451
|
Edwards AS, Faux MC, Scott JD, Newton AC. Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C betaII. J Biol Chem 1999; 274:6461-8. [PMID: 10037738 DOI: 10.1074/jbc.274.10.6461] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C is processed by three phosphorylation events before it is competent to respond to second messengers. Specifically, the enzyme is first phosphorylated at the activation loop by another kinase, followed by two ordered autophosphorylations at the carboxyl terminus (Keranen, L. M., Dutil, E. M., and Newton, A. C. (1995) Curr. Biol. 5, 1394-1403). This study examines the role of negative charge at the first conserved carboxyl-terminal phosphorylation position, Thr-641, in regulating the function and subcellular localization of protein kinase C betaII. Mutation of this residue to Ala results in compensating phosphorylations at adjacent sites, so that a triple Ala mutant was required to address the function of phosphate at Thr-641. Biochemical and immunolocalization analyses of phosphorylation site mutants reveal that negative charge at this position is required for the following: 1) to process catalytically competent protein kinase C; 2) to allow autophosphorylation of Ser-660; 3) for cytosolic localization of protein kinase C; and 4) to permit phorbol ester-dependent membrane translocation. Thus, phosphorylation of Thr-641 in protein kinase C betaII is essential for both the catalytic function and correct subcellular localization of protein kinase C. The conservation of this residue in every protein kinase C isozyme, as well as other members of the kinase superfamily such as protein kinase A, suggests that carboxyl-terminal phosphorylation serves as a key molecular switch for defining kinase function.
Collapse
Affiliation(s)
- A S Edwards
- Departments of Pharmacology, University of California at San Diego, La Jolla, California 92093-0640, USA
| | | | | | | |
Collapse
|
452
|
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:1-24. [PMID: 10076047 DOI: 10.1016/s0167-4889(98)00178-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, P.O. Box 9505, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
453
|
Abstract
The protein kinase C (PKC) family consists of 11 isoenzymes that, due to structural and enzymatic differences, can be subdivided into three groups: The Ca(2+)-dependent, diacylglycerol (DAG)-activated cPKCs (conventional PKCs: alpha, beta 1, beta 2, gamma); the Ca(2+)-independent, DAG-activated nPKCs (novel PKCs: delta, epsilon, eta, theta, mu), and the Ca(2+)-dependent, DAG non-responsive aPKCs (atypical PKCs: zeta, lambda/iota). PKC mu is a novel PKC, but with some special structural and enzymatic properties.
Collapse
Affiliation(s)
- M Gschwendt
- German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
454
|
Endo Y, Shimazu M, Fukasawa H, Driedger PE, Kimura K, Tomioka N, Itai A, Shudo K. Synthesis, computer modeling and biological evaluation of novel protein kinase C agonists based on a 7-membered lactam moiety. Bioorg Med Chem Lett 1999; 9:173-8. [PMID: 10021922 DOI: 10.1016/s0960-894x(98)00724-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
4-Hydroxymethyl-5a-methyl-1,3,4,5,5a beta,6,7,8,9,9a alpha-decahydro-2H-benz[d]azepin-2-ones (4-12), which were designed to mimic the biologically active conformation of teleocidins and benzolactams, were synthesized and evaluated for the ability to compete with [3H]phorbol 12,13-dibutyrate in a PKC delta binding assay. Among the compounds, 10-12 showed potent binding affinity, with inhibition constants (Ki) of low nanomolar order. Computational docking simulation also indicates that the relative positions of the hydrogen-bonding sites and hydrophobic regions of the compounds are well matched to the PKC delta binding site.
Collapse
Affiliation(s)
- Y Endo
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
455
|
Chapter 10 Lipid Membrane and Ligand-Gated Ion Channels in General Anesthetic Action. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
456
|
Sando JJ, Chertihin OI, Owens JM, Kretsinger RH. Contributions to maxima in protein kinase C activation. J Biol Chem 1998; 273:34022-7. [PMID: 9852057 DOI: 10.1074/jbc.273.51.34022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many lipid systems, the activity of protein kinase C (PKC) exhibits a peak followed by a decline as the mol % of one component is increased. In these systems, an increase in one lipid component is always at the expense of another or accompanied by a change in total lipid concentration. Here we report that in saturated phosphatidylserine (PS)/phosphatidylcholine (PC)/diacylglycerol (DAG) mixtures, increasing PS or DAG at the expense of PC revealed an optimal mol % PS, dependent on mol % DAG, with higher mol % PS diminishing activity. The decrease at high mol % PS is probably not attributable simply to more gel-phase lipid due to the higher melting temperature of saturated PS versus PC because a similar peak in activity occurred in unsaturated lipid systems. Increasing the total lipid concentration at suboptimal mol % PS provided the same activity as higher mol % PS at lower total lipid concentration. However, at optimal mol % PS, activity increased and then decreased as a function of total lipid concentration. PKC autophosphorylation also exhibited an optimum as a function of mol % PS, and increasing the PKC concentration increased the mol % PS at which activity decreased, both for autophosphorylation and for heterologous phosphorylation. Formation of two-dimensional crystals of PKC on lipid monolayers also exhibited a peak as a function of mol % PS, and the unit cell size of the crystals formed shifts from 50 x 50 A at low mol % PS to 75 x 75 A at higher PS. Collectively, these data suggest the existence of optimal lipid compositions for PKC activation, with increased quantity of these domains serving to dilute out enzyme-substrate aggregates and/or enzyme-enzyme aggregates on the lipid surface.
Collapse
Affiliation(s)
- J J Sando
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
457
|
Ohanian J, Liu G, Ohanian V, Heagerty AM. Lipid second messengers derived from glycerolipids and sphingolipids, and their role in smooth muscle function. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:533-48. [PMID: 9887976 DOI: 10.1111/j.1365-201x.1998.tb10703.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The processes that link activation of an external receptor to the internal mechanisms that elicit a physiological response have been the subject of extensive investigation. It has been established that rather than just being an inert barrier to protect the cell from environmental damage, there are populations of phospholipids located within the plasma membrane that act as a reservoir for signalling molecules and when a receptor binds its appropriate activating ligand a chain of events is initiated which leads to the breakdown of these lipids and the release of second messengers. Such processes are rapid enough for physiological responses to be effected. The purpose of this review is to examine the profile of lipid second messengers derived from glycerophospholipids and sphingolipids. In the former class are included phosphoinositide and phosphatidylcholine and the latter includes sphingomyelin. Hydrolysis of such parent compounds is mediated by phospholipases and the profile of metabolites appears to be agonist specific and modulated by a number of mechanisms including heterotrimeric G-protein subunits, small G-proteins, alterations in intracellular calcium concentration, protein kinase C and tyrosine kinases. The recent interest in sphingolipids, particularly in vascular smooth muscle cells, has been provoked by the observation that ceramide and sphingoid base formation is observed in response to vasoconstrictor hormones.
