetic patients. Recent studies indicate that the excessive production of reactive oxygen species (ROS), primarily generated by dysfunctional mitochondrial electron transport chain (ETC) complexes, contributes to oxidative stress (OS) and subsequent periodontal tissue damage. The interplay between impaired mitochondrial biogenesis, apoptosis of periodontal cells, and ROS accumulation highlights a critical area of concern in understanding the pathophysiology of diabetic periodontitis. Furthermore, altered glycemic control due to inflammatory processes associated with periodontitis may perpetuate a cyclical detriment to oral and systemic health. This review aims to highlight the mechanistic roles of mitochondrial dysfunction in the aggravation of periodontitis among diabetic patients, emphasizing further research to identify potential therapeutic targets and improve treatment efficacy for this dual pathology.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt.
| | | | | | | | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George'S Medical University, Lucknow, India
| | - Reham A H Ibrahim
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
| | - Tamer Badawy
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Guo Z, Zhou Y, Li J, Liu D, Huang Y, Zhang Y, Yu R, Zhu J. Dihydroartemisinic acid dehydrogenase-mediated alternative route for artemisinin biosynthesis. Nat Commun 2025; 16:3888. [PMID: 40274872 PMCID: PMC12022088 DOI: 10.1038/s41467-025-59312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Dihydroartemisinic acid (DHAA) converts into antimalarial drug artemisinin (ART) by auto-oxidation. High production of artemisinic acid (AA) has been achieved by fermentation of engineered Saccharomyces cerevisiae, and AA can be converted into ART through DHAA by chemical synthesis. However, there is no enzyme reported to catalyze the conversion of AA to DHAA. Here, we report a dihydroartemisinic acid dehydrogenase (AaDHAADH) from Artemisia annua L, which catalyzes the bidirectional conversion between AA and DHAA. An optimized mutant AaDHAADH (P26L) is obtained through site-directed mutagenesis and its activity toward AA is 2.82 times that of the original gene. De novo synthesis of DHAA is achieved in S. cerevisiae using the targeted optimized gene AaDHAADH (P26L). Furthermore, 3.97 g/L of DHAA is obtained by fermentation of engineered S. cerevisiae in 5 L bioreactor. The discovery of AaDHAADH provides a more convenient and efficient alternative route for ART biosynthesis.
Collapse
Affiliation(s)
- Zizheng Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Ying Zhou
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China
| | - Jiangqi Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yuwen Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yu Zhang
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Department of Natural Product Chemistry, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
38
|
Li D, Li N, Chen Y, Yang Y, Pan J, Lin J, Gao X, Bao R, Zhou C, Wang S, Hu B, Tan D. Phage-host interaction in Pseudomonas aeruginosa clinical isolates with functional and altered quorum sensing systems. Appl Environ Microbiol 2025; 91:e0240224. [PMID: 40035599 PMCID: PMC12016573 DOI: 10.1128/aem.02402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Quorum sensing (QS) plays a crucial role in regulating key traits, including the upregulation of phage receptors, which leads to heightened phage susceptibility in Pseudomonas aeruginosa. As a result, higher cell densities typically increase the risk of phage invasions. This has led to speculation that bacteria may have evolved strategies to counterbalance this increased susceptibility. Additionally, non-synonymous mutations in LasR, the master regulator of QS, are common among cystic fibrosis patients, but the impact of these mutations on phage interactions remains poorly understood. Here, we systematically investigated the role of QS in shaping these interactions using bacterial strains with functional or altered QS systems. In the QS-functional strain ZS-PA-35, disruption of the Las system reduces cell susceptibility to the type IV pili-dependent phage phipa2, delaying bacterial lysis during the early logarithmic growth phase. At high cell densities, Las-induced dormancy further inhibits phage proliferation despite enhanced phage adsorption. Notably, nutrient supplementation fully restores phage proliferation in the strains with a functional Las system. In contrast, the QS-deficient strain ZS-PA-05, carrying a LasR mutation, fails to regulate phage-host interactions via QS. Moreover, our findings reveal that within mixed microbial populations, cells benefit from the presence of closely related kin, which collectively reduce prey density and limit phage-host interaction frequencies under nutrient-rich conditions. These results underscore the flexibility of QS-regulated defense strategies, highlighting their critical role in optimizing bacterial resilience against phage predation, particularly in heterogeneous communities most vulnerable to phages.IMPORTANCEBacteria have developed various strategies to combat phage infection, posing challenges to phage therapy. In this study, we demonstrate that Pseudomonas aeruginosa strains with functional or altered quorum sensing (QS) systems may adapt different survival tactics for prolonged coexistence with phages, contingent upon bacterial population dynamics. The dynamics of phage infection highlight the influence of intrinsic heterogeneity mediated by QS, which leads to the emergence of different phage-host outcomes. These variants may arise as a result of coevolutionary processes or coexistence mechanisms of mutational and non-mutational defense strategies. These insights enhance our comprehension of how bacteria shield themselves against phage attacks and further underscore the complexity of such approaches for successful therapeutic interventions.
