451
|
Sivandzade F, Bhalerao A, Cucullo L. Cerebrovascular and Neurological Disorders: Protective Role of NRF2. Int J Mol Sci 2019; 20:ijms20143433. [PMID: 31336872 PMCID: PMC6678730 DOI: 10.3390/ijms20143433] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular defense mechanisms, intracellular signaling, and physiological functions are regulated by electrophiles and reactive oxygen species (ROS). Recent works strongly considered imbalanced ROS and electrophile overabundance as the leading cause of cellular and tissue damage, whereas oxidative stress (OS) plays a crucial role for the onset and progression of major cerebrovascular and neurodegenerative pathologies. These include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), stroke, and aging. Nuclear factor erythroid 2-related factor (NRF2) is the major modulator of the xenobiotic-activated receptor (XAR) and is accountable for activating the antioxidative response elements (ARE)-pathway modulating the detoxification and antioxidative responses of the cells. NRF2 activity, however, is also implicated in carcinogenesis protection, stem cells regulation, anti-inflammation, anti-aging, and so forth. Herein, we briefly describe the NRF2–ARE pathway and provide a review analysis of its functioning and system integration as well as its role in major CNS disorders. We also discuss NRF2-based therapeutic approaches for the treatment of neurodegenerative and cerebrovascular disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
452
|
Dos Santos TM, Siebert C, de Oliveira MF, Manfredini V, Wyse ATS. Chronic mild Hyperhomocysteinemia impairs energy metabolism, promotes DNA damage and induces a Nrf2 response to oxidative stress in rats brain. Cell Mol Neurobiol 2019; 39:687-700. [PMID: 30949917 PMCID: PMC11462850 DOI: 10.1007/s10571-019-00674-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
Homocysteine (HCY) has been linked to oxidative stress and varied metabolic changes that are dependent on its concentration and affected tissues. In the present study we evaluate parameters of energy metabolism [succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase), and ATP levels] and oxidative stress [DCFH oxidation, nitrite levels, antioxidant enzymes and lipid, protein and DNA damages, as well as nuclear factor erythroid 2-related (Nrf2) protein abundance] in amygdala and prefrontal cortex of HCY-treated rats. Wistar male rats were treated with a subcutaneous injection of HCY (0.03 µmol/g of body weight) from the 30th to 60th post-natal day, twice a day, to induce mild hyperhomocysteinemia (HHCY). The rats were euthanatized without anesthesia at 12 h after the last injection, and amygdala and prefrontal cortex were dissected for biochemical analyses. In the amygdala, mild HHCY increased activities of SDH and complex II and decreased complex IV and ATP level, as well as increased antioxidant enzymes activities (glutathione peroxidase and superoxide dismutase), nitrite levels, DNA damage, and Nrf 2 protein abundance. In the prefrontal cortex, mild HHCY did not alter energy metabolism, but increased glutathione peroxidase, catalase and DNA damage. Other analyzed parameters were not altered by HCY-treatment. Our findings suggested that chronic mild HHCY changes each brain structure, particularly and specifically. These changes may be associated with the mechanisms by which chronic mild HHCY has been linked to the risk factor of fear, mood disorders and depression, as well as in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tiago Marcon Dos Santos
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Micaela Federizzi de Oliveira
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Vanusa Manfredini
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
453
|
Allen KN, Vázquez-Medina JP, Lawler JM, Mellish JAE, Horning M, Hindle AG. Muscular apoptosis but not oxidative stress increases with old age in a long-lived diver, the Weddell seal. ACTA ACUST UNITED AC 2019; 222:jeb.200246. [PMID: 31171605 DOI: 10.1242/jeb.200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - John M Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77840, USA
| | - Jo-Ann E Mellish
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Markus Horning
- Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664, USA.,Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, 2030 Marine Science Drive, Newport, OR 97365, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
454
|
Antioxidant Properties of Unripe Carica papaya Fruit Extract and Its Protective Effects against Endothelial Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4912631. [PMID: 31320913 PMCID: PMC6610763 DOI: 10.1155/2019/4912631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
Abstract
It has been proven that high consumption of fruit and vegetable lowers the risks of cardiovascular and other oxidative stress-related diseases. Here we evaluated the effects of a tropical fruit, unripe Carica papaya (UCP), on endothelial protection against oxidative damage induced by H2O2. The antioxidant properties of UCP were investigated using the assays of FRAP and ORAC and specific ROS scavenging activities (H2O2, O2•−, OH•, HOCl). Cytoprotective property was tested in human endothelial cell line EA.hy926 with respect to cell survival, intracellular ROS levels, antioxidant enzyme activities (CAT, SOD, GPX), survival/stress signaling (AKT, JNK, p38), and nuclear signaling (Nrf2, NF-kB). UCP processed high antioxidant activity and scavenging activity against H2O2> OH•> O2•−> HOCl, respectively. UCP improved cell survival in the milieu of ROS reduction. While SOD was increased by UCP, CAT activity was enhanced when cells were challenged with H2O2. UCP had no impact on H2O2-activated AKT, JNK, and p38 signaling but significantly decreased nuclear NF-κB levels. The overactivation of Nrf2 in response to oxidative stress was constrained by UCP. In conclusion, UCP protected endothelial cells against oxidative damage through intracellular ROS reduction, enhanced CAT activity, suppression of NF-kB, and prohibition of Nrf2 dysregulation. Thus, UCP might be a candidate for development of nutraceuticals against CVD and oxidative-related diseases and conditions.
Collapse
|
455
|
Bai F, Zhang B, Hou Y, Yao J, Xu Q, Xu J, Fang J. Xanthohumol Analogues as Potent Nrf2 Activators against Oxidative Stress Mediated Damages of PC12 Cells. ACS Chem Neurosci 2019; 10:2956-2966. [PMID: 31116948 DOI: 10.1021/acschemneuro.9b00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor controlling a series of cytoprotective genes, is closely associated with scavenging the reactive oxygen species and maintaining the intracellular redox balance. Accumulating evidence has indicated that activation of Nrf2 is efficient to block or retard oxidative stress mediated neurodegenerative disorders. Small molecules that contribute directly or indirectly to the Nrf2 activation thus are promising therapeutic agents. Herein, we screened xanthohumol and its analogues, and two analogues (11 and 12) were disclosed to possess low cytotoxicity and rescue PC12 cells from the hydrogen peroxide or 6-hydroxydopamine induced injuries. Molecular mechanism studies demonstrated that compounds 11 and 12 are potent Nrf2 activators by promoting the nuclear accumulation of Nrf2 and enhancing the cellular antioxidant defense system. More importantly, genetically silencing the Nrf2 expression shuts down the observed cytoprotection conferred by both compounds, supporting the critical involvement of Nrf2 for the cellular actions of compounds 11 and 12.