Collapse
Affiliation(s)
- J Ohanian
- Department of Medicine, Manchester Royal Infirmary, UK
| | | | | | | |
Collapse
|
458
|
Leach KL. Protein Kinases and Phosphatases in Cellular Signaling. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
459
|
Tognon CE, Kirk HE, Passmore LA, Whitehead IP, Der CJ, Kay RJ. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol 1998; 18:6995-7008. [PMID: 9819387 PMCID: PMC109282 DOI: 10.1128/mcb.18.12.6995] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Accepted: 08/21/1998] [Indexed: 12/31/2022] Open
Abstract
As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras.
Collapse
Affiliation(s)
- C E Tognon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | | | | | | | | | | |
Collapse
|
460
|
Benzaria S, Bienfait B, Nacro K, Wang S, Lewin NE, Beheshti M, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol (DAG). 15. The indispensable role of the sn-1 and sn-2 carbonyls in the binding of DAG-lactones to protein kinase C (PK-C). Bioorg Med Chem Lett 1998; 8:3403-8. [PMID: 9873742 DOI: 10.1016/s0960-894x(98)00614-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding mode of DAG-lactones to PK-C was investigated using the C1b domain from the X-ray structure of the phorbol ester/C1b complex of PK-C delta as a template. Modeling experiments revealed two binding alternatives in which one of the carbonyls of the DAG lactones remained uninvolved with the protein. Experimentally, however, the removal of either sn-1 or sn-2 carbonyls caused a dramatic drop in binding affinity towards PK-C. Although it was not possible to discriminate between the two binding alternatives of the DAG-lactones, the study demonstrates an important role for the additional carbonyl group. The function of this group could be equivalent to that of the C-9(OH)/C-13 (C = O) motif in phorbol esters, which also appears free of interactions in the phorbol ester/C1b complex. This role presumably reflects interaction with the phosholipid head groups required for high affinity binding under the conditions of the biological assays.
Collapse
Affiliation(s)
- S Benzaria
- Laboratory of Medicinal Chemistry, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
461
|
Abstract
(1) Protein kinase C is a family of phospholipid-dependent protein kinases which are involved in the regulation of diverse cellular functions. (2) Evidence is emerging that certain general anesthetics can stimulate the activity of protein kinase C by interacting with the regulatory domain of the enzyme, possibly with the diacylglycerol binding sites. Anesthetics also potentiate activation-dependent down-regulation of the enzyme. (3) A role for PKC in the mediation and or modulation of the cellular effects of general anesthetics is a potential molecular target for anesthetic action.
Collapse
Affiliation(s)
- H C Hemmings
- Department of Anesthesiology, Cornell University Medical College, New York, NY 10021, USA.
| |
Collapse
|
462
|
Sutton RB, Sprang SR. Structure of the protein kinase Cbeta phospholipid-binding C2 domain complexed with Ca2+. Structure 1998; 6:1395-405. [PMID: 9817842 DOI: 10.1016/s0969-2126(98)00139-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Conventional isoforms (alpha, beta and gamma) of protein kinase C (PKC) are synergistically activated by phosphatidylserine and Ca2+; both bind to C2 domains located within the PKC amino-terminal regulatory regions. C2 domains contain a bipartite or tripartite Ca2+-binding site formed by opposing loops at one end of the protein. Neither the structural basis for cooperativity between phosphatidylserine and Ca2+, nor the binding site for phosphatidylserine are known. RESULTS The structure of the C2 domain from PKCbeta complexed with Ca2+ and o-phospho-L-serine has been determined to 2.7 A resolution using X-ray crystallography. The eight-stranded, Greek key beta-sandwich fold of PKCbeta-C2 is similar to that of the synaptotagmin I type I C2 domain. Three Ca2+ ions, one at a novel site, were located, each sharing common aspartate ligands. One of these ligands is donated by a dyad-related C2 molecule. A phosphoserine molecule binds to a lysine-rich cluster in C2. CONCLUSIONS Shared ligation among the three Ca2+ ions suggests that they bind cooperatively to PKCbeta-C2. Cooperativity may be compromised by the accumulation of positive charge in the binding site as successive ions are bound. Model building shows that the C1 domain could provide carboxylate and carbonyl ligands for two of the three Ca2+ sites. Ca2+-mediated interactions between the two domains could contribute to enzyme activation as well as to the creation of a positively charged phosphatidylserine-binding site.
Collapse
Affiliation(s)
- R B Sutton
- Howard Hughes Medical Institute Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75235-9050, USA
| | | |
Collapse
|
463
|
Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Mol Cell Biol 1998; 18:6698-710. [PMID: 9774683 PMCID: PMC109253 DOI: 10.1128/mcb.18.11.6698] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.
Collapse
Affiliation(s)
- M Daub
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
464
|
Iglesias T, Matthews S, Rozengurt E. Dissimilar phorbol ester binding properties of the individual cysteine-rich motifs of protein kinase D. FEBS Lett 1998; 437:19-23. [PMID: 9804164 DOI: 10.1016/s0014-5793(98)01189-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD) is a serine/threonine kinase that binds phorbol esters in a phospholipid-dependent manner via a tandemly repeated cysteine-rich, zinc finger-like motif (the cysteine-rich domain, CRD). Here, we examined whether the individual cysteine-rich motifs of the CRD of PKD (referred to as cysl and cys2) are functionally equivalent in mediating phorbol ester binding both in vivo and in vitro. Our results demonstrate that the cysl and cys2 motifs of the CRD of PKD are functionally dissimilar, with the cys2 motif responsible for the majority of [3H]phorbol 12,13-dibutyrate (PDB) binding, both in vivo and in vitro.
