451
|
Mui B, Ahkong QF, Chow L, Hope MJ. Membrane perturbation and the mechanism of lipid-mediated transfer of DNA into cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:281-92. [PMID: 11030588 DOI: 10.1016/s0005-2736(00)00226-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mixtures of cationic lipids and unsaturated phosphatidylethanolamine are used extensively for the intracellular delivery of plasmids and antisense oligodeoxynucleotides (ODN) in vitro. However, the mechanism by which cytoplasmic delivery of these large molecules is achieved remains unclear. The common hypothesis is that phosphatidylethanolamine promotes fusion of lipid/DNA particles with endosomal membranes, but this is inconsistent with several reports that have failed to correlate the fusogenic activity of a wide variety of lipid/DNA particles, measured by lipid mixing techniques, with their transfection activity. To address this issue further we have conducted a detailed analysis of the lipid mixing and DNA transfer activity of two, physically similar but functionally different, lipid/DNA particles composed of equimolar dioleyldimethylammonium chloride (DODAC) and dioleoylphosphatidylethanolamine (DOPE) or dioleoylphosphatidylcholine (DOPC). In combination with DODAC both phospholipids form almost identical lipid/DNA particles, they are endocytosed by cells to the same extent and each undergoes equivalent lipid mixing with cell membranes after uptake. Despite this, DNA transfer is 10- to 100-fold more extensive for lipid/DNA particles containing DOPE. We conclude that lipid mixing between lipid-based delivery systems and endosomal membranes must occur for DNA transfer to occur. However, the potency of different lipid/DNA particles correlates better with the ability of the exogenous lipid to disrupt membrane integrity.
Collapse
Affiliation(s)
- B Mui
- Inex Pharmaceutials Corp, Burnaby, BC, Canada.
| | | | | | | |
Collapse
|
452
|
Mignet N, Brun A, Degert C, Delord B, Roux D, Hélène C, Laversanne R, François JC. The spherulites(TM): a promising carrier for oligonucleotide delivery. Nucleic Acids Res 2000; 28:3134-42. [PMID: 10931929 PMCID: PMC108452 DOI: 10.1093/nar/28.16.3134] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concentric multilamellar microvesicles, named spherulites(TM), were evaluated as an oligonucleotide carrier. Up to 80% oligonucleotide was encapsulated in these vesicles. The study was carried out on two different spherulite(TM) formulations. The spherulite(TM) size and stability characteristics are presented. Delivery of encapsulated oligonucleotide was performed on a rat hepatocarcinoma and on a lymphoblastoid T cell line, both expressing the luciferase gene. We showed that spherulites(TM) were able to transfect both adherent and suspension cell lines and deliver the oligonucleotide to the nucleus. Moreover, 48-62% luciferase inhibition was obtained in the rat hepatocarcinoma cell line when the antisense oligonucleotide targeted to the luciferase coding region was encapsulated at 500 nM concentration in spherulites(TM) of different compositions.
Collapse
Affiliation(s)
- N Mignet
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS UMR 8646, 43 rue Cuvier, 75231 PARIS Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
453
|
Barreleiro PCA, Olofsson G, Alexandridis P. Interaction of DNA with Cationic Vesicles: A Calorimetric Study. J Phys Chem B 2000. [DOI: 10.1021/jp000636c] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paula C. A. Barreleiro
- Center for Chemistry and Chemical Engineering, Physical Chemistry 1, Lund University, P.O. Box 124, S-22100 Lund, Sweden, and Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200
| | - Gerd Olofsson
- Center for Chemistry and Chemical Engineering, Physical Chemistry 1, Lund University, P.O. Box 124, S-22100 Lund, Sweden, and Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200
| | - Paschalis Alexandridis
- Center for Chemistry and Chemical Engineering, Physical Chemistry 1, Lund University, P.O. Box 124, S-22100 Lund, Sweden, and Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200
| |
Collapse
|
454
|
Leone P, Janson CG, Bilaniuk L, Wang Z, Sorgi F, Huang L, Matalon R, Kaul R, Zeng Z, Freese A, McPhee SW, Mee E, During MJ, Bilianuk L. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 2000; 48:27-38. [PMID: 10894213 DOI: 10.1002/1531-8249(200007)48:1<27::aid-ana6>3.0.co;2-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the ultimate goal of developing safe and effective in vivo gene therapy for the treatment of Canavan disease and other neurological disorders, we developed a non-viral lipid-entrapped, polycation-condensed delivery system (LPD) for central nervous system gene transfer, in conjunction with adeno-associated virus (AAV)-based plasmids containing recombinant aspartoacylase (ASPA). The gene delivery system was tested in healthy rodents and primates, before proceeding to preliminary studies in 2 children with Canavan disease. Toxicity and expression testing was first carried out in human 293 cells, which demonstrated effective transduction of cells and high levels of functional ASPA activity. We performed in vivo toxicity and expression testing of LPD/pAAVaspa and LPD/pAAVlac in rodents, which demonstrated widespread gene expression for more than 10 months after intraventricular delivery, and local expression in deep brain nuclei and white matter tracts for more than 6 months after intraparenchymal injections, with no significant adverse effects. We also performed intraventricular delivery of LPD/pAAVaspa to 2 cynomologous monkeys, with 2 additional monkeys receiving LPD and saline controls. None of the monkeys demonstrated significant adverse effects, and at 1 month the 2 LPD/pAAVaspa monkeys were positive for human ASPA transcript by reverse transcriptase polymerase chain reaction of brain tissue punches. Finally, we performed the first in vivo gene transfer study for a human neurodegenerative disease in 2 children with Canavan disease to assess the in vivo toxicity and efficacy of ASPA gene delivery. Our results suggest that LPD/pAAVaspa is well tolerated in human subjects and is associated with biochemical, radiological, and clinical changes.
Collapse
Affiliation(s)
- P Leone
- Department of Neurosurgery, CNS Gene Therapy Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Abstract
The gene for cystic fibrosis was identified in 1989 and this together with the emerging technology of gene therapy heralded a new dawn for the treatment of genetic disease. The initial optimism however gave way to the realisation that gene therapy for cystic fibrosis was unlikely to be straightforward. The lung was considered an ideal organ to target due to ease of access, but subsequent research has shown that the airway surface provides an efficient barrier to topically applied gene transfer agents. A number of Phase I clinical safety trials were carried out through the 1990s and provided proof of concept evidence that delivery of DNA by either viral or non-viral means was safe though not clinically efficacious. Current research is now focusing more on the barriers faced by delivery agents, with the aim that more efficient gene delivery will lead to a gene therapeutic for cystic fibrosis.
Collapse
Affiliation(s)
- E Alton
- National Heart & Lung Institute, Imperial College, Ion Transport Unit, Manresa Road, London SW3 6LR, UK.
| | | |
Collapse
|
456
|
Yamazaki Y, Nango M, Matsuura M, Hasegawa Y, Hasegawa M, Oku N. Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther 2000; 7:1148-55. [PMID: 10918482 DOI: 10.1038/sj.gt.3301217] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel gene transfer system was developed by using liposomes modified with cetylated polyethylenimine (PEI, MW 600). This polycation liposome, PCL, showed remarkable transfection efficiency as monitored by the expression of the GFP reporter gene. Most conventional cationic liposomes require phosphatidylethanolamine or cholesterol as a component, although PCLs did not. Egg yolk phosphatidylcholine- and dipalmitoylphosphatidylcholine-based PCL were as effective as dioleoylphosphatidylethanolamine-based PCLs for gene transfer. Concerning the cytotoxicity against COS-1 cells and hemolytic activity, the PCL was superior to conventional cationic liposome preparations. Furthermore, the transfection efficacy of PCLs was enhanced, instead of being diminished, in the presence of serum. Effective gene transfer was observed in all eight malignant and two normal cells line tested, as well as in COS-1 cells. We also examined the effect of the molecular weight of PEI on PCL-mediated gene transfer, and observed that PEI with a MW of 1800 Da was as effective as that with one of 600, but that PEI of 25,000 was far less effective. Finally, an in vivo study was done in which GFP was effectively expressed in mouse liver after injection of PCL via the portal vein. Thus, PCL represents a new system useful for transfection and gene therapy.