Collapse
Affiliation(s)
- Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
456
|
Morroni F, Sita G, Graziosi A, Ravegnini G, Molteni R, Paladini MS, Dias KST, dos Santos AF, Viegas C, Camps I, Pruccoli L, Tarozzi A, Hrelia P. PQM130, a Novel Feruloyl-Donepezil Hybrid Compound, Effectively Ameliorates the Cognitive Impairments and Pathology in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2019; 10:658. [PMID: 31244664 PMCID: PMC6581760 DOI: 10.3389/fphar.2019.00658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia in older people. The complex nature of AD calls for the development of multitarget agents addressing key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line acetylcholinesterase inhibitor used for the treatment of AD. Although several studies have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the possible effects of donepezil on the AD process are not yet known. In this study, a novel feruloyl-donepezil hybrid compound (PQM130) was synthesized and evaluated as a multitarget drug candidate against the neurotoxicity induced by Aβ1-42 oligomer (AβO) injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity in different in vivo models and neuroprotective activity in human neuronal cells. The intracerebroventricular (i.c.v.) injection of AβO in mice caused the increase of memory impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, PQM130 (0.5-1 mg/kg) treatment after the i.c.v. AβO injection reduced oxidative damage and neuroinflammation and induced cell survival and protein synthesis through the modulation of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice against the decline in spatial cognition. Even more interesting is that PQM130 modulated different pathways compared to donepezil, and it is much more effective in counteracting AβO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional agent against AD and could act as a promising neuroprotective compound for anti-AD drug development.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Claudio Viegas
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ihosvany Camps
- Institute of Exact Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies-QuVi, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies-QuVi, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology–FaBiT, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
457
|
Zhang X, Zhu Y, Dong S, Zhang A, Lu Y, Li Y, Lv S, Zhang J. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci 2019; 232:116526. [PMID: 31170418 DOI: 10.1016/j.lfs.2019.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Tumors and heart disease are two of the leading causes of human death. With the development of anti-cancer therapy, the survival rate of cancer patients has been significantly improved. But at the same time, the incidence of cardiovascular adverse events caused by cancer treatment has also been considerably increased, such as arrhythmia, left ventricular (LV) systolic and diastolic dysfunction, and even heart failure (HF), etc., which seriously affects the quality of life of cancer patients. More importantly, the occurrence of adverse events may lead to the adjustment or the cessation of anti-cancer treatment, which affects the survival rate of patients. Understanding the mechanism of cardiotoxicity (CTX) induced by antineoplastic drugs is the basis of adequate protection of the heart without impairing the efficacy of antineoplastic therapy. Based on current research, a large amount of evidence has shown that oxidative stress (OS) plays an essential role in CTX induced by antineoplastic drugs and participates in its toxic reaction directly and indirectly. Here, we will review the mechanism of action of OS in cardiac toxicity of antineoplastic drugs, to provide new ideas for researchers, and provide further guidance for clinical prevention and treatment of cardiac toxicity of anti-tumor drugs in the future.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Yaping Zhu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Shaoyang Dong
- Department of Orthopedics of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Hebei Province of Traditional Chinese Medicine, Hebei Institute of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, 726 broad way, NY, New York, USA
| | - Yanmin Lu
- Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Nankai, Tianjin, China
| | - Yanyang Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Shichao Lv
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| | - Junping Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| |
Collapse
|
458
|
Dos Santos Nunes RG, Pereira PS, Elekofehinti OO, Fidelis KR, da Silva CS, Ibrahim M, Barros LM, da Cunha FAB, Lukong KE, de Menezes IRA, Tsopmo A, Duarte AE, Kamdem JP. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:161-168. [PMID: 31153464 DOI: 10.1016/j.pestbp.2019.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Paraquat (PQ) is a widely used herbicide with no antidote which is implicated in the pathogenesis of the Parkinson's disease. The present study then investigated the potential of caffeic acid (CA), a known antioxidant, cardioprotective and neuroprotective molecule to counteract oxidative stress mediated by PQ. In addition, molecular docking was performed to understand the mechanism underlying the inhibitory effect of CA against PQ poisoning. The fruit fly, Drosophila melanogaster, was exposed to PQ (0.44 mg/g of diet) in the absence or presence of CA (0.25, 0.5, 1 and 2 mg/g of died) for 7 days. Data showed that PQ-fed flies had higher incidence of mortality which was associated with mitochondrial dysfunction, increased free Fe(II) content and lipid peroxidation when compared to the control. Co-exposure with CA reduced mortality and markedly attenuated biochemical changes induced by PQ. The mechanism investigated using molecular docking revealed a strong interaction (-6.2 Kcal/mol) of CA with D. melanogaster transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2). This was characterized by the binding of CA to keap-1 domain of Nrf2. Taking together these results indicate the protective effect of CA against PQ-induced oxidative damage in D. melanogaster was likely through its coordination which hinders Nrf2-keap-1 binding leading to an increase of the antioxidant defense system.
Collapse
Affiliation(s)
- Ricardo Gomes Dos Santos Nunes
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Pedro Silvino Pereira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| | - Kleber Ribeiro Fidelis
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Cícera Simoni da Silva
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Luiz Marivando Barros
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Francisco Assis Bezerra da Cunha
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Irwin Rose Alencar de Menezes
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Antonia Eliene Duarte
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil
| | - Jean Paul Kamdem
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, URCA, Rua Cel. Antônio Luis, 1161, Campus Pimenta CEP: 63105-000, Crato, Ceará, Brazil.
| |
Collapse
|
459
|
Luo Y, Li XN, Zhao Y, Du ZH, Li JL. DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. CHEMOSPHERE 2019; 224:626-633. [PMID: 30844593 DOI: 10.1016/j.chemosphere.2019.02.142] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) in the environment and food chain may impact cerebrum development and neurobehavioral in humans and wildlife. However, it is unclear that DEHP exposure caused cerebral toxicity. This experiment used gavage to expose female quail to 0, 250, 500, and 1000 mg/kg BW/day for 45 days to assess the potential neurotoxicity of DEHP to the cerebrum. It can be observed that there will be obvious neurological abnormalities in the experiment. Cerebrum histological lesions can be observed with HE-staining. Detecting oxidative stress indices, Nrf2 pathway, and mitochondrial dynamics factor, by analyzing the results, these results were observed that DEHP exposure can cause damage to the cerebrum by causing oxidative stress and affecting the balance of mitochondrial dynamics. Nrf2-mediated defense is not activated by exposure to 250 mg/kg DEHP. Nrf2-mediated defense is activated but is not resistant to exposure to medium and high doses of DEHP (500 mg/kg; 1000 mg/kg). DEHP triggers cerebral mitochondrial dysfunction via modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
460
|
Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, Goltzman D, Miao D. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 2019; 18:e12951. [PMID: 30907059 PMCID: PMC6516172 DOI: 10.1111/acel.12951] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
We tested the hypothesis that 1,25-dihydroxyvitamin D3 [1α,25(OH)2 D3 ] has antiaging effects via upregulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2), reducing reactive oxygen species (ROS), decreasing DNA damage, reducing p16/Rb and p53/p21 signaling, increasing cell proliferation, and reducing cellular senescence and the senescence-associated secretory phenotype (SASP). We demonstrated that 1,25(OH)2 D3 -deficient [1α(OH)ase-/- ] mice survived on average for only 3 months. Increased tissue oxidative stress and DNA damage, downregulated Bmi1 and upregulated p16, p53 and p21 expression levels, reduced cell proliferation, and induced cell senescence and the senescence-associated secretory phenotype (SASP) were observed. Supplementation of 1α(OH)ase-/- mice with dietary calcium and phosphate, which normalized serum calcium and phosphorus, prolonged their average lifespan to more than 8 months with reduced oxidative stress and cellular senescence and SASP. However, supplementation with exogenous 1,25(OH)2 D3 or with combined calcium/phosphate and the antioxidant N-acetyl-l-cysteine prolonged their average lifespan to more than 16 months and nearly 14 months, respectively, largely rescuing the aging phenotypes. We demonstrated that 1,25(OH)2 D3 exerted an antioxidant role by transcriptional regulation of Nrf2 via the vitamin D receptor (VDR). Homozygous ablation of p16 or heterozygous ablation of p53 prolonged the average lifespan of 1α(OH)ase-/- mice on the normal diet from 3 to 6 months by enhancing cell proliferative ability and reducing cell senescence or apoptosis. This study suggests that 1,25(OH)2 D3 plays a role in delaying aging by upregulating Nrf2, inhibiting oxidative stress and DNA damage,inactivating p53-p21 and p16-Rb signaling pathways, and inhibiting cell senescence and SASP.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Renlei Yang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Wanxin Qiao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Wei Zhang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Jie Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Li Mao
- Department of Endocrinology, Huai'an First People's HospitalNanjing Medical UniversityHuai'anChina
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
461
|
High-Dose Astaxanthin Supplementation Suppresses Antioxidant Enzyme Activity during Moderate-Intensity Swimming Training in Mice. Nutrients 2019; 11:nu11061244. [PMID: 31159211 PMCID: PMC6627865 DOI: 10.3390/nu11061244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exercise-induced reactive oxygen and nitrogen species are increasingly considered as beneficial health promotion. Astaxanthin (ASX) has been recognized as a potent antioxidant suitable for human ingestion. We investigated whether ASX administration suppressed antioxidant enzyme activity in moderate-intensity exercise. Seven-week-old male C57BL/6 mice (n = 8/group) were treated with ASX (5, 15, and 30 mg/kg BW) combined with 45 min/day moderate-intensity swimming training for four weeks. Results showed that the mice administrated with 15 and 30 mg/kg of ASX decreased glutathione peroxidase, catalase, malondialdehyde, and creatine kinase levels in plasma or muscle, compared with the swimming control group. Beyond that, these two (15 and 30 mg/kg BW) dosages of ASX downregulated gastrocnemius muscle erythroid 2p45 (NF-E2)-related factor 2 (Nrf2). Meanwhile, mRNA of Nrf2 and Nrf2-dependent enzymes in mice heart were also downregulated in the ASX-treated groups. However, the mice treated with 15 or 30 mg/kg ASX had increased constitutive nitric oxidase synthase and superoxide dismutase activity, compared with the swimming and sedentary control groups. Our findings indicate that high-dose administration of astaxanthin can blunt antioxidant enzyme activity and downregulate transcription of Nrf2 and Nrf2-dependent enzymes along with attenuating plasma and muscle MDA.