Collapse
Affiliation(s)
- T Iglesias
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | | | |
Collapse
|
465
|
Fukuda H, Irie K, Nakahara A, Oie K, Ohigashi H, Wender PA. Synthesis and binding studies of the 116-mer peptide containing the double cysteine-rich motifs of protein kinase C gamma. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)01768-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
466
|
Tang L, Zhou YC, Lin ZJ. Crystal structure of agkistrodotoxin, a phospholipase A2-type presynaptic neurotoxin from agkistrodon halys pallas. J Mol Biol 1998; 282:1-11. [PMID: 9733637 DOI: 10.1006/jmbi.1998.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of agkistrodotoxin containing eight copies of molecules in the asymmetric unit has been determined at 2.8 A resolution to a crystallographic R factor of 0.207 by the molecular replacement technique. Two spatially adjacent regions of agkistrodotoxin molecule, turn 55-61 and stretch 85-91, are remarkably different from those of non-neurotoxic isoforms in conformation and electrostatic characteristics. These regions are likely to be involved in the recognition of agkistrodotoxin towards the specific receptor at the presynaptic membrane. The structural comparison of the interfacial recognition site with non-neurotoxic isoforms reveals a decreased hydrophobicity and lack of residues with bulky hydrophobic side-chains (i.e. Trp) to serve as membrane anchors. This structural feature of agkistrodotoxin may be related to the reduced non-specific binding of the toxin to non-targeted membrane before it arrives at the presynaptic membrane and recognizes the putative receptor. A unique hydrophobic patch including residues I19, P20, F21, A23, F24, M118 and F119 is found on the surface of the molecule near the entrance of the hydrophobic channel which plays an important role in crystal packing. The interaction mode between the patches might give a clue to the binding of the neurotoxin on the membrane. The agkistrodotoxin molecules in the asymmetric unit form two tetramers and each tetramer exhibits a novel "dimer of dimers"-like structure. A molecule-spanning four-stranded antiparallel beta-sheet is formed by the beta-wings of two molecules within a tetramer.
Collapse
Affiliation(s)
- L Tang
- Academia Sinica, Beijing, 100101, China
| | | | | |
Collapse
|
467
|
Slater SJ, Taddeo FJ, Mazurek A, Stagliano BA, Milano SK, Kelly MB, Ho C, Stubbs CD. Inhibition of membrane lipid-independent protein kinase Calpha activity by phorbol esters, diacylglycerols, and bryostatin-1. J Biol Chem 1998; 273:23160-8. [PMID: 9722545 DOI: 10.1074/jbc.273.36.23160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of membrane-associated protein kinase C (PKC) has previously been shown to be regulated by two discrete high and low affinity binding regions for diacylglycerols and phorbol esters (Slater, S. J., Ho, C., Kelly, M. B., Larkin, J. D., Taddeo, F. J., Yeager, M. D., and Stubbs, C. D. (1996) J. Biol. Chem. 271, 4627-4631). PKC is also known to interact with both cytoskeletal and nuclear proteins; however, less is known concerning the mode of activation of this non-membrane form of PKC. By using the fluorescent phorbol ester, sapintoxin D (SAPD), PKCalpha, alone, was found to possess both low and high affinity phorbol ester-binding sites, showing that interaction with these sites does not require association with the membrane. Importantly, a fusion protein containing the isolated C1A/C1B (C1) domain of PKCalpha also bound SAPD with low and high affinity, indicating that the sites may be confined to this domain rather than residing elsewhere on the enzyme molecule. Both high and low affinity interactions with native PKCalpha were enhanced by protamine sulfate, which activates the enzyme without requiring Ca2+ or membrane lipids. However, this "non-membrane" PKC activity was inhibited by the phorbol ester 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA) and also by the fluorescent analog, SAPD, opposite to its effect on membrane-associated PKCalpha. Bryostatin-1 and the soluble diacylglycerol, 1-oleoyl-2-acetylglycerol, both potent activators of membrane-associated PKC, also competed for both low and high affinity SAPD binding and inhibited protamine sulfate-induced activity. Furthermore, the inactive phorbol ester analog 4alpha-TPA (4alpha-12-O-tetradecanoylphorbol-13-acetate) also inhibited non-membrane-associated PKC. In keeping with these observations, although TPA could displace high affinity SAPD binding from both forms of the enzyme, 4alpha-TPA was only effective at displacing high affinity SAPD binding from non-membrane-associated PKC. 4alpha-TPA also displaced SAPD from the isolated C1 domain. These results show that although high and low affinity phorbol ester-binding sites are found on non-membrane-associated PKC, the phorbol ester binding properties change significantly upon association with membranes.
Collapse
Affiliation(s)
- S J Slater
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
468
|
Irie K, Oie K, Nakahara A, Yanai Y, Ohigashi H, Wender PA, Fukuda H, Konishi H, Kikkawa U. Molecular Basis for Protein Kinase C Isozyme-Selective Binding: The Synthesis, Folding, and Phorbol Ester Binding of the Cysteine-Rich Domains of All Protein Kinase C Isozymes. J Am Chem Soc 1998. [DOI: 10.1021/ja981087f] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuhiro Irie
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Kentaro Oie
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akifumi Nakahara
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yoshiaki Yanai
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hajime Ohigashi
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Paul A. Wender
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroyuki Fukuda
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroaki Konishi
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Contribution from Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, Department of Chemistry, Stanford University, Stanford, California 94305, Nihon PerSeptive Ltd., Roppongi, Minato-ku, Tokyo 106-0032, Japan, and Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
469
|
Newton AC, Johnson JE. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:155-72. [PMID: 9748550 DOI: 10.1016/s0304-4157(98)00003-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- A C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| | | |
Collapse
|
470
|
Salo JP, Yliniemelä A, Taskinen J. Parameter Refinement for Molecular Docking. ACTA ACUST UNITED AC 1998. [DOI: 10.1021/ci9801825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jukka-Pekka Salo
- Division of Pharmaceutical Chemistry, Department of Pharmacy, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | - Ari Yliniemelä
- Division of Pharmaceutical Chemistry, Department of Pharmacy, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | - Jyrki Taskinen
- Division of Pharmaceutical Chemistry, Department of Pharmacy, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| |
Collapse
|
471
|
Abstract
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
Collapse
Affiliation(s)
- I L Alberts
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, England
| | | | | |
Collapse
|
472
|
Pappa H, Murray-Rust J, Dekker LV, Parker PJ, McDonald NQ. Crystal structure of the C2 domain from protein kinase C-delta. Structure 1998; 6:885-94. [PMID: 9687370 DOI: 10.1016/s0969-2126(98)00090-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The protein kinase C (PKC) family of lipid-dependent serine/theonine kinases plays a central role in many intracellular eukaryotic signalling events. Members of the novel (delta, epsilon, eta, theta) subclass of PKC isotypes lack the Ca2+ dependence of the conventional PKC isotypes and have an N-terminal C2 domain, originally defined as V0 (variable domain zero). Biochemical data suggest that this domain serves to translocate novel PKC family members to the plasma membrane and may influence binding of PKC activators. RESULTS The crystal structure of PKC-delta C2 domain indicates an unusual variant of the C2 fold. Structural elements unique to this C2 domain include a helix and a protruding beta hairpin which may contribute basic sequences to a membrane-interaction site. The invariant C2 motif, Pro-X-Trp, where X is any amino acid, forms a short crossover loop, departing radically from its conformation in other C2 structures, and contains a tyrosine phosphorylation site unique to PKC-delta. This loop and two others adopt quite different conformations from the equivalent Ca(2+)-binding loops of phospholipase C-delta and synaptotagmin I, and lack sequences necessary for Ca2+ coordination. CONCLUSIONS The N-terminal sequence of Ca(2+)-independent novel PKCs defines a divergent example of a C2 structure similar to that of phospholipase C-delta. The Ca(2+)-independent regulation of novel PKCs is explained by major structural and sequence differences resulting in three non-functional Ca(2+)-binding loops. The observed structural variation and position of a tyrosine-phosphorylation site suggest the existence of distinct subclasses of C2-like domains which may have evolved distinct functional roles and mechanisms to interact with lipid membranes.