Collapse
Affiliation(s)
- Y Yamazaki
- Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
457
|
Lin AJ, Slack NL, Ahmad A, Koltover I, George CX, Samuel CE, Safinya CR. Structure and structure-function studies of lipid/plasmid DNA complexes. J Drug Target 2000; 8:13-27. [PMID: 10761642 DOI: 10.3109/10611860009009206] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent synchrotron-based X-ray diffraction studies have enabled us to comprehensively solve the self-assembled structures in mixtures of cationic liposomes (CLs) complexed with linear lambda-DNA. In one case the CL-DNA complexes were found to consist of a higher ordered multilamellar structure (labeled L(alpha)C with DNA sandwiched between cationic bilayer membranes. The membrane charge density is found to control the DNA interaxial spacing with high densities leading to high DNA compaction between lipid bilayers. A second self-assembled structure (labeled H(II)C) consists of linear DNA strands coated by cationic lipid monolayers and arranged on a 2D hexagonal lattice. In this paper we report on a combined X-ray diffraction and optical microscopy study of CLs complexed with functional supercoiled plasmid DNA. We describe the self-assembled structures in cell culture medium for both a high transfectant complex (DOTAP/DOPE, phiDOPE = 0.72) and a low transfectant complex (DOTAP/DOPC, (phiDOPC = 0.72). Fluorescence optica microscopy shows two distinct interactions between these two types of complexes and mouse fibroblast L-cells, demonstrating the existence of a correlation between structure and transfection efficiency.
Collapse
Affiliation(s)
- A J Lin
- Department of Physics, University of California, Santa Barbara 93106, USA
| | | | | | | | | | | | | |
Collapse
|
458
|
Marshall J, Nietupski JB, Lee ER, Siegel CS, Rafter PW, Rudginsky SA, Chang CD, Eastman SJ, Harris DJ, Scheule RK, Cheng SH. Cationic lipid structure and formulation considerations for optimal gene transfection of the lung. J Drug Target 2000; 7:453-69. [PMID: 10758915 DOI: 10.3109/10611860009102219] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhanced gene transduction to the lung using cationic lipids could be attained through optimization of the structure of the lipids and the formulation of the cationic lipid:plasmid DNA (pDNA) complexes. We have expanded on our earlier observation of the importance of the structural orientation of the cationic lipid headgroup. Through the synthesis of a number of matched pairs of cationic lipids differing only in the configuration of their headgroup, we confirmed that those harboring a T-shape headgroup are more active than their linear counterparts, at least when tested in the lungs of BALB/c mice. Additionally, we demonstrated that not only are the structural considerations of these cationic lipids important, but also their protonation state, the free base being invariably more active than its salt counterpart. The salt forms of cationic lipids bound pDNA with greater avidity, which may have affected their subsequent intracellular dissolution and transit of the pDNA to the nucleus. Inclusion of a number of frequently used solutes in the vehicle severely inhibited the gene transfection activity of the cationic lipids. The selection of neutral co-lipids was also an important factor for overall transfection activity of the formulation, with significant gains in transfection activity realized when diphytanoylphosphatidylethanolamine or dilinoleoylphosphatidylethanolamine were used in lieu of dioleoylphosphatidylethanolamine. Finally, we showed that a transacylation reaction could occur between the cationic lipid and neutral co-lipid which reduced the transfection activity of the complexes. It is the hope that as our understanding of the many factors that influence the activity of these cationic lipid:pDNA complexes improves, formulations with much greater potency can be realized for use in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- J Marshall
- Genzyme Corporation, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Subramanian M, Holopainen JM, Paukku T, Eriksson O, Huhtaniemi I, Kinnunen PK. Characterisation of three novel cationic lipids as liposomal complexes with DNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:289-305. [PMID: 10825450 DOI: 10.1016/s0005-2736(00)00183-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic lipids (CLs) are being increasingly exploited as transfection vectors for the delivery of DNA into eukaryotic cells. To obtain further insight to the complex formation and interactions between cationic liposomes and DNA, we characterised three novel cationic lipids, viz. bis[2-(11-phenoxyundecanoate)ethyl]-dimethylammonium bromide, N-hexadecyl-N-¿10-[O-(4-acetoxy)-phenylundecanoate]ethyl¿- dimethylammonium bromide, and bis[2-(11-butyloxyundecanoate)ethyl]dimethylammonium bromide. These lipids bear the same charged headgroup yet have different hydrophobic parts. Accordingly, we may anticipate their electrostatic interactions with DNA to be similar while differing in both thermal phase behaviour and physicochemical properties of their complexes with DNA. In keeping with the above all three lipids formed complexes with DNA as evidenced by light scattering, fluorescence spectroscopy and Langmuir film balance. Differential scanning calorimetry revealed very different phase behaviours for the binary mixtures of the three CLs with dimyristoylphosphatidylcholine and also provided evidence for DNA-induced lipid phase separation. These data were confirmed by compression isotherms and fluorescence microscopy of monolayers residing on an aqueous buffer, recorded both in the presence and absence of DNA. Importantly, binding to cationic liposomes appears to prevent thermal denaturation of DNA upon heating of the complexes. Likewise, renaturation of heat-treated DNA complexed with the cationic liposomes appears to be abolished as well.
Collapse
Affiliation(s)
- M Subramanian
- Helsinki Biomembrane and Biophysics Group, Department of Medical Chemistry, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
460
|
Sakurai F, Inoue R, Nishino Y, Okuda A, Matsumoto O, Taga T, Yamashita F, Takakura Y, Hashida M. Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Control Release 2000; 66:255-69. [PMID: 10742585 DOI: 10.1016/s0168-3659(99)00280-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to identify the important factors involved in cationic liposome-mediated gene transfer, in vitro transfection efficiencies by plasmid DNA complexed with DOTMA/DOPE liposomes at different DNA/liposome mixing ratios were evaluated using four types of cultured cells with respect to their physicochemical properties. Significant changes were observed in the particle size and zeta potential of the complexes as well as in their structures, assessed by atomic force microscopy, which depended on the mixing ratio. In transfection experiments, except for RAW 264.7 cells (mouse macrophages), efficient gene expression was obtained in MBT-2 cells (mouse bladder tumor), NLH3T3 cells (mouse fibroblasts) and HUVEC (human umbilical vein endothelial cells) at an optimal ratio of 1:5, 1:7.5 or 1:5, respectively. On the other hand, cellular uptake of the [32P]DNA/liposome complexes increased in all cell types with an increase in the mixing ratio, which was not reflected by the transfection efficiency. The cellular damage determined by MTT assay was minimal even at the highest DNA/liposome ratio (1:10), indicating that the lower gene expression level at the higher ratio was not due to cytotoxicity induced by the complex. An ethidium bromide intercalation assay showed that the release of plasmid DNA from the complex, following the addition of negatively charged liposomes, was restricted as the mixing ratio increased. Furthermore, confocal microscopic studies using HUVEC showed that the 1:5 complexes exhibited a dispersed distribution in the cytoplasm whereas a punctuate intracellular distribution was observed for the 1:10 complexes. This suggests that there was a significant difference in intracellular trafficking, probably release from the endosomes or lysosomes, of the plasmid DNA/cationic liposome complexes between these mixing ratios. Taken together, these findings suggest that the DNA/liposome mixing ratio significantly affects the intracellular trafficking of plasmid DNA complexed with the cationic liposomes, which is an important determinant of the optimal mixing ratio in cationic liposome-mediated transfection.
Collapse
Affiliation(s)
- F Sakurai
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Delépine P, Guillaume C, Floch V, Loisel S, Yaouanc J, Clément J, Des Abbayes H, Férec C. Cationic phosphonolipids as nonviral vectors: in vitro and in vivo applications. J Pharm Sci 2000; 89:629-38. [PMID: 10756328 DOI: 10.1002/(sici)1520-6017(200005)89:5<629::aid-jps8>3.0.co;2-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since the development of the concept of gene therapy using cationic lipids as nonviral vectors by Felgner's group in 1987, numerous molecules have been synthesized. Such vectors were first proposed to avoid viral vector-induced drawbacks. But, it quickly became clear that a thorough knowledge of their physical and chemical characteristics was fundamental to use them under optima conditions. Over the last years our laboratory has developed a family of cationic lipids called phosphonolipids whose structure is based on that of natural phosphonolipids; compared with other vectors, these compounds had to be well-tolerated by biologic membranes. Some of our synthesized molecules exhibited an interesting potential for gene transfer, both in vitro and in vivo. Structural changes in the different parts (hydrophobic, hydrophilic, and intermediary domains) of these vectors were evaluated in vitro on different cell-lines; these studies led us to select some of these molecules to carry out in vivo tests. So, the plasmid/phosphonolipid complexes were first administered to mice by intratracheal and aerosol routes with a beta-galactosidase plasmid as reporter gene. In a second set of experiments, we explored the possibilities offered by intravenous injection; in these studies, we used a luciferase plasmid as reporter gene because of its high sensibility. These experiments revealed a transgene expression essentially localized in the lungs. In a further study, we compared systemic administration with local ones; we, then, observed that the optimum formulation of a given molecule depended on its route of administration.