Collapse
|
462
|
Direct and Indirect Effect of Air Particles Exposure Induce Nrf2-Dependent Cardiomyocyte Cellular Response In Vitro. Cardiovasc Toxicol 2019; 19:575-587. [DOI: 10.1007/s12012-019-09530-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
463
|
Chen B, Sun Y, Zhang J, Zhu Q, Yang Y, Niu X, Deng Z, Li Q, Wang Y. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther 2019; 10:142. [PMID: 31113469 PMCID: PMC6528288 DOI: 10.1186/s13287-019-1253-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Angiogenesis, as an endogenous repair mechanism, plays crucial roles in wound healing and tissue regeneration. However, this process is impaired in the elderly due to aging-related vascular endothelial dysfunction. This study was aimed to explore the pro-angiogenic effects of exosomes from human embryonic stem cells (ESC-Exos) in aged mice of pressure-induced ulcer model and the underlying mechanism. Methods Pressure ulcer wounds were created on the back of d-galactose-induced aging mice. ESC-Exos were locally applied onto the wound beds, with PBS as control. The effects of ESC-Exos on wound healing were analyzed by measuring wound closure rates, histological and immunofluorescence analyses. Then, the anti-aging effect of ESC-Exos on vascular endothelial cells was tested in an in vitro d-galactose-induced HUVEC senescence model. Results ESC-Exos could accelerate wound closure and enhance angiogenesis, and the senescence of vascular endothelial cells was significantly ameliorated after ESC-Exos treatment. In vitro, ESC-Exos could rejuvenate the senescence of endothelial cells and recover compromised proliferation, migratory capacity, and tube formation. This recovery was Nrf2-activation-dependent, since cotreatment with Nrf2 inhibitor Brusatol could abolish the rejuvenative effects of ESC-Exos. Further study revealed that miR-200a was highly enriched in ESC-Exos and played a crucial role in ESC-Exos-mediated rejuvenation through downregulating Keap1, which negatively regulates Nrf2 expression. Conclusions ESC-Exos ameliorate endothelial senescence by activating Nrf2 and recover aging-related angiogenic dysfunction, thereby accelerating wound healing in aged mice. ESC-Exos might be a natural nano-biomaterial for aging-related diseases therapy. Electronic supplementary material The online version of this article (10.1186/s13287-019-1253-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bi Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yongjin Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
464
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
465
|
Hybertson BM, Gao B, Bose S, McCord JM. Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury. Antioxidants (Basel) 2019; 8:antiox8050119. [PMID: 31058853 PMCID: PMC6563026 DOI: 10.3390/antiox8050119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Bioactive phytochemicals in Rosmarinus officinalis, Withania somnifera, and Sophora japonica have a long history of human use to promote health. In this study we examined the cellular effects of a combination of extracts from these plant sources based on specified levels of their carnosol/carnosic acid, withaferin A, and luteolin levels, respectively. Individually, these bioactive compounds have previously been shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which binds to the antioxidant response element (ARE) and regulates the expression of a wide variety of cytoprotective genes. We found that combinations of these three plant extracts act synergistically to activate the Nrf2 pathway, and we identified an optimized combination of the three agents which we named PB125 for use as a dietary supplement. Using microarray, quantitative reverse transcription-PCR, and RNA-seq technologies, we examined the gene expression induced by PB125 in HepG2 (hepatocellular carcinoma) cells, including canonical Nrf2-regulated genes, noncanonical Nrf2-regulated genes, and genes which appear to be regulated by non-Nrf2 mechanisms. Ingenuity Pathway Analysis identified Nrf2 as the primary pathway for gene expression changes by PB125. Pretreatment with PB125 protected cultured HepG2 cells against an oxidative stress challenge caused by cumene hydroperoxide exposure, by both cell viability and cell injury measurements. In summary, PB125 is a phytochemical dietary supplement comprised of extracts of three ingredients, Rosmarinus officinalis, Withania somnifera, and Sophora japonica, with specified levels of carnosol/carnosic acid, withaferin A, and luteolin, respectively. Each ingredient contributes to the activation of the Nrf2 pathway in unique ways, which leads to upregulation of cytoprotective genes and protection of cells against oxidative stress and supports the use of PB125 as a dietary supplement to promote healthy aging.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
466
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
467
|
Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019; 135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ10, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
468
|
Qian X, Asad SB, Li J, Wang J, Wei D, Zhao Y, Wang Y, Zhu H. Link between cardiac function and the antioxidative defense mechanism in aged rats. Biochem Biophys Res Commun 2019; 513:1100-1105. [PMID: 31010674 DOI: 10.1016/j.bbrc.2019.03.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
Aging presents profound structural and physiological changes in the cardiovascular system. Oxidative stress, a major contributing factor during the aging process, has been involved in various age-related cardiovascular pathologies. Nevertheless, the underlying mechanism of oxidative stress in the aging heart is still unclear. This study was designed to determine whether changes in cardiac structure and function in aged rats were associated with decreases in the antioxidative defense mechanism. Young (3-month-old) and aged (24-month-old) rats were used in this study, and the differences in function, structure, antioxidative capacity and the expression of antioxidative-related proteins between the two groups were compared. By using echocardiography, we observed that compared to young rats, the left ventricular internal end-diastolic diameter (LVID; d) and left ventricular volume at diastole (LV Vol; d) were significantly increased in aged rats, while the MV E/A (E wave and A wave ratio, the ratio of peak velocity of early to late filling of mitral inflow), which represents heart diastolic function, was significantly decreased in aged rats. In addition, we observed degenerative histological modifications and an increased number of apoptotic cells in aged rats. We further detected the protein expression of catalase (CAT), glutathione synthetase (GSS), superoxide dismutase-1 (SOD-1), heme oxygenase-1 (HO-1) and NADPH: quinone oxidoreductase 1 (NQO1) in cardiac tissue. Western blot results showed that the expression of GSS was significantly decreased and that the expressions of CAT, SOD-1, and HO-1 were slightly decreased in aged rats. Immunohistochemistry results further confirmed the decreased expression of GSS, SOD-1 and NQO1 in cardiomyocytes in aged rats. Taken together, our data suggest that aging may affect the morphology and function of the heart by oxidative stress and the antioxidative defense mechanism.