Collapse
Affiliation(s)
- H Pappa
- Structural Biology, Imperial Cancer Research Fund, London, UK
| | | | | | | | | |
Collapse
|
473
|
Medkova M, Cho W. Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues. J Biol Chem 1998; 273:17544-52. [PMID: 9651347 DOI: 10.1074/jbc.273.28.17544] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.
Collapse
Affiliation(s)
- M Medkova
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607-7061, USA
| | | |
Collapse
|
474
|
Marquez VE, Sharma R, Wang S, Lewin NE, Blumberg PM, Kim IS, Lee J. Conformationally constrained analogues of diacylglycerol (DAG). 14. Dissection of the roles of the sn-1 and sn-2 carbonyls in DAG mimetics by isopharmacophore replacement. Bioorg Med Chem Lett 1998; 8:1757-62. [PMID: 9873429 DOI: 10.1016/s0960-894x(98)00307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The replacement of the sn-1 and sn-2 carbonyl esters in DAG-surrogate lactones by sulfonate esters showed that their isosteric properties in protein kinase C binding are controlled by the location of the hydrophobic alkyl chain on the molecule. The CO and SO2 groups appear to be true isosteres only when they are adjacent to the alkyl chain, which is presumed to insert normal to the lipid bilayer.
Collapse
Affiliation(s)
- V E Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
475
|
Modulating multidrug resistance through inhibiting of protein kinase C activity by phenothiazines. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02883224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
476
|
Uotsu K, Sodeoka M, Shibasaki M. Photoaffinity labeling of PKC isozymes by phorbol ester derivatives. Bioorg Med Chem 1998; 6:1117-26. [PMID: 9730248 DOI: 10.1016/s0968-0896(98)00068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoaffinity probes PPDA and PPTD, which have diazoacetyl and trifluorodiazopropionyl group at C-13 position in phorbol, respectively, were synthesized. Photoaffinity labeling of protein kinase C isozymes by both the probes resulted in specific cross-linking.
Collapse
Affiliation(s)
- K Uotsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
477
|
Eshete F, Chung H, Gannon-Murakami L, Murakami K. Ca2+ modulation of cis-unsaturated fatty acid-induced mutant protein kinase C activity: indication of inhibitory Ca2+-binding site in protein kinase C-alpha. Biochem J 1998; 333 ( Pt 1):215-21. [PMID: 9639582 PMCID: PMC1219575 DOI: 10.1042/bj3330215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The C2 domain in protein kinase C (PKC) is homologous to equivalent domains in a number of important cytoplasmic proteins. Except for its implied function in Ca2+ and phospholipid binding, the precise role of this domain is not well understood. We examined the role of the C2 domain of PKC-alpha using a mutant enzyme in which 80% of this domain has been deleted. This mutant can be activated by phospholipid and diacylglycerol, but is independent of Ca2+. In this regard, its characteristics are similar to those of the novel PKCs (nPKCs), consistent with the notion that the C2 domain of PKC confers its Ca2+ responsiveness. However, when the C2 deletion mutant is activated by cis-unsaturated fatty acid, the activity is strongly inhibited by Ca2+ at micromolar concentrations. The Ca2+ inhibition is dose-dependent and is specific to cis-unsaturated fatty acids. The deletion mutant can also be activated synergistically by diacylglycerol and cis-fatty acid, but again activation is inhibited by Ca2+. Our results indicate that a PKC lacking the C2 domain is Ca2+-responsive and there exists an additional site for Ca2+ that modulates the sensitivity of the enzyme to cis-unsaturated fatty acid but not to diacylglycerol. This modulatory Ca2+-binding site appears to be suppressed by the C2 domain because the presence of the domain reverses the direction of PKC activity induced by cis-unsaturated fatty acid. These results suggest that the modulatory Ca2+-binding site could act as a molecular switch selective for fatty acid activation by sensing the changes in the Ca2+ levels in a cell, serving a possible mechanism of differential activation of cPKC with a C2 domain and nPKC lacking this domain.
Collapse
Affiliation(s)
- F Eshete
- Department of Biochemical Pharmacology, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
478
|
Qiao L, Wang S, George C, Lewin NE, Blumberg PM, Kozikowski AP. Structure-Based Design of a New Class of Protein Kinase C Modulators. J Am Chem Soc 1998. [DOI: 10.1021/ja980513u] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lixin Qiao
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | - Shaomeng Wang
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | - Clifford George
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | - Nancy E. Lewin
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | - Peter M. Blumberg
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | - Alan P. Kozikowski
- Drug Discovery Program, Georgetown University Medical Center, Washington, D.C. 20007 Naval Research Laboratory, Washington, D.C. 20375 Molecular Mechanisms of Tumor Promotion Section Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
479
|
Abstract
Members of the mammalian protein kinase C (PKC) superfamily play key regulatory roles in a multitude of cellular processes, ranging from control of fundamental cell autonomous activities, such as proliferation, to more organismal functions, such as memory. However, understanding of mammalian PKC signalling systems is complicated by the large number of family members. Significant progress has been made through studies based on comparative analysis, which have defined a number of regulatory elements in PKCs which confer specific location and activation signals to each isotype. Further studies on simple organisms have shown that PKC signalling paradigms are conserved through evolution from yeast to humans, underscoring the importance of this family in cellular signalling and giving novel insights into PKC function in complex mammalian systems.