Collapse
Affiliation(s)
- P Delépine
- Centre de Biogénétique, University, Hospital, ETSBO, BP 454, 29275 Brest Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
462
|
Ortiz A, Cajal Y, Haro I, Reig F, Alsina MA. Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles. Biopolymers 2000; 53:455-66. [PMID: 10775061 DOI: 10.1002/(sici)1097-0282(200005)53:6<455::aid-bip2>3.0.co;2-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction of the multiple antigenic peptide MAP4VP3 with lipid membranes has been studied by spectroscopic techniques. MAP4VP3 is a multimeric peptide that corresponds to four units of the sequence 110-121 of the capsid protein VP3 of hepatitis A virus. In order to evaluate the electrostatic and hydrophobic components on the lipid-peptide interaction, small unilamelar vesicles of different compositions, including zwitterionic dipalmitoylphosphatidylcholine (DPPC), anionic dipalmitoylphosphatidylcholine/phatidylinositol (DPPC:PI 9:1), and cationic dipalmitoylphosphatidylcholine/stearylamine (DPPC:SA 9.5:0.5), were used as membrane models. Intrinsic tryptophan fluorescence changes and energy transfer experiments show that MAP4VP3 binds to all three types of vesicles with the same stoichiometry, indicating that the electrostatic component of the interaction is not important for binding of this anionic peptide. Steady-state polarization experiments with vesicles labeled with 1,6-diphenyl-1,3,5-hexatriene or with 1-anilino-8-naphtalene sulphonic acid indicate that MAP4VP3 induces a change in the packing of the bilayers, with a decrease in the fluidity of the lipids and an increase in the temperature of phase transition in all the vesicles. The percentage of lipid exposed to the bulk aqueous phase is around 60% in intact vesicles, and it does not change upon binding of MAP4VP3 to DPPC vesicles, indicating that the peptide does not alter the permeability of the membrane. An increase in the amount of lipid exposed to the aqueous phase in cationic vesicles indicates either lipid flip-flop or disruption of the vesicles. Binding to DPPC vesicles occurs without leakage of entrapped carboxyfluorescein, even at high mol fractions of peptide. However, a time-dependent leakage is seen with cationic DPPC/SA and anionic DPPC/PI vesicles, indicating that the peptide induces membrane destabilization and not lipid flip-flop. Resonance energy transfer experiments show that MAP4VP3 leakage from cationic vesicles is due to membrane fusion, whereas leakage from anionic vesicles is not accompanied by lipid mixing. Results show that MAP4VP3 interacts strongly with the lipid components of the membrane, and although binding is not of electrostatic nature, the bound form of the peptide has different activity depending on the membrane net charge; thus, it is membrane disruptive in cationic and anionic vesicles, whereas no destabilizing effect is seen in DPPC vesicles.
Collapse
Affiliation(s)
- A Ortiz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
463
|
Floch V, Delépine P, Guillaume C, Loisel S, Chassé S, Le Bolc'h G, Gobin E, Leroy JP, Férec C. Systemic administration of cationic phosphonolipids/DNA complexes and the relationship between formulation and lung transfection efficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:95-103. [PMID: 10704923 DOI: 10.1016/s0005-2736(99)00250-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Performances of cationic lipid formulations for intravenous gene delivery to mouse lungs have been previously reported. We report in this study that cationic phosphonolipids, when appropriately formulated, can be good synthetic vectors for gene delivery to lung after intravenous administration. One of our reagents, GLB43, was capable of mediating a 500-fold higher expression in the lungs of mice than could be obtained with free pDNA alone (P=0.018). We demonstrate that the most important parameters for cationic phosphonolipid transfection activity after systemic administration are the chemical structure of the cationic phosphonolipid, the lipid to DNA charge ratio and the inclusion of co-lipid in the formulation. We report using a luciferase reporter gene that transfection activity in vivo 24 h after cationic phosphonolipid systemic administration could not be predicted from in vitro analysis. In contrast to in vitro studies, cationic phosphonolipids including the oleyl acyl chains (GLB43) were more effective than its analogue with the myristyl acyl chains (GLB73). Using pathological analysis of animal livers, we demonstrate that the toxicity level was correlated with the lipoplex formulation and the lipid to DNA ratio.
Collapse
Affiliation(s)
- V Floch
- Centre de Biogénétique, CHU, ETSBO, 46, rue Félix le Dantec, P.O. Box 454, 29275, Brest, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Regelin AE, Fankhaenel S, Gürtesch L, Prinz C, von Kiedrowski G, Massing U. Biophysical and lipofection studies of DOTAP analogs. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:151-64. [PMID: 10704929 DOI: 10.1016/s0005-2736(00)00126-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.
Collapse
Affiliation(s)
- A E Regelin
- Tumor Biology Center, Department of Clinical Research, Breisacher Strasse 117, D-79106, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
465
|
Maslov MA, Syicheva EV, Morozova NG, Serebrennikova GA. Cationic amphiphiles of both lipid and nonlipid nature in gene therapy. Russ Chem Bull 2000. [DOI: 10.1007/bf02494765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
466
|
van Broekhoven CL, Parish CR, Vassiliou G, Altin JG. Engrafting costimulator molecules onto tumor cell surfaces with chelator lipids: a potentially convenient approach in cancer vaccine development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2433-43. [PMID: 10679080 DOI: 10.4049/jimmunol.164.5.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic modification of cells to develop cell-based vaccines and to modulate immune responses in vivo can be risky and inconvenient to perform in clinical situations. A novel chelator lipid, nitrilotriacetic acid di-tetradecylamine (NTA-DTDA) that, via the NTA group has high affinity for 6His peptide, was used to directly anchor recombinant forms of T cell costimulatory molecules containing a C-terminal 6-His sequence onto tumor cell surfaces. Initial experiments using murine P815 tumor cells established the optimum conditions for incorporating NTA-DTDA onto the membranes of cells. P815 cells with incorporated NTA-DTDAbound hexahistidine-(6His)-tagged forms of the extracellular domains of murine B7.1 and CD40 (B7.1-6H and CD40-6H) at very high levels (fluorescence 200-300-fold above background), and both proteins could be anchored onto the cells simultaneously. Significant loss of the anchored or "engrafted" protein occurred through membrane internalization following culture of the cells under physiological conditions, but P815 cells with engrafted B7.1-6H and/or CD40-6H stimulated the proliferation of allogenic and syngeneic splenic T cells in vitro, and generated cytotoxic T cells when used as vaccines in syngeneic animals. Furthermore, the immunization of syngeneic mice with P815 cells engrafted with B7.1-6H or with B7. 1-6H and CD40-6H induced protection against challenge with the native P815 tumor. The results indicate that the use of chelator lipids like NTD-DTDA to engraft costimulatory and/or other molecules onto cell membranes could provide a convenient alternative to transfection in the development of cell-based vaccines and for modulation of immune function.
Collapse
Affiliation(s)
- C L van Broekhoven
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
467
|
Tros de Ilarduya C, Düzgüneş N. Efficient gene transfer by transferrin lipoplexes in the presence of serum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:333-42. [PMID: 10675511 DOI: 10.1016/s0005-2736(99)00225-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cationic lipids are being used increasingly as reagents for gene delivery both in vitro and in vivo. One of the limitations to the application of cationic lipid-DNA complexes (lipoplexes) in vivo is the inhibition of gene delivery by serum. In this study, we have shown that transferrin (Tf)-lipoplexes, which had transferrin adsorbed at their surface via electrostatic interactions, are much more effective than plain lipoplexes in transfecting cells in the presence of relatively high concentrations (up to 60%) of fetal bovine serum (FBS). Serum even enhanced transfection by Tf-lipoplexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)/dioleoylphosphatidylethanolamine (DOPE)/pCMVLacZ at high lipid/DNA (+/-) charge ratios, and inhibited lipofection for those with low charge ratios when they were added to the cells immediately after the preparation of complexes. The effect of serum on lipofection was dose-dependent. Preincubation of the complexes at 20 degrees C for 6 h led to serum resistance, even for the negatively charged transferrin-lipoplexes. A similar tendency was observed for DOTAP/cholesterol and DOTAP/DOPE/cholesterol liposomes. The percentage of cells transfected, measured by beta-galactosidase expression, also increased with the serum concentration. Cell viability was not affected significantly when the cells were incubated with the complexes for 4 h at 37 degrees C, followed by a 48-h incubation. Our findings extend the scope of previous studies where transferrin-lipoplexes were used to introduce DNA into cells, rendering these complexes and their future derivatives potential alternatives to viral vectors for gene delivery in vivo.