Collapse
Affiliation(s)
- Xin Qian
- Department of Physiology, Harbin Medical University, Harbin, China
| | | | - Jiaxin Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Deqin Wei
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
469
|
Pomatto LCD, Sun PY, Yu K, Gullapalli S, Bwiza CP, Sisliyan C, Wong S, Zhang H, Forman HJ, Oliver PL, Davies KE, Davies KJA. Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biol 2019; 24:101194. [PMID: 31022673 PMCID: PMC6479762 DOI: 10.1016/j.redox.2019.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2 signal transduction pathway plays a major role in adaptive responses to oxidative stress and in maintaining adaptive homeostasis, yet Nrf2 signaling undergoes a significant age-dependent decline that is still poorly understood. We used mouse embryonic fibroblasts (MEFs) cultured under hyperoxic conditions of 40% O2, as a model of accelerated ageing. Hyperoxia increased baseline levels of Nrf2 and multiple transcriptional targets (20S Proteasome, Immunoproteasome, Lon protease, NQO1, and HO-1), but resulted in loss of cellular ability to adapt to signaling levels (1.0 μM) of H2O2. In contrast, MEFs cultured at physiologically relevant conditions of 5% O2 exhibited a transient induction of Nrf2 Phase II target genes and stress-protective enzymes (the Lon protease and OXR1) following H2O2 treatment. Importantly, all of these effects have been seen in older cells and organisms. Levels of Two major Nrf2 inhibitors, Bach1 and c-Myc, were strongly elevated by hyperoxia and appeared to exert a ceiling on Nrf2 signaling. Bach1 and c-Myc also increase during ageing and may thus be the mechanism by which adaptive homeostasis is compromised with age.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelsi Yu
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sandhyarani Gullapalli
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Christina Sisliyan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Peter L Oliver
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Kay E Davies
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
470
|
Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar Drugs 2019; 17:E222. [PMID: 31013795 PMCID: PMC6521297 DOI: 10.3390/md17040222] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Collapse
Affiliation(s)
- Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
471
|
Guo D, Shen Y, Li W, Li Q, Zhao Y, Pan C, Chen B, Zhong Y, Miao Y. 6-Bromoindirubin-3'-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver. Front Pharmacol 2019; 10:320. [PMID: 31057395 PMCID: PMC6477879 DOI: 10.3389/fphar.2019.00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
Liver aging is associated with age-related histopathological and functional changes that significantly enhance the risk of numerous diseases or disorders developing in elderly populations. 6-Bromoindirubin-3'-oxime (6BIO), a potent inhibitor of glycogen synthase kinase-3 (GSK-3), has been implicated in various age-related diseases and processes, such as tumorigenesis, neurodegeneration, and diabetes. Recent studies have also revealed that 6BIO increases autophagy in yeast, mammalian cell lines, and dopaminergic neurons, which is one of the classical mechanisms strongly associated with liver aging. However, the impact or the mechanism of action of 6BIO in liver remains entirely unknown. Here, we find that 6BIO reduces oxidative stress, improves lipid metabolism, enhances autophagy, and significantly retards liver aging via modulating the GSK-3β pathway and mTOR pathway. Our findings suggest that 6BIO could be a potential agent to protect the liver in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
- Donghao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Shen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinjie Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
472
|
Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41:655-670. [PMID: 30941620 DOI: 10.1007/s11357-019-00061-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the last several years, numerous molecules derived from plants and vegetables have been tested for their antioxidant, anti-inflammatory, and anti-aging properties. One of them is sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables. SFN activates the antioxidant and anti-inflammatory responses by inducing Nrf2 pathway and inhibiting NF-κB. It also has an epigenetic effect by inhibiting HDAC and DNA methyltransferases and modifies mitochondrial dynamics. Moreover, SFN preserves proteome homeostasis (proteostasis) by activating the proteasome, which has been shown to lead to increased cellular lifespan and prevent neurodegeneration. In this review, we describe some of the molecular and physical characteristics of SFN, its mechanisms of action, and the effects that SFN treatment induces in order to discuss its relevance as a "miraculous" drug to prevent aging and neurodegeneration.
Collapse
|
473
|
Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 2019; 134:702-707. [PMID: 30654017 PMCID: PMC6588470 DOI: 10.1016/j.freeradbiomed.2019.01.016] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
NRF2, a transcription factor that has been deemed the master regulator of cellular redox homeostasis, declines with age. NRF2 transcriptionally upregulates genes that combat oxidative stress; therefore, loss of NRF2 allows oxidative stress to go unmitigated and drive the aging phenotype. Oxidative stress is a common theme among the key features associated with the aging process, collectively referred to as the "Hallmarks of Aging", as it disrupts proteostasis, alters genomic stability, and leads to cell death. In this review, we outline the role that oxidative stress and the reduction of NRF2 play in each of the Hallmarks of Aging, including how they contribute to the onset of neurodegenerative disorders, cancer, and other age-related pathologies.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew B Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, USA; Evelyn F McKnight Brain institute and Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
474
|
Davies KJA, Forman HJ. Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med 2019; 134:708-714. [PMID: 30695691 PMCID: PMC6588462 DOI: 10.1016/j.freeradbiomed.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/05/2023]
Abstract
The Keap1-Nrf2 signal transduction pathway plays a major role in oxidant and electrophile induction of adaptive homeostasis that transiently and reversibly increases cellular and organismal protection from stress. By expanding (and then contracting) the normal homeostatic range of expression of stress-protective genes, Nrf2 allows us to cope with fluctuations in stress levels. Two major inhibitors of Nrf2 are Bach1 and c-Myc which normally serve the important function of turning off adaptation when appropriate. We have found, however, that both Bach1 and c-Myc levels increase substantially with age and that older human cells, worms, flies, and mice loose Nrf2-dependent signaling and adaptive homeostasis. Nrf2 has also been linked with increased risk of cancers, and cancer incidence certainly increases with age. Here we propose that the age-dependent increase in Bach1 and c-Myc may actually cause the age-dependent decline in Nrf2 signaling and adaptive homeostasis, and that this is a coordinated attempt to minimize the age-dependent increase in cancer incidence. In other words, we may trade off adaptive homeostasis for a lower risk of cancer by increasing Bach1 and c-Myc in ageing.