Collapse
Affiliation(s)
- H Mellor
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
480
|
Ward NE, Pierce DS, Chung SE, Gravitt KR, O'Brian CA. Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 1998; 273:12558-66. [PMID: 9575216 DOI: 10.1074/jbc.273.20.12558] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tripeptide glutathione (GSH) is the predominant low molecular weight thiol reductant in mammalian cells. In this report, we show that at concentrations at which GSH is typically present in the intracellular milieu, GSH and the oxidized GSH derivatives GSH disulfide (GSSG) and glutathione sulfonate each irreversibly inactivate up to 100% of the activity of purified Ca2+- and phosphatidylserine (PS)-dependent protein kinase C (PKC) isozymes in a concentration-dependent manner by a novel nonredox mechanism that requires neither glutathiolation of PKC nor the reduction, formation, or isomerization of disulfide bridges within PKC. Our evidence for a nonredox mechanism of PKC inactivation can be summarized as follows. GSSG antagonized the Ca2+- and PS-dependent activity of purified rat brain PKC with the same efficacy (IC50 = 3 mM) whether or not the reductant dithiothreitol was present. Glutathione sulfonate, which is distinguished from GSSG and GSH by its inability to undergo disulfide/thiol exchange reactions, was as effective as GSSG in antagonizing Ca2+- and PS-dependent PKC catalysis. The irreversibility of the inactivation mechanism was indicated by the stability of the inactivated form of PKC to dilution and extensive dialysis. The inactivation mechanism did not involve the nonspecific phenomena of denaturation and aggregation of PKC because it obeyed pseudo-first order kinetics and because the hinge region of PKC-alpha remained a preferential target of tryptic attack following GSH inactivation. The selectivity of GSH in the inactivation of PKC was also indicated by the lack of effect of the tripeptides Tyr-Gly-Gly and Gly-Ala-Gly on the activity of PKC. Furthermore, GSH antagonism of the Ser/Thr kinase casein kinase 2 was by comparison weak (<25%). Inactivation of PKC-alpha was not accompanied by covalent modification of the isozyme by GSH or other irreversible binding interactions between PKC-alpha and the tripeptide, but it was associated with an increase in the susceptibility of PKC-alpha to trypsinolysis. Treatment of cultured rat fibroblast and human breast cancer cell lines with N-acetylcysteine resulted in a substantial loss of Ca2+- and PS- dependent PKC activity in the cells within 30 min. These results suggest that GSH exerts negative regulation over cellular PKC isozymes that may be lost when oxidative stress depletes the cellular GSH pool.
Collapse
Affiliation(s)
- N E Ward
- Department of Cell Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
481
|
Endo Y, Takehana S, Ohno M, Driedger PE, Stabel S, Mizutani MY, Tomioka N, Itai A, Shudo K. Clarification of the binding mode of teleocidin and benzolactams to the Cys2 domain of protein kinase Cdelta by synthesis of hydrophobically modified, teleocidin-mimicking benzolactams and computational docking simulation. J Med Chem 1998; 41:1476-96. [PMID: 9554881 DOI: 10.1021/jm970704s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phorbol esters (12-O-tetradecanoylphorbol 13-acetate; TPA) and teleocidins are known to be potent tumor promoters and to activate protein kinase C (PKC) by binding competitively to the enzyme. The relationship between the chemical structures and the activities of these compounds has attracted much attention because of the marked structural dissimilarities. The benzolactam 5, with an eight-membered lactam ring and benzene ring instead of the nine-membered lactam ring and indole ring of teleocidins, reproduces the active ring conformation and biological activities of teleocidins. Herein we describe the synthesis of benzolactams with hydrophobic substituents at various positions. Structure-activity data indicate that the existence of a hydrophobic region between C-2 and C-9 and the steric factor at C-8 play critical roles in the appearance of biological activities. We also computationally simulated the docking of teleocidin and the modified benzolactam molecules to the Cys2 domain structure observed in the crystalline complex of PKCdelta with phorbol 13-acetate. Teleocidin and benzolactams fitted well into the same cavity as phorbol 13-acetate. Of the three functional groups hydrogen-bonding to the protein, two hydrogen-bonded with protein atoms in common with phorbol 13-acetate, but the third one hydrogen-bonded with a different protein atom from that in the case of phorbol 13-acetate. The model explains well the remarkable difference in activity between 5 and its analogue having a bulky substituent at C-8.
Collapse
Affiliation(s)
- Y Endo
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Mochly-Rosen D, Kauvar LM. Modulating protein kinase C signal transduction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:91-145. [PMID: 9547885 DOI: 10.1016/s1054-3589(08)60126-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Mochly-Rosen
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
483
|
Parissenti AM, Kirwan AF, Kim SA, Colantonio CM, Schimmer BP. Inhibitory properties of the regulatory domains of human protein kinase Calpha and mouse protein kinase Cepsilon. J Biol Chem 1998; 273:8940-5. [PMID: 9535877 DOI: 10.1074/jbc.273.15.8940] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two fusion proteins in which the regulatory domains of human protein kinase Calpha (Ralpha; amino acids 1-270) or mouse protein kinase Cepsilon (Repsilon; amino acids 1-385) were linked in frame with glutathione S-transferase (GST) were examined for their abilities to inhibit the catalytic activities of protein kinase Calpha (PKCalpha) and other protein kinases in vitro. Both GST-Ralpha and GST-Repsilon but not GST itself potently inhibited the activities of lipid-activated rat brain PKCalpha. In contrast, the fusion proteins had little or no inhibitory effect on the activities of the Ser/Thr protein kinases cAMP-dependent protein kinase, cGMP-dependent protein kinase, casein kinase II, myosin light chain kinase, and mitogen activated protein kinase or on the src Tyr kinase. GST-Ralpha and GST-Repsilon, on a molar basis, were 100-200-fold more potent inhibitors of PKCalpha activity than was the pseudosubstrate peptide PKC19-36. In addition, a GST-Ralpha fusion protein in which the first 32 amino acids of Ralpha were deleted (including the pseudosubstrate sequence from amino acids 19-31) was an effective competitive inhibitor of PKCalpha activity. The three GST-R fusion proteins also inhibited protamine-activated PKCalpha and proteolytically activated PKCalpha (PKM), two lipid-independent forms of PKCalpha; however, the IC50 values for inhibition were 1 order of magnitude greater than the IC50 values obtained in the presence of lipid. These results suggest that part of the inhibitory effect of the GST-R fusion proteins on lipid-activated PKCalpha may have resulted from sequestration of lipid activators. Nonetheless, as evidenced by their abilities to inhibit the lipid-independent forms of the enzyme, the GST-R fusion proteins also inhibited PKCalpha catalytic activity through direct interactions. These data indicate that the R domains of PKCalpha and PKCepsilon are specific inhibitors of protein kinase Calpha activity and suggest that regions of the R domain outside the pseudosubstrate sequence contribute to autoinhibition of the enzyme.