Collapse
Affiliation(s)
- C Tros de Ilarduya
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA
| | | |
Collapse
|
468
|
Lam AM, Cullis PR. Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:279-90. [PMID: 10675506 DOI: 10.1016/s0005-2736(99)00219-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is shown that calcium increases the in vitro transfection potency of plasmid DNA-cationic liposome complexes from 3- to 20-fold. The effect is Ca(2+) specific as other cations, such as Mg(2+) and Na(+), do not give rise to enhanced transfection and the effect can be inhibited by the presence of EGTA. It is shown that Ca(2+) increases cellular uptake of the DNA-lipid complexes, indicating that increased transfection potency arises from increased intracellular delivery of both cationic lipid and plasmid DNA in the presence of Ca(2+). In particular, it is shown that the levels of intact intracellular plasmid DNA are significantly enhanced when Ca(2+) is present. The generality of the Ca(2+) effect for enhancing complex-mediated transfection is demonstrated for a number of different cell lines and different cationic lipid formulations. It is concluded that addition of Ca(2+) represents a simple and useful protocol for enhancing in vitro transfection properties of plasmid DNA-cationic lipid complexes.
Collapse
Affiliation(s)
- A M Lam
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada.
| | | |
Collapse
|
469
|
Mitrakos P, Macdonald PM. Nucleotide chain length and the morphology of complexes with cationic amphiphiles: (31)P-NMR observations. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:355-73. [PMID: 10675513 DOI: 10.1016/s0005-2736(99)00232-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
31P-NMR and UV spectroscopies were used to study the interactions between cationic amphiphile-containing lipid bilayers and either a phosphorothioate oligonucleotide (OligoS) (n=21) or polyadenylic acid (PolyA) (n approximately 18,000). Multilamellar vesicles (MLVs) were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in binary mixture with either of the cationic lipids, N-[1-(2, 3-dioleoyloxy)propyl]-N',N',N'-trimethylammonium chloride (DOTAP) or cetyltrimethylammonium bromide (CTAB). A UV-difference assay showed that OligoS binding ceased above a 1:1 anion/cation ratio, while PolyA binding continued until a 2:1 ratio was reached, indicating a 'flat' conformation for bound OligoS, but not necessarily for PolyA. Cross-polarization (31)P-NMR of the nucleotide chains bound to 100% DOTAP MLVs produced spectra virtually identical to those of dry powders of OligoS or PolyA, indicating effective immobilization of the surface-bound nucleotide chains. Hahn echo (31)P-NMR showed that MLVs composed of binary mixtures of POPC with DOTAP or CTAB retained a lamellar bilayer architecture upon adding nucleotide chains. At less than stoichiometric anion/cation ratios little or no signal attributable to free nucleotide chains was visible. A narrow signal at the chemical shift expected for phosphorothiodiesters or phosphodiesters became visible at greater levels of added OligoS or PolyA, respectively, indicating the presence of mobile nucleotide chains. Salt addition caused complete desorption of the nucleotide chains. When POPC was replaced with DOPE, binding of OligoS or PolyA produced non-bilayer lipid phases in the presence of DOTAP, but not in the presence of CTAB.
Collapse
Affiliation(s)
- P Mitrakos
- Department of Chemistry, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada
| | | |
Collapse
|
470
|
Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N. Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:459-69. [PMID: 10675522 DOI: 10.1016/s0005-2736(99)00238-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic liposome-DNA complexes ('lipoplexes') are used as gene delivery vehicles and may overcome some of the limitations of viral vectors for gene therapy applications. The interaction of highly positively charged lipoplexes with biological macromolecules in blood and tissues is one of the drawbacks of this system. We examined whether coating cationic liposomes with human serum albumin (HSA) could generate complexes that maintained transfection activity. The association of HSA with liposomes composed of 1, 2-dioleoyl-3-(trimethylammonium) propane and dioleoylphosphatidylethanolamine, and subsequent complexation with the plasmid pCMVluc greatly increased luciferase expression in epithelial and lymphocytic cell lines above that obtained with plain lipoplexes. The percentage of cells transfected also increased by an order of magnitude. The zeta potential of the ternary complexes was lower than that of the lipoplexes. Transfection activity by HSA-lipoplexes was not inhibited by up to 30% serum. The combined use of HSA and a pH-sensitive peptide resulted in significant gene expression in human primary macrophages. HSA-lipoplexes mediated significantly higher gene expression than plain lipoplexes or naked DNA in the lungs and spleen of mice. Our results indicate that negatively charged HSA-lipoplexes can facilitate efficient transfection of cultured cells, and that they may overcome some of the problems associated with the use of highly positively charged complexes for gene delivery in vivo.
Collapse
Affiliation(s)
- S Simões
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
471
|
Meekel A, Wagenaar A, Šmisterová J, Kroeze J, Haadsma P, Bosgraaf B, Stuart M, Brisson A, Ruiters M, Hoekstra D, Engberts J. Synthesis of Pyridinium Amphiphiles Used for Transfection and Some Characteristics of Amphiphile/DNA Complex Formation. European J Org Chem 2000. [DOI: 10.1002/(sici)1099-0690(200002)2000:4<665::aid-ejoc665>3.0.co;2-a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
472
|
Colin M, Maurice M, Trugnan G, Kornprobst M, Harbottle RP, Knight A, Cooper RG, Miller AD, Capeau J, Coutelle C, Brahimi-Horn MC. Cell delivery, intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells. Gene Ther 2000; 7:139-52. [PMID: 10673719 DOI: 10.1038/sj.gt.3301056] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanism of cell entry and intracellular fate of a gene transfer vector composed of a receptor-targeting, DNA-condensing peptide, RGD-oligolysine, a luciferase encoding plasmid DNA (pDNA) and a cationic liposome was examined. We demonstrate by confocal microscopy, electron microscopy and subcellular fractionation that the major mechanism of entry of the vector is endocytic. The vector complex rapidly (5 min) internalizes into early endosomes, then late endosomes and lysosomes. Entry involves, at least in part, clathrin-coated pit-mediated endocytosis since different conditions or drugs known to influence this pathway modify both uptake of pDNA and its expression. The observed increase in expression with addition of a lip some correlated with an increase in the rate of transfer of the pDNA to lysosomes, a decrease in intracellular recycling and exocytosis of the pDNA and an increase in the amount of pDNA in the nuclear fraction. Trafficking within the cell involved endosome fusion and the acid environment of the endosomes-lysosomes was beneficial for expression. After 30 min both the peptide and pDNA localized to the nucleus and the amount of intact pDNA in the nuclear fraction was highest with liposome and peptide. A better understanding of the cellular mechanisms by which vectors transfer to and traffic in cells should help design improved vectors.
Collapse
Affiliation(s)
- M Colin
- Institut National de la Santé et de la Recherche Médicale U 402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Wasan EK, Harvie P, Edwards K, Karlsson G, Bally MB. A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:27-46. [PMID: 10556486 DOI: 10.1016/s0005-2736(99)00144-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.
Collapse
Affiliation(s)
- E K Wasan
- Advanced Therapeutics-Medical Oncology, BC Cancer Agency, 600 West 10th Ave., Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
474
|
MacDonald RC, Ashley GW, Shida MM, Rakhmanova VA, Tarahovsky YS, Pantazatos DP, Kennedy MT, Pozharski EV, Baker KA, Jones RD, Rosenzweig HS, Choi KL, Qiu R, McIntosh TJ. Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J 1999; 77:2612-29. [PMID: 10545361 PMCID: PMC1300535 DOI: 10.1016/s0006-3495(99)77095-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective.