Collapse
Affiliation(s)
- Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
475
|
Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2019; 303:516-526. [PMID: 30859735 DOI: 10.1002/ar.24107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/24/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Noise-induced hearing loss (NIHL) poses a significant burden on not only the economics of health care but also the quality of life of an individual, as we approach an unprecedented age of longevity. In this article, we will delineate the current landscape of management of NIHL. We discuss the most recent results from in vitro and in vivo studies that determine the effectiveness of established pharmacotherapy such as corticosteroid and potential emerging therapies like N-acetyl cysteine and neurotrophins (NTs), as well as highlight ongoing clinical trials for these therapeutic agents. We present an overview of how the recent advancements in the field of gene-based and stem cell-based therapies can help in developing effective therapeutic strategies for NIHL. Gene-based therapies have shown exciting results demonstrating cochlear cellular regeneration using Atoh1, NRF2 as well as NT gene therapy employing viral vectors. In addition, we will discuss the recent advancements in genome-editing technologies, such as CRISPR/Cas9, and its potential role in NIHL therapy. We will further discuss the current state of stem cell therapy as it pertains to treating neurodegenerative conditions including NIHL. Embryonic stem cells, adult-derived stem cells, and induced pluripotent stem cells all represent an enticing reservoir of replacing damaged cells as a result of NIHL. Finally, we will discuss the barriers that need to be overcome to translate these promising treatment modalities to the clinical practice in pursuit of improving quality of life of patients having NIHL. Anat Rec, 303:516-526, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
476
|
Liu Q, Jin Z, Xu Z, Yang H, Li L, Li G, Li F, Gu S, Zong S, Zhou J, Cao L, Wang Z, Xiao W. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. Cell Stress Chaperones 2019; 24:441-452. [PMID: 30815818 PMCID: PMC6439064 DOI: 10.1007/s12192-019-00977-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Ginkgolide terpenoid lactones, including ginkgolides and bilobalide, are two crucial bioactive constituents of extract of Ginkgo biloba (EGb) which was used in the treatment of cardiovascular and cerebrovascular diseases. The aims of this study were to investigate the antioxidant effects and mechanism of ginkgolides (ginkgolide A (GA), ginkgolide B (GB), ginkgolide K (GK)) and bilobalide (BB) against oxidative stress induced by transient focal cerebral ischemia. In vitro, SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 4 h followed by reoxygenation with ginkgolides and BB treatments for 6 h, and then cell viability, superoxide dismutase (SOD), and ROS were respectively detected using kit. Western blot was used to confirm the protein levels of hemeoxygenase-1 (HO-1), quinone oxidoreductase l (Nqo1), Akt, phosphorylated Akt (p-Akt), nuclear factor-E2-related factor2 (Nrf2), and phosphorylated Nrf2 (p-Nrf2). GB combined with different concentrations of LY294002 (PI3K inhibitor) were administrated to SH-SY5Y cells for 1 h after OGD, and then p-Akt and p-Nrf2 levels were detected by western blot. In vivo, 2 h of middle cerebral artery occlusion (MCAO) model was established, followed with reperfusion and GB treatments for 24 and 72 h. The infarct volume ratios were confirmed by TTC staining. The protein levels of HO-1, Nqo1, SOD1, Akt, p-Akt, Nrf2, and p-Nrf2 were detected using western blot and immunohistochemistry (IHC). Experimental data in vitro confirm that GA, GB, GK, and BB resulted in significant decrease of ROS and increase of SOD activities and protein levels of HO-1 and Nqo1; however, GB group had a significant advantage in comparison with the GA and GK groups. Moreover, after ginkgolides and BB treatments, p-Akt and p-Nrf2 were significantly upregulated, which could be inhibited by LY294002 in a dose-dependent manner, meanwhile, GB exhibited more effective than GA and GK. In vivo, TTC staining indicated that the infarct volume ratios in MCAO rats were dramatically decreased by GB in a dose-dependent manner. Furthermore, GB significantly upregulated the protein levels of HO-1, Nqo1, SOD, p-Akt, p-Nrf2, and Nrf2. In conclusion, GA, GB, GK, and BB significantly inhibited oxidative stress damage caused by cerebral ischemia reperfusion. Compared with GA, GK, and BB, GB exerts the strongest antioxidant stress effects against ischemic stroke. Moreover, ginkgolides and BB upregulated the levels of antioxidant proteins through mediating the Akt/Nrf2 signaling pathway to protect neurons from oxidative stress injury.
Collapse
Affiliation(s)
- Qiu Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhiquan Jin
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhiliang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Hao Yang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Liang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Guiping Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Fang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Shaoli Gu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Shaobo Zong
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Jun Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, Jiangsu, China.
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222001, Jiangsu, China.
| |
Collapse
|
477
|
Ruas FAD, Barboza NR, Castro-Borges W, Guerra-Sá R. Manganese alters expression of proteins involved in the oxidative stress of Meyerozyma guilliermondii. J Proteomics 2019; 196:173-188. [DOI: 10.1016/j.jprot.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
|
478
|
Memon MA, Wang Y, Xu T, Ma N, Zhang H, Roy AC, Aabdin ZU, Shen X. Lipopolysaccharide induces oxidative stress by triggering MAPK and Nrf2 signalling pathways in mammary glands of dairy cows fed a high-concentrate diet. Microb Pathog 2019; 128:268-275. [DOI: 10.1016/j.micpath.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
479
|
Guimera AM, Shanley DP, Proctor CJ. Modelling the role of redox-related mechanisms in musculoskeletal ageing. Free Radic Biol Med 2019; 132:11-18. [PMID: 30219703 DOI: 10.1016/j.freeradbiomed.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
The decline in the musculoskeletal system with age is driven at the cellular level by random molecular damage. Cells possess mechanisms to repair or remove damage and many of the pathways involved in this response are regulated by redox signals. However, with ageing there is an increase in oxidative stress which can lead to chronic inflammation and disruption of redox signalling pathways. The complexity of the processes involved has led to the use of computational modelling to help increase our understanding of the system, test hypotheses and make testable predictions. This paper will give a brief background of the biological systems that have been modelled, an introduction to computational modelling, a review of models that involve redox-related mechanisms that are applicable to musculoskeletal ageing, and finally a discussion of the future potential for modelling in this field.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Carole J Proctor
- Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
480
|
Cobley JN, Sakellariou GK, Husi H, McDonagh B. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle. Free Radic Biol Med 2019; 132:24-32. [PMID: 30219702 DOI: 10.1016/j.freeradbiomed.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Increased oxidative damage and disrupted redox signalling are consistently associated with age-related loss of skeletal muscle mass and function. Redox signalling can directly regulate biogenesis and degradation pathways and indirectly via activation of key transcription factors. Contracting skeletal muscle fibres endogenously generate free radicals (e.g. superoxide) and non-radical derivatives (e.g. hydrogen peroxide). Exercise induced redox signalling can promote beneficial adaptive responses that are disrupted by age-related redox changes. Identifying and quantifying the redox signalling pathways responsible for successful adaptation to exercise makes skeletal muscle an attractive physiological model for redox proteomic approaches. Site specific identification of the redox modification and quantification of site occupancy in the context of protein abundance remains a crucial concept for redox proteomics approaches. Notwithstanding, the technical limitations associated with skeletal muscle for proteomic analysis, we discuss current approaches for the identification and quantification of transient and stable redox modifications that have been employed to date in ageing research. We also discuss recent developments in proteomic approaches in skeletal muscle and potential implications and opportunities for investigating disrupted redox signalling in skeletal muscle ageing.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | | | - Holger Husi
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Ireland.