Collapse
Affiliation(s)
- Dandan Li
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxuan Yang
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiabing Lin
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Hospital Infection Management, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Gao
- Department of Hospital Infection Management, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Bao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunmei Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suzhen Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Shi W, Jia M, Li X, Zhao X, Wang C, Fan G, Lou Y. Comprehensive characterisation of the active ingredients of Smilax glabra Roxb based on chemical fingerprinting, metabolic fingerprinting and pharmacodynamic fingerprinting. Front Pharmacol 2025; 16:1519054. [PMID: 40337523 PMCID: PMC12055767 DOI: 10.3389/fphar.2025.1519054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background Smilax glabra Roxb (SGR) is a traditional Chinese medicine known for its medicinal and edible properties, with a long history of clinical use in treating hyperuricemia (HUA). However, current research has primarily focused on ethanol extracts, leaving the active ingredients and mechanisms responsible for the uric acid-lowering effects of SGR standard decoction unclear. Methods Firstly, the chemical components in the standard decoction of SGR were characterized by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and the pharmacodynamic experiments in mice with a high uric acid model were used to rapidly screen out the uric acid-lowering active ingredient group. Secondly, metabolic fingerprinting and tissue distribution analysis were performed on plasma and tissue samples from rats orally administered with SGR, respectively, to identify the key components and target organs. Finally, the core targets of these active ingredients were screened and analyzed by molecular docking technology. Results We fractionated the ingredients of the SGR standard decoction into large and medium polar compound groups using macroporous resin, identifying 20 components. Then, through the pharmacodynamic experiment in hyperuricemic mice, we verified that the group of medium polar compounds in SGR had significant uric acid-lowering effects. In the metabolic fingerprinting analysis, 8 flavonoids and 24 metabolites were screened in the plasma of SD rats. Tissue distribution analysis revealed that the liver, intestine, kidney, and stomach were the main target organs for the active ingredients, with neoastiblin, astilbin, neoisoastiblin, isoastiblin, engeletin, and metabolites M01, M08, and M15 being the most widely distributed. Molecular docking confirmed that metabolites M08, M11, M15, and M16 exhibited strong binding activities with the target proteins CNT2, XOD, and URAT1. Conclusion This study provides valuable references and insights into the pharmacodynamic substance basis and mechanism of action of SGR standard decoction for HUA treatment, through comprehensive analyses of chemical, metabolic, and pharmacodynamic fingerprints.