Collapse
Affiliation(s)
- R C MacDonald
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Brisson M, Tseng WC, Almonte C, Watkins S, Huang L. Subcellular trafficking of the cytoplasmic expression system. Hum Gene Ther 1999; 10:2601-13. [PMID: 10566888 DOI: 10.1089/10430349950016645] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cationic liposomes have provided many advantages over viral vector formulations; however, the problem of inefficient gene expression remains. This is due in part to the nuclear membrane, which limits DNA entry into the nucleus. Cytoplasmic expression systems using T7 RNA polymerase have been developed to express genes in the cytoplasm and avoid the need for nuclear import of DNA. Although these systems show improved transgene expression, little is known about how they function in transfected cells. Direct comparisons between a cytoplasmic and nuclear expression system were carried out with a 293 cell line stably expressing T7 RNA polymerase. A formulation for optimal reporter gene expression was developed and used in conjunction with a variety of subcellular trafficking inhibitors to study the process of DNA endocytosis. Transfected cells were also studied at different stages of the cell cycle to determine the dependence of each system on mitosis. These results showed that cytoplasmic and nuclear expression systems utilize similar endocytosis pathways to the point of endosomal release. Once DNA is released into the cytoplasm, the cytoplasmic expression system shows immediate expression that is proportional to the amount of DNA released. In contrast, DNA targeted for nuclear expression requires additional time for nuclear entry. The level of nuclear expression is also restricted by the limited amount of DNA that is imported into the nucleus. Finally, mitosis is required for effective nuclear expression but not for cytoplasmic expression. Therefore, the cytoplasmic expression system has considerable advantages over traditional nuclear expression systems and may be an effective method for transfecting nondividing cells. Efficient expression of genes delivered by nonviral vectors is hindered owing to poor nuclear transport of plasmid DNA. A potential solution to this problem would be to use a cytoplasmic expression system. Previous studies have shown that this method produces enhanced gene expression when compared with traditional nuclear expression systems; however, the actual mechanisms by which the cytoplasmic expression system works remains unknown. This article focuses on a direct comparison between cytoplasmic and nuclear expression in terms of optimal DNA delivery formulations, intracellular trafficking of DNA, and cell cycle dependence. These results indicate that the cytoplasmic expression system has two primary advantages over nuclear expression in that it does not rely on nuclear DNA transport or mitosis for efficient expression.
Collapse
Affiliation(s)
- M Brisson
- Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | |
Collapse
|
476
|
Simões S, Slepushkin V, Pires P, Gaspar R, de Lima MP, Düzgüneş N. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther 1999; 6:1798-807. [PMID: 10602375 DOI: 10.1038/sj.gt.3301015] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Association of a targeting ligand such as transferrin, or an endosome disrupting peptide such as GALA, with cationic liposome-DNA complexes ('lipoplexes') results in a significant enhancement of transfection of several cell types (Simões S et al, Gene Therapy 1998; 5: 955-964). Although these strategies can overcome some of the barriers to gene delivery by lipoplexes, the mechanisms by which they actually enhance tranfection is not known. In studies designed to establish the targeting specificity of transferrin, we found that apo-transferrin enhances transfection to the same extent as transferrin, indicating that internalization of the lipoplexes is mostly independent of transferrin receptors. These observations were reinforced by results obtained from competitive inhibition studies either by preincubating the cells with an excess of free ligand or with various 'receptor-blocking' lipoplexes. Transfection of cells in the presence of drugs that interfere with the endocytotic pathway provided additional insights into the mechanisms of gene delivery by transferrin- or GALA-lipoplexes. Our results indicate that transferrin-lipoplexes deliver transgenes by endocytosis primarily via a non-receptor-mediated mechanism, and that acidification of the endosomes is partially involved in this process.
Collapse
Affiliation(s)
- S Simões
- Department of Microbiology, School of Dentistry, University of the Pacific, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
477
|
Ross PC, Hui SW. Polyethylene glycol enhances lipoplex-cell association and lipofection. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:273-83. [PMID: 10518697 DOI: 10.1016/s0005-2736(99)00132-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The association between liposome-DNA complexes (lipoplexes) and targeted cell membranes is a limiting step of cationic liposome-mediated transfection. A novel technique was developed where lipoplex-cell membrane association is enhanced by the addition of 2-6% polyethylene glycol (PEG) to the transfection media. Lipoplex-cell association was found to increase up to 100 times in the presence of PEG. Transfection increased correspondingly in the presence of PEG. This increase was found in several cell lines. These results show that lipoplex adsorption to cell membranes is a critical step in liposome-mediated transfection. This step can be facilitated by PEG-induced particle aggregation.
Collapse
Affiliation(s)
- P C Ross
- Membrane Biophysics Laboratory, Molecular and Cellular Biophysics Department, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | | |
Collapse
|
478
|
Mahato RI, Smith LC, Rolland A. Pharmaceutical perspectives of nonviral gene therapy. ADVANCES IN GENETICS 1999; 41:95-156. [PMID: 10494618 DOI: 10.1016/s0065-2660(08)60152-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of nonviral plasmid-based gene medicines represents an attractive in vivo gene transfer strategy that is simple and lacks many risks that are inherent to viral systems. Commercialization of gene medicines requires a thorough analysis of business opportunities, unmet clinical needs, competitive products under development, and issues related to intellectual property. Synthetic gene delivery systems are designed to control the location of a gene within the body by affecting distribution and access of a gene expression system to the target cell, and/or recognition by a cell surface receptor and uptake followed by intracellular and nuclear translocation. Plasmid-based gene expression systems are designed to control the level, fidelity, and duration of in vivo production of a therapeutic gene product. This review will provide insights into the potentials of plasmid-based gene therapy and critical evaluation of gene delivery sciences and clinical applications of gene medicines.
Collapse
Affiliation(s)
- R I Mahato
- Copernicus Therapeutics, Inc., Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
479
|
MacDonald RC, Rakhmanova VA, Choi KL, Rosenzweig HS, Lahiri MK. O-ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci 1999; 88:896-904. [PMID: 10479351 DOI: 10.1021/js990006q] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,2-dioleoyl-sn-glycero-3-ethylphosphocholine was prepared in a one-step reaction from phosphatidylcholine by reaction with ethyl trifluoromethanesulfonate. This and related O-alkyl phosphatidylcholines constitute the first chemically stable triesters of biological lipid structures and the first cationic derivatives of phospholipids consisting entirely of biological metabolites linked with ester bonds. The complex of cationic phospholipid and plasmid DNA transfected cells with high efficiency. Maximum efficiency of transfection was obtained with complexes in which the positive charge was a few percent in excess over the negative charge. Modest stimulation of transfection of common cell lines was obtained by continuous culture in the presence of 10% serum. Incubation of the phospholipid complex for at least 2 h at 37 degrees C in nearly pure serum had no deleterious effects on transfection efficiency. The lipid has low toxicity; BHK cells tolerated amounts of 2 mg/2 x 10(6) cells at concentrations of 1 mg/mL. The lipid is biodegradable; it was hydrolyzed by phospholipase A(2) in vitro and was metabolized with a half-life of a few days in cells in culture. The synthetic route to cationic phospholipids is well suited to the preparation of derivatives that are tailor-made to have a wide variety of different properties.
Collapse
Affiliation(s)
- R C MacDonald
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | |
Collapse
|
480
|
Abstract
A variety of membrane-modifying agents including pH-specific fusogenic or lytic peptides, bacterial proteins, lipids, glycerol, or inactivated virus particles have been evaluated for the enhancement of DNA-polycation complex-based gene transfer. The enhancement depends on the characteristics of both the cationic carrier for DNA and the membrane-modifying agent. Peptides derived from viral sequences such as the N-terminus of influenza virus haemagglutinin HA-2, the N-terminus of rhinovirus HRV2 VP-1 protein, and other synthetic or natural sequences such as the amphipathic peptides GALA, KALA, EGLA, JTS1, or gramicidin S have been tested. Ligand-polylysine-mediated gene transfer can be improved up to more than 1000-fold by membrane-active compounds. Other polycations like dendrimers or polyethylenimines as well as several cationic lipids provide a high transfection efficiency per se. Systems based on these polymers or lipids are only slightly enhanced by endosomolytic peptides or adenoviruses. Electroneutral cationic lipid-DNA complexes however can be strongly improved by the addition of membrane-active peptides.
Collapse
|
481
|
Gerasimov OV, Boomer JA, Qualls MM, Thompson DH. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev 1999; 38:317-338. [PMID: 10837763 DOI: 10.1016/s0169-409x(99)00035-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A growing body of literature describes the development and applications of novel targeting and/or contents release triggering schemes to improve the therapeutic index of drugs encapsulated within liposomes. This review focuses on literature appearing between January 1995-December 1997 that report 1) antibody and receptor-mediated targeting approaches for improving drug localization and 2) acid, enzymatic, thermal or photochemical triggering processes that destabilize membranes and improve drug bioavailability via cytoplasmic delivery of liposomal contents.
Collapse
Affiliation(s)
- OV Gerasimov
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
482
|
Li C, Wen S, Zhai H, Sun M. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1999; 42:435-440. [PMID: 18763135 DOI: 10.1007/bf02882064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Indexed: 05/26/2023]
Abstract
Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycopmtein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The results showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfection efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatocytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.