| |
Collapse
|
481
|
Zhang Q, Zhao Y, Talukder M, Han Y, Zhang C, Li XN, Li JL. Di(2-ethylhexyl) phthalate induced hepatotoxicity in quail (Coturnix japonica) via modulating the mitochondrial unfolded protein response and NRF2 mediated antioxidant defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:885-894. [PMID: 30257229 DOI: 10.1016/j.scitotenv.2018.09.211] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Among ubiquitously found environmental contaminants in the ecosystem, di(2-ethylhexyl) phthalate (DEHP) is an important environmental contaminant used as plasticizer in medical and consumer goods. The bioaccumulation and environmental persistence of DEHP cause serious global health effects in wildlife animals and human, especially hepatotoxicity. Herein, to explore the mechanisms of DEHP induced hepatotoxicity, quail were exposed with 0, 250, 500 and 1000 mg/kg BW/day DEHP by gavage administration daily for 45 days. Notably, the adipose tissue degeneration was observed in the liver of DEHP-exposed quail under the histopathological analysis. DEHP exposure increased the peroxidation product (MDA), GSH and GST, but decreased antioxidant function (T-AOC, SOD and GPX). DEHP induced the oxidative stress and pulsed on NRF2 signal pathway through activating downstream genes. Furthermore, DEHP induced mitochondrial ultrastructural abnormalities and mitochondrial dysfunctions. Mitochondrial unfolded protein response (mtUPR) was activated to relieve mitochondrial dysfunctions and mitigated oxidative stress. These findings showed that mitochondrial functions and redox homeostasis were affected by DEHP and resulted in irreversible hepatic injury. In Conclusion, this study suggested that DEHP-induced hepatotoxicity in quail was associated with activating the NRF2 mediated antioxidant defense and mtUPR. These results provided new evidence on molecular mechanism of DEHP induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Yu Han
- Department of gastrointestinal oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
482
|
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21:101059. [PMID: 30576920 PMCID: PMC6302038 DOI: 10.1016/j.redox.2018.11.017] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and He, 2012) [1]. A growing body of research data strongly suggests that imbalanced ROS and electrophile overproduction are among the major prodromal factors in the onset and progression of several cerebrovascular and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and aging (Ma and He, 2012; Ramsey et al., 2017; Salminen et al., 2012; Sandberg et al., 2014; Sarlette et al., 2008; Tanji et al., 2013) [1-6]. Cells offset oxidative stress by the action of housekeeping antioxidative enzymes (such as superoxide dismutase, catalase, glutathione peroxidase) as well direct and indirect antioxidants (Dinkova-Kostova and Talalay, 2010) [7]. The DNA sequence responsible for modulating the antioxidative and cytoprotective responses of the cells has been identified as the antioxidant response element (ARE), while the nuclear factor erythroid 2-related factor (NRF2) is the major regulator of the xenobiotic-activated receptor (XAR) responsible for activating the ARE-pathway, thus defined as the NRF2-ARE system (Ma and He, 2012) [1]. In addition, the interplay between the NRF2-ARE system and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB, a protein complex that controls cytokine production and cell survival), has been further investigated in relation to neurodegenerative and neuroinflammatory disorders. On these premises, we provide a review analysis of current understanding of the NRF2-NF-ĸB interplay, their specific role in major CNS disorders, and consequent therapeutic implication for the treatment of neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Shikha Prasad
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
483
|
Ling K, Xu A, Chen Y, Chen X, Li Y, Wang W. Protective effect of a hydrogen sulfide donor on balloon injury-induced restenosis via the Nrf2/HIF-1α signaling pathway. Int J Mol Med 2019; 43:1299-1310. [PMID: 30747216 PMCID: PMC6365080 DOI: 10.3892/ijmm.2019.4076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Restenosis is liable to occur following treatment with endovascular interventional therapy. Increasing evidence indicates that hydrogen sulfide (H2S) exhibits numerous physiological properties, including antioxidative and cardioprotective disease properties. Thus, the present study aimed to investigate the anti-restenosis effects of H2S and its protective mechanisms. A balloon dilatation restenosis model was used, in which model Sprague-Dawley rats were treated with sodium hydrosulfide (NaHS: A donor of H2S, 30 µmol/kg) by intraperitoneal injection for 4 weeks. Histological observations of the carotid artery were performed, and H2S production and the expression of Nuclear factor-E2-related factor 2 (Nrf2)/hypoxia-inducible factor (HIF)-1α signaling pathway proteins were measured. In addition, human umbilical vein endothelial cells (HUVECs) were treated with NaHS following the inhibition of Nrf2 or HIF-1α expression. The expression of Nrf2/HIF-1α signaling pathway proteins, tube formation and cell migration were evaluated thereafter. The results demonstrated that NaHS treatment significantly increased H2S production in rats with restenosis, and that neointimal thickness decreased significantly in arteries with restenosis. Furthermore, an increase in H2S production enhanced the nuclear accumulation of Nrf2 and expression of its downstream targets, heme oxygenase-1 and superoxide dismutase, as well as HIF-1α. Similar effects of NaHS on the expression of these proteins were observed in HUVECs. Additionally, these findings indicated that NaHS-induced HIF-1α expression was dependent on Nrf2 expression. NaHS treatment also markedly increased tube formation by upregulating vascular endothelial growth factor expression and cell migration, both of which were mediated by the Nrf2/HIF-1α signaling pathway, and suppressed the migration and proliferation of human vascular smooth muscle cells. Thus, NaHS-mediated H2S production was observed to prevent neointimal hyperplasia, promote activation of the Nrf2/HIF-1α signal pathway, and enhance HUVEC tube formation and migration, thereby exerting protective effects on balloon injury-induced restenosis.
Collapse
Affiliation(s)
- Ken Ling
- Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ancong Xu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xueyin Chen
- Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
484
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
485
|
Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019; 59:555-575. [PMID: 30256716 PMCID: PMC6538038 DOI: 10.1146/annurev-pharmtox-010818-021856] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. Although the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
486
|
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y. Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 2019; 58:2943-2957. [DOI: 10.1007/s00394-018-01890-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
487
|
Tomato Powder Modulates NF- κB, mTOR, and Nrf2 Pathways during Aging in Healthy Rats. J Aging Res 2019; 2019:1643243. [PMID: 30719353 PMCID: PMC6334329 DOI: 10.1155/2019/1643243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/30/2018] [Accepted: 09/16/2018] [Indexed: 11/27/2022] Open
Abstract
Purpose In the present study, we aimed to investigate the effects of tomato powder (TP) on glucose and lipid metabolism, as well as oxidative stress and the NF-κB, mTOR, and Nrf2 pathways during the aging process in healthy rats. Methods and Results Male Wistar rats were randomly assigned to four groups as follows: (i) Control group 1 (n=15, 3-week old): rats were fed standard diet for 7 weeks; (ii) TP group 1 (n=15, 3-week old): rats were fed standard diet supplemented with TP for 7 weeks; (iii) Control group 2 (n=15, 8-week old): rats were fed standard diet for 69 weeks; and (iv) TP group 2 (8-week old): rats were fed standard diet supplemented with TP for 69 weeks. TP supplementation significantly reduced the hyperglycemia, hypertriglyceridemia, and hypercholesterolemia and improved liver function and kidney function in 77-week old rats compared with the control animals (P < 0.05). In addition, TP significantly decreased the serum and liver MDA levels (P < 0.003 and P < 0.001, respectively) while increasing the activities of liver SOD (P < 0.001), CAT (P < 0.008), and GPx (P < 0.01) compared with the control groups in both 10-week-old and 77-week-old rats (P < 0.05). Age-related increases in phosphorylation of NF-κBp65, mTOR, 4E-BP1, and P70S6K were observed in livers of 77-week-old rats compared to those of 10-week-old rats (P < 0.001). TP supplementation decreased the expression of NF-κBp65 and activation of mTOR, 4E-BP1, and P70S6K in livers of 77-week-old rats compared to the control animals. Moreover, TP supplementation significantly elevated Nrf2 expression in livers of both 10-week-old and 77-week-old rats (P < 0.05). Conclusion TP ameliorates age-associated inflammation and oxidative stress through the inhibition of NF-κBp65, mTOR pathways, and Nrf2 activation may explain the observed improvement in glucose and lipid metabolism as well as the improved liver and kidney functions.