Collapse
Affiliation(s)
- Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenxi Wang
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Clinical Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Liao L, Yi Q, Zhao Z, Xu M, Wu T, Chen S, Liu Y. miR-6844/HSD17B13 Axis Contributes the Malignant Phenotype of Hepatocellular Carcinoma Cells. Cell Biol Int 2025. [PMID: 40255210 DOI: 10.1002/cbin.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer, and aberrant miRNAs expression significantly contributes to its progression. Although the abnormal expression of miR-6844 in HCC has been reported, its impact on the malignant phenotype of HCC cells and its potential mechanism remains unclear. In this study, we initially conducted a bioinformatics analysis to investigate the differential expression of miR-6844 in HCC tissues and its impact on patient prognosis. The association between miR-6844 expression levels and clinical characteristics of HCC patients was subsequently investigated by integrating data from clinical samples. Ultimately, the impact of miR-6844 on the malignant phenotype of HCC cells and the underlying mechanisms were examined through in vitro cellular experiments. The results showed that a high expression of miR-6844 in HCC, which was associated with poor prognosis and exhibited significant correlations with intrahepatic metastasis and clinical stage among patients. The upregulation of miR-6844 promoted the proliferation, migration, and invasion of HCC cells while suppressing apoptosis. Conversely, the downregulation of miR-6844 significantly attenuated the malignant phenotype of HCC cells. In addition, HSD17B13 was identified as a target gene of miR-6844, and the overexpression of HSD17B13 partially counteracted the oncogenic effects induced by miR-6844 in HCC cells, otherwise the opposite. Taken together, the above results suggest that miR-6844 plays a regulatory role in the malignant phenotype of HCC cells through its targeting of HSD17B13.
Collapse
Affiliation(s)
- Li Liao
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Qilin Yi
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Zhen Zhao
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Tao Wu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Shuai Chen
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| | - Yu Liu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, Hunan, People's Republic of China
| |
Collapse
|
41
|
Yao S, Zhang R, Ma S, Zhao T, Liu Q, Zhu L, Liu C, Sun L, Du M. A Novel Cystatin Gene from Sea Cucumber ( Apostichopus japonicus): Characterization and Comparative Expression with Cathepsin L During Early Stage of Hypoxic Exposure-Induced Autolysis. Foods 2025; 14:1404. [PMID: 40282805 PMCID: PMC12027202 DOI: 10.3390/foods14081404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Autolysis in sea cucumber has long been a threat to raw material storage and product processing. The involvement of endogenous cysteine protease in sea cucumber autolysis has been proved extendedly. However, as an essential part of the mechanism of autolysis, the role of its endogenous inhibitor has seldom been reported. To investigate the role of cysteine protease inhibitors in the early stage of hypoxic exposure-induced autolysis, a novel cystatin gene (SjCyt) belonging to the subfamily of cystatin C was cloned from Apostichopus japonicus by homology cloning and rapid amplification of cDNA ends. The affinity of SjCyt to cysteine protease (cathepsin L and cathepsin B) was investigated by molecular dynamics simulations. Pertinent metrics, including the root mean square deviation, radius of gyration, Gibbs free energy, binding free energy, and bond-forming frequency, showed that the conformation of SjCyt-SjCL was more stable and confirmed a stronger interaction of SjCyt with cathepsin L than with cathepsin B. Thus, cathepsin L (SjCL) was selected to further study its co-expression with SjCyt over a period of 9 h at an early stage of hypoxic exposure. Quantitative RT-qPCR revealed a ubiquitous transcriptional profile of SjCyt and SjCL in all the tested tissues, with the highest abundance in the dorsal epidermis, tube feet, and coelomocytes. Temporal transcription of them showed an overall up-regulated co-expression in the dorsal epidermis and tube feet. However, up-regulated SjCyt and down-regulated SjCL were observed at the protein level. Further immunofluorescence double labeling also found increased staining of SjCyt and SjCyt-SjCL complexes and decreased SjCL. Additionally, recombinant SjCyt was prepared and demonstrated an evident autolysis-inhibiting effect. The results of this study indicated that the anti-autolytic regulation of SjCyt functions at the very early stage of hypoxic exposure, exerting effects at both the transcriptional and translational levels. The above finding offers new insights into the mechanisms of sea cucumber autolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liming Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.Y.); (R.Z.); (S.M.); (T.Z.); (Q.L.); (M.D.)