Collapse
Affiliation(s)
- C Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850, Beijing, China
| | | | | | | |
Collapse
|
483
|
Xu Y, Hui SW, Frederik P, Szoka FC. Physicochemical characterization and purification of cationic lipoplexes. Biophys J 1999; 77:341-53. [PMID: 10388762 PMCID: PMC1300334 DOI: 10.1016/s0006-3495(99)76894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.
Collapse
Affiliation(s)
- Y Xu
- University of California, School of Pharmacy, Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, San Francisco, California 94143-0446 USA
| | | | | | | |
Collapse
|
484
|
Densmore CL, Giddings TH, Waldrep JC, Kinsey BM, Knight V. Gene transfer by guanidinium-cholesterol: dioleoylphosphatidyl-ethanolamine liposome-DNA complexes in aerosol. J Gene Med 1999; 1:251-64. [PMID: 10738558 DOI: 10.1002/(sici)1521-2254(199907/08)1:4<251::aid-jgm43>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A major challenge of gene therapy is the efficient transfer of genes to cell sites where effective transfection can occur. The impact of jet nebulization on DNA structural and functional integrity has been problematic for the aerosol delivery of genes to pulmonary sites and remains a serious concern for this otherwise promising and noninvasive approach. METHODS This study examined effects of cationic liposome-DNA formulation on both transfection efficiency (in vitro and in vivo) and jet nebulizer stability. The effects of nebulization and sonication on liposome-DNA particle size characteristics were examined. Electron microscopy of promising formulations was performed using several fixation methods. RESULTS The cationic lipid bis-guanidinium-tren-cholesterol (BGTC), in combination with the neutral co-lipid dioleoylphosphatidylethanolamine (DOPE), was found to have a degree of stability adequate to permit effective gene delivery by the aerosol route. Optimal ratios of lipids and plasmid DNA were identified. Particle size analysis and ultrastructural studies revealed a remarkably homogeneous population of distinctly liposomal structures correlating with the highest levels of transfection efficiency and nebulizer stability. CONCLUSIONS Optimizing gene delivery vectors for pulmonary aerosol delivery to respiratory sites must take into account factors other than transfection efficiency in vitro. Effects of liposome-DNA formulation on liposomal morphology (i.e. particle size, multilamellar structure) appear to be relevant to stability during aerosolization. These studies have allowed us to identify formulations that hold promise for successful clinical application of aerosol gene delivery.
Collapse
Affiliation(s)
- C L Densmore
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
485
|
Wong FM, Bally MB, Brooks DE. Electrostatically mediated interactions between cationic lipid-DNA particles and an anionic surface. Arch Biochem Biophys 1999; 366:31-9. [PMID: 10334860 DOI: 10.1006/abbi.1999.1201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an effort to model the interaction of lipid-based DNA delivery systems with anionic surfaces, such as a cell membrane, we have utilized microelectrophoresis to characterize how electrokinetic measurements can provide information on surface charge and binding characteristics. We have established that cationic lipids, specifically N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC), incorporated into liposomes prepared with 1, 2-dioleoyl-i-glycero-3-phosphoethanolamine (DOPE) or 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 50 mol%, change the inherent electrophoretic mobility of anionic latex polystyrene beads. Self-assembling lipid-DNA particles (LDPs), prepared at various cationic lipid to negative DNA phosphate charge ratios, effected no changes in bead mobility when the LDP charge ratio (+/-) was equal to or less than 1. Increasing the LDP concentration in a solution of 0.1% (w/v) anionic beads resulted in a charge reversal effect when a net charge of LDP to total bead charge ratio (+/-) of 1:1 was observed. LDP formulations, utilizing either DOPE or DOPC, showed similar titration profiles with a charge reversal observed at a 1:1 net LDP to bead charge ratio (+/-). It was confirmed through centrifugation studies that the DNA in the LDP was associated with the anionic latex beads through electrostatic interactions. LDP binding, rather than the binding of dissociated cationic lipids, resulted in the observed electrophoretic mobility changes of the anionic latex beads.
Collapse
Affiliation(s)
- F M Wong
- Department of Pathology and Laboratory Medicine.
| | | | | |
Collapse
|
486
|
Ajmani PS, Hughes JA. 3Beta [N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)-mediated gene delivery to primary rat neurons: characterization and mechanism. Neurochem Res 1999; 24:699-703. [PMID: 10344600 DOI: 10.1023/a:1021012727796] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cationic lipid formulations consisting of 3beta [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the helper lipid dioleoylphosphatidylethanolamine (DOPE) (1.5: 1 molar ratio) were prepared by solvent evaporation and sized by high pressure extrusion. Liposomes made of 1:1 molar ratio 1 ,2-dioleoyl-3-trimethyl-ammonium-propane (DOTAP)/DOPE were used as controls in the study. The two formulations were characterized and evaluated for their efficiency in transfecting SKnSH (neuroblastoma) and primary rat neuronal cell lines. DC-Chol/DOPE liposomes were more efficient at transfecting both the SKnSH and the primary rat neuronal cells and also less toxic compared to the DOTAP/DOPE liposomes. The cellular-associated signal of rhodamine-labeled DC-Chol/DOPE liposomes into SKnSH and primary rat neuronal cells was higher than the rhodamine-labeled DOTAP/DOPE liposomes. These results demonstrate that DC-Chol/DOPE cationic liposomes provide an efficient vehicle for the delivery of plasmids into SKnSH and primary neuronal cells compared to DOTAP/DOPE liposomes. DC-Chol/DOPE liposomes may provide a good non-viral candidate for transfecting primary rat neuronal cells.
Collapse
Affiliation(s)
- P S Ajmani
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|
487
|
Schoen P, Chonn A, Cullis PR, Wilschut J, Scherrer P. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther 1999; 6:823-32. [PMID: 10505107 DOI: 10.1038/sj.gt.3300919] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemagglutinin, the membrane fusion protein of influenza virus, is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we exploited this activity of hemagglutinin to achieve efficient gene delivery to cultured cells. Hemagglutinin was reconstituted in the presence of the monocationic lipid dioleoyldimethylammonium chloride (DODAC) to permit plasmid binding to the virosome surface. Virosomes with 30 mol% DODAC exhibited a distinct binding capacity for plasmid without causing aggregation. The virosome fusion activity was not affected by the cationic lipid DODAC as demonstrated by low-pH-dependent lipid mixing with erythrocyte ghosts. Efficient cell transfection of BHK-21 cells was observed with virosomes containing 30 mol% DODAC and plasmid encoding for beta-galactosidase (pCMV beta-gal) associated to their surface. The transfection activity observed was dependent on the functional activity of hemagglutinin. Contrary to DNA/cationic lipid complexes the transfection was not dependent on the cationic lipid to DNA charge ratio. Importantly, transfection of BHK-21 cells with pCMV beta-gal by DODAC-containing virosomes did not show any significant signs of cytotoxicity that is commonly observed with DNA/cationic lipid complexes. Together with the high levels of expression of the transgene this highlights the potential of DODAC-containing virosomes as a novel approach in nonviral gene transfer.
Collapse
Affiliation(s)
- P Schoen
- Groningen Utrecht Institute for Drug Exploration (GUIDE), Department of Physiological Chemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
488
|
Keller H, Yunxu C, Marit G, Pla M, Reiffers J, Thèze J, Froussard P. Transgene expression, but not gene delivery, is improved by adhesion-assisted lipofection of hematopoietic cells. Gene Ther 1999; 6:931-8. [PMID: 10505119 DOI: 10.1038/sj.gt.3300896] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In contrast to adherent cells, cells growing in suspension and particularly hematopoietic cells, are notoriously difficult to transfect in vitro using nonviral approaches. In the present study, the effect of cell adhesion on gene transfer efficacy was investigated by allowing hematopoietic cells to bind to an adherent cell monolayer (ACM) before being subjected to cationic liposome-mediated DNA transfer. Human CD34 and T CD4 cell lines were cultivated on an ACM constituted of murine fibroblast NIH3T3 cells and transfected with a plasmid carrying the beta-galactosidase gene. X-gal staining showed that up to 27% of the cells expressed the transgene. In contrast, less than 0.1% of these cells were positively transfected in suspension. This adhesion-assisted lipofection (AAL) procedure was also successfully tested on blood lymphocytes, since it resulted in up to 30% of transfected human primary T lymphocytes. Flow cytometry analysis performed on T lymphocyte subsets revealed that 8 and 9%, respectively, of CD4 and CD8 cells could be transfected with a plasmid carrying the green fluorescent protein gene. Other adherent cells, such as MS5 murine stromal cells or HeLa epithelial cells, were also a compatible matrix for AAL. Moreover, the pCMV beta plasmid was present in similar amounts in the nuclei of TF1 cells transfected in suspension or with the AAL procedure. These data raise the possibility that cell matrix/hematopoietic cell interactions might govern expression of the transgene in hematopoietic cells growing usually in suspension, but not endocytosis of liposome/DNA particles and plasmid migration ot the cell nucleus.