Collapse
|
488
|
Abstract
In this Review, we focus on catalytic antioxidant study based on transition metal complexes, organoselenium compounds, supramolecules and protein scaffolds.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
489
|
Rajgopal A, Roloff S, Burns C, Fast D, Scholten J. The cytoprotective benefits of a turmeric, quercetin, and rosemary blend through activation of the oxidative stress pathway. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_556_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
490
|
Peng S, Hou Y, Yao J, Fang J. Activation of Nrf2 by costunolide provides neuroprotective effect in PC12 cells. Food Funct 2019; 10:4143-4152. [DOI: 10.1039/c8fo02249f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Costunolide (COS), a natural sesquiterpene lactone originally isolated from Inula helenium (Compositae), shows potent neuroprotective effects against oxidative stress-mediated injuries of PC12 cells via activating transcription factor Nrf2.
Collapse
Affiliation(s)
- Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
- Department of Gastrointestinal Surgery/Hepatobiliary and Enteric Surgery Research Center
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
491
|
Zhang L, Yousefzadeh MJ, Suh Y, Niedernhofer LJ, Robbins PD. Signal Transduction, Ageing and Disease. Subcell Biochem 2019; 91:227-247. [PMID: 30888655 DOI: 10.1007/978-981-13-3681-2_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ageing is defined by the loss of functional reserve over time, leading to a decreased tissue homeostasis and increased age-related pathology. The accumulation of damage including DNA damage contributes to driving cell signaling pathways that, in turn, can drive different cell fates, including senescence and apoptosis, as well as mitochondrial dysfunction and inflammation. In addition, the accumulation of cell autonomous damage with time also drives ageing through non-cell autonomous pathways by modulation of signaling pathways. Interestingly, genetic and pharmacologic analysis of factors able to modulate lifespan and healthspan in model organisms and even humans have identified several key signaling pathways including IGF-1, NF-κB, FOXO3, mTOR, Nrf-2 and sirtuins. This review will discuss the roles of several of these key signaling pathways, in particular NF-κB and Nrf2, in modulating ageing and age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yousin Suh
- Departments of Genetics and Medicine and the Institute for Ageing Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
492
|
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:221-264. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Collapse
|
493
|
Zhou Z, Liu J, Bi C, Chen L, Jiao Y, Cui L. Knockdown of FOXO6 inhibits high glucose–induced oxidative stress and apoptosis in retinal pigment epithelial cells. J Cell Biochem 2018; 120:9716-9723. [PMID: 30548643 DOI: 10.1002/jcb.28252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Zhuolin Zhou
- Department of Ophthalmology Xi'an No. 4 Hospital, Guangren Hospital of Xi'an Jiaotong University Xi'an China
| | - Jing Liu
- Department of Ophthalmology Xi'an No. 4 Hospital, Guangren Hospital of Xi'an Jiaotong University Xi'an China
| | - Chunchao Bi
- Department of Ophthalmology Xi'an No. 4 Hospital, Guangren Hospital of Xi'an Jiaotong University Xi'an China
| | - Li Chen
- Department of Ophthalmology Xi'an No. 4 Hospital, Guangren Hospital of Xi'an Jiaotong University Xi'an China
| | - Yang Jiao
- Department of Endocrinology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Lijun Cui
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
494
|
Zhang C, Qin L, Dou DC, Li XN, Ge J, Li JL. Atrazine induced oxidative stress and mitochondrial dysfunction in quail (Coturnix C. coturnix) kidney via modulating Nrf2 signaling pathway. CHEMOSPHERE 2018; 212:974-982. [PMID: 30286554 DOI: 10.1016/j.chemosphere.2018.08.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR) is a most used herbicide which is believed as a pivotal determinant of environmental nephrosis, but potential mechanism is still largely unclear. This study intends to reveal a novel mechanism of ATR-induced nephrotoxicity. Quail were treated with 0, 50, 250 and 500 mg ATR/kg/d by oral gavage for 45 days. Kidney coefficient was decreased, biochemical and morphologic indices reflecting the kidney injury were significantly increased in ATR-exposed quail. ATR exposure upregulated the expression of proapoptotic factors (Bax, Caspase 3 and FasL) and downregulated antiapoptotic factor (Bcl-2). Notably, cristae of mitochondria decreased, mitochondrial malformation and mitochondrial vacuolar degeneration were observed in ATR-exposed quail. ATR induced the disorder of mitochondrial function related factors expressions and promoted oxidative damage. Furthermore, ATR induced toxicities in the expression of Nrf2 and Nrf2-target genes. In conclusion, ATR altered the microstructure and function of quail kidney. ATR induced renal damage via causing mitochondrial dysfunction, influencing mitochondrial function related genes expression, modulating Nrf2 signaling pathway. This study suggested ATR induced the nephrotoxicity via disturbing the transcription of mitochondrial function related factors and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Da-Chang Dou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
495
|
Dallak M. Crataegus aronia enhances sperm parameters and preserves testicular architecture in both control and non-alcoholic fatty liver disease-induced rats. PHARMACEUTICAL BIOLOGY 2018; 56:535-547. [PMID: 30375253 PMCID: PMC6211218 DOI: 10.1080/13880209.2018.1523934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/18/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Crataegus aronia (syn. Azarolus L.) (Rosaceae) is used in traditional medicine due to its hypolipidaemic and antioxidant properties. OBJECTIVES This study investigates the effect of C. aronia whole plant aqueous extract on sperm parameter and testicular structure in control and non-alcoholic fatty liver disease (NAFLD)-induced rats. MATERIALS AND METHODS Male rats were divided into six groups (10 rats each) as control fed a standard diet (STD) (10% kcal), STD + C. aronia (200 mg/kg), high-fat diet (HFD) (45% kcal), HFD + C. aronia, HFD followed by C. aronia, and C. aronia followed by HFD. Rats were treated with C. aronia (once/day, orally) for four weeks. RESULTS Compared with STD rats, STD rats co-treated with C. aronia had lower hepatic triglycerides (0.58 vs. 0.42 mg/g) and cholesterol (5.4 vs. 3.27 mg/g) contents, higher levels of testosterone (8.43 vs. 10.9 ng/mL), luteinizing hormone (6.05 vs. 8.1 mIU/mL) and follicle-stimulating hormone (5.8 vs. 8.0 mIU/mL) and increased epididymis weight (1.28 vs. 1.5g) and sperm count (133.2 vs. 148.3 million/0.1 mg) and motility (66.8%vs. 77.6%). They showed increased testicular levels of glutathione (6.3 vs. 7.75 µM/L) and higher protein levels of Nrf2 (0.37 vs. 0.79), γ-glutamylcysteine synthetase (0.27 vs. 0.5) and superoxide dismutase (0.92 vs. 2.1). Concomitant or post-treatment of C. aronia to NAFLD rats prevented the declines in sperm parameters and damage in the testis by similar effects like those found in the STD rats. DISCUSSION AND CONCLUSIONS This study encourages the use of C. aronia in further future clinical studies.