Collapse
Affiliation(s)
- A M Parissenti
- Department of Research, Northeastern Ontario Regional Cancer Center, Sudbury, Ontario P3E 5J1, Canada
| | | | | | | | | |
Collapse
|
484
|
Porritt HE, Anderson KL, Suniara RK, Jenkinson EJ, Owen JJ. Cellular interactions in the thymus regulate the protein kinase C signaling pathway. Eur J Immunol 1998; 28:1197-203. [PMID: 9565359 DOI: 10.1002/(sici)1521-4141(199804)28:04<1197::aid-immu1197>3.0.co;2-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We provide evidence that thymocytes receive signals from the thymic microenvironment which regulate the protein kinase C (PKC) signaling pathway. Thus, phorbol 12-myristate 13-acetate (PMA) causes a PKC-dependent down-regulation of CD4 expression and induces apoptosis in isolated thymocytes but has little effect on thymocytes maintained within intact thymic lobes or in reaggregate lobes containing purified thymocytes with either thymic or non-thymic stromal cells. Moreover, compact pellets of thymocytes alone are protected from the effects of PMA. This protection is maintained when the compacted thymocytes are rigorously depleted of MHC class II-expressing cells. We conclude that signals arising from thymocyte-thymocyte contact control the utilization of the PKC cascade. These observations have implications for thymocyte signaling in general as well as for the interpretation of studies carried out on thymocyte suspensions.
Collapse
Affiliation(s)
- H E Porritt
- Department of Anatomy, Medical School, University of Birmingham, GB.
| | | | | | | | | |
Collapse
|
485
|
Kishi Y, Rando RR. Structural Basis of Protein Kinase C Activation by Tumor Promoters. Acc Chem Res 1998. [DOI: 10.1021/ar9600751] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshito Kishi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115
| | - Robert R. Rando
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
486
|
|
487
|
Oancea E, Teruel MN, Quest AF, Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 1998; 140:485-98. [PMID: 9456311 PMCID: PMC2140171 DOI: 10.1083/jcb.140.3.485] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich domains (Cys-domains) are approximately 50-amino acid-long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-gamma (Cys1-GFP). Strikingly, stimulation of G-protein or tyrosine kinase-coupled receptors induced a transient translocation of cytosolic Cys1-GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1-GFP in the membrane, whereas DiC8 left Cys1-GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1-GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-gamma also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2-GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester-mediated translocation of proteins to selective lipid membranes.
Collapse
Affiliation(s)
- E Oancea
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
488
|
Sodeoka M, Arai MA, Adachi K, Uotsu K, Shibasaki M. Rational Design, Synthesis, and Evaluation of a New Type of PKC Inhibitor. J Am Chem Soc 1998. [DOI: 10.1021/ja971270t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikiko Sodeoka
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Koji Adachi
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Koichiro Uotsu
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| | - Masakatsu Shibasaki
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113, Japan
| |
Collapse
|
489
|
Abstract
Three two-dimensional (2D) crystal forms of protein kinase C (PKC) alpha and three of PKC delta have been grown on lipid monolayers composed of dioleoylphosphatidylcholine: dioleoylphosphatidylserine: (45:50:5 molar ratio). In the absence of DO, two additional 2D crystals of PKC delta are seen, suggesting that the presence of diolein (DO) alters the conformation of intact PKC at the lipid surface. Reconstructions of electron micrographs of these eight lattices show good reproducibility and indicate that several are appropriate for three-dimensional reconstruction to 20 A resolution.
Collapse
Affiliation(s)
- J M Owens
- Department of Biology, University of Virginia, Charlottesville 22903-2477, USA
| | | | | | | |
Collapse
|
490
|
Affiliation(s)
- J P Mackay
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | |
Collapse
|
491
|
Abstract
The structure of the monomeric form of perfringolysin O solved by X-ray crystallography has been used to model the very large transmembrane pore formed when this bacterial protein toxin assembles in cholesterol-containing membranes. The structure is a notable advance, but it may not provide the whole story.
Collapse
Affiliation(s)
- H Bayley
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114, USA.
| |
Collapse
|
492
|
Endo Y, Hirano M, Driedger PE, Stabel S, Shudo K. Novel conformationally constrained analogues of diacylglycerol. Protein kinase C binding affinity of simplified compounds based on a 6-membered lactam moiety. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)10129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
493
|
Michaud NR, Therrien M, Cacace A, Edsall LC, Spiegel S, Rubin GM, Morrison DK. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A 1997; 94:12792-6. [PMID: 9371754 PMCID: PMC24217 DOI: 10.1073/pnas.94.24.12792] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/1997] [Indexed: 02/05/2023] Open
Abstract
Kinase suppressor of Ras (KSR) is an evolutionarily conserved component of Ras-dependent signaling pathways. Here, we find that murine KSR (mKSR1) translocates from the cytoplasm to the plasma membrane in the presence of activated Ras. At the membrane, mKSR1 modulates Ras signaling by enhancing Raf-1 activity in a kinase-independent manner. The activation of Raf-1 is mediated by the mKSR1 cysteine-rich CA3 domain and involves a detergent labile cofactor that is not ceramide. These findings reveal another point of regulation for Ras-mediated signal transduction and further define a noncatalytic role for mKSR1 in the multistep process of Raf-1 activation.
Collapse
Affiliation(s)
- N R Michaud
- Molecular Basis of Carcinogenesis Laboratory, National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
494
|
Jacoby JJ, Schmitz HP, Heinisch JJ. Mutants affected in the putative diacylglycerol binding site of yeast protein kinase C. FEBS Lett 1997; 417:219-22. [PMID: 9395299 DOI: 10.1016/s0014-5793(97)01287-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In an attempt to study the functional similarities between protein kinase C from the yeast Saccharomyces cerevisiae and its human homologues we have started in vitro mutagenesis to alter specific domains. Here we report on the exchange of four cysteine residues by serines in yeast Pkc1p that have been shown to be essential for diacylglycerol (DAG) binding and activation by this compound in humans. The mutant yeast protein leads to sensitivity to caffeine and low concentrations of SDS when expressed in a pkc1 deletion strain. However, sensitivity to staurosporine was not affected. Our data indicate that the conserved DAG binding domain serves an important function in yeast Pkc1p.