Collapse
Affiliation(s)
- H Keller
- Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
489
|
Pires P, Simões S, Nir S, Gaspar R, Düzgünes N, Pedroso de Lima MC. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1418:71-84. [PMID: 10209212 DOI: 10.1016/s0005-2736(99)00023-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.
Collapse
Affiliation(s)
- P Pires
- Department of Biochemistry, Apartado 3126, Faculty of Science and Technology, University of Coimbra, 3000, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
490
|
Tseng WC, Haselton FR, Giorgio TD. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:53-64. [PMID: 10209258 DOI: 10.1016/s0167-4781(99)00039-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical requirement of gene therapy is expression of the delivered transgene. Transgene expression is facilitated by access to the transcription mechanism found primarily in the nucleus. Factors modulating the interactions between intracellular plasmid and nuclear access are not well understood. In this study, the effect of mitosis on transgene expression was examined by quantitative flow cytometry. Transfection of HeLa cells synchronized at late G1 phase or G2/M phase was performed using a liposomal vector containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and dioleoyl-phosphatidylethanolamine (DOPE) (1:1 mol/mol). Cell samples were transfected and subsequently maintained in G1 phase for various durations to modulate the time between plasmid entry and mitosis. The plasmid contains the sequence for a mutated green fluorescent protein (GFP(S65T)) that was used to examine transgene expression. Ethidium monoazide-labeled plasmid was employed to examine the association of plasmid with the cell membrane. The percentage of cells expressing GFP(S65T) increased sharply as the synchronized cell population passed through M phase, suggesting that an event associated with mitosis is essential for transgene expression. Expression levels of the transgene then declined 18 h after mitosis irrespective of transfection strategy. All transfection strategies resulted in the same maximum percentage of GFP(S65T) positive cells (40%) and average GFP(S65T) expression level (3.14x106 molecules per positive cell). Association of plasmid with the cell membrane at late G1 phase was 1.5-fold of that at G2/M phase. These data are evidence for control of transgene expression triggered by events associated with cell cycle.
Collapse
Affiliation(s)
- W C Tseng
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
491
|
Haberland A, Knaus T, Zaitsev SV, Stahn R, Mistry AR, Coutelle C, Haller H, Böttger M. Calcium ions as efficient cofactor of polycation-mediated gene transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:21-30. [PMID: 10209255 DOI: 10.1016/s0167-4781(99)00017-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of calcium on the transfection of non-viral DNA transfer systems. Cationic proteins such as the nuclear protein H1, the polycation polylysine and a number of commercial transfection agents exhibited high transfection rates in the presence of Ca2+. Without Ca2+ H1 and HMG1 were inactive in transfection of the human permanent endothelial cell line ECV 304 while cationic liposomes such as Lipofectin and Lipofectamine did not show any Ca2+ dependence. More detailed experiments showed that Ca2+ was replaceable by the lysosomotropic agent chloroquine. Furthermore, it was possible to separate the transfection-enhancing role of Ca2+ from the actual transfection process by adding Ca2+ to the cells after the transfection period and still to obtain a significant transgene expression. This makes it possible to distinguish between cellular uptake of H1 (or mediator)-DNA complexes and endocytotic release. We also replaced soluble Ca2+ by Ca-phosphate precipitates not containing DNA and obtained similar transfection results. This allowed us to suggest that the addition of free Ca2+ to the transfection medium resulted in nascent Ca-phosphate microprecipitates. The known fusogenic and membranolytic activity of such microprecipitates could facilitate the transport through and the release of the transfecting complexes from the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- A Haberland
- Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Wiltberg Strasse 50, D-13122, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
492
|
Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O'Brodovich H, Lukacs GL. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999; 6:482-97. [PMID: 10476208 DOI: 10.1038/sj.gt.3300867] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inefficient nuclear delivery of plasmid DNA is thought to be one of the daunting hurdles to gene transfer, utilizing a nonviral delivery system such as polycation-DNA complex. Following its internalization by endocytosis, plasmid DNA has to be released into the cytosol before its nuclear entry can occur. However, the stability of plasmid DNA in the cytoplasm, that may play a determinant role in the transfection efficiency, is not known. The turnover of plasmid DNA, delivered by microinjection into the cytosol, was determined by fluorescence in situ hybridization (FISH) and quantitative single-cell fluorescence video-image analysis. Both single- and double-stranded circular plasmid DNA disappeared with an apparent half-life of 50-90 min from the cytoplasm of HeLa and COS cells, while the amount of co-injected dextran (MW 70,000) remained unaltered. We propose that cytosolic nuclease(s) are responsible for the rapid-degradation of plasmid DNA, since (1) elimination of plasmid DNA cannot be attributed to cell division or to the activity of apoptotic and lysosomal nucleases; (2) disposal of microinjected plasmid DNA was inhibited in cytosol-depleted cells or following the encapsulation of DNA in phospholipid vesicles; (3) generation and subsequent elimination of free 3'-OH ends could be detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay (TUNEL), reflecting the fragmentation of the injected DNA; and finally (4) isolated cytosol, obtained by selective permeabilization of the plasma membrane, exhibits divalent cation-dependent, thermolabile nuclease activity, determined by Southern blotting and 32P-release from end-labeled DNA. Collectively, these findings suggest that the metabolic instability of plasmid DNA, caused by cytosolic nuclease, may constitute a previously unrecognized impediment for DNA translocation into the nucleus and a possible target to enhance the efficiency of gene delivery.
Collapse
Affiliation(s)
- D Lechardeur
- Program in Cell and Lung Biology and Lung Gene Therapy, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Abstract
The inhibition effect of serum on the transfection efficiency of cationic liposome-DNA complexes (lipoplexes) is a major obstacle to the application of this gene delivery vector both in vitro and in vivo. The size of the lipoplexes, as they are presented to targeted cells, is found to be the major determinant of their effectiveness in transfection. The transfection efficiency and the cell association and uptake of lipoplexes with CHO cells was found to increase with increasing lipoplex size. The influence on the transfection efficiency of lipoplexes by their cationic lipid:DNA ratios, types of liposomes, incubation time in polyanion containing media, and time of serum addition, are mediated mainly through size. Lipoplexes at a 2:1 charge ratio grow in size in media containing polyanions. The size growth may be arrested by adding serum to the incubation media. By using large lipoplexes, especially those made from multilamellar vesicles, the serum inhibition effect may be overcome.
Collapse
Affiliation(s)
- P C Ross
- Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
494
|
Pitard B, Oudrhiri N, Vigneron JP, Hauchecorne M, Aguerre O, Toury R, Airiau M, Ramasawmy R, Scherman D, Crouzet J, Lehn JM, Lehn P. Structural characteristics of supramolecular assemblies formed by guanidinium-cholesterol reagents for gene transfection. Proc Natl Acad Sci U S A 1999; 96:2621-6. [PMID: 10077560 PMCID: PMC15818 DOI: 10.1073/pnas.96.6.2621] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have recently discovered that cationic cholesterol derivatives characterized by guanidinium polar headgroups are very efficient for gene transfection in vitro and in vivo. In spite of being based on some rationale at the molecular level, the development of these new synthetic vectors was nevertheless empirical. Indeed, the factors and processes underlying cationic lipid-mediated gene transfer are still poorly understood. Thus, to get a better insight into the mechanisms involved, we have examined the supramolecular structure of lipid/DNA aggregates obtained when using reagent bis(guanidinium)-tren-cholesterol (BGTC), either alone or as a liposomal formulation with the neutral phospholipid dioleoyl phosphatidylethanolamine (DOPE). We here report the results of cryotransmission electron microscopy studies and small-angle x-ray scattering experiments, indicating the presence of multilamellar domains with a regular spacing of 70 A and 68 A in BGTC/DOPE-DNA and BGTC-DNA aggregates, respectively. In addition, DNA lipoplexes with similar lamellar patterns were detected inside transfected HeLa cells by conventional transmission electron microscopy. These results suggest that DNA condensation by multivalent guanidinium-cholesterol cationic lipids involves the formation of highly ordered multilamellar domains, the DNA molecules being intercalated between the lipid bilayers. These results also invite further investigation of the intracellular fate of the internalized lipid/DNA structures during their trafficking toward the cell nucleus. The identification of the basic features of active complexes should indeed help in the design of improved guanidinium-based vectors.