| | | |
Collapse
|
42
|
Ibarra-Lara L, Sánchez-López A, del Valle-Mondragon L, Soria-Castro E, Zarco-Olvera G, Patlán M, Guarner-Lans V, Torres-Narváez JC, Ruiz-Ramírez A, Díaz de León-Sánchez F, Oidor-Chan VH, Castrejón-Téllez V. Involvement of Nuclear Receptors PPAR-α, PPAR-γ, and the Transcription Factor Nrf2 in Cellular Protection Against Oxidative Stress Regulated by H 2S and Induced by Hypoxia-Reoxygenation and High Glucose in Primary Cardiomyocyte Cultures. Antioxidants (Basel) 2025; 14:482. [PMID: 40298815 PMCID: PMC12024258 DOI: 10.3390/antiox14040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Myocardial oxidative stress increases under conditions of hyperglycemia and ischemia/reperfusion (I/R) injury, leading to cellular damage. Inhibition of oxidative stress is involved in the cardioprotective effects of hydrogen sulfide (H2S) during I/R and diabetes, and H2S has the potential to protect the heart. However, the mechanism by which H2S regulates the level of cardiac reactive oxygen species (ROS) during I/R and hyperglycemic conditions remains unclear. Therefore, the objective of this study was to evaluate the cytoprotective effect of H2S in primary cardiomyocyte cultures subjected to hyperglycemia, hypoxia-reoxygenation (HR), or both conditions, by assessing the PPAR-α/Keap1/Nrf2/p47phox/NOX4/p-eNOS/CAT/SOD and the PPAR-γ/PGC-1α/AMPK/GLUT4 signaling pathways. Treatment with NaHS (100 μM) as an H2S donor in cardiomyocytes subjected to hyperglycemia, HR, or a combination of both increased cell viability, total antioxidant capacity, and tetrahydrobiopterin (BH4) concentrations, while reducing ROS production, malondialdehyde concentrations, 8-hydroxy-2'-deoxyguanosine, and dihydrobiopterin (BH2) concentrations. Additionally, the H2S donor treatment increased the expression and activity of PPAR-α, reversed the reduction in the expression of PPAR-γ, PGC-1α, AMPK, GLUT4, Nrf2, p-eNOS, SOD, and CAT, and decreased the expression of Keap1, p47phox and NOX4. Therefore, the treatment with the H2S donor protects cardiomyocytes from damage caused by hyperglycemia, HR, or both conditions by reducing oxidative stress markers and improving antioxidant mechanisms, thereby increasing cell viability and "cardiomyocyte ultrastructure".
Collapse
Affiliation(s)
- Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.I.-L.); (L.d.V.-M.); (G.Z.-O.); (J.C.T.-N.)
| | - Araceli Sánchez-López
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Leonardo del Valle-Mondragon
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.I.-L.); (L.d.V.-M.); (G.Z.-O.); (J.C.T.-N.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City 14080, Mexico; (E.S.-C.); (A.R.-R.)
| | - Gabriela Zarco-Olvera
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.I.-L.); (L.d.V.-M.); (G.Z.-O.); (J.C.T.-N.)
| | - Mariana Patlán
- Subdirectorate of Basic and Technological Research, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Verónica Guarner-Lans
- Department of Physiology, National Institute of Cardiology Ignacio Chavez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Juan Carlos Torres-Narváez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (L.I.-L.); (L.d.V.-M.); (G.Z.-O.); (J.C.T.-N.)
| | - Angélica Ruiz-Ramírez
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City 14080, Mexico; (E.S.-C.); (A.R.-R.)