Collapse
Affiliation(s)
- J J Jacoby
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
495
|
Acs P, Wang QJ, Bögi K, Marquez AM, Lorenzo PS, Bíró T, Szállási Z, Mushinski JF, Blumberg PM. Both the catalytic and regulatory domains of protein kinase C chimeras modulate the proliferative properties of NIH 3T3 cells. J Biol Chem 1997; 272:28793-9. [PMID: 9353351 DOI: 10.1074/jbc.272.45.28793] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC) isozymes exhibit important differences in terms of their regulation and biological functions. Not only may some PKC isoforms be active and others not for a given response, but the actions of different isoforms may even be antagonistic. In NIH 3T3 cells, for example, PKCdelta arrests cell growth whereas PKCepsilon stimulates it. To probe the contribution of the regulatory and the catalytic domains of PKC isozymes to isozyme-specific responses, we prepared chimeras between the regulatory and the catalytic domains of PKCalpha, -delta, and -epsilon. These chimeras, which preserve the overall structure of the native PKC enzymes, were stably expressed in mouse fibroblasts. A major objective was to characterize the growth properties of the cells that overexpress the various PKC constructs. Our data demonstrate that both the regulatory and the catalytic domains play roles in cell proliferation. The regulatory domain of PKCepsilon enhanced cell growth in the absence or presence of phorbol 12-myristate 13-acetate (PMA), and, in the presence of PMA, all chimeras with the PKCepsilon regulatory domain also gave rise to colonies in soft agar; the role of the catalytic domain of PKCepsilon was evident in the PMA-treated cells that overexpressed the PKC chimera containing the delta regulatory and the epsilon catalytic domains (PKCdelta/epsilon). The important contribution of the PKCepsilon catalytic domain to the growth of PKCdelta/epsilon-expressing cells was also evident in terms of a significantly increased saturation density in the presence of PMA, their formation of foci upon PMA treatment, and the induction of anchorage-independent growth. Aside from the growth-promoting effect of PKCepsilon, we have shown that most chimeras with PKCalpha and -delta regulatory domains inhibit cell growth. These results underscore the complex contributions of the regulatory and catalytic domains to the overall behavior of PKC.
Collapse
Affiliation(s)
- P Acs
- Molecular Mechanisms of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Yamamura T, Watanabe T, Kikuchi A, Yamane T, Ushiyama M, Hirota H. Conformation Control of Peptides by Metal Ions. Coordination Conformation Correlation Observed in a Model for Cys-X-Y-Cys/M(2+) in Proteins. Inorg Chem 1997; 36:4849-4859. [PMID: 11670165 DOI: 10.1021/ic961009y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure of [(Boc-Cys(1)-Pro-Leu-Cys(4)-OMe)(S-tert-C(4)H(9))Hg](-) (Boc: butoxycarbonyl), 1, was studied in N,N-dimethylformamide (DMF) and compared with that of [(Boc-Cys(1)-Pro-Leu-Cys(4)-OMe)Hg], 2, in order to discuss the intrinsic structural feature of the cysteine-containing metal-binding sites of proteins: Cys(i)-X-Y-Cys(i)(+3)/M(2+). 1 was generated by the reaction of 2 with NaS-tert-C(4)H(9). The geometry of the mercury ion (Hg(2+)) in 1 was proposed to be trigonal planar by UV-vis spectroscopy and Hg L(III) edge X-ray absorption fine structure (XAFS) measurements. Extended X-ray absorption fine structure (EXAFS) calculations yielded r(Hg-S) = 2.42 Å. Analyses of the nuclear Overhauser and exchange spectroscopy (NOESY) and the rotating frame nuclear Overhauser effect spectroscopy (ROESY) spectra of 1 in DMF-d(7) gave approximate distances for the 21 (1)H-(1)H pairs of the main chain loop. These results on distance information were processed by distance geometry (DG) and restrained molecular dynamics (RMD) calculations in order to optimize the molecular structure of 1. Molecular dynamics (MD) calculations were also performed. We proposed that the trigonal planar Hg(2+) in 1 regulates the hydrogen-bonding schemes of the peptide in the same manner as the tetrahedral ions involved in the Cys(i)-X-Y-Cys(i)(+3)/M(2+) core sites in natural proteins, forming two hydrogen bonds, Cys(1) S-Leu H(N) and Cys(1) S-Cys(4) H(N). This is in contrast to 2, where the linear coordinate mercury causes another type of hydrogen-bonding scheme, Cys(1) S-Leu H(N) and Pro CO-Cys(4) H(N). Details of the effect of trigonal planar Hg(2+) on the peptide conformation were analyzed with respect to the phi, varphi, and chi torsion angles of the peptide chain. The effect of the change of the angleS-Hg-S bite angle on the conformation of Cys-Pro-Leu-Cys was also discussed on the basis of MD calculations. The distribution area of Leu (phi, varphi) in the Ramachandran plot moves from near the alpha helix region to the turn structure region as the bite angle increases from 90 to 180 degrees, accompanying the change in the hydrogen-bonding scheme. The critical bite angle is around 140 degrees. The analysis revealed that angleS-Hg-S congruent with 110 degrees, which corresponds to the tetrahedral coordination geometry of the central metal ion, allows a high flexibility of the Cys-Pro-Leu-Cys skeleton.
Collapse
Affiliation(s)
- Takeshi Yamamura
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan, and Kawachi Millibioflight Project, ERATO, JST, 4-7-6 Komaba, Meguro-ku, Tokyo 153, Japan
| | | | | | | | | | | |
Collapse
|
497
|
Saras J, Franzén P, Aspenström P, Hellman U, Gonez LJ, Heldin CH. A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J Biol Chem 1997; 272:24333-8. [PMID: 9305890 DOI: 10.1074/jbc.272.39.24333] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PTPL1 is an intracellular protein-tyrosine phosphatase that contains five PDZ domains. Here, we present the cloning of a novel 150-kDa protein, the four most C-terminal amino acid residues of which specifically interact with the fourth PDZ domain of PTPL1. The molecule contains a GTPase-activating protein (GAP) domain, a cysteine-rich, putative Zn2+- and diacylglycerol-binding domain, and a region of sequence homology to the product of the Caenorhabditis elegans gene ZK669.1a. The GAP domain is active on Rho, Rac, and Cdc42 in vitro but with a clear preference for Rho; we refer to the molecule as PTPL1-associated RhoGAP 1, PARG1. Rho is inactivated by GAPs, and protein-tyrosine phosphorylation has been implicated in Rho signaling. Therefore, a complex between PTPL1 and PARG1 may function as a powerful negative regulator of Rho signaling, acting both on Rho itself and on tyrosine phosphorylated components in the Rho signal transduction pathway.