Collapse
Affiliation(s)
- B Pitard
- Unité Mixte de Recherche, 133 Rhône-Poulenc Rorer, Centre National de la Recherche Scientifique, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Cameron FH, Moghaddam MJ, Bender VJ, Whittaker RG, Mott M, Lockett TJ. A transfection compound series based on a versatile Tris linkage. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:37-50. [PMID: 10076034 DOI: 10.1016/s0005-2736(98)00248-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The family of cationic lipid transfection reagents described here demonstrates a modular design that offers potential for the ready synthesis of a wide variety of molecular variants. The key feature of these new molecules is the use of Tris as a linker for joining the hydrophobic domain to a cationic head group. The molecular design offers the opportunity to conveniently synthesise compounds differing in charge, the number and nature of hydrophobic groups in the hydrophobic domain and the characteristics of the spacer between the cationic and hydrophobic moieties. We show that prototype reagents of this design can deliver reporter genes into cultured cells with efficiencies rivaling those of established cationic lipid transfection reagents. A feature of these reagents is that they are not dependent on formulation with a neutral lipid for activity.
Collapse
Affiliation(s)
- F H Cameron
- CSIRO Division of Molecular Science, Sydney Laboratory, 2 Richardson Pl., 103 Delhi Rd, North Ryde, 2113, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
496
|
Brisson M, He Y, Li S, Yang JP, Huang L. A novel T7 RNA polymerase autogene for efficient cytoplasmic expression of target genes. Gene Ther 1999; 6:263-70. [PMID: 10435111 DOI: 10.1038/sj.gt.3300827] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inefficient nuclear transport of plasmid DNA continues to be a problem in nonviral vector-mediated gene transfer. This has made the cytoplasmic expression system an increasingly attractive idea. We have developed a new T7 RNA polymerase autogene for cytoplasmic expression containing both a CMV and a T7 promoter. The pCMV/T7-T7pol autogene does not encounter the problems associated with previously used autogenes. For instance, pCMV/T7-T7pol is easily amplified and purified from bacteria. Furthermore, the CMV promoter is used to drive the first round of synthesis of T7 RNA polymerase, thus negating the use of purified enzyme in the transfection complex. The endogenous T7 RNA polymerase produced from the CMV promoter could then act on the T7 promoter of pCMV/T7-T7pol in an autoregulatory mechanism. pCMV/T7-T7pol induces higher, more sustained levels (> 7 days) of reporter gene expression than that observed with the previously used autogene pT7 AUTO 2C- or with the nuclear expression system pCMV-CAT. This seems to be due to the high levels of T7 RNA polymerase protein that are detected in cells transfected with pCMV/T7-T7pol. This vector also functions as an efficient autogene since at least 50 times more mRNA is transcribed from the cytoplasmic T7 promoter as compared with the nuclear CMV promoter in pCMV/T7-T7pol. Therefore, pCMV/T7-T7pol could replace existing autogenes for regeneration of T7 RNA polymerase and efficient target gene expression.
Collapse
Affiliation(s)
- M Brisson
- Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | |
Collapse
|
497
|
Abstract
Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.
Collapse
Affiliation(s)
- C Ropert
- Centro de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, MG, Brasil
| |
Collapse
|
498
|
Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Scherrer P, Cullis PR. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 1999; 6:271-81. [PMID: 10435112 DOI: 10.1038/sj.gt.3300821] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A detergent dialysis procedure is described which allows encapsulation of plasmid DNA within a lipid envelope, where the resulting particle is stabilized in aqueous media by the presence of a poly(ethyleneglycol) (PEG) coating. These 'stabilized plasmid-lipid particles' (SPLP) exhibit an average size of 70 nm in diameter, contain one plasmid per particle and fully protect the encapsulated plasmid from digestion by serum nucleases and E. coli DNase I. Encapsulation is a sensitive function of cationic lipid content, with maximum entrapment observed at dioleoyldimethylammonium chloride (DODAC) contents of 5 to 10 mol%. The formulation process results in plasmid-trapping efficiencies of up to 70% and permits inclusion of 'fusigenic' lipids such as dioleoylphosphatidylethanolamine (DOPE). The in vitro transfection capabilities of SPLP are demonstrated to be strongly dependent on the length of the acyl chain contained in the ceramide group used to anchor the PEG polymer to the surface of the SPLP. Shorter acyl chain lengths result in a PEG coating which can dissociate from the SPLP surface, transforming the SPLP from a stable particle to a transfection-competent entity. It is suggested that SPLP may have utility as systemic gene delivery systems for gene therapy protocols.
Collapse
Affiliation(s)
- J J Wheeler
- Inex Pharmaceuticals Corporation, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Murray KD, McQuillin A, Stewart L, Etheridge CJ, Cooper RG, Miller AD, Gurling HM. Cationic liposome-mediated DNA transfection in organotypic explant cultures of the ventral mesencephalon. Gene Ther 1999; 6:190-7. [PMID: 10435103 DOI: 10.1038/sj.gt.3300743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the potential of cationic liposomes as a tool for approaches to gene therapy in the CNS. Our previous work has shown that cationic liposomes formulated from 3 beta-[N-(N',N'-dimethylaminoethane)carbamoyl] cholesterol (DC-Chol) and dioleoyl-L-alpha-phosphatidylethanolamine (DOPE) could achieve high transfection levels in a neuronal cell line (McQuillin et al. Neuroreport 1997; 8: 1481-1484). We therefore wished to assess transfection efficiencies in organotypic cultures from the brain with a reporter plasmid expressing E. coli beta-galactosidase in order to mimic an in vivo model. Explant cultures were generated according to the method of Stoppini et al (J Neurosci Meth 1991; 37: 173-182) with slight modifications. Brain slices were maintained on transparent porous membranes and were observed to maintain their intrinsic connectivity and cytoarchitecture to a large degree over periods of up to 6 weeks in culture. CNS tissue was obtained from rats at birth or 5 days after birth. After transfection beta-galactosidase expression was detected in cells of both neuronal and non-neuronal morphology. Control cultures were exposed to liposome alone and a plasmid that had the beta-galactosidase gene insert removed. Only low levels of endogenous beta-galactosidase reactivity were seen in these control cultures. DC-Chol/DOPE-mediated transfection was confirmed using a RT-PCR protocol capable of differentiating between untranscribed plasmid DNA and RNA generated from the transfected vector. These results suggest that cationic liposomes, particularly DC-Chol/DOPE liposomes, will be useful as delivery agents for gene transfer to CNS cells in vitro and possibly in vivo.
Collapse
Affiliation(s)
- K D Murray
- Department of Psychiatry and Behavioural Sciences, University College London Medical School, Windeyer Institute of Medical Sciences, UK
| | | | | | | | | | | | | |
Collapse
|
500
|
Schwartz B, Ivanov MA, Pitard B, Escriou V, Rangara R, Byk G, Wils P, Crouzet J, Scherman D. Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther 1999; 6:282-92. [PMID: 10435113 DOI: 10.1038/sj.gt.3300795] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cationic lipids can deliver genes efficiently in vitro, but are generally inhibited by the presence of serum, and their efficiency in vivo is much lower than in vitro. An attractive strategy is to induce strong DNA compaction by its association with proteins, before addition of lipids. However the use of whole proteins might present both production and immunological limitations. We have devised a system in which DNA is associated with short peptides derived from human histone or protamine, before the addition of a cationic lipid or polymer. Peptides strongly associating with DNA confer to such peptide-DNA-lipid particles an enhanced in vitro transfection efficiency over that observed with classical DNA/lipid lipoplexes, and particularly confer the capacity to transfect in the presence of serum. This acquisition of serum resistance is cell type-independent, and observed with all four lipopolyamines tested and polyethylenimine. Precompacting DNA with a histone H1-derived peptide enhances cationic lipid RPR 115335-mediated gene transfer in an in vivo model of Lewis lung carcinoma. Apart from their use in peptide-DNA-lipid association, such peptides could be useful as part of chimeric gene delivery vectors presenting a DNA-binding moiety that can be easily associated with other functional domains.
Collapse
Affiliation(s)
- B Schwartz
- UMR 133 CNRS, Rhône-Poulenc Rorer Gencell, Vitry/Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|