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, Autonomous Metropolitan University, Iztapalapa Campus, Mexico City 09310, Mexico;
| | - Víctor Hugo Oidor-Chan
- Department of Biotechnology, Autonomous Metropolitan University, Iztapalapa Campus, Av. Ferrocarril San Rafael Atlixco 186, Leyes de Reforma, Iztapalapa, Mexico City 09310, Mexico
| | - Vicente Castrejón-Téllez
- Department of Physiology, National Institute of Cardiology Ignacio Chavez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
43
|
Reynoso-García MF, Nicolás-Álvarez DE, Tenorio-Barajas AY, Reyes-Chaparro A. Structural Bioinformatics Applied to Acetylcholinesterase Enzyme Inhibition. Int J Mol Sci 2025; 26:3781. [PMID: 40332446 PMCID: PMC12028328 DOI: 10.3390/ijms26083781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Acetylcholinesterase (AChE) is a critical enzyme involved in neurotransmission by hydrolyzing acetylcholine at the synaptic cleft, making it a key target for drug discovery, particularly in the treatment of neurodegenerative disorders such as Alzheimer's disease. Computational approaches, particularly molecular docking and molecular dynamics (MD) simulations, have become indispensable tools for identifying and optimizing AChE inhibitors by predicting ligand-binding affinities, interaction mechanisms, and conformational dynamics. This review serves as a comprehensive guide for future research on AChE using molecular docking and MD simulations. It compiles and analyzes studies conducted over the past five years, providing a critical evaluation of the most widely used computational tools, including AutoDock, AutoDock Vina, and GROMACS, which have significantly contributed to the advancement of AChE inhibitor screening. Furthermore, we identify PDB ID: 4EY7, the most frequently used AChE crystal structure in docking studies, and highlight Donepezil, a well-established reference molecule widely employed as a control in computational screening for novel inhibitors. By examining these key aspects, this review aims to enhance the accuracy and reliability of virtual screening approaches and guide researchers in selecting the most appropriate computational methodologies. The integration of docking and MD simulations not only improves hit identification and lead optimization but also provides deeper mechanistic insights into AChE-ligand interactions, contributing to the rational design of more effective AChE inhibitors.
Collapse
Affiliation(s)
- María Fernanda Reynoso-García
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Dulce E. Nicolás-Álvarez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
| | - A. Yair Tenorio-Barajas
- Laboratorio de Nanobiotecnologia, Facultad de Ciencias Físico Matemáticas, Benemerita Universidad de Puebla, Av. San Cladio y 18 Sur, Col. San Manuel, Edif. FM6-108, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Andrés Reyes-Chaparro
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| |
Collapse
|
44
|
Galarneau ER, Wallis CM, Baumgartner K. Biochemical characterization of wood decay and metabolization of phenolic compounds by causal fungi of grapevine trunk diseases. PLoS One 2025; 20:e0315412. [PMID: 40238810 PMCID: PMC12002536 DOI: 10.1371/journal.pone.0315412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 04/18/2025] Open
Abstract
Grapevine trunk diseases, such as Esca, Botryosphaeria dieback, and Eutypa dieback, are caused by various Ascomycota and Basidiomycota fungi that colonize wood and form internal lesions. Basidiomycota fungi, such as Fomitiporia species, are associated only with the trunk disease Esca, and are wood-decay fungi. Variation in the extent of lesion development among the fungal pathogens reflects a combination of fungal virulence and host susceptibility. To evaluate factors that may affect lesion development, we compared in vitro wood-decay abilities and tolerance of host secondary metabolites (cell-wall and soluble phenolic compounds) of four fungi that cause trunk diseases: Eutypa lata (Eutypa dieback), Fomitiporia polymorpha (Esca), and Diplodia seriata and Neofusicoccum parvum (Botryosphaeria dieback). Fungi were grown on autoclaved blocks of Vitis vinifera 'Merlot' wood for six months, to examine fungal colonization of wood cells and percentages of wood components remaining after decay. Fungi were also grown on medium amended with starch, pectin, lignin, cellulose, hemicellulose, tannic acid, gallic acid, magnesium sulfate, or grape wood powder, to determine cell wall-degrading enzyme activity and impacts on fungal growth. Lastly, to determine tolerance of phenolic compounds, fungi were grown in medium amended with piceid, rutin, epicatechin, or gallic acid. Our novel findings for F. polymorpha include its preferential degradation of hemicellulose and pectin (and detection of corresponding enzymatic activities), but no degradation of lignin, in spite of growth in lignin-amended media and detection of laccase, lignin peroxidase, and peroxidase activities. Together, these findings suggest F. polymorpha has characteristics of both brown-rot and white-rot fungi. The type of wood decay caused by D. seriata and N. parvum, based on their degradation of pectin, cellulose, hemicellulose, and lignin (and detection of corresponding enzymatic activities), is characteristic of a soft rot, similar to that of E. lata. Unique among these three Ascomycetes was induction of N. parvum growth by piceid, rutin, epicatechin, and gallic acid, and efficient metabolism and/or detoxification of these phenolic compounds by N. parvum. As all four fungi metabolize components of the wood as substrate, and also can metabolize/detoxify host-defense compounds, a clearer understanding of their roles as wood-decay fungi might further research on managing the chronic wood infections.