Collapse
Affiliation(s)
- Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
496
|
Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, He Y, Chang Y, Liu B, Li C, Jian Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic Biol Med 2018; 129:492-503. [PMID: 30342186 DOI: 10.1016/j.freeradbiomed.2018.10.421] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/26/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Vitiligo is a complex disorder characterized by patchy loss of skin pigmentation due to abnormal melanocyte function. Overwhelming evidences have suggested that oxidative stress plays a major role in the loss of melanocytes thereby mediating the onset and progression of vitiligo. The nuclear factor erythroid 2-like factor 2 (Nrf2) is a master regulator of cellular redox homeostasis and the activation of Nrf2 signaling pathway is impaired in the vitiligo melanocytes. Baicalein, as flavonoid extracted from the Scutellaria baicalensis, has been proved to possess the ability to activate Nrf2 signaling pathway in other cell types and mouse model. Our previous data found that baicalein exerts a cytoprotective role in H2O2-induced apoptosis in human melanocytes cell line (PIG1). Based on these founding, we hypothesized that baicalein activates Nrf2 signaling pathway, alleviates H2O2-induced mitochondrial dysfunction and cellular damage, thereby protecting human vitiligo melanocytes from oxidative stress. In the present study, we found that baicalein effectively inhibited H2O2-induced cytotoxicity and apoptosis in human vitiligo melanocytes (PIG3V). Further results demonstrated that baicalein promoted Nrf2 nucleus translocation as well as up-regulated the expression of Nrf2 and its target gene, heme oxygenase-1 (HO-1). Moreover, the protective effects of baicalein against H2O2-induced cellular damage and apoptosis as well as mitochondrial dysfunction were abolished by Nrf2 knockdown. Additionally, we observed that Nrf2 knockdown suppressed proliferation and increased the sensitivity of PIG3V cells to H2O2 treatment. Finally, we explored the mechanism of baicalein associated with Nrf2 activation and found that the phosphorylation of Nrf2 as well as ERK1/2and PI3K/AKT signaling were not involved in the baicalein-induced activation of Nrf2. Taken together, these data clearly suggest that baicalein enhances cellular antioxidant defense capacity of human vitiligo melanocytes through the activation of the Nrf2 signaling pathway, providing beneficial evidence for the application of baicalein in the vitiligo treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Longfei Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuanmin He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Bangmin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
497
|
Keller G, Binyamin O, Frid K, Saada A, Gabizon R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment? Neurobiol Dis 2018; 124:57-66. [PMID: 30423473 DOI: 10.1016/j.nbd.2018.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial malfunction is a common feature in advanced stages of neurodegenerative conditions, as is the case for the accumulation of aberrantly folded proteins, such as PrP in prion diseases. In this work, we investigated mitochondrial activity and expression of related factors vis a vis PrP accumulation at the subclinical stages of TgMHu2ME199K mice, modeling for genetic prion diseases. While these mice remain healthy until 5-6 months of age, they succumb to fatal disease at 12-14 months. We found that mitochondrial respiratory chain enzymatic activates and ATP/ROS production, were abnormally elevated in asymptomatic mice, concomitant with initial accumulation of disease related PrP. In parallel, the expression of Cytochrome c oxidase (COX) subunit IV isoform 1(Cox IV-1) was reduced and replaced by the activity of Cox IV isoform 2, which operates in oxidative neuronal conditions. At all stages of disease, Cox IV-1 was absent from cells accumulating disease related PrP, suggesting that PrP aggregates may directly compromise normal mitochondrial function. Administration of Nano-PSO, a brain targeted antioxidant, to TgMHu2ME199K mice, reversed functional and biochemical mitochondrial functions to normal conditions regardless of the presence of misfolded PrP. Our results therefore indicate that in genetic prion disease, oxidative damage initiates long before clinical manifestations. These manifest only when aggregated PrP levels are too high for the compensatory mechanisms to sustain mitochondrial activity.
Collapse
Affiliation(s)
- Guy Keller
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ann Saada
- Department of Genetics and Metabolic Diseases, The Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
498
|
Comparative Assessment of Tungsten Toxicity in the Absence or Presence of Other Metals. TOXICS 2018; 6:toxics6040066. [PMID: 30423906 PMCID: PMC6315525 DOI: 10.3390/toxics6040066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
Abstract
Tungsten is a refractory metal that is used in a wide range of applications. It was initially perceived that tungsten was immobile in the environment, supporting tungsten as an alternative for lead and uranium in munition and military applications. Recent studies report movement and detection of tungsten in soil and potable water sources, increasing the risk of human exposure. In addition, experimental research studies observed adverse health effects associated with exposure to tungsten alloys, raising concerns on tungsten toxicity with questions surrounding the safety of exposure to tungsten alone or in mixtures with other metals. Tungsten is commonly used as an alloy with nickel and cobalt in many applications to adjust hardness and thermal and electrical conductivity. This review addresses the current state of knowledge in regard to the mechanisms of toxicity of tungsten in the absence or presence of other metals with a specific focus on mixtures containing nickel and cobalt, the most common components of tungsten alloy.
Collapse
|
499
|
Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018; 9:1280. [PMID: 30455645 PMCID: PMC6230566 DOI: 10.3389/fphar.2018.01280] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration is one of the leading causes of vision loss in the elderly. Genetics, environmental insults, and age-related issues are risk factors for the development of the disease. All these risk factors are linked to the induction of oxidative stress. In young subjects retinal pigment epithelial cells mitigate reactive oxygen generation by the elimination of dysfunctional mitochondria, via mitophagy, and by increasing antioxidant defenses via Nrf2 activation. The high amount of UV light absorbed by the retina, together with cigarette smoking, cooperate with the aging process to increase the amount of reactive oxygen species generated by retinal pigment epithelium where oxidative stress arises. Moreover, in the elderly both the mitophagic process and Nrf2 activation are impaired thus causing retinal cell death. This review will focus on the impact of oxidative stress on the pathogenesis of age-related macular degeneration and analyze the natural and synthetic Nrf2-activating compounds that have been tested as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
500
|
Gacesa R, Lawrence KP, Georgakopoulos ND, Yabe K, Dunlap WC, Barlow DJ, Wells G, Young AR, Long PF. The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie 2018; 154:35-44. [PMID: 30071261 PMCID: PMC6214812 DOI: 10.1016/j.biochi.2018.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Mycosporine-like amino acids (MAAs) are UVR-absorbing metabolites typically produced by cyanobacteria and marine algae, but their properties are not limited to direct sun screening protection. Herein, we examine the antioxidant activities of porphyra-334 and shinorine and demonstrate that these MAAs are prospective activators of the cytoprotective Keap1-Nrf2 pathway. The ability of porphyra-334 and shinorine to bind with Keap1 was determined using fluorescence polarization (FP) and thermal shift assays to detect Keap1 receptor antagonism. Concomitantly, the ability of porphyra-334 and shinorine to dissociate Nrf2 from Keap1 was confirmed also by measurement of increased mRNA expression of Nrf2 targeted genes encoding oxidative stress defense proteins in primary skin fibroblasts prior and post UVR exposure. Surprisingly, enhanced transcriptional regulation was only promoted by MAAs in cells after exposure to UVR-induced oxidative stress. Furthermore, the in-vitro antioxidant activities of porphyra-334 and shinorine determined by the DPPH free-radical quenching assay were low in comparison to ascorbic acid. However, their antioxidant capacity determined by the ORAC assay to quench free radicals via hydrogen atom transfer is substantial. Hence, the dual nature of MAAs to provide antioxidant protection may offer a prospective chemotherapeutic strategy to prevent or retard the progression of multiple degenerative disorders of ageing.
Collapse
Affiliation(s)
- Ranko Gacesa
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Karl P Lawrence
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | | | - Kazuo Yabe
- Chemical Laboratory, Hokkaido University of Education, Japan
| | - Walter C Dunlap
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - David J Barlow
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Geoffrey Wells
- School of Pharmacy, University College London, United Kingdom
| | - Antony R Young
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Paul F Long
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| |
Collapse
|