Collapse
Affiliation(s)
- J Saras
- Ludwig Institute for Cancer Research, Box 595, Biomedical Centre, S-751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
498
|
Zugaza JL, Waldron RT, Sinnett-Smith J, Rozengurt E. Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway. J Biol Chem 1997; 272:23952-60. [PMID: 9295346 DOI: 10.1074/jbc.272.38.23952] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase D (PKD) is a serine/threonine protein kinase that is activated by phorbol esters via protein kinase C in intact cells. To assess the physiological significance of this putative pathway, we examined the regulation of PKD in living cells by mitogenic regulatory peptides and by platelet-derived growth factors (PDGF). Our results demonstrate that bombesin rapidly induces PKD activation in Swiss 3T3 cells, as shown by autophosphorylation and syntide-2 phosphorylation assays. Maximum PKD activation (14-fold above base-line levels) was obtained 90 s after bombesin stimulation. Bombesin also induced PKD activation in Rat-1 cells stably transfected with the bombesin/gastrin releasing peptide (GRP) receptor and in COS-7 cells transiently co-transfected with PKD and bombesin/GRP receptor expression constructs. No inducible kinase activity was demonstrated when COS-7 cells were transfected with a kinase-deficient PKD mutant. Bombesin-mediated PKD activation was prevented by treatment of Swiss 3T3 cells with the protein kinase C inhibitors GF 1092030X and Ro 31-8220. In contrast, these compounds did not inhibit PKD activity when added directly in vitro. Vasopressin, endothelin, and bradykinin also activated PKD in Swiss 3T3 cells through a PKC-dependent pathway. Platelet-derived growth factor-stimulated PKD activation in Swiss 3T3 cells and in porcine aortic endothelial cells stably transfected with PDGF-beta receptors. Treatment with GF 1092030X or Ro 31-8220 inhibited PKD activation induced by PDGF. Thus, our results indicate that PKD is activated by multiple signaling peptides through a protein kinase C-dependent signal transduction pathway in a variety of cell types.
Collapse
Affiliation(s)
- J L Zugaza
- Growth Regulation Laboratory, Imperial Cancer Research Fund, P.O. Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
499
|
Acs P, Bögi K, Lorenzo PS, Marquez AM, Bíró T, Szállási Z, Blumberg PM. The catalytic domain of protein kinase C chimeras modulates the affinity and targeting of phorbol ester-induced translocation. J Biol Chem 1997; 272:22148-53. [PMID: 9268359 DOI: 10.1074/jbc.272.35.22148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests important differences among protein kinase C (PKC) isozymes in terms of their regulation and biological functions. PKC is regulated by multiple interdependent mechanisms, including enzymatic activation, translocation of the enzyme in response to activation, phosphorylation, and proteolysis. As part of our ongoing studies to define the factors contributing to the specificity of PKC isozymes, we prepared chimeras between the catalytic and regulatory domains of PKCalpha, -delta, and -epsilon. These chimeras, which preserve the overall structure of the native PKC enzymes, were stably expressed in NIH 3T3 fibroblasts. Their intracellular distribution was similar to that of the endogenous enzymes, and they responded with translocation upon treatment with phorbol 12-myristate 13-acetate (PMA). We found that the potency of PMA for translocation of the PKCalpha/x chimeras from the soluble fraction was influenced by the catalytic domain. The ED50 for translocation of PKCalpha/alpha was 26 nM, in marked contrast to the ED50 of 0.9 nM in the case of the PKCalpha/epsilon chimera. In addition to this increase in potency, the site of translocation was also changed; the PKCalpha/epsilon chimera translocated mainly into the cytoskeletal fraction. PKCx/epsilon chimeras displayed twin isoforms with different mobilities on Western blots. PMA treatment increased the proportion of the higher mobility isoform. The two PKCx/epsilon isoforms differed in their localization; moreover, their localization pattern depended on the regulatory domain. Our results emphasize the complex contributions of the regulatory and catalytic domains to the overall behavior of PKC.
Collapse
Affiliation(s)
- P Acs
- Molecular Mechanisms of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
500
|
Irie K, Yanai Y, Oie K, Ishizawa J, Nakagawa Y, Ohigashi H, Wender PA, Kikkawa U. Comparison of chemical characteristics of the first and the second cysteine-rich domains of protein kinase C gamma. Bioorg Med Chem 1997; 5:1725-37. [PMID: 9313873 DOI: 10.1016/s0968-0896(97)00116-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein kinase C (PKC) is a key enzyme family involved in cellular signal transduction. The binding of endogenous diacyl glycerol (DAG) to the cysteine-rich domain (CRD) of PKC is associated with normal cell signaling and function. In contrast, the binding of exogenous phorbol esters to the CRD of PKC is considered to be a key initiating event in tumor promotion. Conventional PKC isozymes (PKC alpha, beta I, beta II, and gamma) contain two CRDs, both of which are candidates for the phorbol ester binding site. In order to elucidate the binding requirements of phorbol esters and to obtain information on the phorbol ester binding site in native PKC gamma, several key chemical characteristics of the first and the second CRDs consisting of ca. 50 amino acids of rat PKC gamma (gamma-CRD1 and gamma-CRD2) were examined. In the presence of Zn2+ and phosphatidylserine (PS), both CRDs gave similar Kd values (65.3 nM for gamma-CRD1, 44.1 nM for gamma-CRD2) in phorbol 12,13-dibutyrate (PDBu) binding assays. In comparison, the binding affinity of PDBu for native rat PKC gamma was found to be 6.8 nM. Zn2+ was shown to play an important role in the folding and PDBu binding of both CRDs. A Zn(2+)-induced conformational change was observed for the first time by CD spectroscopic analysis of the complexed and uncomplexed CRDs. Relative to the pronounced Zn2+ effect, most divalent first row transition metal ions along with Ca2+, Mg2+, and Al3+ were ineffective in folding either CRD. Notably, however, Co2+ exhibited a gamma-CRD1-selective effect, suggesting that metal ions, not unlike extensively used organic probes, might also become effective tools for controlling isozyme selective activation of PKC. Moreover, group Ib (Cu2+ and Ag+) and group IIb element ions other than Zn2+ (Cd2+ and Hg2+) were found to abolish PDBu binding of both CRDs. Importantly, these inhibitory effects of Cu2+, Ag+, and Cd2+, and Hg2+ were also observed with native PKC gamma. These results indicate that recent reports on the modulation of conventional PKC by heavy metal ions could be explained by their coordination to the CRDs. While the similar affinities of gamma-CRD1 and gamma-CRD2 for PDBu suggest that either site qualifies as the PDBu binding site, new molecular probes of these CRD3 have now been identified that provide information on the preferred site. These novel ligands (5a and 5b) were synthesized by aza-Claisen rearrangement of (-)-N13-desmethyl-N13-allylindolactam-G (4). These compounds did not significantly affect the specific PDBu binding of gamma-CRD1 but did inhibit that of gamma-CRD2 with similar potency to (-)-indolactam-V. Moreover, these new probes did not significantly inhibit the PDBu binding of native PKC gamma. (-)-Indolactam-V itself bound almost equally to gamma-CRD1, gamma-CRD2, and native PKC gamma. These results suggest that the major PDBu binding site in native PKC gamma is the first CRD, not the second CRD, unlike the novel PKCs.
Collapse
Affiliation(s)
- K Irie
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|