Collapse
Affiliation(s)
- Erin R. Galarneau
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Resources Unit, Geneva, New York, United States of America
| | - Christopher M. Wallis
- United States Department of Agriculture-Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, Parlier, California, United States of America
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California, United States of America
| |
Collapse
|
45
|
Moon J, Shin E, Kwon Y. Enantioselective Desymmetrization of Biaryls via Cooperative Photoredox/Brønsted Acid Catalysis and Its Application to the Total Synthesis of Ancistrobrevolines. J Am Chem Soc 2025; 147:12800-12810. [PMID: 40186573 DOI: 10.1021/jacs.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Photoredox catalysis has emerged as a powerful tool for forming and breaking chemical bonds, further taking hold with its integration with asymmetric catalysis. While the dual-catalytic approach has led to successful examples of the control of stereogenic centers, the control of stereogenic axes has remained underexplored. In this study, an acylimine intermediate was generated through photoredox catalysis, and a symmetric substrate, 2-arylresorcinol, was desymmetrized with the aid of chiral phosphoric acid catalysis. Using this approach, a stereogenic center and stereogenic axis were successfully controlled to provide a natural-product-driven compound. The origins of enantioselectivity and diastereoselectivity were investigated through a density functional theory study of four possible enantiodetermining transition states. Consequently, the first total syntheses of the ring-contracted naphthylisoquinoline alkaloid ancistrobrevolines A and B were accomplished concisely. This approach provides not only a novel methodology and strategy to synthesize naphthylisoquinoline alkaloids but also a direction to advance catalytic research and total synthesis studies.
Collapse
Affiliation(s)
- Junsoo Moon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eunjoo Shin
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Velumani K, Rajan PS, Shaik MR, Hussain SA, Shaik B, Guru A, Issac PK. Protective Effect of Artemisinin Against Luperox Induced Oxidative Stress and Insulin Resistance via Pi3k/Akt Pathway in Zebrafish Larvae. Cell Biochem Biophys 2025:10.1007/s12013-025-01747-w. [PMID: 40220071 DOI: 10.1007/s12013-025-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Oxidative stress plays a critical role in the development of insulin resistance (IR), a key factor in metabolic disorders such as diabetes. Plant active ingredients play a crucial role in protecting organisms from environmental stressors and have shown promising therapeutic potential against various metabolic disorders. Artemisinin (ART), a sesquiterpenoid with a lactone ring obtained from the herb Artemisia annua, exhibits promising therapeutic properties. This study investigates the potential of ART on Luperox (LUP)-induced oxidative stress and the resulting IR in zebrafish larvae, specifically investigating the involvement of the PI3K/AKT signaling pathway. Zebrafish larvae were chosen due to their high sensitivity to oxidative stress, well-characterized glucose metabolism, and genetic similarity to human metabolic pathways. They were exposed to LUP to induce oxidative stress, followed by treatment with ART. The effects were evaluated through biochemical assays, fluorescence staining and gene expression analysis. ART effectively restored key antioxidant enzymes (SOD, CAT, GSH) and mitigated oxidative stress evidenced by reduction in intercellular ROS and lipid peroxidation, as confirmed through DCFDA and DPPP staining assays. Additionally, ART improved glucose uptake and lowered blood glucose levels. Gene expression analysis further indicated increased levels of PI3K/Akt signalling components and antioxidant-related genes (NRF2, HO-1, GPx, and GSR). Our results indicate that artemisinin significantly alleviates oxidative stress by reducing ROS levels and enhancing antioxidant enzyme activity. Furthermore, artemisinin mitigates IR by restoring glucose metabolism and upregulating PI3K/AKT pathway components. These findings highlight the translational potential of plant active ingredients, particularly artemisinin, for the development of therapies targeting IR and oxidative stress-related metabolic disorders.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Praveen Kumar Issac
- Department of Medical Biotechnology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
47
|
Payva F, K S S, James R, E AP, Sivaramakrishnan V. Systems biology approach delineates critical pathways associated with papillary thyroid cancer: a multi-omics data analysis. Thyroid Res 2025; 18:15. [PMID: 40211357 PMCID: PMC11987294 DOI: 10.1186/s13044-025-00230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most prevalent follicular cell-derived subtype of thyroid cancer. A systems biology approach to PTC can elucidate the mechanism by which molecular components work and interact with one another to decipher a panoramic view of the pathophysiology. METHODOLOGY PTC associated genes and transcriptomic data were retrieved from DisGeNET and Gene Expression Omnibus database respectively. Published proteomic and metabolomic datasets in PTC from EMBL-EBI were used. Gene Ontology and pathway analyses were performed with SNPs, differentially expressed genes (DEGs), proteins, and metabolites linked to PTC. The effect of a nucleotide substitution on a protein's function was investigated. Additionally, significant transcription factors (TFs) and kinases were identified. An integrated strategy was used to analyse the multi-omics data to determine the key deregulated pathways in PTC carcinogenesis. RESULTS Pathways linked to carbohydrate, protein, and lipid metabolism, along with the immune response, signaling, apoptosis, gene expression, epithelial-mesenchymal transition (EMT), and disease onset, were identified as significant for the clinical and functional aspects of PTC. Glyoxylate and dicarboxylate metabolism and citrate cycle were the most common pathways among the PTC omics datasets. Commonality analysis deciphered five TFs and fifty-seven kinases crucial for PTC genesis and progression. Core deregulated pathways, TFs, and kinases modulate critical biological processes like proliferation, angiogenesis, immune infiltration, invasion, autophagy, EMT, and metastasis in PTC. CONCLUSION Identified dysregulated pathways, TFs and kinases are critical in PTC and may help in systems level understanding and device specific experiments, biomarkers, and drug targets for better management of PTC.
Collapse
Affiliation(s)
- Febby Payva
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India.
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| | - Santhy K S
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| | - Remya James
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Amrisa Pavithra E
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Puttaparthi, Andhra Pradesh, 515134, India.
| |
Collapse
|
48
|
Hossain S, Rabbi SAH, Mamun MJI, Masum MAA, Suma KJ, Rasel MH, Hasan MA, Mohammad M, Hossain D. Antioxidant, Anti-Inflammatory, and Neuropharmacological Potential of Syngonium podophyllum Flower Methanolic Extract: Insights From In Vivo, In Vitro, In Silico, and GC-MS/MS Analysis. Chem Biodivers 2025:e202500425. [PMID: 40207503 DOI: 10.1002/cbdv.202500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/11/2025]
Abstract
Syngonium (S.) podophyllum L. is recognized for its diverse applications. This study evaluated the in vivo anti-inflammatory and neuropharmacological properties of its methanolic flower extract (S. podophyllum flower methanolic extract [SPF-ME]) using Swiss albino mice and its in vitro antioxidant capabilities. The anti-inflammatory activity was assessed through the xylene-induced ear edema method, whereas antioxidant properties were evaluated using 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. Analgesic efficacy was tested with the acetic acid-induced writhing and hot plate methods. Antidepressant effects were examined using the forced swimming test (FST) and the tail suspension test (TST), and anxiolytic activity was measured through the elevated plus maze (EPM) and hole board tests. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify bioactive compounds, alongside in silico investigations using online tools for pass prediction, ADME/T, and molecular docking. Results showed that SPF-ME exhibited significant antioxidant activity, reduced edema (p < 0.05), and provided a notable analgesic effect (200 mg/kg, p < 0.001). It also demonstrated anxiolytic effects and reduced immobility time in both FST and TST (400 mg/kg, p < 0.001). Molecular docking analysis showed that the compounds in the extract exhibited binding affinities between -1.2 and -10.5 kcal/mol for various human target receptors, including human cytochrome P450 CYP2C9, human cyclooxygenase-2 (COX-2), COX-2 inhibitors, human monoamine oxidase, and the human serotonin transporter, suggesting potential pharmacological activity. Overall, SPF-ME is a promising natural source of antioxidants, anti-inflammatory, and neuropharmacological agents.
Collapse
Affiliation(s)
- Sakhaoyat Hossain
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, Bangladesh
| | - Sayed Al Hossain Rabbi
- Department of Chemistry, Government City College, National University, Chattogram, Bangladesh
| | - Md Jahirul Islam Mamun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - M Abdullah Al Masum
- Department of Applied Food Science and Nutrition, Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Khurshida Jahan Suma
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Hossain Rasel
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Amzad Hasan
- Department of Pharmacy, University of Science and Technology Chittagong, Chattogram, Bangladesh
| | - Mahathir Mohammad
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, Bangladesh
| | - Delower Hossain
- Department of Medicine and Public Health, Faculty of Veterinary Medicine and Animal Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
49
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
50
|
Chaar DL, Jiang C, Cowan B, Patel S, Kvale M, Yin J, Mostaedi R, Ahituv N, Jorgenson E, Hoffmann TJ, Choquet H. Multi-tissue transcriptome-wide association study identifies novel candidate genes and pleiotropy effects across four abdominal hernia subtypes. HGG ADVANCES 2025; 6:100436. [PMID: 40205738 PMCID: PMC12050004 DOI: 10.1016/j.xhgg.2025.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025] Open
Abstract
Abdominal hernias are caused by the protrusion of an organ or tissue through a weakened abdominal wall. Genome-wide association studies (GWASs) have identified 81 genetic susceptibility loci for different hernia subtypes, with 26 loci associated with more than one hernia type; however, additional work is needed to prioritize causal genes at known GWAS loci, identify novel ones, and characterize shared genetic effects across hernia subtypes. We conduct transcriptome-wide association study (TWAS) analyses of four hernia subtypes (i.e., inguinal, umbilical, ventral, femoral) using GWAS summary statistics from up to 57,291 hernia cases and 436,717 controls of European ancestry. Our TWAS, which leveraged imputed gene expression from 54 tissues, identifies 211 unique genes, of which 85 did not overlap with known hernia-associated loci. We also investigate patterns of pleiotropy and identify four genes (LYPLAL1-AS1, RIMKLBP2, AL513283.1, and EFEMP1) associated with all four hernia subtypes. Our findings enhance understanding of transcriptomic mechanisms through which hernias develop.
Collapse
Affiliation(s)
- Dima L Chaar
- Division of Research, Kaiser Permanente Northern California (KPNC), Pleasanton, CA 94588, USA
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California (KPNC), Pleasanton, CA 94588, USA
| | - Brandon Cowan
- University of California, San Francisco (UCSF)-East Bay General Surgery, Oakland, CA 94602, USA
| | - Sahil Patel
- University of California, San Francisco (UCSF)-East Bay General Surgery, Oakland, CA 94602, USA
| | - Mark Kvale
- Division of Research, Kaiser Permanente Northern California (KPNC), Pleasanton, CA 94588, USA; Institute for Human Genetics, UCSF, San Francisco, CA 94143, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Pleasanton, CA 94588, USA
| | - Rouzbeh Mostaedi
- KPNC, Department of Surgery, Richmond Medical Center, Richmond, CA 94801, USA
| | - Nadav Ahituv
- Institute for Human Genetics, UCSF, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94143, USA
| | | | - Thomas J Hoffmann
- Institute for Human Genetics, UCSF, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA 94158, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Pleasanton, CA 94588, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA.
| |
Collapse
|